Rockchip RK3288 Technical Reference Manual Part1

Revision 1.2 Mar. 2017

Copyright 2017 @ FuZhou Rockchip Electronics Co., Ltd.

Date	Revision	Description
2017-3-21	1.2	Update
2015-8-20	1.1	Update
2015-6-26	1.0	Update-Part1 System and System control

Revision History

Warranty Disclaimer

Rockchip Electronics Co., Ltd makes no warranty, representation or guarantee (expressed, implied, statutory, or otherwise) by or with respect to anything in this document, and shall not be liable for any implied warranties of non-infringement, merchantability or fitness for a particular purpose or for any indirect, special or consequential damages.

Information furnished is believed to be accurate and reliable. However, Rockchip Electronics Co.,Ltd assumes no responsibility for the consequences of use of such information or for any infringement of patents or other rights of third parties that may result from its use.

Rockchip Electronics Co., Ltd's products are not designed, intended, or authorized for using as components in systems intended for surgical implant into the body, or other applications intended to support or sustain life, or for any other application in which the failure of the Rockchip Electronics Co., Ltd's product could create a situation where personal injury or death may occur, should buyer purchase or use Rockchip Electronics Co., Ltd's products for any such unintended or unauthorized application, buyers shall indemnify and hold Rockchip Electronics Co., Ltd and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, expenses, and reasonable attorney fees arising out of, either directly or indirectly, any claim of personal injury or death that may be associated with such unintended or unauthorized use, even if such claim alleges that Rockchip Electronics Co., Ltd was negligent regarding the design or manufacture of the part.

Copyright and Patent Right

Information in this document is provided solely to enable system and software implementers to use Rockchip Electronics Co.,Ltd 's products. There are no expressed or implied copyright licenses granted hereunder to design or fabricate any integrated circuits or integrated circuits based on the information in this document.

Rockchip Electronics Co., Ltd does not convey any license under its patent rights nor the rights of others.

All copyright and patent rights referenced in this document belong to their respective owners and shall be subject to corresponding copyright and patent licensing requirements.

Trademarks

Rockchip and Rockchip[™] logo and the name of Rockchip Electronics Co., Ltd's products are trademarks of Rockchip Electronics Co., Ltd. and are exclusively owned by Rockchip Electronics Co., Ltd. References to other companies and their products use trademarks owned by the respective companies and are for reference purpose only.

Confidentiality

The information contained herein (including any attachments) is confidential. The recipient hereby acknowledges the confidentiality of this document, and except for the specific purpose, this document shall not be disclosed to any third party.

Reverse engineering or disassembly is prohibited.

ROCKCHIP ELECTRONICS CO.,LTD. RESERVES THE RIGHT TO MAKE CHANGES IN ITS PRODUCTS OR PRODUCT SPECIFICATIONS WITH THE INTENT TO IMPROVE FUNCTION OR DESIGN AT ANY TIME AND WITHOUT NOTICE AND IS NOT REQUIRED TO UNDATE THIS DOCUMENTATION TO REFLECT SUCH CHANGES.

Copyright © 2015 Rockchip Electronics Co., Ltd.

All rights reserved. No part of this publication may be reproduced, stored in a retrieval system, or transmitted in any form or by any means, electric or mechanical, by photocopying, recording, or otherwise, without the prior written consent of Rockchip Electronics Co., Ltd.

Table of Content

Table of Content	
Figure Index	
Table Index NOTICE	
Chapter 1 System Overview	
1.1 Address Mapping	
1.2 System Boot	
1.3 System Interrupt connection	
1.4 System DMA hardware request connection	
Chapter 2 Clock and Reset Unit (CRU)	
2.1 Overview	
2.2 Block Diagram	
2.3 System Clock Solution	
2.4 System Reset Solution	
2.5 Function Description	
2.6 PLL Introduction	
2.7 Register Description	
2.8 Timing Diagram	
2.9 Application Notes	
Chapter 3 General Register Files (GRF)	
3.1 Overview	
3.2 Function Description	
3.3 GRF Register Description	
Chapter 4 Cortex-A17	
4.1 Overview	
4.2 Block Diagram	
Chapter 5 Embedded SRAM	
5.1 Overview	
5.2 Block Diagram	
5.3 Function Description	
Chapter 6 Power Management Unit (PMU)	
6.1 Overview	
6.2 Block Diagram	
6.3 Power Switch Timing Requirement	
6.4 Function Description	
6.5 Register Description	
6.6 Timing Diagram	
6.7 Application Notes	
Chapter 7 Memory Management Unit (MMU)	
7.1 Overview	
7.2 Block Diagram	
7.3 Register Description	
7.4 MMU Base address	
Chapter 8 Timer	
8.1 Overview	
8.2 Block Diagram	
8.3 Function description	

8.4 Register Description	308
8.5 Application Notes	310
Chapter 9 Interrupt Controller	
9.1 Overview	312
9.2 Block Diagram	312
9.3 Function Description	
Chapter 10 DMA Controller for Bus System (DMAC_BUS)	
10.1 Overview	313
10.2 Block Diagram	
10.3 Function Description	314
10.4 Register Description	315
10.5 Timing Diagram	328
10.6 Interface Description	329
10.7 Application Notes	329
Chapter 11 DMA Controller for Peripheral System (DMAC_PERI)	
11.1 Overview	
11.2 Block Diagram	336
11.3 Function Description	337
11.4 Register Description	
11.5 Timing Diagram	
11.6 Interface Description	
11.7 Application Notes	
Chapter 12 Temperature Sensor ADC(TSADC)	
12.1 Overview	
12.2 Block Diagram	
12.3 Function Description	
12.4 Register Description	
12.5 Application Notes	
Chapter 13 eFuse	
13.1 Overview	
13.2 Block Diagram	
13.3 Function description	
13.4 Register Description	
13.5 Timing Diagram	
13.6 Application Notes	
Chapter 14 WatchDog(WDT)	
14.1 Overview	
14.2 Block Diagram	
14.3 Function description	
14.4 Register Description	
14.5 Application Notes Chapter 15 Pulse Width Modulation (PWM)	
15.1 Overview	
15.2 Block Diagram	
15.2 Block Diagram	
·	
15.4 Register Description	
15.5 Interface Description	
15.6 Application Notes	391

Chapter 16 UART Interface	393
16.1 Overview	393
16.2 Block Diagram	393
16.3 Function description	394
16.4 Register Description	397
16.5 Interface description	415
16.6 Application Notes	416
Chapter 17 GPIO	
17.1 Overview	
17.2 Block Diagram	
17.3 Function description	
17.4 Register Description	
17.5 Interface description	
17.6 Application Notes	
Chapter 18 I2C Interface	
18.1 Overview	
18.2 Block Diagram	
18.3 Function description	
18.4 Register Description	
18.5 Interface description	
18.6 Application Notes	
Chapter 19 I2S/PCM Controller	
19.1 Overview	
19.2 Block Diagram	
19.3 Function description	
19.4 Register Description	
19.5 Interface description	
19.6 Application Notes	
Chapter 20 Serial Peripheral Interface (SPI)	
20.1 Overview	
20.2 Block Diagram	
20.3 Function description	
20.4 Register Description	
20.5 Interface description	
20.6 Application Notes	
Chapter 21 SPDIF Transmitter	
21.1 Overview	
21.2 Block Diagram	
21.3 Function description	
21.4 Register description	
21.5 Interface description	
21.6 Application Notes	
Chapter 22 Transport Stream Processing(TSP)	
22.1 Overview	
22.2 Block Diagram	
22.3 Function Description	
22.4 Register Description	
22.5 Interface Description	533

22.6 Application Notes	534
Chapter 23 High-Speed ADC Interface (HSADC)	539
23.1 Overview	539
23.2 Block Diagram	539
23.3 Function Description	539
23.4 Register Description	540
23.5 Interface Description	543
23.6 Application Notes	545
Chapter 24 GMAC Ethernet Interface	546
24.1 Overview	546
24.2 Block Diagram	547
24.3 Function Description	547
24.4 Register description	552
24.5 Interface Description	614
24.6 Application Notes	615
Chapter 25 PS/2 Controller	628
25.1 Overview	628
25.2 Block Diagram	628
25.3 Function description	628
25.4 Register Description	630
25.5 Interface description	637
25.6 Application Notes	637
Chapter 26 Smart Card Controller	640
26.1 Overview	640
26.2 Block Diagram	640
26.3 Function Description	641
26.4 Register description	643
26.5 Interface Description	659
26.6 Application Notes	659
Chapter 27 SARADC	661
27.1 Overview	661
27.2 Block Diagram	661
27.3 Function description	661
27.4 Register Description	661
27.5 Timing Diagram	663
27.6 Application Notes	664
Chapter 28 GraphicsProcessing Unit (GPU)	665
28.1 Overview	665
28.2 Block Diagram	666
28.3 Application Notes	666

Figure Index

	1-1 RK3288 Address Mapping	
Fig.	1-2 RK3288 boot procedure flow	15
Fig.	2-1 CRU Architecture	20
Fig.	2-2 CRU Clock Architecture Diagram 1	21
	2-3 CRU Clock Architecture Diagram 2	
	2-4 CRU Clock Architecture Diagram 3	
	2-5 CRU Clock Architecture Diagram 4	
	2-6 Reset Architecture Diagram	
	2-7 PLL Block Diagram	
	2-8 Chip Power On Reset Timing Diagram	
	2-9 PLL setting change timing	
	4-1 Block Diagram	
	5-1 Embedded SRAM block diagram	
	6-1 Power Domain Partition	
	6-2 PMU Bock Diagram	
	6-3 Each Domain Power Switch Timing	
	6-4 External Wakeup Source PAD Timing	
	8-1 Power Domain Partition	
	8-2 Power Domain Partition	
	8-3 Page directory entry bit assignments	
	8-4 Page directory entry bit assignments	
	9-1 Timers Block Diagram	
	9-2 Timer Usage Flow	
	9-3 Timing between timer_en and timer_clk	
	10-1 Block Diagram	
	11-1 Block diagram of DMAC_BUS	
	11-1 DIOCK diagram of DMAC_BUS	
	11-2 DMAC_BUS request and acknowledge timing	
	12-1 Block diagram of DMAC_PERI	
	13-1 TS-ADC Controller Block Diagram	
	13-2 Single-sample conversion	
	13-3 Clock Timing Diagram.	
	14-1 RK3288 eFuse block diagram	
	14-2 RK3288 efuse timing diagram in program mode	
5	14-3 RK3288 efuse timing diagram in read mode	
	15-1 WDT block diagram	
	15-2 WDT Operation Flow	
	16-1 PWM architecture	
	16-2 PWM Reference Mode	
	16-3 PWM Left-aligned Output Mode	
	16-4 PWM Center-aligned Output Mode	
	16-5 PWM Center-aligned Output Mode	
	17-1 UART Architecture	
-	17-2 UART Serial protocol	
	17-3 IrDA 1.0	
	17-4 UART baud rate	
	17-5 UART Auto flow control block diagram	
	17-6 UART AUTO RTS TIMING	
	17-7 UART AUTO CTS TIMING	
	17-8 UART none fifo mode	
	17-9 UART fifo mode	
	17-10 UART clock generation	
-	18-1 GPIO block diagram	
-	18-2 GPIO Interrupt RTL Block Diagram	
Fig.	19-1 I2C architecture	428

Fig. 19-2 I2C DATA Validity	430
Fig. 19-3 I2C Start and stop conditions	430
Fig. 19-4 I2C Acknowledge	430
Fig. 19-5 I2C byte transfer	431
Fig. 19-6 I2C Flow chat for transmit only mode	438
Fig. 19-7 I2C Flow chat for receive only mode	439
Fig. 19-8 I2C Flow chat for mix mode.	
Fig. 20-1 I2S/PCM controller (8 channel) Block Diagram	441
Fig. 20-2 I2S transmitter-master & receiver-slave condition	442
Fig. 20-3 I2S transmitter-slave& receiver-master condition	442
Fig. 20-4 I2S normal mode timing format	
Fig. 20-5 I2S left justified mode timing format	
Fig. 20-6 I2S right justified modetiming format	
Fig. 20-7 PCM early modetiming format	
Fig. 20-8 PCM late1 modetiming format	
Fig. 20-9 PCM late2 modetiming format	
Fig. 20-10 PCM late3 modetiming format	
Fig. 20-11 I2S/PCM controller (8 channel) transmit operation flow chart	
Fig. 20-12 I2S/PCM controller (8 channel) receive operation flow chart	
Fig. 21-1 SPI Controller Block diagram	
Fig. 21-2 SPI Master and Slave Interconnection	
Fig. 21-3 SPI Format (SCPH=0 SCPOL=0)	
Fig. 21-4 SPI Format (SCPH=0 SCPOL=1)	
Fig. 21-5 SPI Format (SCPH=1 SCPOL=0)	
Fig. 21-6 SPI Format (SCPH=1 SCPOL=1)	
Fig. 21-7 SPI Master transfer flow diagram	
Fig. 21-8 SPI Slave transfer flow diagram	
Fig. 22-1 SPDIF transmitter Block Diagram	
Fig. 22-2 SPDIF Frame Format	
Fig. 22-3 SPDIF Sub-frame Format	
Fig. 22-4 SPDIF Channel Coding	
Fig. 22-5 SPDIF Preamble	
Fig. 22-6 Format of Data-burst	
Fig. 22-7 SPDIF transmitter operation flow chart	
Fig. 23-1 TSP architecture	491
Fig. 23-2 Sync/Valid Serial Mode with Msb-Lsb Bit Ordering	492
Fig. 23-3 Sync/valid Parallel Mode	
Fig. 23-4 Sync/Burst Parallel Mode	492
Fig. 23-5 Nosync/Valid Parallel Mode	492
Fig. 24-1 HS-ADC Architecture	539
Fig. 24-2 GPS Application Diagram	540
Fig. 24-3 TS Application Diagram	540
Fig. 24-4 Almost empty triggers a DMA request by DMA request mode	545
Fig. 24-5 Almost full triggers a DMA request by DMA request mode	
Fig. 25-1 GMAC architecture	
Fig. 25-2 MAC Frame structure	
Fig. 25-3 RMII transmission bit ordering	
Fig. 25-4 Start of MII and RMII transmission in 100-Mbps mode	
Fig. 25-5 End of MII and RMII Transmission in 100-Mbps Mode	
Fig. 25-6 Start of MII and RMII Transmission in 10-Mbps Mode	
Fig. 25-7 End of MII and RMII Transmission in 10-Mbps Mode	
Fig. 25-8 RMII receive bit ordering	
Fig. 25-9 MDIO frame structure	
Fig. 25-10 Descriptor Ring and Chain Structure	
Fig. 25-11 Rx/Tx Descriptors definition	
Fig. 25-12 RMII clock architecture when clock source from CRU	
Fig. 25-13 RMII clock architecture when clock source from external OSC	
TIG. 23 13 NITT CIOCK ATCHILECTURE WHEN CIOCK SOULCE HOTH EXTERNAL OSC	023

Fig. 25-14 RGMII clock architecture when clock source from CRU	625
Fig. 25-15 Wake-Up Frame Filter Register	626
Fig. 26-1 PS/2 controller architecture	628
Fig. 26-2 PS/2 host receiving timing	629
Fig. 26-3 PS/2 host sending timing	629
Fig. 26-4 Flow chat for PS/2 controller receiving data mode	638
Fig. 26-5 Flow chat for PS/2 controller sending data mode	639
Fig. 26-6 Flow chat for PS/2 controller inhibition mode	639
Fig. 27-1 SCR Block Diagram	
Fig. 27-2 Activation, Cold Reset and ATR	642
Fig. 27-3 Warm Reset and ATR	643
Fig. 27-4 Deactivation Sequence	643
Fig. 28-1 RK3288 SAR-ADC block diagram	
Fig. 28-2 SAR-ADC timing diagram in single-sample conversion mode	663
Fig. 29-1 GPU Block Diagram	666

Table Index

Table 2-1 RK3288 Interrupt connection list	16
Table 2-2 RK3288 DMAC_BUS Hardware request connection list	18
Table 2-3 RK3288 DMAC_PERI Hardware request connection list	
Table 7-1 RK3288 Power Domain and Voltage Domain Summary	
Table 7-2 Power Switch Timing	
Table 7-3 Low Power State	
Table 7-4 Wakeup Source	
Table 7-5 Power Domain Status Summary in all Work Mode	
Table 11-1 DMAC_BUS Request Mapping Table	
Table 11-2 DMAC Instruction sets	
Table 12-1 DMAC_PERI Request Mapping Table	
Table 13-1 Timing parameters	
Table 13-2 Temperature Code Mapping	
Table 14-1 RK3288 eFuse timing parameters list	
Table 16-1 PWM Interface Description	
Table 17-1 UART Interface Description	
Table 17-2 UART baud rate configuration	
Table 18-1 GPIO interface description	
Table 19-1 I2C Interface Description	
Table 21-1 SPI interface description	
Table 22-1 IOMUX Setting	
Table 23-1 TSP Interface Description	
Table 24-1 IOMUX configuration in TS mode	
Table 24-2 IOMUX configuration in GPS mode	
Table 25-1 RMII Interface Description	
Table 25-2 RGMII Interface Description	
Table 25-3 Receive Descriptor 0	
Table 25-4 Receive Descriptor 1	
Table 25-5 Receive Descriptor 2	
Table 25-6 Receive Descriptor 3	
Table 25-7 Transmit Descriptor 0	
Table 25-8 Transmit Descriptor 1	
Table 25-9 Transmit Descriptor 2	
Table 25-10 Transmit Descriptor 3	
Table 26-1 PS/2 controller Interface Description	637
Table 27-1 IOMUX Setting	
Table 27-2 BAUDTUNE register	
Table 28-1 RK3288 SAR-ADC timing parameters list	663

NOTICE

Copyright © 2017, Fuzhou Rockchip Electronics Co., Ltd. All rights reserved.

1. By using this document, you hereby unequivocally acknowledge that you have read and agreed to be bound by the contents of this notice.

2. Fuzhou Rockchip Electronics Co., Ltd. ("Rockchip") may make changes to any information in this document at any time without any prior notice. The information herein is subject to change without notice. Do not finalize a design with this information.

3. Information in this document is provided in connection with Rockchip products.

4. THIS DOCUMENT IS PROVIDED "AS IS" WITHOUT ANY WARRANTY OR CONDITION OF ANY KIND, EITHER EXPRESS, IMPLIED OR STATUTORY, INCLUDING, WITHOUT LIMITATION, ANY WARRANTY OR CONDITION WITH RESPECT TO MERCHANTABILITY, FITNESS FOR ANY PARTICULAR PURPOSE, OR NON-INFRINGEMENT.ROCKCHIP DOES NOT ASSUME ANY RESPONSIBILITY AND LIABILITY FOR ITS USE NOR FOR ANY INFRINGEMENT OF PATENTS OR OTHER RIGHTS OF THE THIRD PARTIES WHICH MAY RESULT FROM ITS USE.

5. Rockchip products described in this document are not designed, intended for use in medical, life saving, life sustaining, critical control or safety systems, or in nuclear facility application.

6. Rockchip and Rockchip logo are trademarks or registered trademarks of Rockchip in China and other countries. All referenced brands, product names, service names and trademarks in this document are the property by their respective owners.

Chapter 1 System Overview

1.1 Address Mapping

RK3288 support to boot from internal bootrom, which support remap function by software programming. Remap is controlled by SGRF_SOC_CON0 bit[11].

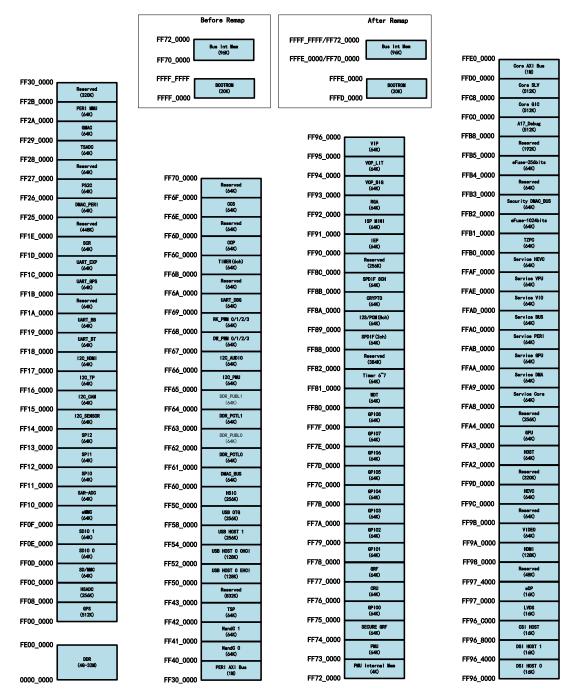
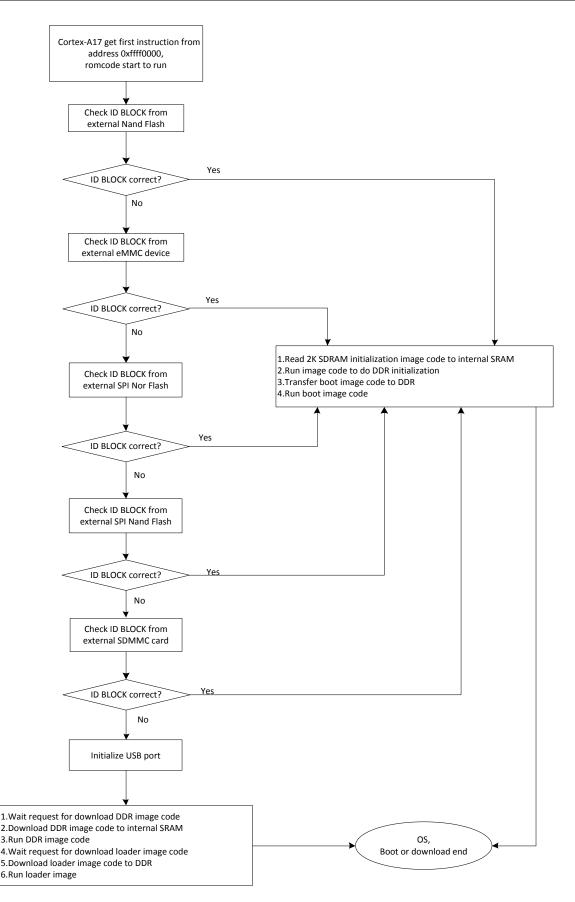
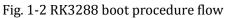


Fig. 1-1 RK3288 Address Mapping


1.2 System Boot


RK3288 provides system boot from off-chip devices such as SDMMC card, 8bits async nand flash or toggle nand flash, SPI nor or nand, and eMMC memory. When boot code is not ready in these devices, also provide system code download into them by USB OTG interface. All of the boot code will be stored in internal bootrom. The following is the whole boot procedure for boot

code, which will be stored in bootrom in advance.

The following features are supports.

Support secure boot mode and non-secure boot mode Support system boot from the following device: 8bits Async Nand Flash 8bits Toggle Nand Flash SPI2_CS0 interface eMMC interface SDMMC Card Support system code download by USB OTG

1.3 System Interrupt connection

RK3288 provides an general interrupt controller(GIC) for Cortex-A17 MPCore processor, which has 112 SPI (shared peripheral interrupts) interrupt sources and 3 PPI(Private peripheral

interrupt) interrupt source and separately generates one nIRQ and one nFIQ to CPU. The triggered type for each interrupts is high level sensitive, not programmable. The detailed interrupt sources connection is in the following table. For detailed GIC setting, please refer to Chapter 13.

Chapter 13.	Table	1-1 RK3288 Interrupt connection list	
IRQ Type	IRQ ID	Source(spi)	Polarity
	26	HYPERVISOR TIMER	High level
PPI	27	VIRTUAL TIMER	High level
	29	SECURE PHYSICAL TIMER	High level
	30	NON-SECURE PHY TIMER	High level
	32	DMAC_BUS (0)	High level
	33	DMAC_BUS (1)	High level
	34	DMAC_PERI (0)	High level
	35	DMAC_PERI (1)	High level
	36	UPCTL 0	High level
	37	UPCTL 1	High level
	38	GPU_IRQJOB	High level
	39	GPU_IRQMMU	High level
	40	GPU_IRQGPU	High level
	41	VIDEO ENCODER	High level
	42	VIDEO DECODER	High level
	43	VIDEO MMU	High level
	44	HEVC	High level
	45	VIP	High level
	46	ISP	High level
	47	VOP_BIG	High level
	48	VOP_LIT	High level
	49	IEP	High level
SPI	50	RGA	High level
	51	DSI 0 HOST	High level
	52	DSI 1 HOST	High level
	53	CSI HOST 0	High level
	54	CSI HOST 1	High level
	55	USB OTG	High level
	56	USB HOST 0 EHCI	High level
	57	USB HOST 1	High level
	58	N/A	High level
	59	GMAC	High level
	60	GMAC PMT	High level
F	61	GPS	High level
	62	GPS TIMER	High level
	63	HS-ADC/TSI	High level
F	64	SD/MMC	High level
	65	SDIO 0	High level
	66	SDIO 1	High level
	67	eMMC	High level

IRQ Type	IRQ ID	Source(spi)	Polarity
	68	SARADC	High level
	69	TSADC	High level
	70	NANDC 0	High level
	71	PERI MMU	High level
	72	NANDC 1	High level
	73	USB HOST 0 OHCI	High level
	74	TPS	High level
	75	SCR	High level
	76	SPIO	High level
	77	SPI1	High level
	78	SPI2	High level
	79	PS2C	High level
	80	CRYPTO	High level
	81	HOST PULSE 0	High level
	82	HOST PULSE 1	High level
	83	HOST 0	High level
	84	HOST 1	High level
	85	I2S/PCM (8ch)	High level
	86	SPDIF(8ch)	High level
	87	UART_BT	High level
	88	UART_BB	High level
	89	UART_DBG	High level
	90	UART_GPS	High level
	91	UART_EXP	High level
	92	I2C_PMU	High level
	93	I2C_AUDIO	High level
	94	I2C_SENSOR	High level
	95	I2C_CAM	High level
	96	I2C_TP	High level
	97	I2C_HDMI	High level
	98	TIMER 6CH 0	High level
	99	TIMER 6CH 1	High level
	100	TIMER 6CH 2	High level
	101	TIMER 6CH 3	High level
	102	TIMER 6CH 4	High level
	103	TIMER 6CH 5	High level
	104	TIMER 2CH 0	High level
	105	TIMER 2CH 1	High level
	106	PWM0	High level
	107	PWM1	High level
	108	PWM2	High level
	109	PWM3	High level
	110	RK_PWM	High level
	111	WDT	High level

IRQ Type	IRQ ID	Source(spi)	Polarity
	112	PMU	High level
	113	GPIO0	High level
	114	GPIO1	High level
	115	GPIO2	High level
	116	GPIO3	High level
	117	GPIO4	High level
	118	GPIO5	High level
	119	GPIO6	High level
	120	GPIO7	High level
	121	GPIO8	High level
	122	AHB ARBITER0 (USB)	High level
	123	AHB ARBITER1 (EMEM)	High level
	124	AHB ARBITER2 (MMC)	High level
	125	USBOTG_ID	High level
	126	USBOTG_BVALID	High level
	127	USBOTG_LINESTATE	High level
	128	USBHOST0_LINESTATE	High level
	129	USBHOST1_LINESTATE	High level
	130	eDP DP	High level
	131	SDMMC_DETECT_N	High level
	132	SDIO0_DETECT_N	High level
	133	SDIO1_DETECT_N	High level
	134	HDMI WAKEUP	High level
	135	HDMI	High level
	136	ССР	High level
	137	CCS	High level
	138	SDMMC DETECT DUAL EDGE	High level
	139	GPIO7_B3 DUAL EDGE	High level
	140	GPIO7_C6_DUAL EDGE	High level
	141	GPIO8_A2_DUAL EDGE	High level
	142	eDP HDMI	High level
	143	HEVC MMU	High level
	183	PMUIRQ[0]	High level
	184	PMUIRQ[1]	High level
	185	PMUIRQ[2]	High level
	186	PMUIRQ[3]	High level

1.4 System DMA hardware request connection

RK3288 provides 2 DMA controllers: DMAC_BUS inside bus system and DMAC_PERI inside peripheral system. As for DMAC_BUS, there are 6 hardware request ports. Another, 15 hardware request ports are used in DMAC_PERI, the trigger type for each of them is high level, not programmable. For detailed descriptions of DMAC_BUS and DMAC_PERI, please refer to related section.

Table 1-2 RK3288 DMAC_BUS Hardware request connection list

Req Number	Source	Polarity
0	I2S/PCM(8CH) TX	High level
1	I2S/PCM(8CH) RX	High level
2	SPDIF(2CH) TX	High level
3	SPDIF(8CH) TX	High level
4	UART_DBG TX	High level
5	UART_DBG RX	High level

Table 1-3 RK3288 DMAC_PERI Hardware request connection list

Req Number	Source	Polarity
0	HS-ADC/TSI	High level
1	UART_BT TX	High level
2	UART_BT RX	High level
3	UART_BB TX	High level
4	UART_BB RX	High level
5	N/A	N/A
6	N/A	N/A
7	UART_GPS TX	High level
8	UART_GPS RX	High level
9	UART_EXP TX	High level
10	UART_EXP RX	High level
11	SPI0 TX	High level
12	SPI0 RX	High level
13	SPI1 TX	High level
14	SPI1 RX	High level
15	SPI2 TX	High level
16	SPI2 RX	High level

Chapter 2 Clock and Reset Unit (CRU)

2.1 Overview

The CRU is an APB slave module that is designed for generating all of the system clocks, resets of chip. CRU generates system clock from PLL output clock or external clock source, and generates system reset from external power-on-reset, watchdog timer reset or software reset.

- CRU supports the following features:
- Compliance to the AMBA APB interface
- Embedded five PLLs
- Flexible selection of clock source
- Supports the respective gating of all clocks
- Supports the respective software reset of all modules

2.2 Block Diagram

The CRU comprises with:

- PLL
- Register configuration unit
- Clock generate unit
- Reset generate unit

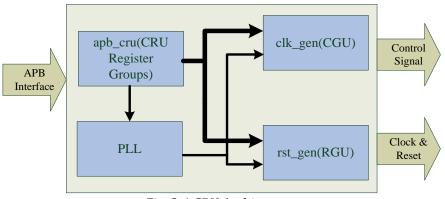


Fig. 2-1 CRU Architecture

2.3 System Clock Solution

2.3.1 CRU architecture

The following diagrams show CRU clock architecture (mux and divider information).

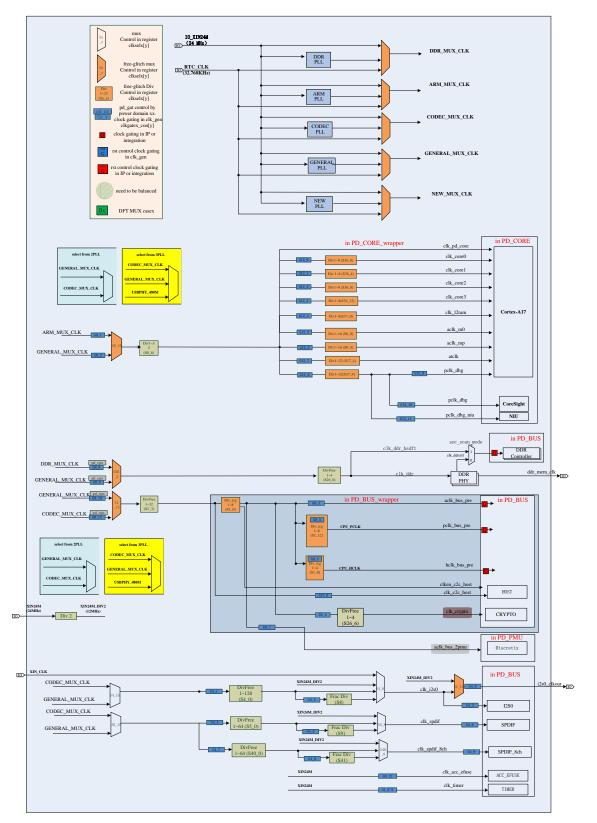


Fig. 2-2 CRU Clock Architecture Diagram 1

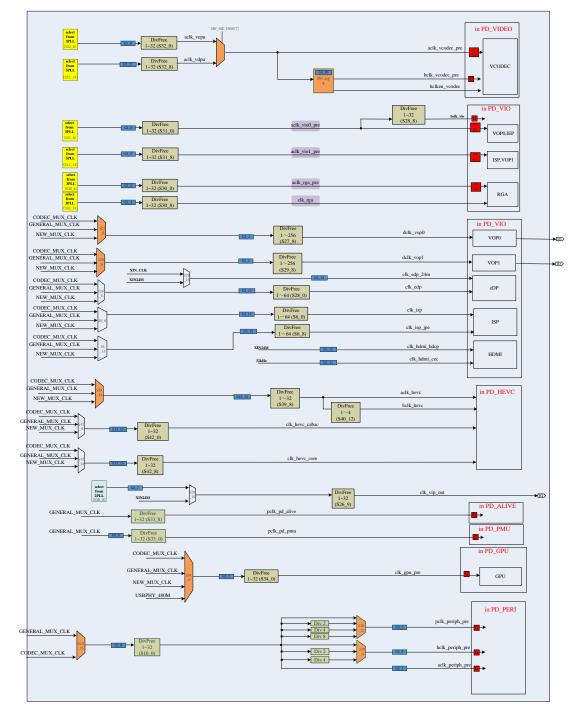


Fig. 2-3 CRU Clock Architecture Diagram 2

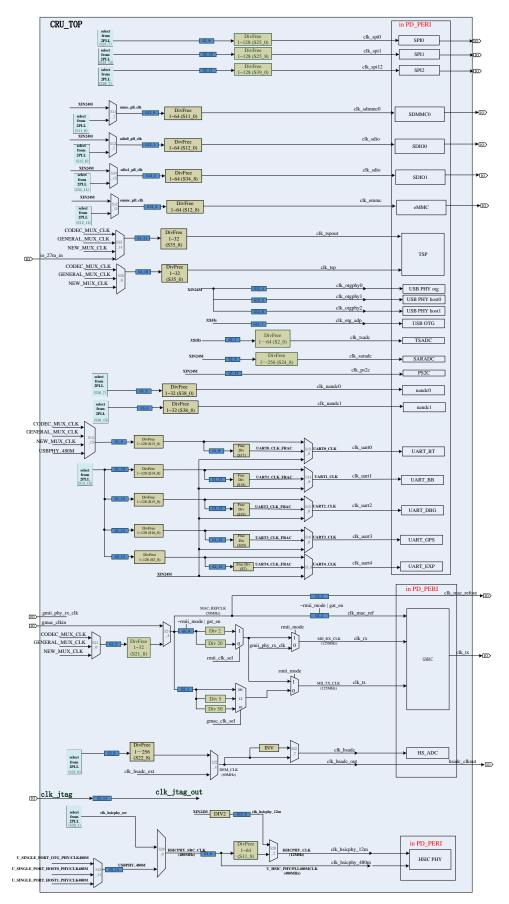


Fig. 2-4 CRU Clock Architecture Diagram 3

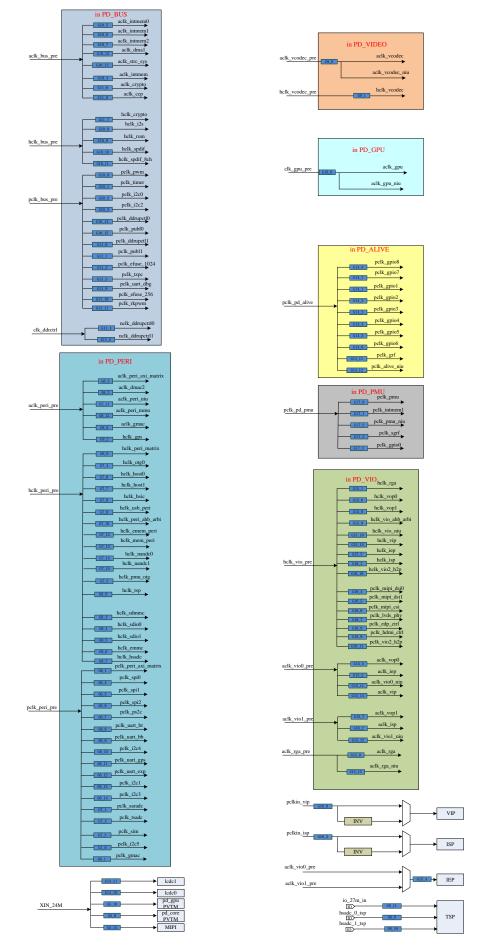


Fig. 2-5 CRU Clock Architecture Diagram 4

2.4 System Reset Solution

The following diagrams show reset architecture in this block.

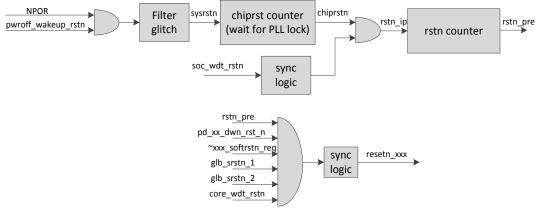


Fig. 2-6 Reset Architecture Diagram

Reset source of each reset signal includes hardware reset (NPOR), power-off mode wakeup reset (pwroff_wakeup_rstn), soc watch dog reset (soc_wdt_rstn), power domain power down reset (pd_xx_dwn_rst_n), software reset request (xxx_softrstn_req), global software reset1 (glb_srstn_1), global software reset2 (glb_srstn_2) and A9 core watch dog reset (core_wdt_rstn).

The 'xx' of pd_xx_dwn_rst_n represents core0, core1, core2, core3, cs, cpu, peri, vio, video or gpu. The 'xxx' of resetn_xxx and xxx_softrstn_req is the module name.

Pwroff_wakeup_rstn is the reset when wakeup from the power-off mode, it will reset the all SOC logic except internal PMU.

Soc_wdt_rstn is the reset from watch-dog IP in the SoC, but core_wdt_rstn is the reset from A9 core watch-dog block.

Glb_srstn_1 and glb_srstn_2 are the global software reset by programming CRU register. When writing register CRU_GLB_SRST_FST_VALUE as 0xfdb9, glb_srstn_1 will be asserted, and when writing register CRU_GLB_SRST_SND_VALUE as 0xeca8, glb_srstn_2 will be asserted. The two software resets will be self-clear by hardware. Glb_srstn_1 will reset the all logic except PMU_SYS_REG0~3. And Glb_srstn_2 will reset the all logic except PMU_SYS_REG0~3, GRF and all GPIOs.

2.5 Function Description

There are five PLLs:

ARM PLL, DDR PLL, CODEC PLL, GENERAL PLL and NEW PLL in CRU.

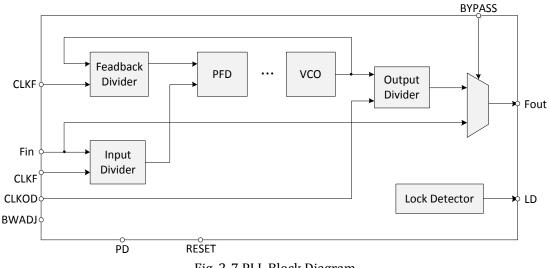
PLLs all can be set to slow mode or deep slow mode, directly output selectable 24MHz or 32.768kHz. When power on or changing PLL setting, we must force PLL into slow mode to ensure output stable clock.

To maximize the flexibility, some of clocks can select divider source from three PLLs (CODEC PLL, GENERAL PLL and NEW PLL).

To provide some specific frequency, another solution is integrated: fractional divider. In order to be sure the performance for divided clock, there is some usage limit, we can only get low frequency and divider factor must be larger than 20.

All clocks can be software gated and all reset can be software generated.

2.6 PLL Introduction


2.6.1 Overview

This chip uses 5GHz PLL for all four PLLs. The 5GHz PLL is a general purpose, high-performance PLL-based clock generator. The VCO operates from 440 MHz to 5000MHz, but the frequency range of 440 MHz to 2200MHz is recommended. It has a programmable output frequency, which ranges from 27.5 MHz to 5000 MHz configured through a 6-bit input divider, a 13-bit feedback divider and a 4-bit output divider. Around 50% duty cycle of output clocks can be achieved by enabling the output divider. It can also be used as a clock buffer through a bypass

mode that bypasses and powers down the PLL. A full power-down mode is also available. 2.2GHz PLL supports the following features:

Fully integrated, including loop filter Power supply: 1.0V single power supply VCO operating range: 440MHz – 5000MHz(440MHz – 2200MHz is recommended) Output frequency range: 27.5MHz – 5000MHz (27.5MHz – 2200MHz is recommended) Input frequency range: 269kHz – 5000MHz (269kHz – 2200MHz is recommended) PFD comparison frequency range: 269kHz - 5000MHz(269kHz - 2200MHz is recommended) Low power consumption: 3mA @ 1100MHz during normal operation Contains 6-bit input, 13-bit feedback and 4-bit output dividers Input divider value range: 1–64 Feedback divider value range: 1-4096 Output divider value range: 1, 2-16 (even only) Bandwidth adjustment of div. reference: 1-4096 Output duty cycle: +/-5% (/1), +/-2% (/N) Period jitter (P-P) (max): +/-2.5% output cycle Reset pulse width (min): 5us Lock time (min allowed): 500 div. reference cycles Freq. overshot (full-~/half-~) (max): 40%/50% Ref. input jitter (long-term, P-P) (max): 2% div. reference cycle Reference H/L pulse width (min) : 230ps Bypass and Power-down mode Lock detector

2.6.2 Block diagram

2.6.3 Operation mode

Locked

The positive edges of the PLL feedback and reference signals are phase aligned in normal operation. Because the feedback signal is internal, NO phase relationship is guaranteed between RCLK and CLKOUT. The output clock frequency is programmable through the divider setting of CLKR[5:0], CLKF[12:0] and CLKOD[3:0].

Reset (RESET=1)

The PLL outputs a fixed free-running frequency in the range of 20MHz to 200MHz for a divide by 1 output depending on the specific PLL type.

Power-down (PWRDN=1)

All analog circuitry in the PLL is turned off so as to only dissipate leakage current. The digital dividers are not affected.

Bypass (BYPASS=1)

The reference input is bypassed directly to the outputs.

Test (TEST=1)

The reference input drives all dividers cascaded one after the other for production testing.

2.6.4 PLL Bandwidth Adjustment

The loop bandwidth (BW) of the PLL can be adjusted using BWADJ[11:0]. The bandwidth is given by: $BW = nom_BW*sqrt(NF / 2 / NB)$, where nom_BW is approximately given by: $nom_BW = Fref / (NR*20)$, and Fref is the reference clock frequency. The damping factor (D) is approximately given by: $D = nom_D*sqrt(NF / 2 / NB)$, where nom_D is approximately 1. Because the damping factor changes with bandwidth settings, the bandwidth is practically limited to: $nom_BW/sqrt(2) < BW < nom_BW*sqrt(2)$, in order to limit the damping factor range to 0.7 - 1.4. The -3dB bandwidth (Fbw_3dB) is approximately given by: Fbw_3dB = 2.4 * nom_BW * (NF / 2 / NB). The recommended setting for NB is NF / 2, which will yield the nominal bandwidth. Note that nom_BW and nom_D are chosen to result in optimal PLL loop dynamics.

2.7 Register Description

This section describes the control/status registers of the design.

2.7.1 CRU Registers Summary

Name	Offset	Size	Reset Value	Description
CRU_APLL_CON0	0x0000	W	0x00000b01	ARM PLL configuration register0
CRU_APLL_CON1	0x0004	W	0x000003e7	ARM PLL configuration register1
CRU_APLL_CON2	0x0008	W	0x000001f3	ARM PLL configuration register2
CRU_APLL_CON3	0x000c	W	0x0000008	ARM PLL configuration register3
CRU_DPLL_CON0	0x0010	W	0x0000b03	DDR PLL configuration register0
CRU_DPLL_CON1	0x0014	W	0x000031f	DDR PLL configuration register1
CRU_DPLL_CON2	0x0018	W	0x000018f	DDR PLL configuration register2
CRU_DPLL_CON3	0x001c	W	0x0000008	DDR PLL configuration register3
CRU_CPLL_CON0	0x0020	W	0x0000b03	CODEC PLL configuration register0
CRU_CPLL_CON1	0x0024	W	0x000002ff	CODEC PLL configuration register1
CRU_CPLL_CON2	0x0028	W	0x0000017f	CODEC PLL configuration register2
CRU_CPLL_CON3	0x002c	W	0x0000008	CODEC PLL configuration register3
CRU_GPLL_CON0	0x0030	w	0x00000b01	GENERAL PLL configuration
	0x0030	vv		register0
CRU_GPLL_CON1	0x0034	W	0×00000251	GENERAL PLL configuration
	0,00004			register1
CRU GPLL CON2	0x0038	w	0x00000128	GENERAL PLL configuration
	0,0050	vv	0,00000120	register2
CRU_GPLL_CON3	0x003c	w	0x00000008	GENERAL PLL configuration
	0,0050	vv	0x00000008	register3
CRU_NPLL_CON0	0x0040	W	0x0000b03	NEW PLL configuration register0
CRU_NPLL_CON1	0x0044	W	0x000003e7	NEW PLL configuration register1
CRU_NPLL_CON2	0x0048	W	0x000001f3	NEW PLL configuration register2
CRU_NPLL_CON3	0x004c	W	0x0000008	NEW PLL configuration register3
CRU_MODE_CON	0x0050	W	0x00000000	System work mode control register
CRU_CLKSEL0_CON	0x0060	W	0x00000031	Internal clock select and divide register0

Name	Offset	Size	Reset Value	Description
CRU_CLKSEL1_CON	0x0064	W	0x0000b109	Internal clock select and divide register1
CRU_CLKSEL2_CON	0x0068	w	0x0000020	Internal clock select and divide register2
CRU_CLKSEL3_CON	0x006c	w	0x00000200	Internal clock select and divide register3
CRU_CLKSEL4_CON	0x0070	w	0x00000300	Internal clock select and divide register4
CRU_CLKSEL5_CON	0x0074	w	0x00000200	Internal clock select and divide register5
CRU_CLKSEL6_CON	0x0078	w	0x00000101	Internal clock select and divide register6
CRU_CLKSEL7_CON	0x007c	w	0x0bb8ea60	Internal clock select and divide register7
CRU_CLKSEL8_CON	0x0080	w	0x0bb8ea60	Internal clock select and divide register8
CRU_CLKSEL9_CON	0x0084	w	0x0bb8ea60	Internal clock select and divide register9
CRU_CLKSEL10_CON	0x0088	w	0x0000a101	Internal clock select and divide register10
CRU_CLKSEL11_CON	0x008c	w	0x00002780	Internal clock select and divide register11
CRU_CLKSEL12_CON	0x0090	w	0x00008080	Internal clock select and divide register12
CRU_CLKSEL13_CON	0x0094	w	0x00000200	Internal clock select and divide register13
CRU_CLKSEL14_CON	0x0098	w	0x00000200	Internal clock select and divide register14
CRU_CLKSEL15_CON	0x009c	w	0x00000200	Internal clock select and divide register15
CRU_CLKSEL16_CON	0x00a0	w	0x00000200	Internal clock select and divide register16
CRU_CLKSEL17_CON	0x00a4	w	0x0bb8ea60	Internal clock select and divide register17
CRU_CLKSEL18_CON	0x00a8	W	0x0bb8ea60	Internal clock select and divide register18
CRU_CLKSEL19_CON	0x00ac	W	0x0bb8ea60	Internal clock select and divide register19
CRU_CLKSEL20_CON	0x00b0	W	0x0bb8ea60	Internal clock select and divide register20
CRU_CLKSEL21_CON	0x00b4	W	0×00000b00	Internal clock select and divide register21
CRU_CLKSEL22_CON	0x00b8	W	0×00000900	Internal clock select and divide register22

Name	Offset	Size	Reset Value	Description
CRU_CLKSEL23_CON	0x00bc	W	0x001f05dc	Internal clock select and divide register23
CRU_CLKSEL24_CON	0x00c0	W	0x00001700	Internal clock select and divide register24
CRU_CLKSEL25_CON	0x00c4	W	0x00000707	Internal clock select and divide register25
CRU_CLKSEL26_CON	0x00c8	w	0x00000ec0	Internal clock select and divide register26
CRU_CLKSEL27_CON	0x00cc	w	0x00000700	Internal clock select and divide register27
CRU_CLKSEL28_CON	0x00d0	w	0x00000f03	Internal clock select and divide register28
CRU_CLKSEL29_CON	0x00d4	w	0x00000742	Internal clock select and divide register29
CRU_CLKSEL30_CON	0x00d8	w	0x00000000	Internal clock select and divide register30
CRU_CLKSEL31_CON	0x00dc	w	0x00000000	Internal clock select and divide register31
CRU_CLKSEL32_CON	0x00e0	w	0x00000101	Internal clock select and divide register32
CRU_CLKSEL33_CON	0x00e4	w	0x00000303	Internal clock select and divide register33
CRU_CLKSEL34_CON	0x00e8	w	0x00008000	Internal clock select and divide register34
CRU_CLKSEL35_CON	0x00ec	w	0x00000303	Internal clock select and divide register35
CRU_CLKSEL36_CON	0x00f0	w	0x00000000	Internal clock select and divide register36
CRU_CLKSEL37_CON	0x00f4	w	0x00001ef3	Internal clock select and divide register37
CRU_CLKSEL38_CON	0x00f8	w	0x00000303	Internal clock select and divide register38
CRU_CLKSEL39_CON	0x00fc	w	0x0000007	Internal clock select and divide register39
CRU_CLKSEL40_CON	0x0100	W	0x00000200	Internal clock select and divide register40
CRU_CLKSEL41_CON	0x0104	W	0x0bb8ea60	Internal clock select and divide register41
CRU_CLKSEL42_CON	0x0108	W	0x00000000	Internal clock select and divide register42
CRU_CLKGATE0_CON	0x0160	W	0x00000000	Internal clock gating control register0
CRU_CLKGATE1_CON	0x0164	W	0x00000000	Internal clock gating control register1

Name	Offset	Size	Reset Value	Description
CRU_CLKGATE2_CON	0x0168	W	0x00000000	Internal clock gating control register2
CRU_CLKGATE3_CON	0x016c	W	0x00000000	Internal clock gating control register3
CRU_CLKGATE4_CON	0x0170	W	0x00000000	Internal clock gating control register4
CRU_CLKGATE5_CON	0x0174	W	0x00000000	Internal clock gating control register5
CRU_CLKGATE6_CON	0x0178	W	0x00000000	Internal clock gating control register6
CRU_CLKGATE7_CON	0x017c	W	0x00000000	Internal clock gating control register7
CRU_CLKGATE8_CON	0x0180	W	0x00000000	Internal clock gating control register8
CRU_CLKGATE9_CON	0x0184	W	0x00000000	Internal clock gating control register9
CRU_CLKGATE10_CON	0x0188	W	0x00000000	Internal clock gating control register10
CRU_CLKGATE11_CON	0x018c	W	0x00000000	Internal clock gating control register11
CRU_CLKGATE12_CON	0x0190	W	0x00000000	Internal clock gating control register12
CRU_CLKGATE13_CON	0x0194	W	0x00000000	Internal clock gating control register13
CRU_CLKGATE14_CON	0x0198	W	0x00000000	Internal clock gating control register14
CRU_CLKGATE15_CON	0x019c	W	0x00000000	Internal clock gating control register15
CRU_CLKGATE16_CON	0x01a0	W	0x00000000	Internal clock gating control register16
CRU_CLKGATE17_CON	0x01a4	W	0x00000000	Internal clock gating control register17
CRU_CLKGATE18_CON	0x01a8	W	0x00000000	Internal clock gating control register18
CRU_GLB_SRST_FST_VAL UE	0x01b0	W	0x0000000	The first global software reset config value
CRU_GLB_SRST_SND_VA LUE	0x01b4	W	0x00000000	The second global software reset config value
CRU_SOFTRST0_CON	0x01b8	W	0x00000000	Internal software reset control register0
CRU_SOFTRST1_CON	0x01bc	W	0x00000000	Internal software reset control register1
CRU_SOFTRST2_CON	0x01c0	W	0x00000000	Internal software reset control register2

Name	Offset	Size	Reset Value	Description
CRU_SOFTRST3_CON	0x01c4	W	0x00000000	Internal software reset control register3
CRU_SOFTRST4_CON	0x01c8	W	0×00000000	Internal software reset control register4
CRU_SOFTRST5_CON	0x01cc	W	0×00000000	Internal software reset control register5
CRU_SOFTRST6_CON	0x01d0	W	0×00000000	Internal software reset control register6
CRU_SOFTRST7_CON	0x01d4	W	0x00000000	Internal software reset control register7
CRU_SOFTRST8_CON	0x01d8	W	0x00000000	Internal software reset control register8
CRU_SOFTRST9_CON	0x01dc	W	0x00000000	Internal software reset control register9
CRU_SOFTRST10_CON	0x01e0	W	0x00000000	Internal software reset control register10
CRU_SOFTRST11_CON	0x01e4	W	0x00000000	Internal software reset control register11
CRU_MISC_CON	0x01e8	W	0x00000000	SCU control register
CRU_GLB_CNT_TH	0x01ec	W	0x0000064	global reset wait counter threshold
CRU_GLB_RST_CON	0x01f0	W	0x00000000	global reset trigger select
CRU_GLB_RST_ST	0x01f8	W	0x0000000	global reset status
CRU_SDMMC_CON0	0x0200	W	0x0000002	sdmmc control0
CRU_SDMMC_CON1	0x0204	W	0x00000000	sdmmc control1
CRU_SDIO0_CON0	0x0208	W	0x0000002	sdio0 control0
CRU_SDIO0_CON1	0x020c	W	0x0000000	sdio0 control1
CRU_SDIO1_CON0	0x0210	W	0x0000002	sdio1 control0
CRU_SDIO1_CON1	0x0214	W	0x0000000	sdio1 control1
CRU_EMMC_CON0	0x0218	W	0x0000002	emmc control0
CRU_EMMC_CON1	0x021c	W	0x0000000	emmc control1

Notes: <u>Size</u> : **B** - Byte (8 bits) access, **HW** - Half WORD (16 bits) access, **W** -WORD (32 bits) access

2.7.2 Detail Register Description

CRU_APLL_CON0 Address: Operational Base + offset (0x0000) ARM PLL configuration register0

Bit	Attr	Reset Value	Description			
31:30	RO	0x0	reserved			
			clkr_mask			
29:24	wo	0x00	CLKR value write mask.			
29.24	**0	0,00	When every bit HIGH, enable the writing corresponding bit			
			When every bit LOW, don't care the writing corresponding bit			
23:20	RO	0x0	reserved			

Bit	Attr	Reset Value	Description
			clkod_mask
19:16	wo	0x0	Clock OD value write mask.
19.10	vvO	0.00	When every bit HIGH, enable the writing corresponding bit
			When every bit LOW, don't care the writing corresponding bit
15:14	RO	0x0	reserved
		W 0x0b	clkr
13:8			PLL CLKR factor control
13.0	K VV		NR = CLKR + 1
			NR: 1-64
7:4	RO	0x0	reserved
			clkod
2.0	RW		PLL CLKOD factor control
3:0		0x1	NO = CLKOD + 1
			NO: 1, 2-16 (even only)

CRU_APLL_CON1

Address: Operational Base + offset (0x0004) ARM PLL configuration register1

Bit	Attr	Reset Value	Description				
			lock				
21		0.40	PLL lock status				
31	RW	V 0×0	1'b0: unlock				
			1'b1: lock				
30:13	RO	0x0	reserved				
			clkf				
12.0		RW 0x03e/	PLL CLKF factor control				
12:0			NF = CLKF + 1				
			NF: 1-4096				

CRU_APLL_CON2

Address: Operational Base + offset (0x0008) ARM PLL configuration register2

Bit	Attr	Reset Value	Description
31:12	RO	0x0	reserved
11:0	RW	0x1f3	bwadj PLL loop bandwidth adjust NB = BWADJ + 1

CRU_APLL_CON3

Address: Operational Base + offset (0x000c) ARM PLL configuration register3

Bit	Attr	Reset Value	Description
31:22	RO	0x0	reserved

Bit	Attr	Reset Value	Description
			reset_mask
24			Reset configuration write mask.
21	WO	0×0	When HIGH, enable the writing corresponding bit
			When LOW, don't care the writing corresponding bit
			test_mask
20		0.40	Test configuration write mask.
20	WO	0x0	When HIGH, enable the writing corresponding bit
			When LOW, don't care the writing corresponding bit
			ensat_mask
19	wo	0x0	Ensat configuration write mask.
19	WO	UXU	When HIGH, enable the writing corresponding bit
			When LOW, don't care the writing corresponding bit
			fasten_mask
18	wo	0x0	Fasten configuration write mask.
10	000	UXU	When HIGH, enable the writing corresponding bit
			When LOW, don't care the writing corresponding bit
			power_down_mask
17	wo	00	Power down configuration write mask.
17	000	0x0	When HIGH, enable the writing corresponding bit
			When LOW, don't care the writing corresponding bit
			bypass_mask
16	wo	0×0	Bypass configuration write mask.
10			When HIGH, enable the writing corresponding bit
			When LOW, don't care the writing corresponding bit
15:6	RO	0x0	reserved
			reset
5	RW	0×0	PLL reset control
5			1'b0: normal
			1'b1: reset
			test
4	RW	0x0	PLL test control
-			1'b0: normal
			1'b1: test mode
			ensat
3	RW	0x1	PLL saturation behavior enable
			1'b0: disable
			1'b1: enable
		0×0	fasten
2	RW		PLL enable fast locking circuit
			1'b0: disable
			1'b1: enable
			power_down
1	RW	0×0	PLL power down control
			1'b0: no power down
			1'b1: power down

Bit	Attr	Reset Value	Description	
		0×0	bypass	
0	RW		PLL bypass mode control	
0			1'b0: no bypass	
			1'b1: bypass	

CRU_DPLL_CON0

Address: Operational Base + offset (0x0010) DDR PLL configuration register0

Bit	Attr	Reset Value	Description
31:30	RO	0x0	reserved
29:24	WO	0×00	clkr_mask CLKR value write mask. When every bit HIGH, enable the writing corresponding bit When every bit LOW, don't care the writing corresponding bit
23:20	RO	0x0	reserved
19:16	wo	0×0	clkod_mask Clock OD value write mask. When every bit HIGH, enable the writing corresponding bit When every bit LOW, don't care the writing corresponding bit
15:14	RO	0x0	reserved
13:8	RW	0x0b	clkr PLL CLKR factor control NR = CLKR + 1 NR: 1-64
7:4	RO	0x0	reserved
3:0	RW	0x3	clkod PLL CLKOD factor control NO = CLKOD + 1 NO: 1, 2-16 (even only)

CRU_DPLL_CON1

Address: Operational Base + offset (0x0014) DDR PLL configuration register1

Bit	Attr	Reset Value	Description
31	RW	0x0	lock PLL lock status 1'b0: unlock 1'b1: lock
30:13	RO	0x0	reserved
12:0	RW	0x031f	clkf PLL CLKF factor control NF = CLKF + 1 NF: 1-4096

CRU_DPLL_CON2

Address: Operational Base + offset (0x0018) DDR PLL configuration register2

Bit	Attr	Reset Value	Description
31:12	RO	0x0	reserved
11:0	RW	0x18f	bwadj PLL loop bandwidth adjust NB = BWADJ + 1

CRU_DPLL_CON3

Address: Operational Base + offset (0x001c) DDR PLL configuration register3

Bit	Attr	Reset Value	Description
31:22	RO	0x0	reserved
21	wo	0x0	reset_mask Reset configuration write mask. When HIGH, enable the writing corresponding bit When LOW, don't care the writing corresponding bit
20	wo	0x0	test_mask Test configuration write mask. When HIGH, enable the writing corresponding bit When LOW, don't care the writing corresponding bit
19	wo	0×0	ensat_mask Ensat configuration write mask. When HIGH, enable the writing corresponding bit When LOW, don't care the writing corresponding bit
18	wo	0x0	fasten_mask Fasten configuration write mask. When HIGH, enable the writing corresponding bit When LOW, don't care the writing corresponding bit
17	wo	0x0	power_down_mask Power down configuration write mask. When HIGH, enable the writing corresponding bit When LOW, don't care the writing corresponding bit
16	wo	0x0	bypass_mask Bypass configuration write mask. When HIGH, enable the writing corresponding bit When LOW, don't care the writing corresponding bit
15:6	RO	0x0	reserved
5	RW	0x0	reset PLL reset control 1'b0: normal 1'b1: reset

Bit	Attr	Reset Value	Description
			test
4	RW	0x0	PLL test control
4		0.00	1'b0: normal
			1'b1: test mode
			ensat
3	RW	0x1	PLL saturation behavior enable
5			1'b0: disable
			1'b1: enable
		0x0	fasten
2	RW		PLL enable fast locking circuit
2	K V V		1'b0: disable
			1'b1: enable
	RW	0×0	power_down
1			PLL power down control
1			1'b0: no power down
			1'b1: power down
	RW	0×0	bypass
0			PLL bypass mode control
			1'b0: no bypass
			1'b1: bypass

CRU_CPLL_CON0

Address: Operational Base + offset (0x0020) CODEC PLL configuration register0

Bit	Attr	Reset Value	Description
31:30	RO	0x0	reserved
29:24	WO	0×00	clkr_mask CLKR value write mask. When every bit HIGH, enable the writing corresponding bit
23:20	RO	0x0	When every bit LOW, don't care the writing corresponding bit reserved
19:16	wo	0x0	clkod_mask Clock OD value write mask. When every bit HIGH, enable the writing corresponding bit When every bit LOW, don't care the writing corresponding bit
15:14	RO	0x0	reserved
13:8	RW	0x0b	clkr PLL CLKR factor control NR = CLKR + 1 NR: 1-64
7:4	RO	0x0	reserved

Bit	Attr	Reset Value	Description
3:0	RW	0x3	clkod PLL CLKOD factor control NO = CLKOD + 1 NO: 1, 2-16 (even only)

CRU_CPLL_CON1

Address: Operational Base + offset (0x0024) CODEC PLL configuration register1

Bit	Attr	Reset Value	Description
			lock
31	RW	0x0	PLL lock status
21	RW	UXU	1'b0: unlock
			1'b1: lock
30:13	RO	0x0	reserved
		0x02ff	clkf
12.0			PLL CLKF factor control
12:0	RW		NF = CLKF + 1
			NF: 1-4096

CRU_CPLL_CON2

Address: Operational Base + offset (0x0028) CODEC PLL configuration register2

Bit	Attr	Reset Value	Description
31:12	RO	0x0	reserved
11:0	RW	0x17f	bwadj PLL loop bandwidth adjust NB = BWADJ + 1

CRU_CPLL_CON3

Address: Operational Base + offset (0x002c) CODEC PLL configuration register3

Bit	Attr	Reset Value	Description
31:22	RO	0x0	reserved
21	wo	0x0	reset_mask Reset configuration write mask. When HIGH, enable the writing corresponding bit When LOW, don't care the writing corresponding bit

Bit	Attr	Reset Value	Description
20	wo	0x0	test_mask Test configuration write mask. When HIGH, enable the writing corresponding bit When LOW, don't care the writing corresponding bit
19	wo	0x0	ensat_mask Ensat configuration write mask. When HIGH, enable the writing corresponding bit When LOW, don't care the writing corresponding bit
18	wo	0x0	fasten_mask Fasten configuration write mask. When HIGH, enable the writing corresponding bit When LOW, don't care the writing corresponding bit
17	wo	0x0	power_down_mask Power down configuration write mask. When HIGH, enable the writing corresponding bit When LOW, don't care the writing corresponding bit
16	wo	0x0	bypass_mask Bypass configuration write mask. When HIGH, enable the writing corresponding bit When LOW, don't care the writing corresponding bit
15:6	RO	0x0	reserved
5	RW	0x0	reset PLL reset control 1'b0: normal 1'b1: reset
4	RW	0x0	test PLL test control 1'b0: normal 1'b1: test mode
3	RW	0x1	ensat PLL saturation behavior enable 1'b0: disable 1'b1: enable
2	RW	0×0	fasten PLL enable fast locking circuit 1'b0: disable 1'b1: enable
1	RW	0×0	power_down PLL power down control 1'b0: no power down 1'b1: power down

Bit	Attr	Reset Value	Description
0	RW	0x0	bypass PLL bypass mode control 1'b0: no bypass 1'b1: bypass

CRU_GPLL_CON0

Address: Operational Base + offset (0x0030) GENERAL PLL configuration register0

Bit	Attr	Reset	Description
DIL	Αιι	Value	Description
31:30	RO	0x0	reserved
			clkr_mask
29:24	wo	0x00	CLKR value write mask.
29.27		0,00	When every bit HIGH, enable the writing corresponding bit
			When every bit LOW, don't care the writing corresponding bit
23:20	RO	0x0	reserved
			clkod_mask
19:16	wo	0x0	Clock OD value write mask.
19.10	WO	0.00	When every bit HIGH, enable the writing corresponding bit
			When every bit LOW, don't care the writing corresponding bit
15:14	RO	0x0	reserved
			clkr
13:8	RW	0x0b	PLL CLKR factor control
15.0		0,00	NR = CLKR + 1
			NR: 1-64
7:4	RO	0x0	reserved
			clkod
3:0	RW	0x1	PLL CLKOD factor control
5.0			NO = CLKOD + 1
			NO: 1, 2-16 (even only)

CRU_GPLL_CON1 Address: Operational Base + offset (0x0034) GENERAL PLL configuration register1

Bit	Attr	Reset Value	Description
31	RW	0×0	lock PLL lock status 1'b0: unlock 1'b1: lock
30:13	RO	0x0	reserved

Bit	Attr	Reset Value	Description
12:0	RW	0x0251	clkf PLL CLKF factor control NF = CLKF + 1 NF: 1-4096

CRU_GPLL_CON2

Address: Operational Base + offset (0x0038) GENERAL PLL configuration register2

Bit	Attr	Reset Value	Description
31:12	RO	0x0	reserved
11:0	RW		bwadj PLL loop bandwidth adjust NB = BWADJ + 1

CRU_GPLL_CON3

Address: Operational Base + offset (0x003c) GENERAL PLL configuration register3

Bit	Attr	Reset Value	Description
31:22	RO	0x0	reserved
21	wo	0x0	reset_mask Reset configuration write mask. When HIGH, enable the writing corresponding bit When LOW, don't care the writing corresponding bit
20	wo	0x0	test_mask Test configuration write mask. When HIGH, enable the writing corresponding bit When LOW, don't care the writing corresponding bit
19	wo	0x0	ensat_mask Ensat configuration write mask. When HIGH, enable the writing corresponding bit When LOW, don't care the writing corresponding bit
18	wo	0×0	fasten_mask Fasten configuration write mask. When HIGH, enable the writing corresponding bit When LOW, don't care the writing corresponding bit
17	wo	0×0	power_down_mask Power down configuration write mask. When HIGH, enable the writing corresponding bit When LOW, don't care the writing corresponding bit

Bit	Attr	Reset Value	Description
16	wo	0x0	bypass_mask Bypass configuration write mask. When HIGH, enable the writing corresponding bit When LOW, don't care the writing corresponding bit
15:6	RO	0x0	reserved
5	RW	0x0	reset PLL reset control 1'b0: normal 1'b1: reset
4	RW	0x0	test PLL test control 1'b0: normal 1'b1: test mode
3	RW	0x1	ensat PLL saturation behavior enable 1'b0: disable 1'b1: enable
2	RW	0x0	fasten PLL enable fast locking circuit 1'b0: disable 1'b1: enable
1	RW	0x0	power_down PLL power down control 1'b0: no power down 1'b1: power down
0	RW	0x0	bypass PLL bypass mode control 1'b0: no bypass 1'b1: bypass

CRU_NPLL_CON0 Address: Operational Base + offset (0x0040) NEW PLL configuration register0

Bit	Attr	Reset	Description
Dit		Value	
31:30	RO	0x0	reserved
	wo	0x00	clkr_mask
29:24			CLKR value write mask.
29.24			When every bit HIGH, enable the writing corresponding bit
			When every bit LOW, don't care the writing corresponding bit
23:20	RO	0x0	reserved

Bit	Attr	Reset Value	Description
19:16	wo	0×0	clkod_mask Clock OD value write mask. When every bit HIGH, enable the writing corresponding bit When every bit LOW, don't care the writing corresponding bit
15:14	RO	0x0	reserved
13:8	RW	0x0b	clkr PLL CLKR factor control NR = CLKR + 1 NR: 1-64
7:4	RO	0x0	reserved
3:0	RW	0x3	clkod PLL CLKOD factor control NO = CLKOD + 1 NO: 1, 2-16 (even only)

CRU_NPLL_CON1

Address: Operational Base + offset (0x0044) NEW PLL configuration register1

Bit	Attr	Reset Value	Description
31	RW	0x0	lock PLL lock status 1'b0: unlock 1'b1: lock
30:13	RO	0x0	reserved
12:0	RW	0x03e7	clkf PLL CLKF factor control NF = CLKF + 1 NF: 1-4096

CRU_NPLL_CON2

Address: Operational Base + offset (0x0048) NEW PLL configuration register2

Bit	Attr	Reset Value	Description
31:12	RO	0x0	reserved
11:0	RW		bwadj PLL loop bandwidth adjust NB = BWADJ + 1

CRU_NPLL_CON3

Address: Operational Base + offset (0x004c) NEW PLL configuration register3

Bit	Attr	Reset Value	Description
31:22	RO	0x0	reserved
21	wo	0x0	reset_mask Reset configuration write mask. When HIGH, enable the writing corresponding bit When LOW, don't care the writing corresponding bit
20	wo	0×0	test_mask Test configuration write mask. When HIGH, enable the writing corresponding bit When LOW, don't care the writing corresponding bit
19	wo	0×0	ensat_mask Ensat configuration write mask. When HIGH, enable the writing corresponding bit When LOW, don't care the writing corresponding bit
18	wo	0×0	fasten_mask Fasten configuration write mask. When HIGH, enable the writing corresponding bit When LOW, don't care the writing corresponding bit
17	wo	0x0	power_down_mask Power down configuration write mask. When HIGH, enable the writing corresponding bit When LOW, don't care the writing corresponding bit
16	wo	0x0	bypass_mask Bypass configuration write mask. When HIGH, enable the writing corresponding bit When LOW, don't care the writing corresponding bit
15:6	RO	0x0	reserved
5	RW	0×0	reset PLL reset control 1'b0: normal 1'b1: reset
4	RW	0×0	test PLL test control 1'b0: normal 1'b1: test mode
3	RW	0x1	ensat PLL saturation behavior enable 1'b0: disable 1'b1: enable
2	RW	0x0	fasten PLL enable fast locking circuit 1'b0: disable 1'b1: enable

Bit	Attr	Reset Value	Description
			power_down
1	RW	0x0	PLL power down control
	RW		1'b0: no power down
			1'b1: power down
		0×0	bypass
0			PLL bypass mode control
0	RW		1'b0: no bypass
			1'b1: bypass

CRU_MODE_CON

Address: Operational Base + offset (0x0050) System work mode control register

Bit	Attr	Reset Value	Description
			write_mask
31:16	wo	0x0000	write mask.
51.10			When every bit HIGH, enable the writing corresponding bit
			When every bit LOW, don't care the writing corresponding bit
			npll_work_mode
			NEW PLL work mode select
15:14	RW	0x0	2'b00: Slow mode, clock from external 24MHz OSC (default)
			2'b01: Normal mode, clock from PLL output
			2'b10: Deep slow mode, clock from external 32.768kHz
			gpll_work_mode
			GENERAL PLL work mode select
13:12	RW	0x0	2'b00: Slow mode, clock from external 24MHz OSC (default)
			2'b01: Normal mode, clock from PLL output
			2'b10: Deep slow mode, clock from external 32.768kHz
11:10	RO	0x0	reserved
			cpll_work_mode
			CODEC PLL work mode select
9:8	RW	0x0	2'b00: Slow mode, clock from external 24MHz OSC (default)
			2'b01: Normal mode, clock from PLL output
			2'b10: Deep slow mode, clock from external 32.768kHz
7:6	RO	0x0	reserved
			dpll_work_mode
			DDR PLL work mode select
5:4	RW	0x0	2'b00: Slow mode, clock from external 24MHz OSC (default)
			2'b01: Normal mode, clock from PLL output
			2'b10: Deep slow mode, clock from external 32.768kHz
3:2	RO	0x0	reserved

Bit	Attr	Reset Value	Description
			apll_work_mode
			ARM PLL work mode select
1:0	RW	0x0	2'b00: Slow mode, clock from external 24MHz OSC (default)
			2'b01: Normal mode, clock from PLL output
			2'b10: Deep slow mode, clock from external 32.768kHz

CRU_CLKSEL0_CON

Address: Operational Base + offset (0x0060) Internal clock select and divide register0

Bit	Attr	Reset	Description
		Value	·
			write_mask
31:16	wo	0x0000	write mask.
51.10	~~~	0,0000	When every bit HIGH, enable the writing corresponding bit
			When every bit LOW, don't care the writing corresponding bit
			core_clk_pll_sel
15	RW	0x0	CORE clock pll source selection
13		0.00	1'b0: select ARM PLL
			1'b1: select GENERAL PLL
14:13	RO	0x0	reserved
			a17_core_div_con
12:8	RW	0x00	Control A17 core clock divider frequency
			clk_core=clk_src/(div_con+1)
			aclk_core_mp_div_con
7:4	RW	0x3	Control core MP AXI clock divider frequency
			clk=clk_src/(div_con+1)
			aclk_core_m0_div_con
3:0	RW	0×1	Control core M0 AXI clock divider frequency
			clk=clk_src/(div_con+1)

CRU_CLKSEL1_CON

Address: Operational Base + offset (0x0064) Internal clock select and divide register1

Bit	Attr	Reset Value	Description
31:16	wo	0x0000	write_mask write mask. When every bit HIGH, enable the writing corresponding bit When every bit LOW, don't care the writing corresponding bit
15	RW	0x1	bus_aclk_pll_sel pd_bus axi clock pll source selection 1'b0: select CODEC PLL 1'b1: select GENERAL PLL

Bit	Attr	Reset Value	Description
			pd_bus_pclk_div_con
14:12	RW	0x3	Control pd_bus APB clock divider frequency
			clk=clk_src/(div_con+1)
11:10	RO	0x0	reserved
			pd_bus_hclk_div_con
			Control pd_bus AHB clock divider frequency
9:8	RW	0x1	2'b00: aclk_bus:hclk_bus = 1:1
			2'b01: aclk_bus:hclk_bus = 2:1
			2'b11: aclk_bus:hclk_bus = 4:1
			pd_bus_aclk_div_con
7:3	RW	0x01	Control pd_bus aclk divider frequency
			clk=clk_src/(div_con+1)
			pd_bus_clk_div_con1
2:0	RW	0x1	Control pd_bus AXI clock divider1 frequency
			clk=clk_src/(div_con+1)

CRU_CLKSEL2_CON

Address: Operational Base + offset (0x0068) Internal clock select and divide register2

Bit	Attr	Reset Value	Description
			write_mask write mask.
31:16	WO	0x0000	When every bit HIGH, enable the writing corresponding bit
			When every bit LOW, don't care the writing corresponding bit
15:13	RO	0x0	reserved
			testout_div_con
12:8	RW	0x00	test out clk divider frequency
			clk_testout=testout_clk_src/(testout_div_con+1)
7:6	RO	0x0	reserved
			tsadc_div_con
5:0	RW	0x20	Control tsadc divider frequency
			clk_tsadc=tsadc_clk_src/(tsadc_div_con+1)

CRU_CLKSEL3_CON Address: Operational Base + offset (0x006c) Internal clock select and divide register3

Bit	Attr	Reset Value	Description
31:16	wo	0x0000	write_mask write mask. When every bit HIGH, enable the writing corresponding bit When every bit LOW, don't care the writing corresponding bit
15:10	RO	0x0	reserved

Bit	Attr	Reset Value	Description
9:8	RW	0x2	uart4_clk_sel Control UART4 clock work frequency selection 2'b00: select divider ouput from pll divider 2'b01: select divider ouput from fraction divider 2'b10: select 24MHz from osc inpu
7	RO	0x0	reserved
6:0	RW	0x00	uart4_div_con Control UART4 divider frequency clk_uart0=uart_clk_src/(uart0_div_con+1)

CRU_CLKSEL4_CON

Address: Operational Base + offset (0x0070) Internal clock select and divide register4

Bit	Attr	Reset Value	Description
31:16	WO	0×0000	write_mask write mask. When every bit HIGH, enable the writing corresponding bit When every bit LOW, don't care the writing corresponding bit
15	RW	0×0	i2s_pll_sel Control I2S PLL source selection 1'b0: select codec pll clock 1'b1: select general pll clock
14:13	RO	0x0	reserved
12	RW	0x0	i2s0_outclk_sel Control I2S clock work frequency selection 1'b0: select clk_i2s 1'b1: select 12MHz
11:10	RO	0x0	reserved
9:8	RW	0x3	i2s0_clk_sel Control I2S clock work frequency selection 2'b00: select divider ouput from pll divider 2'b01: select divider ouput from fraction divider 2'b10: select clock from IO input 2'b11: select 12MHz from osc input
7	RO	0x0	reserved
6:0	RW	0x00	i2s0_pll_div_con Control I2S PLL output divider freuency i2s1_div_clk=i2s1_div_src/(i2s1_pll_div_con+1)

CRU_CLKSEL5_CON

Address: Operational Base + offset (0x0074) Internal clock select and divide register5

Bit	Attr	Reset Value	Description
			write_mask
31:16	wo	0x0000	write mask.
51.10	WO	00000	When every bit HIGH, enable the writing corresponding bit
			When every bit LOW, don't care the writing corresponding bit
			spdif_pll_sel
15	RW	0x0	Control SPDIF PLL source selection
15	RW	0.00	1'b0: select codec pll clock
			1'b1: select general pll clock
14:10	RO	0x0	reserved
			spdif_clk_sel
			Control SPDIF clock work frequency selection
9:8	RW	0x2	2'b00: select divider ouput from pll divider
			2'b01: select divider ouput from fraction divider
			2'b10: select 12MHz from osc inpu
7	RO	0x0	reserved
			spdif_pll_div_con
6:0	RW	0x00	Control SPDIF PLL output divider freuency
			<pre>spdif_div_clk=spdif_div_src/(spdif_pll_div_con+1)</pre>

CRU_CLKSEL6_CON

Address: Operational Base + offset (0x0078) Internal clock select and divide register6

Bit	Attr	Reset Value	Description
			write_mask
31:16	wo	0x0000	write mask.
	_		When every bit HIGH, enable the writing corresponding bit
			When every bit LOW, don't care the writing corresponding bit
			isp_jpeg_pll_sel
			Control ISP jpeg PLL source selection
15:14	RW	0x0	2'b00: select codec pll clock
			2'b01: select general pll clock
			2'b10: select new pll clock
			isp_jpeg_div_con
13:8	RW	0x01	Control isp jpeg divider freuency
			jpeg_div_clk=jpeg_div_src/(isp_jpeg_div_con+1)
			isp_pll_sel
			Control ISP PLL source selection
7:6	RW	0x0	2'b00: select codec pll clock
			2'b01: select general pll clock
			2'b10: select new pll clock
			isp_div_con
5:0	RW	0x01	Control isp divider freuency
			isp_div_clk=isp_div_src/(isp_pll_div_con+1)

CRU_CLKSEL7_CON

Address: Operational Base + offset (0x007c) Internal clock select and divide register7

Bit	Attr	Reset Value	Description
31:0	RW		uart4_frac_factor Control uart4 fraction divider frequency High 16-bit for numerator Low 16-bit for denominator

CRU_CLKSEL8_CON

Address: Operational Base + offset (0x0080) Internal clock select and divide register8

Bit	Attr	Reset Value	Description
31:0	RW		i2s0_frac_factor Control I2S fraction divider frequency High 16-bit for numerator Low 16-bit for denominator

CRU_CLKSEL9_CON

Address: Operational Base + offset (0x0084) Internal clock select and divide register9

Bit	Attr	Reset Value	Description
			spdif_frac_factor
31:0	RW	0x0bb8	Control SPDIF fraction divider frequency
51.0		ea60	High 16-bit for numerator
			Low 16-bit for denominator

CRU_CLKSEL10_CON

Address: Operational Base + offset (0x0088) Internal clock select and divide register10

Bit	Attr	Reset Value	Description
31:16	wo	0x0000	write_mask write mask. When every bit HIGH, enable the writing corresponding bit When every bit LOW, don't care the writing corresponding bit
15	RW	0×1	peri_pll_sel Control peripheral clock PLL source selection 1'b0: select codec pll clock 1'b1: select general pll clock
14	RO	0x0	reserved

Bit	Attr	Reset Value	Description
13:12	RW	0x2	<pre>peri_pclk_div_con Control the divider ratio between aclk_periph and pclk_periph 2'b00: aclk_periph:pclk_periph = 1:1 2'b01: aclk_periph:pclk_periph = 2:1 2'b10: aclk_periph:pclk_periph = 4:1 2'b11: aclk_periph:pclk_periph = 8:1</pre>
11:10	RO	0x0	reserved
9:8	RW	0×1	<pre>peri_hclk_div_con Control the divider ratio between aclk_periph and hclk_periph 2'b00: aclk_periph:hclk_periph = 1:1 2'b01: aclk_periph:hclk_periph = 2:1 2'b10: aclk_periph:hclk_periph = 4:1</pre>
7:5	RO	0x0	reserved
4:0	RW	0×01	peri_aclk_div_con Control periphral clock divider frequency aclk_periph=periph_clk_src/(peri_aclk_div_con+1)

CRU_CLKSEL11_CON

Address: Operational Base + offset (0x008c) Internal clock select and divide register11

Bit	Attr	Reset Value	Description
			write_mask
31:16	wo	0x0000	write mask.
51.10	**0	00000	When every bit HIGH, enable the writing corresponding bit
			When every bit LOW, don't care the writing corresponding bit
15:14	RO	0x0	reserved
13:8	RW	0x27	reserved
			mmc0_pll_sel
			Control mmc0 clock PLL source selection
7:6	RW	0x2	2'b00: select codec pll clock
			2'b01: select general pll clock
			2'b10: select 24MHz
			mmc0_div_con
5:0	RW	W 0x00	Control SDMMC0 divider frequency
			clk_sdmmc0=general_pll_clk/(mmc0_div_con+1)

CRU_CLKSEL12_CON

Address: Operational Base + offset (0x0090)

Internal clock select and divide register12

Bit	Attr	Reset	Description
DIL	Atti	Value	Description

Bit	Attr	Reset Value	Description
31:16	wo		write_mask write mask.
51:10	WO	0x0000	When every bit HIGH, enable the writing corresponding bit When every bit LOW, don't care the writing corresponding bit
15:14	RW	0x2	emmc_pll_sel Control emmc clock PLL source selection 2'b00: select codec pll clock 2'b01: select general pll clock 2'b10: select 24MHz
13:8	RW	0x00	emmc_div_con Control EMMC divider frequency clk_emmc=general_pll_clk/(emmc_div_con+1)
7:6	RW	0x2	sdio0_pll_sel Control sdio0 clock PLL source selection 2'b00: select codec pll clock 2'b01: select general pll clock 2'b10: select 24MHz
5:0	RW	0x00	sdio0_div_con Control SDIO0 divider frequency clk_sdio=general_pll_clk/(sdio_div_con+1)

CRU_CLKSEL13_CON

Address: Operational Base + offset (0x0094) Internal clock select and divide register13

Bit	Attr	Reset Value	Description
31:16	wo	0x0000	write_mask write mask. When every bit HIGH, enable the writing corresponding bit When every bit LOW, don't care the writing corresponding bit
15	RW	0x0	uart_pll_sel Control UART1~4 clock PLL source selection 1'b0: select codec pll clock 1'b1: select general pll clock
14:13	RW	0×0	uart0_src_sel UART0 clock source selection 2'b00: select codec pll clock 2'b01: select general pll clock 2'b10: select 480M USBPHY clock 2'b11: select new pll clock

Bit	Attr	Reset Value	Description
			usbphy_480m_sel
			USBPHY 480M clock source selection
12:11	RW	0x0	2'b00: select HOST0 USB pll clock
			2'b01: select HOST1 USB pll clock
			2'b10: select OTG USB pll clock
10	RO	0x0	reserved
			uart0_clk_sel
			Control UART0 clock work frequency selection
9:8	RW	0x2	2'b00: select divider ouput from pll divider
			2'b01: select divider ouput from fraction divider
			2'b10: select 24MHz from osc inpu
7	RO	0x0	reserved
			uart0_div_con
6:0	RW	0x00	Control UART0 divider frequency
			clk_uart0=uart_clk_src/(uart0_div_con+1)

CRU_CLKSEL14_CON

Address: Operational Base + offset (0x0098) Internal clock select and divide register14

Bit	Attr	Reset Value	Description
31:16	wo	0×0000	write_mask write mask. When every bit HIGH, enable the writing corresponding bit When every bit LOW, don't care the writing corresponding bit
15:10	RO	0x0	reserved
9:8	RW	0x2	uart1_clk_sel Control UART1 clock work frequency selection 2'b00: select divider ouput from pll divider 2'b01: select divider ouput from fraction divider 2'b10: select 24MHz from osc inpu
7	RO	0x0	reserved
6:0	RW	0x00	uart1_div_con Control UART1 divider frequency clk_uart1=uart_clk_src/(uart1_div_con+1)

CRU_CLKSEL15_CON

Address: Operational Base + offset (0x009c) Internal clock select and divide register15

Bit	Attr	Reset Value	Description
		Value	

Bit	Attr	Reset Value	Description
31:16	wo	0x0000	write_mask write mask. When every bit HIGH, enable the writing corresponding bit When every bit LOW, don't care the writing corresponding bit
15:10	RO	0x0	reserved
9:8	RW	0x2	uart2_clk_sel Control UART2 clock work frequency selection 2'b00: select divider ouput from pll divider 2'b01: select divider ouput from fraction divider 2'b10: select 24MHz from osc inpu
7	RO	0x0	reserved
6:0	RW	0×00	uart2_div_con Control UART2 divider frequency clk_uart2=uart_clk_src/(uart2_div_con+1)

CRU_CLKSEL16_CON Address: Operational Base + offset (0x00a0) Internal clock select and divide register16

Bit	Attr	Reset Value	Description
31:16	wo	0x0000	write_mask write mask. When every bit HIGH, enable the writing corresponding bit When every bit LOW, don't care the writing corresponding bit
15:10	RO	0x0	reserved
9:8	RW	0x2	uart3_clk_sel Control UART3 clock work frequency selection 2'b00: select divider ouput from pll divider 2'b01: select divider ouput from fraction divider 2'b10: select 24MHz from osc inpu
7	RO	0x0	reserved
6:0	RW	0x00	uart3_div_con Control UART3 divider frequency clk_uart3=uart_clk_src/(uart3_div_con+1)

CRU_CLKSEL17_CON

Address: Operational Base + offset (0x00a4) Internal clock select and divide register17

Bit	Attr	Reset Value	Description
31:0	RW		uart0_frac_factor Control UART0 fraction divider frequency High 16-bit for numerator Low 16-bit for denominator

CRU_CLKSEL18_CON

Address: Operational Base + offset (0x00a8) Internal clock select and divide register18

Bit	Attr	Reset	Description
		Value	Description
			uart1_frac_factor
31:0	RW	0x0bb8	Control UART1 fraction divider frequency
51:0		ea60	High 16-bit for numerator
			Low 16-bit for denominator

CRU_CLKSEL19_CON

Address: Operational Base + offset (0x00ac) Internal clock select and divide register19

Bit	Attr	Reset Value	Description
31:0	RW		uart2_frac_factor Control UART2 fraction divider frequency High 16-bit for numerator Low 16-bit for denominator

CRU_CLKSEL20_CON

Address: Operational Base + offset (0x00b0) Internal clock select and divide register20

Bit	Attr	Reset Value	Description
31:0	RW		uart3_frac_factor Control UART3 fraction divider frequency High 16-bit for numerator Low 16-bit for denominator

CRU_CLKSEL21_CON

Address: Operational Base + offset (0x00b4) Internal clock select and divide register21

Bit	Attr	Reset Value	Description
31:16	wo	0x0000	write_mask write mask. When every bit HIGH, enable the writing corresponding bit When every bit LOW, don't care the writing corresponding bit
15:13	RO	0x0	reserved
12:8	RW	0x0b	mac_div_con Control EMAC divider frequency clk_mac_ref=mac_clk_src/(mac_div_con+1)
7:5	RO	0x0	reserved

Bit	Attr	Reset Value	Description
			rmii_extclk_sel
1		0.20	Control RMII external clock selection
4	RW	0x0	1'b0: select internal divider clock
			1'b1: select external input clock
3:2	RO	0x0	reserved
			mac_pll_sel
	RW 0	RW 0×0	Control EMAC clock PLL source selection
1:0			2'b00: select new pll clock
			2'b01: select codec pll clock
			2'b10: select general pll clock

CRU_CLKSEL22_CON

Address: Operational Base + offset (0x00b8) Internal clock select and divide register22

Bit	Attr	Reset Value	Description
31:16	wo	0x0000	write_mask write mask. When every bit HIGH, enable the writing corresponding bit When every bit LOW, don't care the writing corresponding bit
15:8	RW	0x09	hsadc_div_con Control HSADC divider frequency clk_hsadc=hsadc_clk_src/(hsadc_div_con+1)
7	RW	0x0	hsadc_inv_sel Control HSADC inverter clock 1'b0: select buffer output 1'b1: select inverter output
6:5	RO	0x0	reserved
4	RW	0×0	hsadc_clk_sel Control HSADC clock work frequency selection 1'b0: select divider ouput from pll divider 1'b1: select external input clock
3:2	RO	0x0	reserved
1	RW	0x0	wifi_pll_sel Control wifi clock PLL source selection 1'b0: select codec pll clock 1'b1: select general pll clock
0	RW	0x0	hsadc_pll_sel Control HSADC clock PLL source selection 1'b0: select codec pll clock 1'b1: select general pll clock

CRU_CLKSEL23_CON

Bit	Attr	Reset Value	Description
31:0	RW		wifi_frac_factor Control wifi fraction divider frequency High 16-bit for numerator Low 16-bit for denominator

Address: Operational Base + offset (0x00bc) Internal clock select and divide register23

CRU_CLKSEL24_CON

Address: Operational Base + offset (0x00c0) Internal clock select and divide register24

Bit	Attr	Reset Value	Description
31:16	wo	0×0000	write_mask write mask. When every bit HIGH, enable the writing corresponding bit When every bit LOW, don't care the writing corresponding bit
15:8	RW	0x17	saradc_div_con Control SARADC clock divider frequency clk_saradc=24MHz/(saradc_div_con+1)
7:0	RO	0x0	reserved

CRU_CLKSEL25_CON

Address: Operational Base + offset (0x00c4) Internal clock select and divide register25

Bit	Attr	Reset Value	Description
			write_mask
31:16	wo	0x0000	write mask.
51.10		0,0000	When every bit HIGH, enable the writing corresponding bit
			When every bit LOW, don't care the writing corresponding bit
			spi1_pll_sel
15	RW	0x0	Control spi1 clock PLL source selection
15		0.00	1'b0: select codec pll clock
			1'b1: select general pll clock
		V 0x07	spi1_div_con
14:8	RW		Control SPI1 clock divider frequency
			clk_spi1=general_pll_clk/(spi1_div_con+1)
			spi0_pll_sel
7	RW	0x0	Control spi0 clock PLL source selection
/		0.00	1'b0: select codec pll clock
			1'b1: select general pll clock
			spi0_div_con
6:0	RW	0x07	Control SPI0 clock divider frequency
			clk_spi0=general_pll_clk/(spi0_div_con+1)

CRU_CLKSEL26_CON

Address: Operational Base + offset (0x00c8) Internal clock select and divide register26

Bit	Attr	Reset Value	Description
			write_mask
31:16	wo	0x0000	write mask.
			When every bit HIGH, enable the writing corresponding bit
			When every bit LOW, don't care the writing corresponding bit
			cif_clk_out_sel CIF clock output selection
15	RW	0x0	1'b0: select PLL divout
			1'b1: select 24MHz
14	RO	0x0	reserved
			cif_clk_div_con
13:9	RW	0x07	cif clock divider frequency
			clk=clk_src/(div_con+1)
		V 0x0	cif_clk_pll_sel
8	RW		CIF clock pll source selection
0			1'b0: select codec PLL
			1'b1: select general PLL
			crypto_div_con
7:6	RW	0x3	crypto clock divider frequency
			clk=clk_src/(div_con+1)
5:3	RO	0x0	reserved
			ddr_clk_pll_sel
2	RW	0x0	DDR clock pll source selection
			1'b0: select DDR PLL
			1'b1: select GENERAL PLL
			ddr_div_con Control DDR divider frequency
1:0	RW	0x0	$2'b00: clk_ddr_src:clk_ddrphy = 1:1$
1.0			$2'b00: clk_ddr_src:clk_ddrphy = 1.1$ $2'b01: clk_ddr_src:clk_ddrphy = 2:1$
			$2'b11: clk_ddr_src:clk_ddrphy = 4:1$

CRU_CLKSEL27_CON Address: Operational Base + offset (0x00cc) Internal clock select and divide register27

Bit	Attr	Reset Value	Description
31:16	wo	0x0000	write_mask write mask. When every bit HIGH, enable the writing corresponding bit When every bit LOW, don't care the writing corresponding bit

Bit	Attr	Reset Value	Description
			lcdc0_div_con
15:8	RW	0x07	Control LCDC0 clock divider frequency
			clk_lcdc0=lcdc0_clk_src/(lcdc0_div_con+1)
7:2	RO	0x0	reserved
			lcdc0_pll_sel
			Control LCDC0 clock PLL source selection
1:0	RW	0x0	2'b00: select codec pll clock
			2'b01: select general pll clock
			2'b10: select new pll clock

CRU_CLKSEL28_CON

Address: Operational Base + offset (0x00d0) Internal clock select and divide register28

Bit	Attr	Reset Value	Description
			write_mask
31:16	wo	0x0000	write mask
51.10	VVO	00000	When every bit HIGH, enable the writing corresponding bit
			When every bit LOW, don't care the writing corresponding bit
			edp_24m_sel
1 5		0.40	eDP 24M clock source selection
15	RW	0×0	1'b00: select 27M clock
			1'b01: select 24M clock
14:13	RO	0x0	reserved
			hclk_vio_div_con
12:8	RW	0x0f	VIO AHB clock divider frequency
			clk=clk_src/(div_con+1)
			edp_pll_sel
			eDP clock PLL source selection
7:6	RW	0x0	2'b00: select codec pll clock
			2'b01: select general pll clock
			2'b10: select new pll clock
			edp_div_con
5:0	RW	0x03	eDP clock divider frequency
			clk=clk_src/(div_con+1)

CRU_CLKSEL29_CON

Address: Operational Base + offset (0x00d4) Internal clock select and divide register29

Bit	Reset Description Value	Attr
-----	-------------------------	------

Bit	Attr	Reset Value	Description
31:16	wo	0x0000	write_mask write mask. When every bit HIGH, enable the writing corresponding bit When every bit LOW, don't care the writing corresponding bit
15:8	RW	0x07	<pre>lcdc1_div_con Control LCDC1 clock divider frequency clk_lcdc1=lcdc1_clk_src/(lcdc1_div_con+1)</pre>
7:6	RW	0x1	Icdc1_pll_sel Control LCDC1 clock PLL source selection 2'b00: select codec pll clock 2'b01: select general pll clock 2'b10: select new pll clock
5	RO	0x0	reserved
4	RW	0x0	cif_clkin_inv_sel CIF clkin invert selection 1'b0: normal 1'b1: invert
3	RW	0x0	isp_clkin_inv_sel ISP clkin invert selection 1'b0: normal 1'b1: invert
2	RW	0x0	reserved
1:0	RW	0x2	reserved

CRU_CLKSEL30_CON Address: Operational Base + offset (0x00d8) Internal clock select and divide register30

Bit	Attr	Reset Value	Description
			write_mask
31:16	wo	0x0000	write mask.
51.10	000	00000	When every bit HIGH, enable the writing corresponding bit
			When every bit LOW, don't care the writing corresponding bit
			rga_core_clk_pll_sel
		/ 0x0	rga func clock PLL source selection
15:14	RW		2'b00: select codec pll clock
			2'b01: select general pll clock
			2'b10: select usbphy pll 480M clock
13	RO	0x0	reserved
			rga_core_clk_div_con
12:8	RW	W 0x00	rga func clock divider frequency
			clk_rga_func = clk_rga_func_src/(rga_core_clk_div_con+1)

Bit	Attr	Reset Value	Description
			rga_aclk_pll_sel
			Control rga AXI clock PLL source selection
7:6	RW	0x0	2'b00: select codec pll clock
			2'b01: select general pll clock
			2'b10: select usbphy pll 480M clock
5	RO	0x0	reserved
			rga_aclk_div_con
4:0	RW	0x00	Control rga AXI clock divider frequency
			aclk_lcdc1=lcdc1_aclk_src/(rga_aclk_div_con+1)

CRU_CLKSEL31_CON

Address: Operational Base + offset (0x00dc) Internal clock select and divide register31

Bit	Attr	Reset Value	Description
			write_mask
31:16	wo	0x0000	write mask.
01110		one e e e	When every bit HIGH, enable the writing corresponding bit
			When every bit LOW, don't care the writing corresponding bit
			vio1_aclk_pll_sel
			Control VIO1 AXI clock PLL source selection
15:14	RW	0x0	2'b00: select codec pll clock
			2'b01: select general pll clock
			2'b10: select usbphy pll 480M clock
13	RO	0x0	reserved
			vio1_aclk_div_con
12:8	RW	0x00	Control VIO1 AXI clock divider frequency
			aclk_vio1=vio1_aclk_src/(vio1_aclk_div_con+1)
			vio0_aclk_pll_sel
			Control VIO0 AXI clock PLL source selection
7:6	RW	0x0	2'b00: select codec pll clock
			2'b01: select general pll clock
			2'b10: select usbphy pll 480M clock
5	RO	0x0	reserved
			vio0_aclk_div_con
4:0	RW	0x00	Control VIO0 AXI clock divider frequency
			aclk_vio0=vio0_aclk_src/(vio0_aclk_div_con+1)

CRU_CLKSEL32_CON

Address: Operational Base + offset (0x00e0) Internal clock select and divide register32

Bit	Attr	Reset	Description
DIL	Atti	Value	Description

Bit	Attr	Reset Value	Description
			write_mask
31:16	wo	0x0000	write mask.
51.10	~~~	0,0000	When every bit HIGH, enable the writing corresponding bit
			When every bit LOW, don't care the writing corresponding bit
			vdpu_aclk_pll_sel
			Control VDPU AXI clock PLL source selection
15:14	RW	0x0	2'b00: select codec pll clock
			2'b01: select general pll clock
			2'b10: select usbphy pll 480M clock
13	RO	0x0	reserved
			vdpu_aclk_div_con
12:8	RW	0x01	Control VDPU AXI clock divider frequency
			aclk_vdpu=vdpu_aclk_src/(vdpu_aclk_div_con+1)
			vepu_aclk_pll_sel
			Control VEPU AXI clock PLL source selection
7:6	RW	0x0	2'b00: select codec pll clock
			2'b01: select general pll clock
			2'b10: select usbphy pll 480M clock
5	RO	0x0	reserved
			vepu_aclk_div_con
4:0	RW	0x01	Control VEPU AXI clock divider frequency
			aclk_vepu=vepu_aclk_src/(vepu_aclk_div_con+1)

CRU_CLKSEL33_CON

Address: Operational Base + offset (0x00e4) Internal clock select and divide register33

Bit	Attr	Reset Value	Description
31:16	wo	0×0000	write_mask write mask When HIGH, enable the writing corresponding bit When LOW, don't care the writing corresponding bit
15:13	RO	0x0	reserved
12:8	RW	0x03	alive_pclk_div_con alive apb clock divider frequency alive_pclk =alive_pclk_src/(alive_pclk_div_con+1)
7:5	RO	0x0	reserved
4:0	RW	0x03	pmu_pclk_div_con pmu apb clock divider frequency pmu_pclk =pmu_pclk_src/(pmu_pclk_div_con+1)

CRU_CLKSEL34_CON Address: Operational Base + offset (0x00e8) Internal clock select and divide register34

Bit	Attr	Reset Value	Description
31:16	wo	0×0000	write_mask write mask. When every bit HIGH, enable the writing corresponding bit When every bit LOW, don't care the writing corresponding bit
15:14	RW	0x2	sdio1_pll_sel Control sdio1 clock PLL source selection 2'b00: select codec pll clock 2'b01: select general pll clock 2'b10: select 24MHz
13:8	RW	0x00	sdio1_div_con Control SDIO1 divider frequency clk_sdio=general_pll_clk/(sdio_div_con+1)
7:6	RW	0×0	gpu_aclk_pll_sel Control GPU AXI clock PLL source selection 2'b00: select codec pll clock 2'b01: select general pll clock 2'b10: select usbphy pll 480M clock 2'b11: select new pll clock
5	RO	0x0	reserved
4:0	RW	0×00	gpu_aclk_div_con Control GPU AXI clock divider frequency aclk_gpu=gpu_aclk_src/(gpu_aclk_div_con+1)

CRU_CLKSEL35_CON

Address: Operational Base + offset (0x00ec) Internal clock select and divide register35

Bit	Attr	Reset Value	Description
31:16	wo	0x0000	write_mask write mask. When every bit HIGH, enable the writing corresponding bit When every bit LOW, don't care the writing corresponding bit
15:14	RW	0×0	tspout_clk_pll_sel Control tspout clock PLL source selection 2'b00: select codec pll clock 2'b01: select general pll clock 2'b10: select new pll clock 2'b11: select 27MHz IO input
13	RO	0x0	reserved
12:8	RW	0x03	tspout_clk_div_con Control tspout clock divider frequency clk=clk_src/(clk_div_con+1)

Bit	Attr	Reset Value	Description
			tsp_clk_pll_sel
			Control tsp clock PLL source selection
7:6	RW	0x0	2'b00: select codec pll clock
			2'b01: select general pll clock
			2'b10: select new pll clock
5	RO	0x0	reserved
			tsp_clk_div_con
4:0	RW	0x03	Control tsp clock divider frequency
			clk=clk_src/(clk_div_con+1)

CRU_CLKSEL36_CON

Address: Operational Base + offset (0x00f0) Internal clock select and divide register36

Bit	Attr	Reset Value	Description
31:16	wo	0×0000	write_mask write mask.
01110			When every bit HIGH, enable the writing corresponding bit When every bit LOW, don't care the writing corresponding bit
15	RO	0x0	reserved
14:12	RW	0x0	clk_core3_div_con Control clk_core3 clock divider frequency clk=clk_src/(clk_div_con+1)
11	RO	0x0	reserved
10:8	RW	0×0	clk_core2_div_con Control clk_core2 clock divider frequency clk=clk_src/(clk_div_con+1)
7	RO	0x0	reserved
6:4	RW	0x0	clk_core1_div_con Control clk_core1 clock divider frequency clk=clk_src/(clk_div_con+1)
3	RO	0x0	reserved
2:0	RW	0×0	clk_core0_div_con Control clk_core0 clock divider frequency clk=clk_src/(clk_div_con+1)

CRU_CLKSEL37_CON

Address: Operational Base + offset (0x00f4) Internal clock select and divide register37

Bit	Attr	Reset Value	Description
-----	------	----------------	-------------

Bit	Attr	Reset Value	Description
31:16	WO	0×0000	write_mask write mask. When every bit HIGH, enable the writing corresponding bit
			When every bit LOW, don't care the writing corresponding bit
15:14	RO	0x0	reserved
13:9	RW	0x0f	<pre>pclk_core_dbg_div_con Control core debg APB bus clock divider frequency clk=clk_src/(clk_div_con+1)</pre>
8:4	RW	0x0f	atclk_core_div_con Control core ATB BUS clock divider frequency clk=clk_src/(clk_div_con+1)
3	RO	0x0	reserved
2:0	RW	0x3	clk_l2ram_div_con Control clk_l2ram clock divider frequency clk=clk_src/(clk_div_con+1)

CRU_CLKSEL38_CON

Address: Operational Base + offset (0x00f8) Internal clock select and divide register38

Bit	Attr	Reset Value	Description
			write_mask write mask.
31:16	WO	0x0000	When every bit HIGH, enable the writing corresponding bit When every bit LOW, don't care the writing corresponding bit
			nandc1_clk_pll_sel
15	RW	0x0	Control nandc1 clock PLL source selection
13		UXU	1'b0: select codec pll clock
			1'b1: select general pll clock
14:13	RO	0x0	reserved
			nandc1_clk_div_con
12:8	RW	0x03	Control nandc1 clock divider frequency
			clk_nandc=nandc_clk_src/(nandc_clk_div_con+1)
			nandc0_clk_pll_sel
7	RW	0x0	Control nandc0 clock PLL source selection
'		0.00	1'b0: select codec pll clock
			1'b1: select general pll clock
6:5	RO	0x0	reserved
			nandc0_clk_div_con
4:0	RW	0x03	Control nandc0 clock divider frequency
			clk_nandc=nandc_clk_src/(nandc_clk_div_con+1)

CRU_CLKSEL39_CON

Address: Operational Base + offset (0x00fc) Internal clock select and divide register39

Bit	Attr	Reset	Description
DIL	Alli	Value	Description
			write_mask
31:16	wo	0x0000	write mask.
51.10		0,0000	When every bit HIGH, enable the writing corresponding bit
			When every bit LOW, don't care the writing corresponding bit
			aclk_hevc_pll_sel
			HEVC AXI clock PLL source selection
15:14	RW	0x0	2'b00: select codec pll clock
			2'b01: select general pll clock
			2'b10: select new pll clock
13	RO	0x0	reserved
			aclk_hevc_div_con
12:8	RW	0x00	HEVC AXI clock divider frequency
			clk=clk_src/(clk_div_con+1)
			spi2_pll_sel
7	RW	W 0×0	Control spi2 clock PLL source selection
/			1'b0: select codec pll clock
			1'b1: select general pll clock
			spi2_div_con
6:0	RW	W 0x07	Control SPI2 clock divider frequency
			clk=clk_src/(div_con+1)

CRU_CLKSEL40_CON Address: Operational Base + offset (0x0100) Internal clock select and divide register40

Bit	Attr	Reset	Description
		Value	
			write_mask
31:16	wo	0x0000	write mask.
01110			When every bit HIGH, enable the writing corresponding bit
			When every bit LOW, don't care the writing corresponding bit
15:14	RO	0x0	reserved
			hclk_hevc_div_con
13:12	RW	0x0	HEVC AHB clock divider frequency
			clk=clk_src/(clk_div_con+1)
11:10	RO	0x0	reserved
			spdif_8ch_clk_sel
			Control SPDIF 8ch clock work frequency selection
9:8	RW	0x2	2'b00: select divider ouput from pll divider
			2'b01: select divider ouput from fraction divider
			2'b10: select 12MHz from osc inpu
7	RO	0x0	reserved

Bit	Attr	Reset Value	Description
			spdif_8ch_pll_div_con
6:0	RW	0x00	Control SPDIF 8ch PLL output divider freuency
			<pre>spdif_div_clk=spdif_div_src/(spdif_pll_div_con+1)</pre>

CRU_CLKSEL41_CON

Address: Operational Base + offset (0x0104) Internal clock select and divide register41

Bit	Attr	Reset	Description
БК		Value	Description
			spdif_8ch_frac_factor
21.0	RW	0x0bb8	Control SPDIF 8ch fraction divider frequency
31:0		ea60	High 16-bit for numerator
			Low 16-bit for denominator

CRU_CLKSEL42_CON

Address: Operational Base + offset (0x0108) Internal clock select and divide register42

Bit	Attr	Reset Value	Description
			write_mask
31:16	wo	0x0000	write mask.
			When every bit HIGH, enable the writing corresponding bit
			When every bit LOW, don't care the writing corresponding bit
			clk_hevc_core_pll_sel
			HEVC CORE clock PLL source selection
15:14	RW	0x0	2'b00: select codec pll clock
			2'b01: select general pll clock
			2'b10: select new pll clock
13	RO	0x0	reserved
			clk_hevc_core_div_con
12:8	RW	0x00	HEVC CORE clock divider frequency
			clk=clk_src/(clk_div_con+1)
			clk_hevc_cabac_pll_sel
			HEVC CABAC clock PLL source selection
7:6	RW	0x0	2'b00: select codec pll clock
			2'b01: select general pll clock
			2'b10: select new pll clock
5	RO	0x0	reserved
			clk_hevc_cabac_div_con
4:0	RW	0x00	HEVC CABAC clock divider frequency
			clk=clk_src/(clk_div_con+1)

CRU_CLKGATE0_CON

Address: Operational Base + offset (0x0160) Internal clock gating control register0

Bit	Attr	Reset Value	Description
31:16	wo	0x0000	write_mask write mask. When every bit HIGH, enable the writing corresponding bit When every bit LOW, don't care the writing corresponding bit
15:13	RO	0x0	reserved
12	RW	0x0	clk_acc_efuse_gate_en acc efuse clock disable. When HIGH, disable clock
11	RW	0x0	pd_bus_cpll_clk_gate_en pd_bus clock CPLL path clock disable. When HIGH, disable clock
10	RW	0x0	pd_bus_gpll_clk_gate_en pd_bus clock GPLL path clock disable. When HIGH, disable clock
9	RW	0x0	ddr_gpll_clk_gate_en DDR clock GPLL path clock disable. When HIGH, disable clock
8	RW	0x0	ddr_dpll_clk_gate_en DDR clock DPLL path clock disable. When HIGH, disable clock
7	RW	0x0	aclk_bus_2pmu_gate_en pd_bus AXI clock to pd_pmu clock disable. When HIGH, disable clock
6	RO	0x0	reserved
5	RW	0x0	pclk_bus_gate_en pd_bus APB clock(pclk_cpu_pre) disable. When HIGH, disable clock
4	RW	0×0	hclk_bus_gate_en pd_bus AHB clock disable. When HIGH, disable clock
3	RW	0×0	aclk_bus_gate_en pd_bus AXI clock disable. When HIGH, disable clock
2	RW	0x0	core_gpll_clk_gate_en CORE clock GPLL path clock disable. When HIGH, disable clock
1	RW	0x0	core_apll_clk_gate_en CORE clock APLL path clock disable. When HIGH, disable clock
0	RO	0x0	reserved

CRU_CLKGATE1_CON

Address: Operational Base + offset (0x0164) Internal clock gating control register1

Bit	Attr	Reset Value	Description
			write_mask
31:16	wo	0x0000	write mask.
51.10	000	0,0000	When every bit HIGH, enable the writing corresponding bit
			When every bit LOW, don't care the writing corresponding bit
			clk_uart3_frac_src_gate_en
15	RW	0x0	UART3 fraction divider source clock disable.
			When HIGH, disable clock
			clk_uart3_src_gate_en
14	RW	0x0	UART3 source clock disable.
			When HIGH, disable clock
			clk_uart2_frac_src_gate_en
13	RW	0x0	UART2 fraction divider source clock disable.
			When HIGH, disable clock
			clk_uart2_src_gate_en
12	RW	0x0	UART2 source clock disable.
			When HIGH, disable clock
			clk_uart1_frac_src_gate_en
11	RW	0x0	UART1 fraction divider source clock disable.
			When HIGH, disable clock
			clk_uart1_src_gate_en
10	RW	0x0	UART1 source clock disable.
			When HIGH, disable clock
			clk_uart0_frac_src_gate_en
9	RW	0x0	UARTO fraction divider source clock disable.
			When HIGH, disable clock
			clk_uart0_src_gate_en
8	RW	0x0	UART0 source clock disable.
			When HIGH, disable clock
7:6	RO	0x0	reserved
			clk_timer5_gate_en
5	RW	0x0	Timer5 clock(clk_timer5) disable.
			When HIGH, disable clock
			clk_timer4_gate_en
4	RW	0x0	Timer4 clock(clk_timer4) disable.
•			When HIGH, disable clock
			clk_timer3_gate_en
3	RW	0x0	Timer3 clock(clk_timer3) disable.
			When HIGH, disable clock
			clk_timer2_gate_en
2	RW	0x0	Timer2 clock(clk_timer2) disable.
			When HIGH, disable clock

Bit	Attr	Reset Value	Description
			clk_timer1_gate_en
1	RW	0x0	Timer1 clock(clk_timer1) disable.
			When HIGH, disable clock
			clk_timer0_gate_en
0	RW	0x0	Timer0 clock(clk_timer0) disable.
			When HIGH, disable clock

CRU_CLKGATE2_CON

Address: Operational Base + offset (0x0168) Internal clock gating control register2

Bit	Attr	Reset Value	Description
			write_mask
			write mask.
31:16	WO	0x0000	When every bit HIGH, enable the writing corresponding bit
			When every bit LOW, don't care the writing corresponding bit
15:14	RO	0x0	reserved
			clk_uart4_frac_src_gate_en
13	RW	0x0	UART4 fraction divider source clock disable.
			When HIGH, disable clock
			clk_uar4_src_gate_en
12	RW	0x0	UART4 source clock disable.
			When HIGH, disable clock
			clk_spi2_src_gate_en
11	RW	0x0	SPI2 source clock disable.
			When HIGH, disable clock
			clk_spi1_src_gate_en
10	RW	0x0	SPI1 source clock disable.
			When HIGH, disable clock
			clk_spi0_src_gate_en
9	RW	0x0	SPI0 source clock disable.
			When HIGH, disable clock
			clk_saradc_src_gate_en
8	RW	0x0	SARADC source clock disable.
			When HIGH, disable clock
			clk_tsadc_src_gate_en
7	RW	0x0	TSADC source clock disable.
			When HIGH, disable clock
			clk_hsadc_src_gate_en
6	RW	0x0	Field0000 Abstract
			When HIGH, disable clock
			clk_mac_src_gate_en
5	RW	0x0	MAC source clock disable.
			When HIGH, disable clock

Bit	Attr	Reset Value	Description
4	RO	0x0	reserved
3	RW	0x0	pclk_periph_gate_en PERIPH system APB clock(pclk_periph) disable. When HIGH, disable clock
2	RW	0x0	hclk_periph_gate_en PERIPH system AHB clock(hclk_periph) disable. When HIGH, disable clock
1	RW	0×0	aclk_periph_gate_en PERIPH system AXI clock(aclk_periph) disable. When HIGH, disable clock
0	RW	0×0	clk_periph_src_gate_en PERIPH system source clock disable. When HIGH, disable clock

CRU_CLKGATE3_CON

Address: Operational Base + offset (0x016c) Internal clock gating control register3

Bit	Attr	Reset Value	Description
			write_mask
21.10		0 0000	write mask.
31:16	WO	0x0000	When every bit HIGH, enable the writing corresponding bit
			When every bit LOW, don't care the writing corresponding bit
			clk_isp_jpeg_gate_en
15	RW	0x0	ISP jpeg source clock disable.
			When HIGH, disable clock
			clk_isp_gate_en
14	RW	0x0	ISP clock clock disable.
			When HIGH, disable clock
			clk_edp_gate_en
13	RW	0x0	eDP clock clock disable.
			When HIGH, disable clock
			clk_edp_24m_gate_en
12	RW	0x0	eDP 24M ref clock clock disable.
			When HIGH, disable clock
			aclk_vdpu_src_gate_en
11	RW	0x0	VDPU AXI source clock disable.
			When HIGH, disable clock
			hclk_vpu_gate_en
10	RW	0x0	VPU AHB source clock disable.
			When HIGH, disable clock
			aclk_vepu_src_gate_en
9	RW	0x0	VEPU AXI source clock disable.
			When HIGH, disable clock

Bit	Attr	Reset Value	Description
8	RO	0x0	reserved
			clk_cif_out_gate_en
7	RW	0x0	CIF output clock disable.
			When HIGH, disable clock
6	RW	0x0	reserved
			aclk_rga_src_gate_en
5	RW	0x0	RGA AXI souce clock disable.
			When HIGH, disable clock
			clk_rga_core_src_gate_en
4	RW	0x0	RGA func souce clock disable.
			When HIGH, disable clock
			dclk_lcdc1_src_gate_en
3	RW	0x0	LCDC1 DCLK source clock disable.
			When HIGH, disable clock
			aclk_lcdc1_src_gate_en
2	RW	0x0	LCDC1 AXI source clock disable.
			When HIGH, disable clock
			dclk_lcdc0_src_gate_en
1	RW	0x0	LCDC0 DCLK source clock disable.
			When HIGH, disable clock
			aclk_lcdc0_src_gate_en
0	RW	0x0	LCDC0 AXI source clock disable.
			When HIGH, disable clock

CRU_CLKGATE4_CON Address: Operational Base + offset (0x0170) Internal clock gating control register4

Bit	Attr	Reset Value	Description
31:16	wo	0x0000	write_mask write mask. When every bit HIGH, enable the writing corresponding bit When every bit LOW, don't care the writing corresponding bit
15	RW	0x0	testclk_gate_en Test output clock disable When HIGH, disable clock
14	RW	0x0	clk_jtag_gate_en JTAG clock disable. When HIGH, disable clock
13	RW	0x0	clk_ddrphy1_gate_en DDRPHY1 clock disable. When HIGH, disable clock

Bit	Attr	Reset Value	Description
			clk_ddrphy0_gate_en
12	RW	0x0	DDRPHY0 clock disable.
			When HIGH, disable clock
			clk_tspout_gate_en
11	RW	0x0	TSP output clock disable.
			When HIGH, disable clock
10			clk_tsp_gate_en
	RW	0x0	TSP clock disable.
			When HIGH, disable clock
9			clk_spdif_8ch_gate_en
	RW	0x0	SPDIF 8ch clock disable.
			When HIGH, disable clock
			clk_spdif_8ch_frac_src_gate_en
8	RW	0x0	SPDIF 8ch fraction divider source clock disable.
			When HIGH, disable clock
			clk_spdif_8ch_src_gate_en
7	RW	0x0	SPDIF 8ch source clock disable.
			When HIGH, disable clock
6		0x0	clk_spdif_gate_en
	RW		SPDIF clock disable.
			When HIGH, disable clock
			clk_spdif_frac_src_gate_en
5	RW	0x0	SPDIF fraction divider source clock disable.
			When HIGH, disable clock
4			clk_spdif_src_gate_en
	RW	0x0	SPDIF source clock disable.
			When HIGH, disable clock
			clk_i2s0_gate_en
3	RW	0x0	I2S clock disable.
			When HIGH, disable clock
			clk_i2s0_frac_src_gate_en
2	RW	0x0	I2S fraction divider source clock disable.
			When HIGH, disable clock
1		0x0	clk_i2s0_src_gate_en
	RW		I2S source clock disable.
			When HIGH, disable clock
0			clk_i2s0_out_gate_en
	RW	0x0	I2S output clock disable.
			When HIGH, disable clock

CRU_CLKGATE5_CON

Address: Operational Base + offset (0x0174) Internal clock gating control register5

Bit	Attr	Reset Value	Description
			write_mask
31:16	wo	0x0000	write mask.
	WO	00000	When every bit HIGH, enable the writing corresponding bit
			When every bit LOW, don't care the writing corresponding bit
			clk_mipidsi_24m_gate_en
15	RW	0x0	mipi dsi 24M clock disable.
			When HIGH, disable clock
			clk_usbphy480m_gate_en
14	RW	0x0	usbphy480M clock disable.
			When HIGH, disable clock
			ps2c_clk_gate_en
13	RW	0x0	PS2 controlor clock disable.
			When HIGH, disable clock
			hdmi_hdcp_clk_gate_en
12	RW	0x0	HDMI HDCP clock disable.
			When HIGH, disable clock
			hdmi_cec_clk_gate_en
11	RW	0x0	HDMI CEC clock disable.
			When HIGH, disable clock
			clk_pvtm_gpu_gate_en
10	RW	0x0	pd_gpu PVTM clock disable.
			When HIGH, disable clock
			clk_pvtm_core_gate_en
9	RW	0x0	pd_core_PVTM_clock_disable.
			When HIGH, disable clock
			pclk_pmu_gate_en
8	RW	0x0	pd pmu APB bus clock disable.
			When HIGH, disable clock
			clk_gpu_gate_en
7	RW	0x0	gpu clock disable.
			When HIGH, disable clock
			clk_nandc1_gate_en
6	RW	0x0	nandc1 clock disable.
•		0/10	When HIGH, disable clock
			clk_nandc0_gate_en
5	RW	0x0	nandc0 clock disable.
2		UNU	When HIGH, disable clock
			clk_crypto_gate_en
4	RW	0x0	crypto clock disable.
•			When HIGH, disable clock
			clk_mac_refout_gate_en
3	RW	0x0	MAC ref output clock clock disable.
J		0.0	When HIGH, disable clock

Bit	Attr	Reset Value	Description
2	RW	0x0	clk_mac_ref_gate_en MAC ref clock clock disable. When HIGH, disable clock
1	RW	0x0	clk_mac_tx_gate_en MAC tx clock clock disable. When HIGH, disable clock
0	RW	0x0	clk_mac_rx_gate_en MAC rx clock clock disable. When HIGH, disable clock

CRU_CLKGATE6_CON

Address: Operational Base + offset (0x0178) Internal clock gating control register6

Bit	clock gati	Reset Value	Description
		Value	write_mask
			write mask.
31:16	WO	0x0000	When every bit HIGH, enable the writing corresponding bit
			When every bit LOW, don't care the writing corresponding bit
			pclk_i2c4_gate_en
15	RW	0x0	I2C4 APB clock disable.
15		0.00	When HIGH, disable clock
			pclk_i2c3_gate_en
14	RW	0x0	I2C3 APB clock disable.
14		0.00	When HIGH, disable clock
			pclk_i2c1_gate_en
13	RW	0x0	I2C1 APB clock disable.
15		0.00	When HIGH, disable clock
			pclk_uart_exp_gate_en
12	RW	0x0	UART_exp APB clock disable.
12		UNU	When HIGH, disable clock
			pclk_uart_gps_gate_en
11	RW	0x0	UART_gps APB clock disable.
			When HIGH, disable clock
10	RO	0x0	reserved
			pclk_uart_bb_gate_en
9	RW	0x0	UART_bb APB clock disable.
			When HIGH, disable clock
			pclk_uart_bt_gate_en
8	RW	0x0	UART_bt APB clock disable.
			When HIGH, disable clock
			pclk_ps2c0_gate_en
7	RW	0x0	PS2C0 APB clock disable.
			When HIGH, disable clock

Bit	Attr	Reset Value	Description
6	RW	0×0	pclk_spi2_gate_en SPI2 APB clock disable. When HIGH, disable clock
5	RW	0×0	pclk_spi1_gate_en SPI1 APB clock disable. When HIGH, disable clock
4	RW	0x0	pclk_spi0_gate_en SPI0 APB clock disable. When HIGH, disable clock
3	RW	0x0	aclk_dmac_peri_gate_en DMAC peri AXI clock disable. When HIGH, disable clock
2	RW	0x0	aclk_peri_axi_matrix_gate_en Peripheral matrix axi clock disable. When HIGH, disable clock
1	RW	0×0	pclk_peri_axi_matrix_gate_en Peripheral matrix apb clock disable. When HIGH, disable clock
0	RW	0x0	hclk_peri_matrix_gate_en Peripheral matrix ahb clock disable. When HIGH, disable clock

CRU_CLKGATE7_CON Address: Operational Base + offset (0x017c) Internal clock gating control register7

Bit	Attr	Reset Value	Description
31:16	wo	0×0000	write_mask write mask. When every bit HIGH, enable the writing corresponding bit When every bit LOW, don't care the writing corresponding bit
15	RW	0x0	hclk_nand1_gate_en NAND1 AHB clock disable. When HIGH, disable clock
14	RW	0x0	hclk_nand0_gate_en NAND0 AHB clock disable. When HIGH, disable clock
13	RW	0x0	hclk_mmc_peri_gate_en arbiter in peri_ahb_mmc module AHB clock disable. When HIGH, disable clock
12	RW	0x0	hclk_emem_peri_gate_en arbiter in peri_ahb_emem module AHB clock disable. When HIGH, disable clock

Bit	Attr	Reset Value	Description
11	RW	0x0	aclk_peri_niu_gate_en NIU in peripheral power domain AXI clock disable. When HIGH, disable clock
10	RW	0x0	hclk_peri_ahb_arbi_gate_en AHB arbiter in peripheral power domain AHB clock disable. When HIGH, disable clock
9	RW	0x0	hclk_usb_peri_gate_en USB arbiter AHB clock disable. When HIGH, disable clock
8	RW	0x0	reserved
7	RW	0x0	hclk_host1_gate_en HOST1 AHB clock disable. Field0000 Description
6	RW	0x0	hclk_host0_gate_en HOST0 AHB clock disable. Field0000 Description
5	RW	0x0	pmu_hclk_otg0_gate_en USB OTG PMU AHB clock disable. When HIGH, disable clock
4	RW	0x0	hclk_otg0_gate_en USB OTG AHB clock disable. When HIGH, disable clock
3	RW	0x0	pclk_sim_gate_en SIM APB clock disable. When HIGH, disable clock
2	RW	0x0	pclk_tsadc_gate_en TSADC APB clock disable. When HIGH, disable clock
1	RW	0x0	pclk_saradc_gate_en SARADC APB clock disable. When HIGH, disable clock
0	RW	0x0	pclk_i2c5_gate_en I2C5 APB clock disable. When HIGH, disable clock

CRU_CLKGATE8_CON Address: Operational Base + offset (0x0180) Internal clock gating control register8

Bit	Attr	Reset Value	Description
31:16	wo	0x0000	write_mask write mask. When every bit HIGH, enable the writing corresponding bit When every bit LOW, don't care the writing corresponding bit

Bit	Attr	Reset Value	Description
15:13	RO	0x0	reserved
			aclk_peri_mmu_gate_en
12	RW	0x0	PERI_MMU aclk clock disable.
			When HIGH, disable clock
			clk_27m_tsp_gate_en
11	RW	0x0	27M_TSP clock disable.
			When HIGH, disable clock
			clk_hsadc_1_tsp_gate_en
10	RW	0x0	HSADC_1_TSP clock disable.
			When HIGH, disable clock
			clk_hsadc_0_tsp_gate_en
9	RW	0x0	HSADC_0_TSP clock disable.
			When HIGH, disable clock
			hclk_tsp_gate_en
8	RW	0x0	TSP AHB clock disable.
			When HIGH, disable clock
			hclk_hsadc_gate_en
7	RW	0x0	HSADC AHB clock disable.
			When HIGH, disable clock
			hclk_emmc_gate_en
6	RW	0x0	EMMC AHB clock disable.
			When HIGH, disable clock
			hclk_sdio1_gate_en
5	RW	0x0	SDIO1 AHB clock disable.
			When HIGH, disable clock
			hclk_sdio0_gate_en
4	RW	0x0	SDIO0 AHB clock disable.
			When HIGH, disable clock
			hclk_sdmmc_gate_en
3	RW	0x0	SDMMC AHB clock disable.
			When HIGH, disable clock
			hclk_gps_gate_en
2	RW	0x0	GPS hclk clock disable.
			When HIGH, disable clock
			pclk_gmac_gate_en
1	RW	0x0	GMAC pclk clock disable.
			When HIGH, disable clock
			aclk_gmac_gate_en
0	RW	0x0	GMAC aclk clock disable.
			When HIGH, disable clock

CRU_CLKGATE9_CON Address: Operational Base + offset (0x0184) Internal clock gating control register9

Bit	Attr	Reset Value	Description
31:16	wo	0×0000	write_mask write mask. When every bit HIGH, enable the writing corresponding bit When every bit LOW, don't care the writing corresponding bit
15:2	RO	0x0	reserved
1	RW	0x0	hclk_video_clock_en VIDEO AHB clock disable. When HIGH, disable clock
0	RW	0x0	aclk_video_gate_en VIDEO AXI clock disable. When HIGH, disable clock

CRU_CLKGATE10_CON Address: Operational Base + offset (0x0188) Internal clock gating control register10

Bit	Attr	Reset Value	Description
			write_mask
31:16	wo	0x0000	write mask.
01110			When every bit HIGH, enable the writing corresponding bit
			When every bit LOW, don't care the writing corresponding bit
			pclk_publ0_gate_en
15	RW	0x0	DDR0 PUBL apb clock disable
			When HIGH, disable clock
			pclk_ddrupctl0_gate_en
14	RW	0x0	DDRUPCTL0 apb clock disable
			When HIGH, disable clock
			aclk_strc_sys_gate_en
13	RW	0x0	aclk_strc_sys (CPU Structure system) clock disable.
			When HIGH, disable clock
			aclk_dmac_bus_gate_en
12	RW	0x0	DMAC_BUS aclk clock disable.
			When HIGH, disable clock
			hclk_spdif_8ch_gate_en
11	RW	0x0	hclk_spdif_8ch clock disable.
			When HIGH, disable clock
			hclk_spdif_gate_en
10	RW	0x0	hclk_spdif clock disable.
			When HIGH, disable clock
			hclk_rom_gate_en
9	RW	0x0	hclk_rom clock disable.
			When HIGH, disable clock

Bit	Attr	Reset Value	Description
			hclk_i2s_8ch_gate_en
8	RW	0x0	hclk_i2s_8ch AHB clock disable.
			When HIGH, disable clock
			clk_intmem2_gate_en
7	RW	0x0	intmem2 clock disable.
			When HIGH, disable clock
			clk_intmem1_gate_en
6	RW	0x0	intmem1 clock disable.
			When HIGH, disable clock
			clk_intmem0_gate_en
5	RW	0x0	intmem0 clock disable.
			When HIGH, disable clock
			aclk_intmem_gate_en
4	RW	0x0	intmem axi clock disable.
			When HIGH, disable clock
			pclk_i2c2_gate_en
3	RW	0x0	pclk_i2c2 disable.
			When HIGH, disable clock
			pclk_i2c0_gate_en
2	RW	0x0	pclk_i2c0 disable.
			When HIGH, disable clock
			pclk_timer_gate_en
1	RW	0x0	pclk_timer disable.
			When HIGH, disable clock
			pclk_pwm_gate_en
0	RW	0x0	pclk_pwm disable.
			When HIGH, disable clock

CRU_CLKGATE11_CON Address: Operational Base + offset (0x018c) Internal clock gating control register11

Bit	Attr	Reset Value	Description
31:16	WO	0x0000	write_mask write mask.
	WO		When every bit HIGH, enable the writing corresponding bit When every bit LOW, don't care the writing corresponding bit
15:12	RO	0x0	reserved
11	RW	0x0	pclk_rkpwm_gate_en pclk_rkpwm disable. When HIGH, disable clock
10	RW	0x0	pclk_efuse_256_gate_en EFUSE256 APB clock disable. When HIGH, disable clock

Bit	Attr	Reset Value	Description
			pclk_uart_dbg_gate_en
9	RW	0x0	UART_DBG APB clock disable.
			When HIGH, disable clock
			aclk_ccp_gate_en
8	RW	0x0	CCP aclk clock disable.
			When HIGH, disable clock
			hclk_crypto_gate_en
7	RW	0x0	CRYPTO sclk clock disable.
			When HIGH, disable clock
			aclk_crypto_gate_en
6	RW	0x0	CRYPTO mclk clock disable.
			When HIGH, disable clock
			nclk_ddrupctl1_gate_en
5	RW	0x0	DDR Controller PHY clock disable.
			When HIGH, disable clock
			nclk_ddrupctl0_gate_en
4	RW	0x0	DDR Controller PHY clock disable.
			When HIGH, disable clock
			pclk_tzpc_gate_en
3	RW	0x0	TZPC APB clock disable.
			When HIGH, disable clock
			pclk_efuse_1024_gate_en
2	RW	0x0	EFUSE1024 APB clock disable.
			When HIGH, disable clock
			pclk_publ1_gate_en
1	RW	0x0	DDR1 PUBL apb clock disable
			When HIGH, disable clock
			pclk_ddrupctl1_gate_en
0	RW	0x0	DDRUPCTL1 apb clock disable
			When HIGH, disable clock

CRU_CLKGATE12_CON

Address: Operational Base + offset (0x0190) Internal clock gating control register12

Bit	Attr	Reset	Description
		Value	
			write_mask
31:16	wo	0x0000	write mask.
51.10	000		When every bit HIGH, enable the writing corresponding bit
			When every bit LOW, don't care the writing corresponding bit
15:12	RO	0x0	reserved
			pclk_core_niu_gate_en
11	RW	0×0	core NIU APB bus clock disable.
			When HIGH, disable clock

Bit	Attr	Reset Value	Description
			cs_dbg_clk_gate_en
10	RW	0x0	coresight debug clock disable.
			When HIGH, disable clock
			dbg_core_clk_gate_en
9	RW	0x0	core debug clock disable.
			When HIGH, disable clock
			dbg_src_clk_gate_en
8	RW	0x0	Debug source clock disable.
			When HIGH, disable clock
			atclk_core_gate_en
7	RW	0x0	core ATB bus clock disable.
			When HIGH, disable clock
			aclk_mp_gate_en
6	RW	0x0	core MP AXI bus clock disable.
			When HIGH, disable clock
			aclk_core_m0_gate_en
5	RW	0x0	CORE m0 AXI bus clock disable.
			When HIGH, disable clock
			l2_ram_clk_gate_en
4	RW	0x0	L2 RAM clock disable.
			When HIGH, disable clock
			core3_clk_gate_en
3	RW	0x0	core3 clock disable.
			When HIGH, disable clock
			core2_clk_gate_en
2	RW	0x0	core2 clock disable.
			When HIGH, disable clock
			coer1_clk_gate_en
1	RW	0x0	core1 clock disable.
			When HIGH, disable clock
			core0_clk_gate_en
0	RW	0x0	core0 clock disable.
			When HIGH, disable clock

CRU_CLKGATE13_CON Address: Operational Base + offset (0x0194) Internal clock gating control register13

Bit	Attr	Reset Value	Description
31:16	wo	0x0000	write_mask write mask. When every bit HIGH, enable the writing corresponding bit When every bit LOW, don't care the writing corresponding bit

Bit	Attr	Reset Value	Description
			clk_hevc_core_gate_en
15	RW	0x0	HEVC CORE clock disable.
			When HIGH, disable clock
			clk_hevc_cabac_gate_en
14	RW	0x0	HEVC cabac clock disable.
			When HIGH, disable clock
			aclk_hevc_gate_en
13	RW	0x0	HEVC AXI clock disable.
			When HIGH, disable clock
			clk_wifi_gate_en
12	RW	0x0	wifi/gps/bt 3in1 16.384M clock disable.
			When HIGH, disable clock
			clk_lcdc_pwm1_gate_en
11	RW	0x0	lcdc_pwm1 clock disable.
			When HIGH, disable clock
			clk_lcdc_pwm0_gate_en
10	RW	0x0	lcdc_pwm0 clock disable.
			When HIGH, disable clock
9	RW	0x0	reserved
			clk_c2c_host_gate_en
8	RW	0x0	C2C HOST clock disable.
			When HIGH, disable clock
			clk_otg_adp_gate_en
7	RW	0x0	OTG adp clock disable.
			When HIGH, disable clock
			clk_otgphy2_gate_en
6	RW	0x0	OTGPHY2 clock(clk_otgphy2) disable.
			When HIGH, disable clock
			clk_otgphy1_gate_en
5	RW	0x0	OTGPHY1 clock(clk_otgphy1) disable.
			When HIGH, disable clock
			clk_otgphy0_gate_en
4	RW	0x0	OTGPHY0 clock(clk_otgphy0) disable.
		-	When HIGH, disable clock
			clk_emmc_src_gate_en
3	RW	0x0	EMMC source clock disable.
			When HIGH, disable clock
			clk_sdio1_src_gate_en
2	RW	0x0	SDIO1 source clock disable.
			When HIGH, disable clock
			clk_sdio0_src_gate_en
1	RW	0x0	SDIO0 source clock disable.
			When HIGH, disable clock

Bit	Attr	Reset Value	Description
			clk_mmc0_src_gate_en
0	RW	0x0	SDMMC0 source clock disable.
			When HIGH, disable clock

CRU_CLKGATE14_CON

Address: Operational Base + offset (0x0198) Internal clock gating control register14

Bit	Attr	Reset Value	Description
31:16	wo	0×0000	write_mask write mask. When every bit HIGH, enable the writing corresponding bit When every bit LOW, don't care the writing corresponding bit
15:13	RO	0x0	reserved
12	RW	0×0	pclk_alive_niu_gate_en ALIVE_NIU pclk disable When HIGH, disable clock
11	RW	0x0	pclk_grf_gate_en GRF pclk disable When HIGH, disable clock
10:9	RO	0x0	reserved
8	RW	0×0	pclk_gpio8_gate_en GPIO8 pclk disable When HIGH, disable clock
7	RW	0×0	pclk_gpio7_gate_en GPIO7 pclk disable When HIGH, disable clock
6	RW	0x0	pclk_gpio6_gate_en GPIO6 pclk disable When HIGH, disable clock
5	RW	0x0	pclk_gpio5_gate_en GPIO5 pclk disable When HIGH, disable clock
4	RW	0x0	pclk_gpio4_gate_en GPIO4 pclk disable When HIGH, disable clock
3	RW	0x0	pclk_gpio3_gate_en GPIO3 pclk disable When HIGH, disable clock
2	RW	0×0	pclk_gpio2_gate_en GPIO2 pclk disable When HIGH, disable clock

Bit	Attr	Reset Value	Description
1	RW		pclk_gpio1_gate_en GPIO1 pclk disable When HIGH, disable clock
0	RO	0x0	reserved

CRU_CLKGATE15_CON

Address: Operational Base + offset (0x019c) Internal clock gating control register15

Bit	Attr	Reset Value	Description
			write_mask
21.10		00000	write mask.
31:16	WO	0x0000	When every bit HIGH, enable the writing corresponding bit
			When every bit LOW, don't care the writing corresponding bit
			hclk_vip_gate_en
15	RW	0x0	VIP hclk disable
			When HIGH, disable clock
			aclk_vip_gate_en
14	RW	0x0	VIP aclk disable
			When HIGH, disable clock
			aclk_vio2_noc_gate_en
13	RW	0x0	VIO2_NOC aclk disable
			When HIGH, disable clock
			aclk_vio1_noc_gate_en
12	RW	0x0	VIO1_NOC aclk disable
			When HIGH, disable clock
			aclk_vio0_noc_gate_en
11	RW	0x0	VIO0_NOC aclk disable
			When HIGH, disable clock
			hclk_vio_noc_gate_en
10	RW	0x0	VIO_NOC hclk disable
			When HIGH, disable clock
			hclk_vio_ahb_arbi_gate_en
9	RW	0x0	VIO_AHB_ARBI hclk disable
			When HIGH, disable clock
			hclk_lcdc1_gate_en
8	RW	0x0	LCDC1 hclk disable
			When HIGH, disable clock
			aclk_lcdc1_gate_en
7	RW	0x0	LCDC1 aclk disable
			When HIGH, disable clock
			hclk_lcdc0_gate_en
6	RW	0x0	LCDC0 hclk disable
			When HIGH, disable clock

Bit	Attr	Reset Value	Description
			aclk_lcdc0_gate_en
5	RW	0x0	LCDC0 aclk disable
			When HIGH, disable clock
			aclk_lcdc_iep_gate_en
4	RW	0x0	LCDC_IEP aclk disable
			When HIGH, disable clock
			hclk_iep_gate_en
3	RW	0x0	IEP hclk disable
			When HIGH, disable clock
			aclk_iep_gate_en
2	RW	0x0	IEP aclk disable
			When HIGH, disable clock
			hclk_rga_gate_en
1	RW	0x0	RGA hclk disable
			When HIGH, disable clock
			aclk_rga_gate_en
0	RW	0x0	RGA aclk disable
			When HIGH, disable clock

CRU_CLKGATE16_CON

Address: Operational Base + offset (0x01a0)

Bit	Attr	Reset Value	Description
31:16	WO	0x0000	write_mask write mask.
			When every bit HIGH, enable the writing corresponding bit When every bit LOW, don't care the writing corresponding bit
15:12	RO	0x0	reserved
11	RW	0×0	pclk_vio2_h2p_gate_en VIO2_H2P pclk disable When HIGH, disable clock
10	RW	0x0	hclk_vio2_h2p_gate_en VIO2_H2P hclk disable When HIGH, disable clock
9	RW	0×0	pclk_hdmi_ctrl_gate_en HDMI_CTRL pclk disable When HIGH, disable clock
8	RW	0×0	pclk_edp_ctrl_gate_en EDP_CTRL pclk disable When HIGH, disable clock
7	RW	0x0	pclk_lvds_phy_gate_en LVDS_PHY pclk disable When HIGH, disable clock

Bit	Attr	Reset Value	Description
6	RW	0x0	pclk_mipi_csi_gate_en MIPI_CSI pclk disable When HIGH, disable clock
5	RW	0x0	pclk_mipi_dsi1_gate_en MIPI_DSI1 pclk disable When HIGH, disable clock
4	RW	0x0	pclk_mipi_dsi0_gate_en MIPI_DSI0 pclk disable When HIGH, disable clock
3	RW	0x0	pclkin_isp_gate_en ISP pclkin disable When HIGH, disable clock
2	RW	0x0	aclk_isp_gate_en ISP aclk disable When HIGH, disable clock
1	RW	0x0	hclk_isp_gate_en ISP hclk disable When HIGH, disable clock
0	RW	0x0	pclkin_vip_gate_en VIP pclkin disable When HIGH, disable clock

CRU_CLKGATE17_CON Address: Operational Base + offset (0x01a4) Internal clock gating control register17

Bit	Attr	Reset Value	Description
31:16	wo	0×0000	write_mask write mask. When every bit HIGH, enable the writing corresponding bit When every bit LOW, don't care the writing corresponding bit
15:5	RO	0x0	reserved
4	RW	0x0	pclk_gpio0_gate_en GPIO0 pclk disable When HIGH, disable clock
3	RO	0x0	Reserved
2	RW	0x0	pclk_pmu_noc_gate_en PMU_NOC pclk disable When HIGH, disable clock
1	RW	0×0	pclk_intmem1_gate_en INTMEM1 pclk disable When HIGH, disable clock

Bit	Attr	Reset Value	Description
0	RW		pclk_pmu_gate_en PMU pclk disable
			When HIGH, disable clock

CRU_CLKGATE18_CON

Address: Operational Base + offset (0x01a8) Internal clock gating control register18

Bit	Attr	Reset Value	Description
31:16	wo	0x0000	write_mask write mask. When every bit HIGH, enable the writing corresponding bit When every bit LOW, don't care the writing corresponding bit
15:1	RO	0x0	reserved
0	RW	0×0	aclk_gpu_gate_en GPU aclk disable When HIGH, disable clock

CRU_GLB_SRST_FST_VALUE

Address: Operational Base + offset (0x01b0) The first global software reset config value

Bit	Attr	Reset Value	Description
31:16	RO	0x0	reserved
			glb_srst_fst_value
15:0	RW	0x0000	The first global software reset config value
			If config 0xfdb9, it will generate first global software reset.

CRU_GLB_SRST_SND_VALUE

Address: Operational Base + offset (0x01b4) The second global software reset config value

Bit	Attr	Reset Value	Description
31:16	RO	0x0	reserved
15:0	RW	0x0000	glb_srst_snd_value The second global software reset config value If config 0xeca8, it will generate second global software reset.

CRU_SOFTRST0_CON

Address: Operational Base + offset (0x01b8) Internal software reset control register0

Bit Attr Reset Description	Bit
----------------------------	-----

Bit	Attr	Reset Value	Description
			write_mask
31:16	WO	0~0000	write mask.
51.10	VVO	0,0000	When every bit HIGH, enable the writing corresponding bit
		AttrValueWO0×0000RW0×0	When every bit LOW, don't care the writing corresponding bit
			core3_dbg_srstn_req
15	RW	0x0	Core3 CPU debug software reset request.
		v 0×0	When HIGH, reset relative logic
			core2_dbg_srstn_req
14	RW	0x0	Core2 CPU debug software reset request.
			When HIGH, reset relative logic
			core1_dbg_srstn_req
13	RW	0x0	Core1 CPU debug software reset request.
		0,10	When HIGH, reset relative logic
			core0_dbg_srstn_req
12	D\//	0×0	Core0 CPU debug software reset request.
12		0.00	When HIGH, reset relative logic
1 1		0.40	topdbg_srstn_req
11	KW	UXU	CPU top debug software reset request.
			When HIGH, reset relative logic
10	5.44		I2c_srstn_req
10	RW	0x0	L2 controller software reset request.
			When HIGH, reset relative logic
			pd_bus_str_sys_asrstn_req
9	RW	0x0	PD BUS NOC AXI software reset request.
		W 0×0 W 0×0	When HIGH, reset relative logic
			pd_core_str_sys_asrstn_req
8	RW	0x0	PD CORE NOC AXI software reset request.
			When HIGH, reset relative logic
			core3_po_srstn_req
7	RW	0x0	Core3 CPU PO software reset request.
			When HIGH, reset relative logic
			core2_po_srstn_req
6	RW	0x0	Core2 CPU PO software reset request.
			When HIGH, reset relative logic
			core1_po_srstn_req
5	RW	0x0	Core1 CPU PO software reset request.
		_	When HIGH, reset relative logic
			core0_po_srstn_req
4	R/WSC	0x0	Core0 CPU PO software reset request.
	.,		When HIGH, reset relative logic
			core3_srstn_req
3	RW		Core3 CPU software reset request.
J	L AN		•
			When HIGH, reset relative logic

Bit	Attr	Reset Value	Description
			core2_srstn_req
2	RW	0x0	Core2 CPU software reset request.
			When HIGH, reset relative logic
			core1_srstn_req
1	RW	0x0	Core1 CPU software reset request.
			When HIGH, reset relative logic
			core0_srstn_req
0	R/WSC	0x0	Core0 CPU software reset request.
			When HIGH, reset relative logic

CRU_SOFTRST1_CON

Address: Operational Base + offset (0x01bc) Internal software reset control register1

Bit	Attr	Reset Value	Description
			write_mask
21.10	WO	0x0000	write mask.
31:16	WO	00000	When every bit HIGH, enable the writing corresponding bit
			When every bit LOW, don't care the writing corresponding bit
			efuse_psrstn_req
15	RW	0x0	EFUSE APB software reset request.
			When HIGH, reset relative logic
			timer5_srstn_req
14	RW	0x0	Timer5 software reset request.
			When HIGH, reset relative logic
			timer4_srstn_req
13	RW	0x0	Timer4 software reset request.
			When HIGH, reset relative logic
			timer3_srstn_req
12	RW	0x0	Timer3 software reset request.
			When HIGH, reset relative logic
			timer2_srstn_req
11	RW	0x0	Timer2 software reset request.
			When HIGH, reset relative logic
			timer1_srstn_req
10	RW	0x0	Timer1 software reset request.
			When HIGH, reset relative logic
			timer0_srstn_req
9	RW	0x0	Timer0 software reset request.
			When HIGH, reset relative logic
			spdif_srstn_req
8	RW	0x0	SPDIF software reset request.
			When HIGH, reset relative logic

Bit	Attr	Reset Value	Description
			i2s_srstn_req
7	RW	0x0	I2S software reset request.
			When HIGH, reset relative logic
			timer_psrstn_req
6	RW	0x0	Timer APB software reset request.
			When HIGH, reset relative logic
			spdif_8ch_srstn_req
5	RW	0x0	SPDIF 8ch software reset request.
			When HIGH, reset relative logic
			rom_srstn_req
4	RW	0x0	ROM software reset request.
			When HIGH, reset relative logic
			intmem_srstn_req
3	RW	0x0	Internal memory software reset request.
			When HIGH, reset relative logic
			dma1_srstn_req
2	RW	0x0	DMA1 software reset request.
			When HIGH, reset relative logic
			efuse_256bit_psrstn_req
1	RW	0x0	256bit EFUSE APB software reset request.
			When HIGH, reset relative logic
			pd_bus_ahb_arbitor_srstn_req
0	RW	0x0	pd_bus ahb arbitor software reset request.
0			pd_cpu AHB arbitor reset control
			When HIGH, reset relative logic

CRU_SOFTRST2_CON

Address: Operational Base + offset (0x01c0) Internal software reset control register2

Bit	Attr	Reset Value	Description
31:16	WO	0x0000	write_mask write mask. When every bit HIGH, enable the writing corresponding bit When every bit LOW, don't care the writing corresponding bit
15	RW	0x0	i2c5_srstn_req I2C5 software reset request. When HIGH, reset relative logic
14	RW	0×0	i2c4_srstn_req I2C4 software reset request. When HIGH, reset relative logic
13	RW	0x0	i2c3_srstn_req I2C3 software reset request. When HIGH, reset relative logic

Bit	Attr	Reset Value	Description
			i2c2_srstn_req
12	RW	0x0	I2C2 software reset request.
			When HIGH, reset relative logic
			i2c1_srstn_req
11	RW	0x0	I2C1 software reset request.
			When HIGH, reset relative logic
			i2c0_srstn_req
10	RW	0x0	I2C0 software reset request.
			When HIGH, reset relative logic
9	RO	0x0	reserved
-			gpio8_srstn_req
8	RW	0x0	GPIO8 software reset request.
-			When HIGH, reset relative logic
			gpio7_srstn_req
7	RW	0x0	GPIO7 software reset request.
			When HIGH, reset relative logic
			gpio6_srstn_req
6	RW	0x0	GPIO6 software reset request.
-			When HIGH, reset relative logic
			gpio5_srstn_req
5	RW	0x0	GPIO5 software reset request.
			When HIGH, reset relative logic
			gpio4_srstn_req
4	RW	0x0	GPIO4 software reset request.
			When HIGH, reset relative logic
			gpio3_srstn_req
3	RW	0x0	GPIO3 software reset request.
			When HIGH, reset relative logic
			gpio2_srstn_req
2	RW	0x0	GPIO2 software reset request.
			When HIGH, reset relative logic
			gpio1_srstn_req
1	RW	0x0	GPIO1 software reset request.
			When HIGH, reset relative logic
			gpio0_srstn_req
0	RW	0x0	GPIO0 software reset request.
			When HIGH, reset relative logic

CRU_SOFTRST3_CON Address: Operational Base + offset (0x01c4) Internal software reset control register3

Bit	Attr	Reset Value	Description
-----	------	----------------	-------------

Bit	Attr	Reset Value	Description
31:16	WO	0×0000	write_mask write mask. When every bit HIGH, enable the writing corresponding bit When every bit LOW, don't care the writing corresponding bit
15	RW	0x0	usb_peri_srstn_req USB PERIPH software reset request. When HIGH, reset relative logic
14	RW	0x0	emem_peri_srstn_req EMEM ahb bus software reset request. When HIGH, reset relative logic
13	RW	0x0	reserved
12	RW	0x0	periph_niu_srstn_req PERIPH NIU software reset request. When HIGH, reset relative logic
11	RW	0x0	periphsys_psrstn_req PERIPH APB software reset request. pd_peri bus matrix apb softreset When HIGH, reset relative logic
10	RW	0x0	periphsys_hsrstn_req PERIPH AHB software reset request. pd_peri bus matrix ahb softreset When HIGH, reset relative logic
9	RW	0×0	periphsys_asrstn_req PERIPH AXI software reset request. pd_peri bus matrix axi softreset When HIGH, reset relative logic
8	RW	0×0	pmu_srstn_req PMU software reset request. When HIGH, reset relative logic
7	RW	0×0	grf_srstn_req GRF software reset request. When HIGH, reset relative logic
6	RW	0×0	pmu_psrstn_req PMU APB bus software reset request. When HIGH, reset relative logic
5	RW	0x0	tpiu_atsrstn_req TPIU ATB software reset request. When HIGH, reset relative logic
4	RW	0x0	dap_sys_srstn_req DAP system software reset request. When HIGH, reset relative logic
3	RW	0x0	dap_srstn_req DAP software reset request. When HIGH, reset relative logic

Bit	Attr	Reset Value	Description
			periph_mmu_srstn_req
2	RW	0x0	PERIPH MMU software reset request.
			When HIGH, reset relative logic
			mmc_peri_srstn_req
1	DW/	00	pd_peri mmc AHB bus software reset request.
1 L	RW	0x0	emmc, sdio, sdmmc AHB arbitor reset control
			When HIGH, reset relative logic
			pwm_srstn_req
0	RW	0x0	PWM software reset request.
			When HIGH, reset relative logic

CRU_SOFTRST4_CON Address: Operational Base + offset (0x01c8) Internal software reset control register4

Bit	Attr	Reset Value	Description
31:16	wo	0×0000	write_mask write mask. When every bit HIGH, enable the writing corresponding bit When every bit LOW, don't care the writing corresponding bit
15	RO	0x0	reserved
14	RW	0x0	nandc1_srstn_req NANDC1 software reset request. When HIGH, reset relative logic
13	RW	0x0	nandc0_srstn_req NANDC0 software reset request. When HIGH, reset relative logic
12	RW	0x0	hsadc_srstn_req HSADC software reset request. When HIGH, reset relative logic
11:9	RW	0x0	reserved
8	RW	0x0	usb_host0_srstn_req USB HOST0 AHB software reset request. When HIGH, reset relative logic
7	RW	0x0	ccp_srstn_req CCP software reset request. When HIGH, reset relative logic
6	RO	0x0	reserved
5	RW	0x0	rk_pwm_srstn_req RK_PWM software reset request. When HIGH, reset relative logic
4	RO	0x0	reserved

Bit	Attr	Reset Value	Description
			gps_srstn_req
3	RW	0x0	GPS software reset request.
			When HIGH, reset relative logic
			mac_srstn_req
2	RW	0x0	MAC software reset request.
			When HIGH, reset relative logic
1	RO	0x0	reserved
			dma2_srstn_req
0	RW	0x0	DMA2 software reset request.
			When HIGH, reset relative logic

CRU_SOFTRST5_CON

Address: Operational Base + offset (0x01cc) Internal software reset control register5

Bit	Attr	Reset Value	Description
31:16	wo	0x0000	write_mask write mask. When every bit HIGH, enable the writing corresponding bit When every bit LOW, don't care the writing corresponding bit
15:11	RO	0x0	reserved
10	RW	0x0	pd_pmu_niu_psrstn_req pd_pmu niu APB software reset request. When HIGH, reset relative logic
9	RW	0x0	pd_pmu_intmem_psrstn_req pd_pmu internal memory apb software reset request. When HIGH, reset relative logic
8	RW	0x0	pd_alive_niu_psrstn_req pd_alive niu APB software reset request. When HIGH, reset relative logic
7	RW	0x0	saradc_srstn_req SARADC software reset request. When HIGH, reset relative logic
6	RO	0x0	reserved
5	RW	0x0	spi2_srstn_req SPI2 software reset request. When HIGH, reset relative logic
4	RW	0x0	spi1_srstn_req SPI1 software reset request. When HIGH, reset relative logic
3	RW	0×0	spi0_srstn_req SPI0 software reset request. When HIGH, reset relative logic
2:1	RO	0x0	reserved

Bit	Attr	Reset Value	Description
			tzpc_srstn_req
0	RW	0x0	TZPC software reset request.
			When HIGH, reset relative logic

CRU_SOFTRST6_CON

Address: Operational Base + offset (0x01d0) Internal software reset control register6

Bit	Attr	Reset Value	Description
31:16	WO	0x0000	write_mask write mask. When every bit HIGH, enable the writing corresponding bit When every bit LOW, don't care the writing corresponding bit
15	RW	0x0	edp_srstn_req eDP software reset request. When HIGH, reset relative logic
14	RW	0x0	isp_srstn_req ISP software reset request. When HIGH, reset relative logic
13	RW	0x0	rga_hsrstn_req RGA AHB software reset request. When HIGH, reset relative logic
12	RW	0x0	rga_asrstn_req RGA AXI software reset request. When HIGH, reset relative logic
11	RW	0x0	iep_hsrstn_req IEP AHB software reset request. When HIGH, reset relative logic
10	RW	0x0	iep_asrstn_req IEP AXI software reset request. When HIGH, reset relative logic
9	RW	0×0	rga_core_srstn_req RGA func software reset request. When HIGH, reset relative logic
8	RW	0x0	vip_srstn_req VIP software reset request. IEP ISP VOP's NIU software reset. When HIGH, reset relative logic
7	RW	0x0	vio1_niu_asrstn_req VIO1 NIU AXI software reset request. IEP ISP VOP's NIU software reset. When HIGH, reset relative logic

Bit	Attr	Reset Value	Description
			lcdc0_dsrstn_req
6	RW	0x0	LCDC0 DCLK software reset request.
			When HIGH, reset relative logic
			lcdc0_hsrstn_req
5	RW	0x0	LCDC0 AHB software reset request.
			When HIGH, reset relative logic
			lcdc0_asrstn_req
4	RW	0x0	LCDC0 AXI software reset request.
			When HIGH, reset relative logic
			vio_niu_hsrstn_req
3	RW	0x0	VIO NIU AHB software reset request.
			When HIGH, reset relative logic
			vio0_niu_asrstn_req
2	RW	0x0	VIO0 NIU AXI software reset request.
-		UNU	IEP ISP VOP's NIU software reset.
			When HIGH, reset relative logic
			rga_niu_asrstn_req
1	RW	0x0	RGA NIU AXI software reset request.
-		0,0	IEP ISP VOP's NIU software reset.
	_		When HIGH, reset relative logic
			vio_arbi_hsrstn_req
0	RW	0x0	VIO arbitor AHB software reset request.
			When HIGH, reset relative logic

CRU_SOFTRST7_CON

Address: Operational Base + offset (0x01d4) Internal software reset control register7

Bit	Attr	Reset Value	Description
31:16	wo	0×0000	write_mask write mask. When every bit HIGH, enable the writing corresponding bit When every bit LOW, don't care the writing corresponding bit
15:14	RO	0x0	reserved
13	RW	0x0	gpu_pvtm_srstn_req gpu pvtm software reset request. When HIGH, reset relative logic
12	RW	0x0	core_pvtm_srstn_req core pvtm software reset request. When HIGH, reset relative logic
11:10	RO	0x0	reserved
9	RW	0x0	hdmi_srstn_req HDMI software reset request. When HIGH, reset relative logic

Bit	Attr	Reset Value	Description
			gpu_srstn_req
8	RW	0x0	GPU core software reset request.
			When HIGH, reset relative logic
			lvds_con_srstn_req
7	RW	0x0	LVDS controller software reset request.
			When HIGH, reset relative logic
			lvds_phy_psrstn_req
6	RW	0x0	LVDS PHY APB software reset request.
			When HIGH, reset relative logic
			mipicsi_psrstn_req
5	RW	0x0	MIPi CSI APB software reset request.
			When HIGH, reset relative logic
			mipidsi1_psrstn_req
4	RW	0x0	MIPi DSI1 APB software reset request.
			When HIGH, reset relative logic
			mipidsi0_psrstn_req
3	RW	0x0	MIPi DSI0 APB software reset request.
			When HIGH, reset relative logic
			vio_h2p_hsrstn_req
2	RW	0x0	VIO ahb to apb bridge AHB software reset request.
			When HIGH, reset relative logic
			vcodec_hsrstn_req
1	RW	0x0	VCODEC AHB software reset request.
			When HIGH, reset relative logic
			vcodec_asrstn_req
0	RW	0x0	VCODEC AXI software reset request.
			When HIGH, reset relative logic

CRU_SOFTRST8_CON

Address: Operational Base + offset (0x01d8) Internal software reset control register8

Bit	Attr	Reset Value	Description
			write_mask
31:16	wo	0x0000	write mask.
51.10	VVO	0,0000	When every bit HIGH, enable the writing corresponding bit
			When every bit LOW, don't care the writing corresponding bit
15	RO	0x0	reserved
		0x0	acc_efuse_srstn_req
14	RW		acc efuse software reset request.
			When HIGH, reset relative logic
			usb_adp_srstn_req
13	RW	0×0	OTG adp clock software reset request.
			When HIGH, reset relative logic

Bit	Attr	Reset Value	Description
			usbhost1c_srstn_req
12	RW	0x0	USBHOST1 controller software reset request.
			When HIGH, reset relative logic
			usbhost1phy_srstn_req
11	RW	0x0	USBHOST1 PHY software reset request.
			When HIGH, reset relative logic
			usbhost1_hsrstn_req
10	RW	0x0	USBHOST1 AHB BUS software reset request.
			When HIGH, reset relative logic
			usbhost0c_srstn_req
9	RW	0x0	USBHOST0 controller software reset request.
			When HIGH, reset relative logic
			usbhost0phy_srstn_req
8	RW	0x0	USBHOST0 PHY software reset request.
			When HIGH, reset relative logic
-			usbhost0_hsrstn_req
7	RW	0x0	USBHOST0 AHB BUS software reset request.
			When HIGH, reset relative logic
-			usbotgc_srstn_req
6	RW	0x0	USBOTG controller software reset request.
			When HIGH, reset relative logic
			usbotgphy_srstn_req
5	RW	0x0	USBOTG PHY software reset request.
			When HIGH, reset relative logic
-			usbotg_hsrstn_req
4	RW	0x0	USBOTG AHB BUS software reset request.
			When HIGH, reset relative logic
			emmc_srstn_req
3	RW	0x0	EMMC software reset request.
			When HIGH, reset relative logic
			sdio1_srstn_req
2	RW	0x0	SDIO1 software reset request.
			When HIGH, reset relative logic
			sdio0_srstn_req
1	RW	0x0	SDIO0 software reset request.
			When HIGH, reset relative logic
			mmc0_srstn_req
0	RW	0x0	SDMMC0 software reset request.
			When HIGH, reset relative logic

CRU_SOFTRST9_CON

Address: Operational Base + offset (0x01dc) Internal software reset control register9

Bit	Attr	Reset Value	Description
31:16	wo	0×0000	write_mask write mask. When every bit HIGH, enable the writing corresponding bit When every bit LOW, don't care the writing corresponding bit
15	RW	0×0	tsadc_psrstn_req TSADC APB software reset request. When HIGH, reset relative logic
14:11	RO	0x0	reserved
10	RW	0x0	hevc_srstn_req HEVC software reset request. When HIGH, reset relative logic
9	RW	0x0	rga_h2p_brg_srstn_req RGA AHB to APB bridge software reset request. When HIGH, reset relative logic
8	RW	0×0	vio1_h2p_brg_srstn_req VIO1 AHB to APB bridge software reset request. When HIGH, reset relative logic
7	RW	0x0	vio0_h2p_brg_srstn_req VIO0 AHB to APB bridge software reset request. When HIGH, reset relative logic
6	RW	0x0	lcdcpwm1_srstn_req lcdc_pwm1 software reset request. When HIGH, reset relative logic
5	RW	0x0	lcdcpwm0_srstn_req lcdc_pwm0 software reset request. When HIGH, reset relative logic
4	RW	0x0	gic_srstn_req GIC software reset request. When HIGH, reset relative logic
3	RW	0x0	pd_core_mp_axi_srstn_req pd_croe periph axi software reset request. When HIGH, reset relative logic
2	RW	0x0	pd_core_apb_noc_srstn_req pd_core APB software reset request. When HIGH, reset relative logic
1	RW	0x0	pd_core_ahb_noc_srstn_req PD_CORE AHB software reset request. When HIGH, reset relative logic
0	RW	0×0	coresight_srstn_req coresight software reset request. When HIGH, reset relative logic

CRU_SOFTRST10_CON

Address: Operational Base + offset (0x01e0)

Internal software reset control register10

Bit	Attr	Reset Value	Description
		Tarac	write_mask
			write mask.
31:16	WO	0x0000	When every bit HIGH, enable the writing corresponding bit
			When every bit LOW, don't care the writing corresponding bit
			c2c_host_srstn_req
15	RW	0x0	c2c host clk domain software reset request.
15		0,0	When HIGH, reset relative logic
			crypto_srstn_req
14	RW	0x0	crypto working clk domain software reset request.
17		0.0	When HIGH, reset relative logic
13:12	RO	0x0	reserved
13.12		0.0	ddrmsch1_srstn_req
11	RW	0x0	DDR1 memory scheduler software reset request.
11		0.00	When HIGH, reset relative logic
			ddrmsch0_srstn_req
10	RW	0x0	DDR0 memory scheduler software reset request.
10		0.00	When HIGH, reset relative logic
9	RW	0.0	ddrphy1_ctl_srstn_req DDR1 PUB software reset request.
9	r vv	0x0	·
			When HIGH, reset relative logic
0		0.40	ddrctrl1_psrstn_req
8	RW	0x0	DDR controller1 APB software reset request.
			When HIGH, reset relative logic
7		0.40	ddrctrl1_srstn_req
7	RW	0x0	DDR controller1 software reset request.
			When HIGH, reset relative logic
c		0.40	ddrphy1_psrstn_req
6	RW	0x0	DDR PHY1 APB software reset request.
			When HIGH, reset relative logic
-	DW	00	ddrphy1_srstn_req
5	RW	0x0	DDR PHY1 software reset request.
			When HIGH, reset relative logic
	514		ddrphy0_ctl_srstn_req
4	RW	0x0	DDR0 PUB software reset request.
			When HIGH, reset relative logic
	5		ddrctrl0_psrstn_req
3	RW	0x0	DDR controller0 APB software reset request.
			When HIGH, reset relative logic
			ddrctrl0_srstn_req
2	RW	0x0	DDR controller0 software reset request.
			When HIGH, reset relative logic

Bit	Attr	Reset Value	Description
1	RW	0x0	ddrphy0_psrstn_req DDR PHY0 APB software reset request. When HIGH, reset relative logic
0	RW	0x0	ddrphy0_srstn_req DDR PHY0 software reset request. When HIGH, reset relative logic

CRU_SOFTRST11_CON

Address: Operational Base + offset (0x01e4) Internal software reset control register11

Bit	Attr	Reset	Description
		Value	
			write_mask
31:16	wo	0x0000	write mask.
51.10		0,0000	When every bit HIGH, enable the writing corresponding bit
			When every bit LOW, don't care the writing corresponding bit
			tsp_27m_srstn_req
15	RW	0x0	TSP 27M lock domain software reset request.
			When HIGH, reset relative logic
			tsp_clkin1_srstn_req
14	RW	0x0	TSP clockin1 software reset request.
			When HIGH, reset relative logic
			tsp_clkin0_srstn_req
13	RW	0x0	TSP clockin 0 software reset request.
			When HIGH, reset relative logic
			tsp_srstn_req
12	RW	0x0	tsp software reset request.
			When HIGH, reset relative logic
			ps2c_srstn_req
11	RW	0x0	ps2 controlor software reset request.
			When HIGH, reset relative logic
			simc_srstn_req
10	RW	0x0	cim card controlor software reset request.
			When HIGH, reset relative logic
9:8	RO	0x0	reserved
			uart4_srstn_req
7	RW	0x0	UART4 software reset request.
			When HIGH, reset relative logic
			uart3_srstn_req
6	RW	0x0	UART3 software reset request.
			When HIGH, reset relative logic
			uart2_srstn_req
5	RW	0x0	UART2 software reset request.
			When HIGH, reset relative logic

Bit	Attr	Reset Value	Description
			uart1_srstn_req
4	RW	0x0	UART1 software reset request.
			When HIGH, reset relative logic
			uart0_srstn_req
3	RW	0x0	UART0 software reset request.
			When HIGH, reset relative logic
			lcdc1_dsrstn_req
2	RW	0x0	LCDC1 DCLK software reset request.
			When HIGH, reset relative logic
			lcdc1_hsrstn_req
1	RW	0x0	LCDC1 AHB software reset request.
			When HIGH, reset relative logic
			lcdc1_asrstn_req
0	RW	0x0	LCDC1 AXI software reset request.
			When HIGH, reset relative logic

CRU_MISC_CON

Address: Operational Base + offset (0x01e8) SCU control register

Bit	Attr	Reset Value	Description
31:16	WO	0×0000	write_mask write mask. When every bit HIGH, enable the writing corresponding bit When every bit LOW, don't care the writing corresponding bit
15:12	RO	0x0	reserved
11:8	RW	0×0	testclk_sel Output clock selection for test 4'b000: aclk_periph 4'b001: clk_core 4'b0010: aclk_vio0 4'b010: aclk_vcodec 4'b0101: aclk_gpu 4'b0101: aclk_gpu 4'b0110: clk_rga_core 4'b0111: aclk_cpu 4'b1001: 27MHz 4'b1001: 32KHz 4'b1011: clk_wifi(16.368MHz) 4'b100: dclk_lcdc0 4'b1101: dclk_lcdc1 4'b1101: clk_isp_jpeg 4'b1111: clk_isp

Bit	Attr	Reset Value	Description
7:0	RO	0x0	reserved

CRU_GLB_CNT_TH

Address: Operational Base + offset (0x01ec) global reset wait counter threshold

Bit	Attr	Reset Value	Description
31:10	RO	0x0	reserved
9:0	RW	0x064	glb_rst_cnt_th Global soft reset counter threshold

CRU_GLB_RST_CON

Address: Operational Base + offset (0x01f0) global reset trigger select

Bit	Attr	Reset Value	Description
31:4	RO	0x0	reserved
3:2	RW	0x0	pmu_glb_srst_ctrl pmu reset by global soft reset select 2'b00: pmu reset by first global soft reset 2'b01: pmu reset by second global soft reset 2'b10: pmu not reset by any global soft reset
1	RW	0x0	wdt_glb_srst_ctrl watch_dog trigger global soft reset select 1'b0: watch_dog trigger second global reset 1'b1: watch_dog trigger first global reset
0	RW	0x0	tsadc_glb_srst_ctrl TSADC trigger global soft reset select 1'b0: tsadc trigger second global reset 1'b1: tsadc trigger first global reset

CRU_GLB_RST_ST

Address: Operational Base + offset (0x01f8) alobal reset status

Bit	Attr	Reset	Description
Dit		Value	
31:6	RO	0x0	reserved
5	W1C	0×0	<pre>snd_glb_wdt_rst_st second global watch_dog triggered reset flag 1'b0: last hot reset is not second global watch_dog triggered reset 1'b1: last hot reset is second global watch_dog triggered reset</pre>

Bit	Attr	Reset Value	Description
			fst_glb_wdt_rst_st
4	W1C	0x0	first global watch_dog triggered reset flag
-	WIC	0.00	1'b0: last hot reset is not first global watch_dog triggered reset
			1'b1: last hot reset is first global watch_dog triggered reset
			snd_glb_tsadc_rst_st
3	W1C	0x0	second global TSADC triggered reset flag
5	WIC	UXU	1'b0: last hot reset is not second global TSADC triggered reset
			1'b1: last hot reset is second global TSADC triggered reset
		0x0	fst_glb_tsadc_rst_st
2	W1C		first global TSADC triggered reset flag
2	WIC		1'b0: last hot reset is not first global TSADC triggered reset
			1'b1: last hot reset is first global TSADC triggered reset
		0×0	snd_glb_rst_st
1	W1C		second global rst flag
L	WIC		1'b0: last hot reset is not second global rst
			1'b1: last hot reset is second global rst
		0x0	fst_glb_rst_st
0	W1C		first global rst flag
			1'b0: last hot reset is not first global rst
			1'b1: last hot reset is first global rst

CRU_SDMMC_CON0*

Address: Operational Base + offset (0x0200) sdmmc control0

Dit	A ++	Reset	Description
Bit	Attr	Value	
			write_mask
31:16	wo	0x0000	write mask.
51.10	000	00000	When every bit HIGH, enable the writing corresponding bit
			When every bit LOW, don't care the writing corresponding bit
15:12	RO	0x0	reserved
			sdmmc_drv_sel
11	WO	0x0	sdmmc drive select
			sdmmc drive select
			sdmmc_drv_delaynum
10:3	WO	0x00	sdmmc drive delay number
			sdmmc drive delay number
			sdmmc_drv_degree
2:1	WO	0x1	sdmmc drive degree
			sdmmc drive degree
			sdmmc_init_state
0	WO	0x0	sdmmc initial state
			sdmmc initial state

CRU_SDMMC_CON1*

Address: Operational Base + offset (0x0204) sdmmc control1

Bit	Attr	Reset Value	Description
31:16	wo	0x0000	write_mask write mask. When every bit HIGH, enable the writing corresponding bit When every bit LOW, don't care the writing corresponding bit
15:11	RO	0x0	reserved
10	wo	0x0	sdmmc_sample_sel sdmmc sample select sdmmc sample select
9:2	wo	0x00	sdmmc_sample_delaynum sdmmc sample delay number sdmmc sample delay number
1:0	wo	0x0	sdmmc_sample_degree sdmmc sample degree sdmmc sample degree

CRU_SDIO0_CON0*

Address: Operational Base + offset (0x0208) sdio0 control0

Bit	A ++	Reset	Description
DIL	Attr	Value	Description
			write_mask
31:16	wo	0x0000	write mask.
51.10	VVO	00000	When every bit HIGH, enable the writing corresponding bit
			When every bit LOW, don't care the writing corresponding bit
15:12	RO	0x0	reserved
			sdio0_drv_sel
11	WO	0x0	sdio0 drive select
			sdio0 drive select
			sdio0_drv_delaynum
10:3	WO	0x00	sdio0 drive delay number
			sdio0 drive delay number
			sdio0_drv_degree
2:1	WO	0x1	sdio0 drive degree
			sdio0 drive degree
			sdio0_init_state
0	WO	0x0	sdio0 initial state
			sdio0 initial state

CRU_SDIO0_CON1*

Address: Operational Base + offset (0x020c)

sdio0 control1

Bit	Attr	Reset Value	Description
31:16	wo	0×0000	write_mask write mask. When every bit HIGH, enable the writing corresponding bit When every bit LOW, don't care the writing corresponding bit
15:11	RO	0x0	reserved
10	wo	0x0	sdio0_sample_sel sdio0 sample select sdio0 sample select
9:2	wo	0x00	sdio0_sample_delaynum sdio0 sample delay number sdio0 sample delay number
1:0	wo	0x0	sdio0_sample_degree sdio0 sample degree sdio0 sample degree

CRU_SDI01_CON0*

Address: Operational Base + offset (0x0210) sdio1 control0

		Reset	_
Bit	Attr	Value	Description
			write_mask
31:16	wo	0x0000	write mask.
51.10	000	0,0000	When every bit HIGH, enable the writing corresponding bit
			When every bit LOW, don't care the writing corresponding bit
15:12	RO	0x0	reserved
			sdio1_drv_sel
11	WO	0x0	sdio1 drive select
			sdio1 drive select
			sdio1_drv_delaynum
10:3	WO	0x00	sdio1 drive delay number
			sdio1 drive delay number
			sdio1_drv_degree
2:1	WO	0x1	sdio1 drive degree
			sdio1 drive degree
			sdio1_init_state
0	WO	0x0	sdio1 initial state
			sdio1 initial state

CRU_SDIO1_CON1*

Address: Operational Base + offset (0x0214) sdio1 control1

Bit	Attr	Reset Value	Description
		value	

Bit	Attr	Reset Value	Description
			write_mask
31:16	wo	0x0000	write mask.
51.10		0,0000	When every bit HIGH, enable the writing corresponding bit
			When every bit LOW, don't care the writing corresponding bit
15:11	RO	0x0	reserved
			sdio1_sample_sel
10	WO	0x0	sdio1 sample select
			sdio1 sample select
			sdio1_sample_delaynum
9:2	WO	0x00	sdio1 sample delay number
			sdio1 sample delay number
			sdio1_sample_degree
1:0	WO	0x0	sdio1 sample degree
			sdio1 sample degree

CRU_EMMC_CON0*

Address: Operational Base + offset (0x0218) emmc control0

Bit	Attr	Reset Value	Description
31:16	wo	0x0000	write_mask write mask. When every bit HIGH, enable the writing corresponding bit When every bit LOW, don't care the writing corresponding bit
15:12	RO	0x0	reserved
11	wo	0x0	emmc_drv_sel emmc drive select emmc drive select
10:3	wo	0x00	emmc_drv_delaynum emmc drive delay number emmc drive delay number
2:1	wo	0x1	emmc_drv_degree emmc drive degree emmc drive degree
0	wo	0x0	emmc_init_state emmc initial state emmc initial state

CRU_EMMC_CON1*

Address: Operational Base + offset (0x021c) emmc control1

Dit	A 11	Reset	Description
Bit	Attr	Value	Description

Bit	Attr	Reset Value	Description
31:16	wo	0×0000	write_mask write mask. When every bit HIGH, enable the writing corresponding bit When every bit LOW, don't care the writing corresponding bit
15:11	RO	0x0	reserved
10	wo	0x0	emmc_sample_sel emmc sample select emmc sample select
9:2	wo	0x00	emmc_sample_delaynum emmc sample delay number emmc sample delay number
1:0	wo	0x0	emmc_sample_degree emmc sample degree emmc sample degree

*Notes: CRU_SDMMC_CON0/1, CRU_SDIO1_CON0/1, CRU_SDIO0_CON0/1, CRU_EMMC_CON0/1, detail description please refer to chapter1 of part3 Mobile Storage Host Controller 1.6.10.

2.8 Timing Diagram

Power on reset timing is shown as follow:

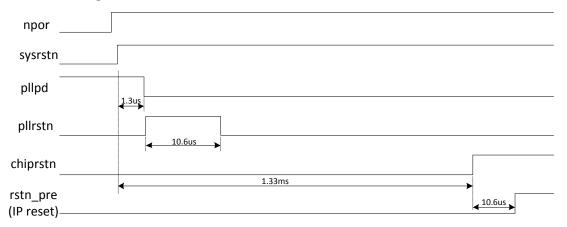


Fig. 2-8 Chip Power On Reset Timing Diagram

Npor is hardware reset signal from out-chip and power-off mode wakeup reset from PMU, which is filtered glitch to obtain signal sysrstn. To make PLLs work normally, the power down signal (pllpd) must be high when reset, and maintains high for more then 1us when sysrstn de-active. Then PLL reset signals (pllrstn) are asserted for about 10.6us, and PLLs start to lock when pllrstn de-assert, and consume about 1330us to lock. So the system will wait about 1330us, then de-active reset signal chiprstn. The signal chiprstn is used to generate output clocks in CRU. After CRU start output clocks, the system waits again for 256 cycles (10.7us) to de-active signal rstn_pre, which is used to generate power on reset of all IP.

2.9 Application Notes

2.9.1 PLL usage

PLL output frequency configuration The output frequency Fout is related to the input frequency Fin by: Fout = ((Fin /NR) * NF)/ NO

Fout is clock output of PLL, and Fin is clock input of PLL from external oscillators (24MHz).

Another, other factors such as NF, NR, NO can be configured by programming CRU_APLL_CONi, CRU_DPLL_CONi, CRU_CPLL_CONi and CRU_GPLL_CONi registers (i=0,1,2), and their value will affect Fout as follows.

(1) CLKR: A 6-bit bus that selects the values 1-64 for the reference divider (NR) NR = CLKR[5:0] + 1

Example:

- /1 pgm 000000
- /4 pgm 000011
- /8 pgm 000111
- (2) CLKF: A 13-bit bus that selects the values 1-4096 for the PLL multiplication factor (NF) NF = CLKF[12:0] + 1

Example:

X1 pgm 0000000000000

X2 pgm 000000000001

X4096 pgm 011111111111

- (3) CLKOD: A 4-bit bus that selects the value1,2-16(even only) for the PLL post VCO divider (NO)
 - NO = CLKOD[3:0] + 1

Example:

- /1 pgm 0000
- /2 pgm 0001
- /4 pgm 0011
- /8 pgm 0111

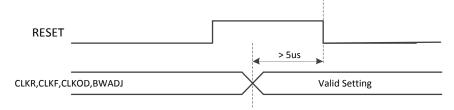
BWADJ: A 12-bit bus that selects the values 1-4096 for the bandwidth divider (NB) NB = BWADJ[11:0] + 1

Example:

- /4 pgm 00000000011
- /8 pgm 00000000111

The recommended setting of NB: NB = NF / 2.

PLL setting consideration


Optimization of the PLL settings for jitter < +/- 2.5% of the output period/sq rt(NO) require running the VCO at maximum frequency and dividing down using the NO divider to get the required Fout, i.e. maximum NO.

Optimization for minimum power (Fvco/1100MHz * 3.3 mA) requires setting the VCO frequency at the minimum frequency and using the lowest NO setting.

These two values, minimum jitter or minimum power will determine your choice of settings. A larger value of input divider NR gives a longer lock time, and higher long term as well as period jitter. It is better to use a lower value of NR where possible.

2.9.2 PLL frequency change method

When the PLL settings are changed, it has to reset PLL by programming registers CRU_APLL_CON3, CRU_DPLL_CON3, CRU_CPLL_CON3, CRU_GPLL_CON3, CRU_NPLL_CON3, and reserve at least 5us after valid settings, referring to the following figure.

Fig. 2-9 PLL setting change timing

Before set some factors such as NR/NF/NO/BS to change PLL output frequency, you must change chip from normal to slow mode by programming CRU_MODE_CON. Then until PLL is lock state by checking GRF_SOC_STATUS0[8:5] register, or after delay about (NR * 500) / Fin,

you can change PLL into normal mode.

2.9.3 Fractional divider usage

To get specific frequency, clocks of I2S, SPDIF, UART, HSADC can be generated by fractional divider. Generally you must set that denominator is 20 times larger than numerator to generate precise clock frequency. So the fractional divider applies only to generate low frequency clock like I2S, UART and HSADC.

All the fractional divider has auto-gating control. When fractional divider is not selected, the divider clock is gated. So fractional divider must be selected before changing configuration.

2.9.4 Global software reset

Two global software resets are designed in this chip, you can program

CRU_GLB_SRST_FST_VALUE[15:0] as 0xfdb9 to assert the first global software reset glb_srstn_1 and program CRU_GLB_SRST_SND_VALUE[15:0] as 0xeca8 to assert the second global software reset glb_srstn_2. These two software resets are self-deasserted by hardware. TSADC, WDT and PMU also can trigger glb_srstn_1 or glb_srstn_2.

CRU_GLB_RST_CON controls which global soft-reset will be triggered.

After global reset, the reset trigger source can be check in CRU_GLB_RST_ST.

glb_srstn_1 resets almost all chip logic except PMU_SYS_REG0~3, which can be used to store something when reset.

glb_srstn_2 resets almost all chip logic except PMU_SYS_REG0~3, GRF and GPIOs.

2.9.5 Pre-shift for test

Pre-shift registers is designed in this chip for flexible test.

The key configuration registers can be shifted with a initial value in testmode. The pre-shift registers including 191 bit pre_shift_test_reg.

The following table describes the pre-shift registers of the design.

Name	Bit number	Default value	Description
armpll_clkr	pre_shift_test_reg[5:0]	6'd0	armpll_clkr control
armpll_clkf	pre_shift_test_reg[18:6]	13'd199	armpll_clkf control
armpll_bwadj	pre_shift_test_reg[30:19]	12'd49	armpll_bwadj control
armpll_clkod	pre_shift_test_reg[35:31]	5'd1	armpll_clkod control
ddrpll_clkr	pre_shift_test_reg[41:36]	6'd1	ddrpll_clkr control
ddrpll_clkf	pre_shift_test_reg[54:42]	13'd99	ddrpll_clkf control
ddrpll_bwadj	pre_shift_test_reg[66:55]	12'd49	ddrpll_bwadj control
ddrpll_clkod	pre_shift_test_reg[71:67]	5'd5	ddrpll_clkod control
codecpll_clkr	pre_shift_test_reg[77:72]	6'd1	codecpll_clkr control
codecpll_clkf	pre_shift_test_reg[90:78]	13'd99	codecpll_clkf control
codecpll_bwadj	pre_shift_test_reg[102:91]	12'd49	codecpll_bwadj control
codecpll_clkod	pre_shift_test_reg[107:103]	5'd5	codecpll_clkod control
generalpll_clkr	pre_shift_test_reg[113:108]	6'd1	generalpll_clkr control
generalpll_clkf	pre_shift_test_reg[126:114]	13'd99	generalpll_clkf control
generalpll_bwadj	pre_shift_test_reg[138:127]	12'd49	generalpll_bwadj control
generalpll_clkod	pre_shift_test_reg[143:139]	5'd5	generalpll_clkod control
newpll_clkr	pre_shift_test_reg[149:144]	6'd1	newpll_clkr control
newpll_clkf	pre_shift_test_reg[162:150]	13'd99	newpll_clkf control
newpll_bwadj	pre_shift_test_reg[174:163]	12'd49	newpll_bwadj control
newpll_clkod	pre_shift_test_reg[179:175]	5'd5	newpll_clkod control
testclk_sel	pre_shift_test_reg[182:180]	3'd0	testclk_out select in testmode
aclk_core_m_div_con	pre_shift_test_reg[185:183]	3'd1	Aclk_m divider

Name	Bit number	Default value	Description
			configuration in
			testmode
Io_sr	pre_shift_test_reg[186]	1′d1	IO slew rate
io_drive	pre_shift_test_reg[188:187]	2′b10	IO drive configuration
Io_vsel	pre_shift_test_reg[189]	1′d0	IO voltage select
Io_smt	pre_shift_test_reg[190]	1′d0	IO smt control

Pre-shift relative controls IO are as follow.

Name	IO	Description
Pre_shift_datain	IO_UART3GPSsout_GPSsig_HS	Pre-shift data in
	ADCT1data1_GPIO30gpio7b0	
Pre_shift_en	IO_UART3GPSctsn_GPSrfclk_G	Pre-shift enable
	PST1clk_GPIO30gpio7b1	
Pre_shift_clk	IO_UART3GPSrtsn_USBdrvvbu	Pre-shift clock
	s0_GPIO30gpio7b2	
Pre-shift_default	IO_USBdrvvbus1_EDPhotplug_	1'b0: pre_shift use default value;
_select	GPIO30gpio7b3	1'b1: pre_shift use shift in value;
Pre-shift_select	IO_ISPshutteren_SPI1clk_GPI	1'b0: disable, testmode do not use
	O30gpio7b4	pre-shift config value; use internal 6
		configs.
		1'b1: enable, testmode use pre-shift
		config value;

Chapter 3 General Register Files (GRF)

3.1 Overview

The general register file will be used to do static set by software, which is composed of many registers for system control. The GRF is divided into two sections, one is GRF for non-secure system, the other is SGRF for secure system.

3.2 Function Description

The function of general register file is:

IOMUX control Control the state of GPIO in power-down mode GPIO PAD pull down and pull up control Used for common system control Used to record the system state

3.3 GRF Register Description

4.3.1 Register Summary

Name	Offset	Size	Reset Value	Description
GRF_GPIO1D_IOMUX	0x000c	W	0x00000000	GPIO1D iomux control
GRF_GPIO2A_IOMUX	0x0010	W	0x00000000	GPIO2A iomux control
GRF_GPIO2B_IOMUX	0x0014	W	0x00000000	GPIO2B iomux control
GRF_GPIO2C_IOMUX	0x0018	W	0x00000000	GPIO2C iomux control
GRF_GPIO3A_IOMUX	0x0020	W	0x00000000	GPIO3A iomux control
GRF_GPIO3B_IOMUX	0x0024	W	0x00000000	GPIO3B iomux control
GRF_GPIO3C_IOMUX	0x0028	W	0x00000000	GPIO3C iomux control
GRF_GPIO3DL_IOMUX	0x002c	W	0x00000000	GPIO3D iomux control
GRF_GPIO3DH_IOMUX	0x0030	W	0x00000000	GPIO3D iomux control
GRF_GPIO4AL_IOMUX	0x0034	W	0x00000000	GPIO4A iomux control
GRF_GPIO4AH_IOMUX	0x0038	W	0x00000000	GPIO4A iomux control
GRF_GPIO4BL_IOMUX	0x003c	W	0x00000000	GPIO4B iomux control
GRF_GPIO4C_IOMUX	0x0044	W	0x00000000	GPIO4C iomux control
GRF_GPIO4D_IOMUX	0x0048	W	0x00000000	GPIO4D iomux control
GRF_GPIO5B_IOMUX	0x0050	W	0x00000000	GPIO5B iomux control
GRF_GPIO5C_IOMUX	0x0054	W	0x00000000	GPIO5C iomux control
GRF_GPIO6A_IOMUX	0x005c	W	0x00000000	GPIO6A iomux control
GRF_GPIO6B_IOMUX	0x0060	W	0x00000000	GPIO6B iomux control
GRF_GPIO6C_IOMUX	0x0064	W	0x00001555	GPIO6C iomux control
GRF_GPIO7A_IOMUX	0x006c	W	0x00000000	GPIO7A iomux control
GRF_GPIO7B_IOMUX	0x0070	W	0x00000000	GPIO7B iomux control
GRF_GPIO7CL_IOMUX	0x0074	W	0x00000000	GPIO7CL iomux control
GRF_GPIO7CH_IOMUX	0x0078	W	0x00000000	GPIO7CH iomux control
GRF_GPIO8A_IOMUX	0x0080	W	0x0000000	GPIO8A iomux control

Name	Offset	Size	Reset Value	Description
GRF_GPIO8B_IOMUX	0x0084			GPIO8B iomux control
GRF_GPIO1H_SR	0x0104	W	0x00000f00	GPIO1C/D SR control
 GRF_GPIO2L_SR	0x0108			GPIO2A/B SR control
 GRF_GPIO2H_SR	0x010c			GPIO2C/D SR control
 GRF_GPIO3L_SR	0x0110		0x000020ff	GPIO3A/B SR control
GRF_GPIO3H_SR	0x0114		0x0000ff04	GPIO3C/D SR control
 GRF_GPIO4L_SR	0x0118			GPIO4A/B SR control
 GRF_GPIO4H_SR	0x011c			GPIO4C/D SR control
 GRF_GPIO5L_SR	0x0120			GPIO5A/B SR control
GRF_GPIO5H_SR	0x0124			GPIO5C/D SR control
GRF_GPIO6L_SR	0x0128	W		GPIO6A/B SR control
GRF_GPIO6H_SR	0x012c			GPIO6C/D SR control
GRF_GPIO7L_SR	0x0130	W	0x00000000	GPIO7A/B SR control
GRF_GPIO7H_SR	0x0134	W		GPIO7C/D SR control
GRF_GPIO8L_SR	0x0138			GPIO8A/B SR control
GRF_GPIO1D_P	0x014c	W		GPIO1D PU/PD control
GRF_GPIO2A_P	0x0150	W		GPIO2A PU/PD control
GRF_GPIO2B_P	0x0154			GPIO2B PU/PD control
GRF_GPIO2C_P	0x0158		0x0000aaa5	GPIO2C PU/PD control
GRF_GPIO3A_P	0x0160	W		GPIO3A PU/PD control
GRF_GPIO3B_P	0x0164	W	0x00005699	GPIO3B PU/PD control
GRF_GPIO3C_P	0x0168	W	0x0000aaa5	GPIO3C PU/PD control
GRF_GPIO3D_P	0x016c	W	0x00005555	GPIO3D PU/PD control
GRF_GPIO4A_P	0x0170	W	0x00005555	GPIO4A PU/PD control
GRF_GPIO4B_P	0x0174	W	0x0000aaa5	GPIO4B PU/PD control
GRF_GPIO4C_P	0x0178	W	0x00005559	GPIO4C PU/PD control
GRF_GPIO4D_P	0x017c	W	0x00005a99	GPIO4D PU/PD control
GRF_GPIO5B_P	0x0184	W	0x00006559	GPIO5B PU/PD control
GRF_GPIO5C_P	0x0188	W	0x0000aaa9	GPIO5C PU/PD control
GRF_GPIO6A_P	0x0190	W	0x0000aaaa	GPIO6A PU/PD control
GRF_GPIO6B_P	0x0194	W	0x0000aa96	GPIO6B PU/PD control
GRF_GPIO6C_P	0x0198	W	0x00005655	GPIO6C PU/PD control
GRF_GPIO7A_P	0x01a0	W	0x000059aa	GPIO7A PU/PD control
GRF_GPIO7B_P	0x01a4	W	0x0000a696	GPIO7B PU/PD control
GRF_GPIO7C_P	0x01a8	W	0x00005955	GPIO7C PU/PD control
GRF_GPIO8A_P	0x01b0	W	0x00006555	GPIO8A PU/PD control
GRF_GPIO8B_P	0x01b4	W	0x0000aaaa	GPIO8B PU/PD control
GRF_GPIO1D_E	0x01cc	W	0x000055aa	GPIO1D drive strength control
GRF_GPIO2A_E	0x01d0	W	0x0000aaaa	GPIO2A drive strength control
GRF_GPIO2B_E	0x01d4	W	0x0000aaaa	GPIO2B drive strength control
GRF_GPIO2C_E	0x01d8	W	0x00005555	GPIO2C drive strength control
GRF_GPIO3A_E	0x01e0	W	0x0000aaaa	GPIO3A drive strength control
GRF_GPIO3B_E	0x01e4	W	0x00005955	GPIO3B drive strength control

Name	Offset	Size	Reset Value	Description
GRF_GPIO3C_E	0x01e8	W		GPIO3C drive strength control
GRF_GPIO3D_E	0x01ec		0x0000aaaa	GPIO3D drive strength control
GRF GPIO4A E	0x01ee	W	0x00005955	
GRF_GPIO4B_E	0x01f4	W	0x00005556	
GRF_GPIO4C_E	0x01f8	W	0x00005555	-
GRF_GPIO4D_E	0x01fc	W	0x00005555	
GRF GPIO5B E	0x0204		0x00005555	
GRF_GPIO5C_E	0x0201		0x00005555	-
GRF_GPIO6A_E	0x0200		0x00005555	
GRF_GPIO6B_E	0x0210		0x00005555	
GRF_GPIO6C_E	0x0211		0x00005555	
GRF_GPIO7A_E	0x0210		0x00005555	
GRF_GPIO7B_E	0x0220		0x00005555	5
GRF_GPIO7C_E	0x0228		0x00005555	
GRF_GPIO8A_E	0x0230		0x00005555	
GRF GPIO8B E	0x0234		0x00005555	
GRF_GPIO_SMT	0x0240		0x000000fff	GPIO smitter control register
GRF_SOC_CON0	0x0244		0x00001c18	SoC control register 0
GRF_SOC_CON1	0x0248		0x00004040	-
GRF_SOC_CON2	0x024c		0x00000002	SoC control register 2
GRF_SOC_CON3	0x0250		0x00000810	
GRF_SOC_CON4	0x0254		0x00000607	
GRF_SOC_CON5	0x0258		0x00008c87	SoC control register 5
GRF_SOC_CON6	0x025c		0x00008000	
GRF_SOC_CON7	0x0260		0x00000000	
GRF_SOC_CON8	0x0264	W	0x0000000e	SoC control register 8
GRF_SOC_CON9	0x0268	W		SoC control register 9
GRF_SOC_CON10	0x026c	W	0x0000000f	
GRF_SOC_CON11	0x0270	W	0x00000000	SoC control register 11
GRF_SOC_CON12	0x0274	W	0x0000013	SoC control register 12
GRF_SOC_CON13	0x0278	W	0x00000000	SoC control register 13
GRF_SOC_CON14	0x027c	W	0x00000000	SoC control register 14
GRF_SOC_STATUS0	0x0280	W	0x00000000	SoC status register 0
GRF_SOC_STATUS1	0x0284	W	0x00000000	SoC status register 1
GRF_SOC_STATUS2	0x0288	W	0x00000000	SoC status register 2
GRF_SOC_STATUS3	0x028c	W	0x00000000	SoC status register 3
GRF_SOC_STATUS4	0x0290	W	0x00000000	SoC status register 4
GRF_SOC_STATUS5	0x0294	W	0x00000000	SoC status register 5
GRF_SOC_STATUS6	0x0298	W	0x00000000	SoC status register 6
GRF_SOC_STATUS7	0x029c	W	0x00000000	SoC status register 7
GRF_SOC_STATUS8	0x02a0	W	0x00000000	SoC status register 8
GRF_SOC_STATUS9	0x02a4	W	0x00000000	SoC status register 9
GRF_SOC_STATUS10	0x02a8	W	0x00000000	SoC status register 10

Name	Offset	Size	Reset Value	Description
GRF_SOC_STATUS11	0x02ac			SoC status register 11
GRF_SOC_STATUS12	0x02b0	-		
GRF_SOC_STATUS13	0x02b4			SoC status register 13
GRF_SOC_STATUS14	0x02b8			SoC status register 14
GRF_SOC_STATUS15	0x02bc			SoC status register 15
GRF_SOC_STATUS16	0x02c0	W		SoC status register 16
GRF_SOC_STATUS17	0x02c4	W		
GRF_SOC_STATUS18	0x02c8	W		SoC status register 18
GRF_SOC_STATUS19	0x02cc	W	0x00000000	SoC status register 19
GRF_SOC_STATUS20	0x02d0	W	0x00000000	SoC status register 20
GRF_SOC_STATUS21	0x02d4	W	0x00000000	SoC status register 21
GRF_PERIDMAC_CON0	0x02e0	W	0x000000fa	PERI DMAC control register 0
GRF_PERIDMAC_CON1	0x02e4	W	0x00000000	
GRF_PERIDMAC_CON2	0x02e8	W	0x0000ffff	PERI DMAC control register 2
GRF_PERIDMAC_CON3	0x02ec	W	0x0000ffff	PERI DMAC control register 3
GRF_DDRC0_CON0	0x02f0	W	0x00000000	DDRC0 control register 0
GRF_DDRC1_CON0	0x02f4	W	0x00000000	DDRC1 control register 0
GRF_CPU_CON0	0x02f8	W	0x00008220	CPU control register 0
GRF_CPU_CON1	0x02fc	W	0x00000ff0	CPU control register 1
GRF_CPU_CON2	0x0300	W	0x00000fff	CPU control register 2
GRF_CPU_CON3	0x0304	W	0x00000000	CPU control register 3
GRF_CPU_CON4	0x0308	W	0x00002400	CPU control register 4
GRF_CPU_STATUS0	0x0318	W	0x00000000	CPU status register 0
GRF_UOC0_CON0	0x0320	W	0x0000089	UOC0 control register 0
GRF_UOC0_CON1	0x0324	W	0x00007333	UOC0 control register 1
GRF_UOC0_CON2	0x0328	W	80b00000x0	UOC0 control register 2
GRF_UOC0_CON3	0x032c	W	0x0000001	UOC0 control register 3
GRF_UOC0_CON4	0x0330	W	0x0000003	UOC0 control register 4
GRF_UOC1_CON0	0x0334	W	0x00000b89	UOC1 control register 0
GRF_UOC1_CON1	0x0338	W	0x00007333	UOC1 control register 1
GRF_UOC1_CON2	0x033c	W	80b00000x0	UOC1 control register 2
GRF_UOC1_CON3	0x0340	W	0x00001c41	UOC1 control register 3
GRF_UOC1_CON4	0x0344	W	0x0000c820	UOC1 control register 4
GRF_UOC2_CON0	0x0348	W	0x0000089	UOC2 control register 0
GRF_UOC2_CON1	0x034c		0x00007333	UOC2 control register 1
GRF_UOC2_CON2	0x0350	W	80b00000x0	UOC2 control register 2
GRF_UOC2_CON3	0x0354		0x00001c01	
GRF_UOC3_CON0	0x0358	-	0x000030eb	UOC3 control register 0
GRF_UOC3_CON1	0x035c	-	0x0000003	
GRF_UOC4_CON0	0x0360	W	0x00001080	UOC4 control register 0
GRF_UOC4_CON1	0x0364			UOC4 control register 1
GRF_PVTM_CON0	0x0368			PVT monitor control register 0
GRF_PVTM_CON1	0x036c	W	0x016e3600	PVT monitor control register 1

Name	Offset	Size	Reset Value	Description
GRF_PVTM_CON2	0x0370	W	0x016e3600	PVT monitor control register 2
GRF_PVTM_STATUS0	0x0374	W	0x00000000	PVT monitor status register 0
GRF_PVTM_STATUS1	0x0378	W	0x00000000	PVT monitor status register 1
GRF_PVTM_STATUS2	0x037c	W	0x00000000	PVT monitor status register 2
GRF_IO_VSEL	0x0380	W	0x0000004	IO voltage select
GRF_SARADC_TESTBIT	0x0384	W	0x00000000	SARADC Test bit register
GRF_TSADC_TESTBIT_L	0x0388	W	0x00000000	TSADC Test bit low register
GRF_TSADC_TESTBIT_H	0x038c	W	0x00000000	TSADC Test bit high register
GRF_OS_REG0	0x0390	W	0x00000000	OS register 0
GRF_OS_REG1	0x0394	W	0x00000000	OS register 1
GRF_OS_REG2	0x0398	W	0x00000000	OS register 2
GRF_OS_REG3	0x039c	W	0x00000000	OS register 3
GRF_SOC_CON15	0x03a4	W	0x000000000	SoC control register 15
GRF_SOC_CON16	0x03a8	W	0x00000000	SoC control register 16

Notes: <u>Size</u> : **B** - Byte (8 bits) access, **HW** - Half WORD (16 bits) access, **W** -WORD (32 bits) access

4.3.2 Detail Register Description

GRF_GPIO1D_IOMUX

Address: Operational Base + offset (0x000c) GPIO1D iomux control

Bit	Attr	Reset Value	Description
31:16	wo	0×0000	write_enable bit0~15 write enable When every bit HIGH, enable the writing corresponding bit When every bit LOW, don't care the writing corresponding bit
15:7	RO	0x0	reserved
6	RW	0×0	gpio1d3_sel GPIO1D[3] iomux select 1'b0: gpio 1'b1: lcdc0_dclk
5	RO	0x0	reserved
4	RW	0×0	gpio1d2_sel GPIO1D[2] iomux select 1'b0: gpio 1'b1: lcdc0_den
3	RO	0x0	reserved
2	RW	0x0	gpio1d1_sel GPIO1D[1] iomux select 1'b0: gpio 1'b1: lcdc0_vsync
1	RO	0x0	reserved

Bit	Attr	Reset Value	Description
			gpio1d0_sel
0	RW	()X()	GPIO1D[0] iomux select
U			1'b0: gpio
			1'b1: lcdc0_hsync

GRF_GPIO2A_IOMUX Address: Operational Base + offset (0x0010) GPIO2A iomux control

Bit	Attr	Reset Value	Description
			write_enable
			bit0~15 write enable
31:16	wo	0×0000	When every bit HIGH, enable the writing
31:10	WO	0x0000	corresponding bit
			When every bit LOW, don't care the writing
			corresponding bit
			gpio2a7_sel
			GPIO2A[7] iomux select
15:14	RW	0x0	2'b00: gpio
13.14	r v v	0.00	2'b01: cif_data9
			2'b10: host_din5
			2'b11: hsadc_data7
			gpio2a6_sel
			GPIO2A[6] iomux select
12.17	3:12 RW	/ 0x0	2'b00: gpio
13.12			2'b01: cif_data8
			2'b10: host_din4
			2'b11: hsadc_data6
			gpio2a5_sel
			GPIO2A[5] iomux select
11:10	RW	0x0	2'b00: gpio
11.10		0.00	2'b01: cif_data7
			2'b10: host_ckinn
			2'b11: hsadc_data5
			gpio2a4_sel
			GPIO2A[4] iomux select
9:8	RW	0x0	2'b00: gpio
9.0		0.00	2'b01: cif_data6
			2'b10: host_ckinp
			2'b11: hsadc_data4
			gpio2a3_sel
			GPIO2A[3] iomux select
7:6		W 0×0	2'b00: gpio
7.0	1.1.4		2'b01: cif_data5
			2'b10: host_din3
			2'b11: hsadc_data3

Bit	Attr	Reset Value	Description
			gpio2a2_sel
			GPIO2A[2] iomux select
5:4	RW	0x0	2'b00: gpio
5.4		0.00	2'b01: cif_data4
			2'b10: host_din2
			2'b11: hsadc_data2
			gpio2a1_sel
			GPIO2A[1] iomux select
3:2	RW	0x0	2'b00: gpio
5.2	RW	UXU	2'b01: cif_data3
			2'b10: host_din1
			2'b11: hsadc_data1
			gpio2a0_sel
			GPIO2A[0] iomux select
1.0	1:0 RW 0x0	RW 0x0	2'b00: gpio
1.0			2'b01: cif_data2
			2'b10: host_din0
			2'b11: hsadc_data0

GRF_GPIO2B_IOMUX

Address: Operational Base + offset (0x0014) GPIO2B iomux control

Bit	Attr	Reset Value	Description
31:16	wo	0×0000	<pre>write_enable bit0~15 write enable When bit 16=1, bit 0 can be written by software . When bit 16=0, bit 0 cannot be written by software; When bit 17=1, bit 1 can be written by software . When bit 17=0, bit 1 cannot be written by software; When bit 31=1, bit 15 can be written by software . When bit 31=0, bit 15 cannot be written by software;</pre>
15	RO	0x0	reserved
14	RW	0x0	gpio2b7_sel GPIO2B[7] iomux select 1'b0: gpio 1'b1: cif_data11
13	RO	0x0	reserved

Bit	Attr	Reset Value	Description
			gpio2b6_sel
10		0.40	GPIO2B[6] iomux select
12	RW	0×0	1'b0: gpio
			1'b1: cif_data10
11	RO	0x0	reserved
			gpio2b5_sel
10	RW	0×0	GPIO2B[5] iomux select
10	K VV	0.00	1'b0: gpio
			1'b1: cif_data1
9	RO	0x0	reserved
			gpio2b4_sel
8	RW	0x0	GPIO2B[4] iomux select
0	K VV	0.00	1'b0: gpio
			1'b1: cif_data0
			gpio2b3_sel
			GPIO2B[3] iomux select
7:6	RW	0x0	2'b00: gpio
7.0		UXU	2'b01: cif_clkout
			2'b10: host_wkreq
			2'b11: hsadcts_fail
			gpio2b2_sel
			GPIO2B[2] iomux select
			2'b00: gpio
5:4	RW	0x0	2'b01: cif_clkin
5.4	R VV	0.00	2'b10: host_wkack
			2'b11: gps_clk (when hsadc_clkout_en==0)
			hsadc_clkout (when
			hsadc_clkout_en==1)
			gpio2b1_sel
			GPIO2B[1] iomux select
3:2	RW	0x0	2'b00: gpio
5.2	R VV	0.00	2'b01: cif_href
			2'b10: host_din7
			2'b11: hsadcts_valid
			gpio2b0_sel
			GPIO2B[0] iomux select
1:0	RW	0×0	2'b00: gpio
1.0	KW		2'b01: cif_vsync
			2'b10: host_din6
			2'b11: hsadcts_sync

GRF_GPIO2C_IOMUX

Address: Operational Base + offset (0x0018)

GPIO2C iomux control

Bit Attr Reset Value	Description
----------------------	-------------

Bit	Attr	Reset Value	Description
			write_enable
			bit0~15 write enable
31:16	wo	0x0000	When every bit HIGH, enable the writing
51.10	WO	0x0000	corresponding bit
			When every bit LOW, don't care the writing
			corresponding bit
15:3	RO	0x0	reserved
	RW	0×0	gpio2c1_sel
2			GPIO2C[1] iomux select
Z			1'b0: gpio
			1'b1: i2c3cam_sda
1	RO	0x0	reserved
	RW	0×0	gpio2c0_sel
0			GPIO2C[0] iomux select
U			1'b0: gpio
			1'b1: i2c3cam_scl

GRF_GPIO3A_IOMUX

Address: Operational Base + offset (0x0020) GPIO3A iomux control

Bit	Attr	Reset Value	Description
			write_enable
			bit0~15 write enable
31:16	wo	0x0000	When every bit HIGH, enable the writing
51.10	~~~	0,0000	corresponding bit
			When every bit LOW, don't care the writing
			corresponding bit
			gpio3a7_sel
			GPIO3A[7] iomux select
15:14	RW	0x0	2'b00: gpio
			2'b01: flash0_data7
			2'b10: emmc_data7
			2'b11: reserved
			gpio3a6_sel
			GPIO3A[6] iomux select
13:12	RW	0x0	2'b00: gpio
		0×0	2'b01: flash0_data6
			2'b10: emmc_data6
			2'b11: reserved
			gpio3a5_sel
			GPIO3A[5] iomux select 2'b00: gpio
11:10	RW		2'b01: flash0_data5
			2'b10: emmc data5
			2'b11: reserved

Bit	Attr	Reset Value	Description
			gpio3a4_sel
			GPIO3A[4] iomux select
9:8	RW	0×0	2'b00: gpio
9:0	RVV	0.00	2'b01: flash0_data4
			2'b10: emmc_data4
			2'b11: reserved
			gpio3a3_sel
			GPIO3A[3] iomux select
7:6	RW	0x0	2'b00: gpio
7.0	K VV	0.00	2'b01: flash0_data3
			2'b10: emmc_data3
			2'b11: reserved
			gpio3a2_sel
			GPIO3A[2] iomux select
5:4	RW	0x0	2'b00: gpio
5.4		0,0	2'b01: flash0_data2
			2'b10: emmc_data2
			2'b11: reserved
		0×0	gpio3a1_sel
			GPIO3A[1] iomux select
3:2	RW		2'b00: gpio
			2'b01: flash0_data1
			2'b10: emmc_data1
			2'b11: reserved
			gpio3a0_sel
			GPIO3A[0] iomux select
1:0	RW	0×0	2'b00: gpio
			2'b01: flash0_data0
			2'b10: emmc_data0
			2'b11: reserved

GRF_GPIO3B_IOMUX Address: Operational Base + offset (0x0024) GPIO3B iomux control

Bit	Attr	Reset Value	Description
31:16	wo	0×0000	write_enable bit0~15 write enable When every bit HIGH, enable the writing corresponding bit When every bit LOW, don't care the writing corresponding bit
15	RO	0x0	reserved

Bit	Attr	Reset Value	Description
			gpio3b7_sel
14		0.40	GPIO3B[7] iomux select
14	RW	0x0	1'b0: gpio
			1'b1: flash0_csn1
13	RO	0x0	reserved
			gpio3b6_sel
12		0.20	GPIO3B[6] iomux select
12	RW	0x0	1'b0: gpio
			1'b1: flash0_csn0
11	RO	0x0	reserved
			gpio3b5_sel
10	RW	0.20	GPIO3B[5] iomux select
10	RW	0x0	1'b0: gpio
			1'b1: flash0_wrn
9	RO	0x0	reserved
			gpio3b4_sel
8	RW	0.20	GPIO3B[4] iomux select
0	RW	0x0	1'b0: gpio
			1'b1: flash0_cle
7	RO	0x0	reserved
			gpio3b3_sel
6	RW	0×0	GPIO3B[3] iomux select
0	RW	0.00	1'b0: gpio
			1'b1: flash0_ale
5	RO	0x0	reserved
			gpio3b2_sel
4	RW	0×0	GPIO3B[2] iomux select
4	K VV	0.00	1'b0: gpio
			1'b1: flash0_rdn
			gpio3b1_sel
			GPIO3B[1] iomux select
3:2	RW	0×0	2'b00: gpio
5.2	K VV	0.00	2'b01: flash0_wp
			2'b10: emmc_pwren
			2'b11: reserved
1	RO	0x0	reserved
			gpio3b0_sel
0	D\\\/	0×0	GPIO3B[0] iomux select
0	RW		1'b0: gpio
			1'b1: flash0_rdy

GRF_GPIO3C_IOMUX

Address: Operational Base + offset (0x0028) GPIO3C iomux control

Bit Attr Reset Value	Description
----------------------	-------------

Bit	Attr	Reset Value	Description
			write_enable
			bit0~15 write enable
31:16	wo	0x0000	When every bit HIGH, enable the writing
51.10	WO	0x0000	corresponding bit
			When every bit LOW, don't care the writing
			corresponding bit
15:6	RO	0x0	reserved
			gpio3c2_sel
			GPIO3C[2] iomux select
5:4	RW	0x0	2'b00: gpio
5.4	r vv	UXU	2'b01: flash0_dqs
			2'b10: emmc_clkout
			2'b11: reserved
			gpio3c1_sel
			GPIO3C[1] iomux select
3:2	RW	0x0	2'b00: gpio
5.2			2'b01: flash0_csn3
			2'b10: emmc_rstnout
			2'b11: reserved
			gpio3c0_sel
		0x0	GPIO3C[0] iomux select
1:0	RW		2'b00: gpio
1.0	KVV		2'b01: flash0_csn2
			2'b10: emmc_cmd
			2'b11: reserved

GRF_GPIO3DL_IOMUX

Address: Operational Base + offset (0x002c) GPIO3D iomux control

Bit	Attr	Reset Value	Description
			write_enable
			bit0~15 write enable
31:16	RW	0x0000	When every bit HIGH, enable the writing
51.10	RVV	0x0000	corresponding bit
			When every bit LOW, don't care the writing
			corresponding bit
15	RO	0x0	reserved
		0×0	gpio3d3_sel
			GPIO3D[3] iomux select
			3'b000: gpio
14:12	RW		3'b001: flash1_data3
14.12			3'b010: host_dout3
			3'b011: mac_rxd3
			3'b100: sdio1_data3
			other: reserved

Bit	Attr	Reset Value	Description
11	RO	0x0	reserved
			gpio3d2_sel
			GPIO3D[2] iomux select
			3'b000: gpio
10:8	RW	0x0	3'b001: flash1_data2
10.0	r vv	0.00	3'b010: host_dout2
			3'b011: mac_rxd2
			3'b100: sdio1_data2
			other: reserved
7	RO	0x0	reserved
		V 0×0	gpio3d1_sel
			GPIO3D[1] iomux select
			3'b000: gpio
6:4	RW		3'b001: flash1_data1
0.4			3'b010: host_dout1
			3'b011: mac_txd3
			3'b100: sdio1_data1
			other: reserved
3	RO	0x0	reserved
			gpio3d0_sel
			GPIO3D[0] iomux select
			3'b000: gpio
2:0	RW	0×0	3'b001: flash1_data0
2.0			3'b010: host_dout0
			3'b011: mac_txd2
			3'b100: sdio1_data0
			other: reserved

GRF_GPIO3DH_IOMUX Address: Operational Base + offset (0x0030) GPIO3D iomux control

Bit	Attr	Reset Value	Description
31:16	RW	0×0000	write_enable bit0~15 write enable When every bit HIGH, enable the writing corresponding bit When every bit LOW, don't care the writing corresponding bit
15	RO	0x0	reserved

Bit	Attr	Reset Value	Description
			gpio3d7_sel
			GPIO3D[7] iomux select
			3'b000: gpio
14.12		0.20	3'b001: flash1_data7
14:12	RW	0x0	3'b010: host_dout7
			3'b011: mac_rxd1
			3'b100: sdio1_intn
			other: reserved
11	RO	0x0	reserved
			gpio3d6_sel
			GPIO3D[6] iomux select
			3'b000: gpio
10:8	RW	0.40	3'b001: flash1_data6
10:8	RVV	0×0	3'b010: host_dout6
			3'b011: mac_rxd0
			3'b100: sdio1_bkpwr
			other: reserved
7	RO	0x0	reserved
			gpio3d5_sel
			GPIO3D[5] iomux select
	RW		3'b000: gpio
6:4		0x0	3'b001: flash1_data5
0.4			3'b010: host_dout5
			3'b011: mac_txd1
			3'b100: sdio1_wrprt
			other: reserved
3	RO	0x0	reserved
			gpio3d4_sel
			GPIO3D[4] iomux select
			3'b000: gpio
2:0	RW	0x0	3'b001: flash1_data4
			3'b010: host_dout4
			3'b011: mac_txd0
			3'b100: sdio1_detectn
			other: reserved

GRF_GPIO4AL_IOMUX

Address: Operational Base + offset (0x0034) GPIO4A iomux control

Bit Attr Reset Value Description		ſ	Bit	Attr	Reset Value	Description
----------------------------------	--	---	-----	------	-------------	-------------

Bit	Attr	Reset Value	Description
			write_enable
			bit0~15 write enable
21.10	WO	0,0000	When every bit HIGH, enable the writing
31:16	WO	0×0000	corresponding bit
			When every bit LOW, don't care the writing
			corresponding bit
15	RO	0x0	reserved
			gpio4a3_sel
			GPIO4A[3] iomux select
			3'b001: flash1_ale
14:12	RW	0x0	3'b010: host_dout9
			3'b011: mac_clk
			3'b100: flash0_csn6
			other: reserved
11	RO	0x0	reserved
			gpio4a2_sel
		V OxO	GPIO4A[2] iomux select
			3'b000: gpio
10.0			3'b001: flash1_rdn
10:8	RW		3'b010: host_dout8
			3'b011: mac_rxer
			3'b100: flash0_csn5
			other: reserved
7	RO	0x0	reserved
			gpio4a1_sel
			GPIO4A[1] iomux select
			3'b000: gpio
6:4		RW 0x0	3'b001: flash1_wp
0.4	r vv		3'b010: host_ckoutn
			3'b011: mac_rxdv
			3'b100: flash0_csn4
			other: reserved
3:2	RO	0x0	reserved
			gpio4a0_sel
			GPIO4A[0] iomux select
1:0	D\A/	0×0	2'b00: gpio
1.0	RW	V 0x0	2'b01: flash1_rdy
			2'b10: host_ckoutp
			2'b11: mac_mdc

GRF_GPIO4AH_IOMUX

Address: Operational Base + offset (0x0038) GPIO4A iomux control

Bit	Attr	Reset Value	Description
			write_enable
			bit0~15 write enable
21.10	wo	0,40000	When every bit HIGH, enable the writing
31:16	WO	0×0000	corresponding bit
			When every bit LOW, don't care the writing
			corresponding bit
15	RO	0x0	reserved
			gpio4a7_sel
			GPIO4A[7] iomux select
			3'b000: gpio
	5.44		3'b001: flash1_csn1
14:12	RW	0×0	3'b010: host_dout13
			3'b011: mac_crs
			3'b100: sdio1_clkout
			other: reserved
11	RO	0x0	reserved
			gpio4a6_sel
			GPIO4A[6] iomux select
			3'b000: gpio
			3'b001: flash1_csn0
10:8	RW	0×0	3'b010: host_dout12
			3'b011: mac_rxclk
			3'b100: sdio1_cmd
			other: reserved
7:6	RO	0x0	reserved
			gpio4a5_sel
			GPIO4A[5] iomux select
F 4	D144	W 0×0	2'b00: gpio
5:4	RW		2'b01: flash1_wrn
			2'b10: host_dout11
			2'b11: mac_mdio
3	RO	0x0	reserved
			gpio4a4_sel
			GPIO4A[4] iomux select
			3'b000: gpio
			3'b001: flash1_cle
2:0	RW	0x0	3'b010: host_dout10
			3'b011: mac_txen
			3'b100: flash0_csn7
			other: reserved

GRF_GPIO4BL_IOMUX

Address: Operational Base + offset (0x003c) GPIO4B iomux control

Bit Attr Reset Value Description

Bit	Attr	Reset Value	Description
			write_enable
			bit0~15 write enable
31:16	wo	0x0000	When every bit HIGH, enable the writing
51.10	***	0,0000	corresponding bit
			When every bit LOW, don't care the writing
			corresponding bit
15:7	RO	0x0	reserved
			gpio4b1_sel
			GPIO4B[1] iomux select
	RW	0×0	3'b000: gpio
6:4			3'b001: flash1_csn2
			3'b010: host_dout15
			3'b011: mac_txclk
			3'b100: sdio1_pwren
			other: reserved
3	RO	0x0	reserved
			gpio4b0_sel
		0×0	GPIO4B[0] iomux select
			3'b000: gpio
2:0	RW		3'b001: flash1_dqs
			3'b010: host_dout14
			3'b011: mac_col
			3'b100: flash1_csn3
			other: reserved

GRF_GPIO4C_IOMUX Address: Operational Base + offset (0x0044) GPIO4C iomux control

Bit	Attr	Reset Value	Description
			write_enable
			bit0~15 write enable
31:16	wo	0x0000	When every bit HIGH, enable the writing
51.10	000	0x0000	corresponding bit
			When every bit LOW, don't care the writing
			corresponding bit
15	RO	0x0	reserved
			gpio4c7_sel
14	RW 0x0		GPIO4C[7] iomux select
14		UXU	1'b0: gpio
			1'b1: sdio0_data3
13	RO	0x0	reserved
		/ 0x0	gpio4c6_sel
10			GPIO4C[6] iomux select
12	RW		1'b0: gpio
			1'b1: sdio0_data2

Bit	Attr	Reset Value	Description
11	RO	0x0	reserved
			gpio4c5_sel
10	RW	0.40	GPIO4C[5] iomux select
10	RVV	0x0	1'b0: gpio
			1'b1: sdio0_data1
9	RO	0x0	reserved
			gpio4c4_sel
8	RW	0x0	GPIO4C[4] iomux select
0		0.00	1'b0: gpio
			1'b1: sdio0_data0
7	RO	0x0	reserved
			gpio4c3_sel
6	RW	0×0	GPIO4C[3] iomux select
0	RW		1'b0: gpio
			1'b1: uart0bt_rtsn
5	RO	0x0	reserved
			gpio4c2_sel
4	RW	W 0x0	GPIO4C[2] iomux select
4			1'b0: gpio
			1'b1: uart0bt_ctsn
3	RO	0x0	reserved
			gpio4c1_sel
2	D\//	RW 0x0	GPIO4C[1] iomux select
2			1'b0: gpio
			1'b1: uart0bt_sout
1	RO	0x0	reserved
			gpio4c0_sel
0	RW	W 0x0	GPIO4C[0] iomux select
			1'b0: gpio
			1'b1: uart0bt_sin

GRF_GPIO4D_IOMUX

Address: Operational Base + offset (0x0048) GPIO4D iomux control

Bit	Attr	Reset Value	Description
31:16	wo	0x0000	write_enable bit0~15 write enable When every bit HIGH, enable the writing corresponding bit When every bit LOW, don't care the writing corresponding bit
15:13	RO	0x0	reserved

Bit	Attr	Reset Value	Description
			gpio4d6_sel
10			GPIO4D[6] iomux select
12	RW	0x0	1'b0: gpio
			1'b1: sdio0_intn
11	RO	0x0	reserved
			gpio4d5_sel
10		00	GPIO4D[5] iomux select
10	RW	0x0	1'b0: gpio
			1'b1: sdio0_bkpwr
9	RO	0x0	reserved
			gpio4d4_sel
		00	GPIO4D[4] iomux select
8	RW	0×0	1'b0: gpio
			1'b1: sdio0_pwren
7	RO	0x0	reserved
		0×0	gpio4d3_sel
c			GPIO4D[3] iomux select
6	RW		1'b0: gpio
			1'b1: sdio0_wrprt
5	RO	0x0	reserved
			gpio4d2_sel
4		RW 0x0	GPIO4D[2] iomux select
4	RW		1'b0: gpio
			1'b1: sdio0_detectn
3	RO	0x0	reserved
			gpio4d1_sel
2		W 0x0	GPIO4D[1] iomux select
2	KW		1'b0: gpio
			1'b1: sdio0_clkout
1	RO	0x0	reserved
			gpio4d0_sel
		0.40	GPIO4D[0] iomux select
0	RW	0×0	1'b0: gpio
			1'b1: sdio0_cmd

GRF_GPIO5B_IOMUX Address: Operational Base + offset (0x0050) GPIO5B iomux control

Bit	Attr	Reset Value	Description
31:16	wo	0x0000	write_enable
			bit0~15 write enable
			When every bit HIGH, enable the writing
			corresponding bit
			When every bit LOW, don't care the writing
			corresponding bit

Bit	Attr	Reset Value	Description
			gpio5b7_sel
			GPIO5B[7] iomux select
15:14	RW	0x0	2'b00: gpio
15:14	r vv	0.00	2'b01: spi0_rxd
			2'b10: ts0_data7
			2'b11: uart4exp_sin
			gpio5b6_sel
			GPIO5B[6] iomux select
13:12	RW	0x0	2'b00: gpio
13.12		0.00	2'b01: spi0_txd
			2'b10: ts0_data6
			2'b11: uart4exp_sout
			gpio5b5_sel
			GPIO5B[5] iomux select
11:10	RW	0x0	2'b00: gpio
11.10		0.00	2'b01: spi0_csn0
			2'b10: ts0_data5
			2'b11: uart4exp_rtsn
			gpio5b4_sel
			GPIO5B[4] iomux select
9:8	RW	0×0	2'b00: gpio
		0x0	2'b01: spi0_clk
			2'b10: ts0_data4
			2'b11: uart4exp_ctsn
			gpio5b3_sel
			GPIO5B[3] iomux select
7:6	RW	0x0	2'b00: gpio
7.0		0.00	2'b01: uart1bb_rtsn
			2'b10: ts0_data3
			2'b11: reserved
			gpio5b2_sel
			GPIO5B[2] iomux select
5:4		0×0	2'b00: gpio
5.4	RW	0×0	2'b01: uart1bb_ctsn
			2'b10: ts0_data2
			2'b11: reserved
	RW		gpio5b1_sel
			GPIO5B[1] iomux select
3:2		0×0	2'b00: gpio
5.2			2'b01: uart1bb_sout
			2'b10: ts0_data1
			2'b11: reserved

Bit	Attr	Reset Value	Description
		0x0	gpio5b0_sel
			GPIO5B[0] iomux select
1.0	RW		2'b00: gpio
1:0			2'b01: uart1bb_sin
			2'b10: ts0_data0
			2'b11: reserved

GRF_GPI05C_IOMUX

Address: Operational Base + offset (0x0054) GPIO5C iomux control

Bit	Attr	Reset Value	Description
			write_enable
31:16			bit0~15 write enable
	WO	0,0000	When every bit HIGH, enable the writing
	WO	0x0000	corresponding bit
			When every bit LOW, don't care the writing
			corresponding bit
15:7	RO	0x0	reserved
			gpio5c3_sel
6	RW	0.20	GPIO5C[3] iomux select
0	KW	0x0	1'b0: gpio
			1'b1: ts0_err
5	RO	0x0	reserved
4	RW	0x0	gpio5c2_sel
			GPIO5C[2] iomux select
			1'b0: gpio
			1'b1: ts0_clk
3	RO	0x0	reserved
			gpio5c1_sel
2	RW	0x0	GPIO5C[1] iomux select
2	KVV		1'b0: gpio
			1'b1: ts0_valid
	RW	0×0	gpio5c0_sel
			GPIO5C[0] iomux select
1:0			2'b00: gpio
1.0			2'b01: spi0_csn1
			2'b10: ts0_sync
			2'b11: reserved

GRF_GPIO6A_IOMUX

Address: Operational Base + offset (0x005c)

GPIO6A iomux control

|--|

Bit	Attr	Reset Value	Description
			write_enable
			bit0~15 write enable
21.10		0000	When every bit HIGH, enable the writing
31:16	wo	0×0000	corresponding bit
			When every bit LOW, don't care the writing
			corresponding bit
15	RO	0x0	reserved
			gpio6a7_sel
14	RW	0×0	GPIO6A[7] iomux select
14	RVV	0.00	1'b0: gpio
			1'b1: i2s_sdo3
13	RO	0x0	reserved
			gpio6a6_sel
12	RW	0x0	GPIO6A[6] iomux select
12	r vv	0.00	1'b0: gpio
			1'b1: i2s_sdo2
11	RO	0x0	reserved
			gpio6a5_sel
10	RW	0x0	GPIO6A[5] iomux select
10		UXU	1'b0: gpio
			1'b1: i2s_sdo1
9	RO	0x0	reserved
			gpio6a4_sel
8	RW	0x0	GPIO6A[4] iomux select
Ŭ		0,00	1'b0: gpio
			1'b1: i2s_sdo0
7	RO	0x0	reserved
			gpio6a3_sel
6	RW	0x0	GPIO6A[3] iomux select
Ŭ		UNU	1'b0: gpio
			1'b1: i2s_sdi
5	RO	0x0	reserved
			gpio6a2_sel
4	RW	0x0	GPIO6A[2] iomux select
4	KVV	UXU	1'b0: gpio
			1'b1: i2s_lrcktx
3	RO	0x0	reserved
			gpio6a1_sel
2	RW	0×0	GPIO6A[1] iomux select
			1'b0: gpio
			1'b1: i2s_lrckrx
1	RO	0x0	reserved

Bit	Attr	Reset Value	Description
		0×0	gpio6a0_sel
0	RW		GPIO6A[0] iomux select
U			1'b0: gpio
			1'b1: i2s_sclk

GRF_GPIO6B_IOMUX

Address: Operational Base + offset (0x0060) GPIO6B iomux control

Bit	Attr	Reset Value	Description
			write_enable
			bit0~15 write enable
21.16	WO	0×0000	When every bit HIGH, enable the writing
31:16	WO	0x0000	corresponding bit
			When every bit LOW, don't care the writing
			corresponding bit
15:7	RO	0x0	reserved
			gpio6b3_sel
c	RW	0×0	GPIO6B[3] iomux select
6	RVV	UXU	1'b0: gpio
			1'b1: spdif_tx
5	RO	0x0	reserved
4	RW	0x0	gpio6b2_sel
			GPIO6B[2] iomux select
			1'b0: gpio
			1'b1: i2c1audio_scl
3	RO	0x0	reserved
			gpio6b1_sel
2		0.40	GPIO6B[1] iomux select
2	RW	0×0	1'b0: gpio
			1'b1: i2c1audio_sda
1	RO	0x0	reserved
		0x0	gpio6b0_sel
0	DW/		GPIO6B[0] iomux select
0	RW		1'b0: gpio
			1'b1: i2s_clk

GRF_GPIO6C_IOMUX

Address: Operational Base + offset (0x0064) GPIO6C iomux control

Bit Attr Reset Value Description

Bit	Attr	Reset Value	Description
			write_enable
			bit0~15 write enable
21.10	WO	00000	When every bit HIGH, enable the writing
31:16	WO	0×0000	corresponding bit
			When every bit LOW, don't care the writing
			corresponding bit
15:13	RO	0x0	reserved
			gpio6c6_sel
10		0.1	GPIO6C[6] iomux select
12	RW	0x1	1'b0: gpio
			1'b1: sdmmc0_dectn
11	RO	0x0	reserved
			gpio6c5_sel
10		0×1	GPIO6C[5] iomux select
10	RW	0x1	1'b0: gpio
			1'b1: sdmmc0_cmd
			gpio6c4_sel
			GPIO6C[4] iomux select
9:8		0x1	2'b00: gpio
	RW		2'b01: sdmmc0_clkout
			2'b10: jtag_tdo
			2'b11: reserved
			gpio6c3_sel
			GPIO6C[3] iomux select
7:6	RW	0x1	2'b00: gpio
7.0		0.11	2'b01: sdmmc0_data3
			2'b10: jtag_tck
			2'b11: reserved
			gpio6c2_sel
			GPIO6C[2] iomux select
5:4	D\//	0v1	2'b00: gpio
5.4	RW	0×1	2'b01: sdmmc0_data2
			2'b10: jtag_tdi
			2'b11: reserved
			gpio6c1_sel
			GPIO6C[1] iomux select
3:2	RW	0x1	2'b00: gpio
5.2			2'b01: sdmmc0_data1
			2'b10: jtag_trstn
			2'b11: reserved

Bit	Attr	Reset Value	Description
	RW	0x1	gpio6c0_sel
			GPIO6C[0] iomux select
1:0			2'b00: gpio
			2'b01: sdmmc0_data0
			2'b10: jtag_tms
			2'b11: reserved

GRF_GPIO7A_IOMUX

Address: Operational Base + offset (0x006c) GPIO7A iomux control

Bit	Attr	Reset Value	Description
			write_enable
31:16		0x0000	bit0~15 write enable
	RW		When every bit HIGH, enable the writing
	K VV		corresponding bit
			When every bit LOW, don't care the writing
			corresponding bit
			gpio7a7_sel
			GPIO7A[7] iomux select
15:14	RW	0x0	2'b00: gpio
			2'b01: uart3gps_sin
			2'b10: gps_mag
			2'b11: hsadct1_data0
13:3		0x0	reserved
			gpio7a1_sel
2	RW	0x0	GPIO7A[1] iomux select
Z			1'b0: gpio
			1'b1: pwm_1
1:0	RW	0×0	gpio7a0_sel
			GPIO7A[0] iomux select
			2'b00: gpio
1.0			2'b01: pwm_0
			2'b10: vop0_pwm
			2'b11: vop1_pwm

GRF_GPIO7B_IOMUX

Address: Operational Base + offset (0x0070) GPIO7B iomux control

Bit	Attr	Reset Value	Description
31:16	RW	0x0000	write_enable bit0~15 write enable When every bit HIGH, enable the writing
51.10			corresponding bit When every bit LOW, don't care the writing corresponding bit

Bit	Attr	Reset Value	Description
			gpio7b7_sel
			GPIO7B[7] iomux select
15:14	RW	0x0	2'b00: gpio
15:14	ĸw	0.00	2'b01: isp_shuttertrig
			2'b10: spi1_txd
			2'b11: reserved
			gpio7b6_sel
			GPIO7B[6] iomux select
13:12	RW	0x0	2'b00: gpio
13.12	r vv	0.00	2'b01: isp_prelighttrig
			2'b10: spi1_rxd
			2'b11: reserved
			gpio7b5_sel
			GPIO7B[5] iomux select
11:10	RW	0x0	2'b00: gpio
11.10		0.0	2'b01: isp_flashtrigout
			2'b10: spi1_csn0
			2'b11: reserved
			gpio7b4_sel
			GPIO7B[4] iomux select
9:8	RW	0x0	2'b00: gpio
5.0		0,0	2'b01: isp_shutteren
			2'b10: spi1_clk
			2'b11: reserved
	RW 0		gpio7b3_sel
			GPIO7B[3] iomux select
7:6		0x0	2'b00: gpio
,			2'b01: usb_drvvbus1
			2'b10: edp_hotplug
			2'b11: reserved
			gpio7b2_sel
		0x0	GPIO7B[2] iomux select
5:4	RW		2'b00: gpio
			2'b01: uart3gps_rtsn
			2'b10: usb_drvvbus0
			2'b11: reserved
			gpio7b1_sel
			GPIO7B[1] iomux select
3:2	RW	0×0	2'b00: gpio
			2'b01: uart3gps_ctsn
			2'b10: gps_rfclk
			2'b11: gpst1_clk

Bit	Attr	Reset Value	Description
	RW	0x0	gpio7b0_sel
			GPIO7B[0] iomux select
1.0			2'b00: gpio
1:0			2'b01: uart3gps_sout
			2'b10: gps_sig
			2'b11: hsadct1_data1

GRF_GPIO7CL_IOMUX

Address: Operational Base + offset (0x0074) GPIO7CL iomux control

Bit	Attr	Reset Value	Description
			write_enable
			bit0~15 write enable
31:16	RW	0x0000	When every bit HIGH, enable the writing
51.10	r vv	0x0000	corresponding bit
			When every bit LOW, don't care the writing
			corresponding bit
15:14	RO	0x0	reserved
			gpio7c3_sel
			GPIO7C[3] iomux select
13:12	RW	0x0	2'b00: gpio
13.12	r vv	0.00	2'b01: i2c5hdmi_sda
			2'b10: edphdmii2c_sda
			2'b11: reserved
11:9	RO	0x0	reserved
			gpio7c2_sel
8	RW	0x0	GPIO7C[2] iomux select
0		0.00	1'b0: gpio
			1'b1: i2c4tp_scl
7:5	RO	0x0	reserved
			gpio7c1_sel
4	RW	0×0	GPIO7C[1] iomux select
4			1'b0: gpio
			1'b1: i2c4tp_sda
3:2	RO	0x0	reserved
			gpio7c0_sel
			GPIO7C[0] iomux select
1:0	RW	0x0	2'b00: gpio
1.0	ĸw	UXU	2'b01: isp_flashtrigin
			2'b10: edphdmi_cecinoutt1
			2'b11: reserved

GRF_GPIO7CH_IOMUX

Address: Operational Base + offset (0x0078) GPIO7CH iomux control

Bit	Attr	Reset Value	Description
			write_enable
			bit0~15 write enable
31:16	RW	0×0000	When every bit HIGH, enable the writing
51.10	RVV	0x0000	corresponding bit
			When every bit LOW, don't care the writing
			corresponding bit
15	RO	0x0	reserved
			gpio7c7_sel
			GPIO7C[7] iomux select
			3'b000: gpio
14:12	RW	0×0	3'b001: uart2dbg_sout
14.12		0.00	3'b010: uart2dbg_sirout
			3'b011: pwm_3
			3'b100: edphdmi_cecinout
			other: reserved
11:10	RO	0x0	reserved
			gpio7c6_sel
		V 0x0	GPIO7C[6] iomux select
9:8	RW		2'b00: gpio
5.0			2'b01: uart2dbg_sin
			2'b10: uart2dbg_sirin
			2'b11: pwm_2
7:2	RO	0x0	reserved
			gpio7c4_sel
			GPIO7C[4] iomux select
1:0	RW	0x0	2'b00: gpio
1.0	K VV	0.00	2'b01: i2c5hdmi_scl
			2'b10: edphdmii2c_scl
			2'b11: reserved

GRF_GPIO8A_IOMUX

Address: Operational Base + offset (0x0080) GPIO8A iomux control

Bit	Attr	Reset Value	Description
	RW	0×0000	write_enable
			bit0~15 write enable
31:16			When every bit HIGH, enable the writing
51.10			corresponding bit
			When every bit LOW, don't care the writing
			corresponding bit

Bit	Attr	Reset Value	Description
			gpio8a7_sel
			GPIO8A[7] iomux select
15.14		00	2'b00: gpio
15:14	RW	0x0	2'b01: spi2_csn0
			2'b10: sc_detect
			2'b11: reserve
			gpio8a6_sel
			GPIO8A[6] iomux select
12.12		00	2'b00: gpio
13:12	RW	0x0	2'b01: spi2_clk
			2'b10: sc_io
			2'b11: reserve
			gpio8a5_sel
			GPIO8A[5] iomux select
	5.47		2'b00: gpio
11:10	RW	0x0	2'b01: i2c2sensor_scl
			2'b10: sc_clk
			2'b11: reserved
			gpio8a4_sel
			GPIO8A[4] iomux select
			2'b00: gpio
9:8	RW	0x0	2'b01: i2c2sensor_sda
			2'b10: sc_rst
			2'b11: reserved
			gpio8a3_sel
			GPIO8A[3] iomux select
			2'b00: gpio
7:6	RW	0×0	2'b01: spi2_csn1
			2'b10: sc_iot1
			2'b11: reserved
5	RO	0x0	reserved
			gpio8a2_sel
	D) 11		GPIO8A[2] iomux select
4	RW	0x0	1'b0: gpio
			1'b1: sc_detectt1
		1	gpio8a1_sel
			GPIO8A[1] iomux select
	RW	0×0	2'b00: gpio
3:2			2'b01: ps2_data
			2'b10: sc_vcc33v
			2'b11: reserved

Bit	Attr	Reset Value	Description
		0×0	gpio8a0_sel
	RW		GPIO8A[0] iomux select
1.0			2'b00: gpio
1:0			2'b01: ps2_clk
			2'b10: sc_vcc18v
			2'b11: reserved

GRF_GPIO8B_IOMUX

Address: Operational Base + offset (0x0084) GPIO8B iomux control

Bit	Attr	Reset Value	Description
			write_enable
			bit0~15 write enable
31:16	RW	0x0000	When every bit HIGH, enable the writing
51.10		0,0000	corresponding bit
			When every bit LOW, don't care the writing
			corresponding bit
15:4	RO	0x0	reserved
		0×0	gpio8b1_sel
	RW		GPIO8B[1] iomux select
3:2			2'b00: gpio
5.2			2'b01: spi2_txd
			2'b10: sc_clk
			2'b11: reserve
		RW 0x0	gpio8b0_sel
			GPIO8B[0] iomux select
1:0	RW		2'b00: gpio
1.0	K V V		2'b01: spi2_rxd
			2'b10: sc_rst
			2'b11: reserve

GRF_GPIO1H_SR

Address: Operational Base + offset (0x0104) GPIO1C/D SR control

Bit	Attr	Reset Value	Description
-----	------	--------------------	-------------

Bit	Attr	Reset Value	Description
31:16	wo	0×0000	<pre>write_enable write_enable bit0~15 write enable When bit 16=1, bit 0 can be written by software . When bit 16=0, bit 0 cannot be written by software; When bit 17=1, bit 1 can be written by software . When bit 17=0, bit 1 cannot be written by software; When bit 31=1, bit 15 can be written by software . When bit 31=0, bit 15 cannot be written by software;</pre>
15:8	RW	0x0f	gpio1d_sr GPIO1D slew rate control for each bit 1'b0: slow (half frequency) 1'b1: fast
7:0	RO	0x0	reserved

GRF_GPIO2L_SR Address: Operational Base + offset (0x0108) GPIO2A/B SR control

Bit	Attr	Reset Value	Description
31:16	wo	0×0000	<pre>write_enable bit0~15 write enable When bit 16=1, bit 0 can be written by software . When bit 16=0, bit 0 cannot be written by software; When bit 17=1, bit 1 can be written by software . When bit 17=0, bit 1 cannot be written by software; When bit 31=1, bit 15 can be written by software . When bit 31=0, bit 15 cannot be written by software;</pre>
15:8	RW	0×00	gpio2b_sr GPIO2B slew rate control for each bit 1'b0: slow (half frequency) 1'b1: fast

Bit	Attr	Reset Value	Description
	RW	0x00	gpio2a_sr
7:0			GPIO2A slew rate control for each bit
7.0			1'b0: slow (half frequency)
			1'b1: fast

GRF_GPIO2H_SR

Address: Operational Base + offset (0x010c) GPIO2C/D SR control

Bit	Attr	Reset Value	Description
31:16	WO	0x0000	<pre>write_enable bit0~15 write enable When bit 16=1, bit 0 can be written by software . When bit 16=0, bit 0 cannot be written by software; When bit 17=1, bit 1 can be written by software . When bit 17=0, bit 1 cannot be written by software; When bit 31=1, bit 15 can be written by software . When bit 31=0, bit 15 cannot be written by software;</pre>
15:8	RO	0x0	reserved
7:0	RW	0×00	gpio2c_sr GPIO2C slew rate control for each bit 1'b0: slow (half frequency) 1'b1: fast

GRF_GPIO3L_SR

Address: Operational Base + offset (0x0110) GPIO3A/B SR control

Bit	Attr	Reset Value	Description
-----	------	--------------------	-------------

Bit	Attr	Reset Value	Description
31:16	WO	0x0000	<pre>write_enable bit0~15 write enable When bit 16=1, bit 0 can be written by software . When bit 16=0, bit 0 cannot be written by software; When bit 17=1, bit 1 can be written by software . When bit 17=0, bit 1 cannot be written by software; When bit 31=1, bit 15 can be written by software . When bit 31=0, bit 15 cannot be written by software;</pre>
15:8	RW	0x20	gpio3b_sr GPIO3B slew rate control for each bit 1'b0: slow (half frequency) 1'b1: fast
7:0	RW	0xff	gpio3a_sr GPIO3A slew rate control for each bit 1'b0: slow (half frequency) 1'b1: fast

GRF_GPIO3H_SR Address: Operational Base + offset (0x0114) GPIO3C/D SR control

Bit	Attr	Reset Value	Description
31:16	wo	0×0000	<pre>write_enable bit0~15 write enable When bit 16=1, bit 0 can be written by software . When bit 16=0, bit 0 cannot be written by software; When bit 17=1, bit 1 can be written by software . When bit 17=0, bit 1 cannot be written by software; When bit 31=1, bit 15 can be written by software . When bit 31=0, bit 15 cannot be written by software;</pre>

Bit	Attr	Reset Value	Description
15:8		0xff	gpio3d_sr
			GPIO3D slew rate control for each bit
	RW		1'b0: slow (half frequency)
			1'b1: fast
7:0		0x04	gpio3c_sr
			GPIO3C slew rate control for each bit
	RW		1'b0: slow (half frequency)
			1'b1: fast

GRF_GPIO4L_SR

Address: Operational Base + offset (0x0118) GPIO4A/B SR control

Attr	Reset Value	Description
		write_enable
		bit0~15 write enable
		When bit 16=1, bit 0 can be written by
		software .
		When bit 16=0, bit 0 cannot be written by
	0×0000	software;
		When bit 17=1, bit 1 can be written by
WO		software .
		When bit 17=0, bit 1 cannot be written by
		software;
		When bit 31=1, bit 15 can be written by
		software.
		When bit 31=0, bit 15 cannot be written by
		software;
RW	0x01	gpio4b_sr GPIO4B slew rate control for each bit
		1'b0: slow (half frequency) 1'b1: fast
RW	0x20	gpio4a_sr
		GPIO4A slew rate control for each bit
		1'b0: slow (half frequency)
		1'b1: fast
	WO	WO 0×0000 RW 0×01

GRF_GPIO4H_SR

Address: Operational Base + offset (0x011c) GPIO4C/D SR control

Bit Attr Reset Value Description

Bit	Attr	Reset Value	Description
31:16	wo	0×0000	<pre>write_enable write_enable bit0~15 write enable When bit 16=1, bit 0 can be written by software . When bit 16=0, bit 0 cannot be written by software; When bit 17=1, bit 1 can be written by software . When bit 17=0, bit 1 cannot be written by software; When bit 31=1, bit 15 can be written by software . When bit 31=0, bit 15 cannot be written by software;</pre>
15:8	RW	0×00	gpio4d_sr GPIO4D slew rate control for each bit 1'b0: slow (half frequency) 1'b1: fast
7:0	RW	0×00	gpio4c_sr GPIO4C slew rate control for each bit 1'b0: slow (half frequency) 1'b1: fast

GRF_GPIO5L_SR Address: Operational Base + offset (0x0120) GPIO5A/B SR control

Bit	Attr	Reset Value	Description
31:16	wo	0×0000	<pre>write_enable bit0~15 write enable When bit 16=1, bit 0 can be written by software . When bit 16=0, bit 0 cannot be written by software; When bit 17=1, bit 1 can be written by software . When bit 17=0, bit 1 cannot be written by software; When bit 31=1, bit 15 can be written by software . When bit 31=0, bits 15 cannot be written by software;</pre>

Bit	Attr	Reset Value	Description
	RW	0x00	gpio5b_sr
15:8			GPIO5B slew rate control for each bit
15:8			1'b0: slow (half frequency)
			1'b1: fast
7:0	RO	0x0	reserved

GRF_GPIO5H_SR

Address: Operational Base + offset (0x0124) GPIO5C/D SR control

Bit	Attr	Reset Value	Description
31:16	wo	0×0000	<pre>write_enable bit0~15 write enable When bit 16=1, bit 0 can be written by software . When bit 16=0, bit 0 cannot be written by software; When bit 17=1, bit 1 can be written by software . When bit 17=0, bit 1 cannot be written by software; When bit 31=1, bit 15 can be written by software . When bit 31=0, bit 15 cannot be written by software;</pre>
15:8	RO	0x0	reserved
7:0	RW	0x00	gpio5c_sr GPIO5C slew rate control for each bit 1'b0: slow (half frequency) 1'b1: fast

GRF_GPIO6L_SR

Address: Operational Base + offset (0x0128) GPIO6A/B SR control

Bit Attr Reset Value Description

Bit	Attr	Reset Value	Description
31:16	wo	0×0000	<pre>write_enable bit0~15 write enable When bit 16=1, bit 0 can be written by software . When bit 16=0, bit 0 cannot be written by software; When bit 17=1, bit 1 can be written by software . When bit 17=0, bit 1 cannot be written by software; When bit 31=1, bit 15 can be written by software . When bit 31=0, bit 15 cannot be written by software;</pre>
15:8	RW	0×01	gpio6b_sr GPIO6B slew rate control for each bit 1'b0: slow (half frequency) 1'b1: fast
7:0	RW	0×00	gpio6a_sr GPIO6A slew rate control for each bit 1'b0: slow (half frequency) 1'b1: fast

GRF_GPIO6H_SR Address: Operational Base + offset (0x012c) GPIO6C/D SR control

Bit	Attr	Reset Value	Description
31:16	wo	0×0000	<pre>write_enable bit0~15 write enable When bit 16=1, bit 0 can be written by software . When bit 16=0, bit 0 cannot be written by software; When bit 17=1, bit 1 can be written by software . When bit 17=0, bit 1 cannot be written by software; When bit 31=1, bit 15 can be written by software . When bit 31=0, bit 15 cannot be written by software;</pre>
15:8	RO	0x0	reserved

Bit	Attr	Reset Value	Description
	RW	0x10	gpio6c_sr
7:0			GPIO6C slew rate control for each bit
7.0			1'b0: slow (half frequency)
			1'b1: fast

GRF_GPIO7L_SR

Address: Operational Base + offset (0x0130) GPIO7A/B SR control

Bit	Attr	Reset Value	Description
31:16	RW	0×0000	write_enable bit0~15 write enable When bit 16=1, bit 0 can be written by software . When bit 16=0, bit 0 cannot be written by software; When bit 17=1, bit 1 can be written by software . When bit 17=0, bit 1 cannot be written by software; When bit 31=1, bit 15 can be written by software . When bit 31=0, bit 15 cannot be written by software;
15:8	RW	0×00	gpio7b_sr GPIO7B slew rate control for each bit 1'b0: slow (half frequency) 1'b1: fast
7:0	RW	0x00	gpio7a_sr GPIO7A slew rate control for each bit 1'b0: slow (half frequency) 1'b1: fast

GRF_GPIO7H_SR

Address: Operational Base + offset (0x0134) GPIO7C/D SR control

Bit Attr Reset Value Description

Bit	Attr	Reset Value	Description
31:16	RW	0×0000	<pre>write_enable bit0~15 write enable When bit 16=1, bit 0 can be written by software . When bit 16=0, bit 0 cannot be written by software; When bit 17=1, bit 1 can be written by software . When bit 17=0, bit 1 cannot be written by software; When bit 31=1, bit 15 can be written by software . When bit 31=0, bit 15 cannot be written by software;</pre>
15:8	RO	0x0	reserved
7:0	RW	0x00	gpio7c_sr GPIO7C slew rate control for each bit 1'b0: slow (half frequency) 1'b1: fast

GRF_GPIO8L_SR Address: Operational Base + offset (0x0138) GPIO8A/B SR control

Bit	Attr	Reset Value	Description
31:16	RW	0×0000	<pre>write_enable bit0~15 write enable When bit 16=1, bit 0 can be written by software . When bit 16=0, bit 0 cannot be written by software; When bit 17=1, bit 1 can be written by software . When bit 17=0, bit 1 cannot be written by software; When bit 31=1, bit 15 can be written by software . When bit 31=0, bit 15 cannot be written by software;</pre>
15:8	RW	0x00	gpio8b_sr GPIO8B slew rate control for each bit 1'b0: slow (half frequency) 1'b1: fast

Bit	Attr	Reset Value	Description
7:0	RW	0×00	gpio8a_sr
			GPIO8A slew rate control for each bit
			1'b0: slow (half frequency)
			1'b1: fast

GRF_GPIO1D_P

Address: Operational Base + offset (0x014c) GPIO1D PU/PD control

Bit	Attr	Reset Value	Description
31:16	wo	0×0000	<pre>write_enable bit0~15 write enable When bit 16=1, bit 0 can be written by software . When bit 16=0, bit 0 cannot be written by software; When bit 17=1, bit 1 can be written by software . When bit 17=0, bit 1 cannot be written by software; When bit 31=1, bit 15 can be written by software . When bit 31=0, bit 15 cannot be written by software;</pre>
15:0	RW	Охаааа	<pre>gpio1d_p GPIO1D PU/PD programmation section, every GPIO bit corresponding to 2bits 2'b00: Z(Noraml operaton); 2'b01: weak 1(pull-up); 2'b10: weak 0(pull-down); 2'b11: Repeater(Bus keeper)</pre>

GRF_GPIO2A_P

Address: Operational Base + offset (0x0150) GPIO2A PU/PD control

Bit	Attr	Reset Value	Description

Bit	Attr	Reset Value	Description
31:16	wo	0×0000	<pre>write_enable bit0~15 write enable When bit 16=1, bit 0 can be written by software . When bit 16=0, bit 0 cannot be written by software; When bit 17=1, bit 1 can be written by software . When bit 17=0, bit 1 cannot be written by software; When bit 31=1, bit 15 can be written by software . When bit 31=0, bit 15 cannot be written by software;</pre>
15:0	RW	0xaaaa	<pre>gpio2a_p GPIO2A PU/PD programmation section, every GPIO bit corresponding to 2bits 2'b00: Z(Noraml operaton); 2'b01: weak 1(pull-up); 2'b10: weak 0(pull-down); 2'b11: Repeater(Bus keeper)</pre>

GRF_GPIO2B_P Address: Operational Base + offset (0x0154) GPIO2B PU/PD control

Bit	Attr	Reset Value	Description
31:16	wo	0×0000	<pre>write_enable bit0~15 write enable When bit 16=1, bit 0 can be written by software . When bit 16=0, bit 0 cannot be written by software; When bit 17=1, bit 1 can be written by software . When bit 17=0, bit 1 cannot be written by software; When bit 31=1, bit 15 can be written by software . When bit 31=0, bit 15 cannot be written by software;</pre>

Bit	Attr	Reset Value	Description
15:0			gpio2b_p
		/ 0xaaaa	GPIO2B PU/PD programmation section, every
	RW		GPIO bit corresponding to 2bits
			2'b00: Z(Noraml operaton);
			2'b01: weak 1(pull-up);
			2'b10: weak 0(pull-down);
			2'b11: Repeater(Bus keeper)

GRF_GPIO2C_P

Address: Operational Base + offset (0x0158) GPIO2C PU/PD control

Bit	Attr	Reset Value	Description
31:16	wo	0×0000	<pre>write_enable bit0~15 write enable When bit 16=1, bit 0 can be written by software . When bit 16=0, bit 0 cannot be written by software; When bit 17=1, bit 1 can be written by software . When bit 17=0, bit 1 cannot be written by software; When bit 31=1, bit 15 can be written by software . When bit 31=0, bit 15 cannot be written by software;</pre>
15:0	RW	0xaaa5	<pre>gpio2c_p GPIO2C PU/PD programmation section, every GPIO bit corresponding to 2bits 2'b00: Z(Noraml operaton); 2'b01: weak 1(pull-up); 2'b10: weak 0(pull-down); 2'b11: Repeater(Bus keeper)</pre>

GRF_GPIO3A_P

Address: Operational Base + offset (0x0160)

GPIO3A PU/PD control

Bit Attr Reset Value Description

Bit	Attr	Reset Value	Description
31:16	wo	0×0000	<pre>write_enable bit0~15 write enable When bit 16=1, bit 0 can be written by software . When bit 16=0, bit 0 cannot be written by software; When bit 17=1, bit 1 can be written by software . When bit 17=0, bit 1 cannot be written by software; When bit 31=1, bit 15 can be written by software . When bit 31=0, bit 15 cannot be written by software;</pre>
15:0	RW	0x5555	<pre>gpio3a_p GPIO3A PU/PD programmation section, every GPIO bit corresponding to 2bits 2'b00: Z(Noraml operaton); 2'b01: weak 1(pull-up); 2'b10: weak 0(pull-down); 2'b11: Repeater(Bus keeper)</pre>

GRF_GPIO3B_P Address: Operational Base + offset (0x0164) GPIO3B PU/PD control

Bit	Attr	Reset Value	Description
31:16	wo	0×0000	<pre>write_enable bit0~15 write enable When bit 16=1, bit 0 can be written by software . When bit 16=0, bit 0 cannot be written by software; When bit 17=1, bit 1 can be written by software . When bit 17=0, bit 1 cannot be written by software; When bit 31=1, bit 15 can be written by software . When bit 31=0, bit 15 cannot be written by software;</pre>

Bit	Attr	Reset Value	Description
15:0		0x5699	gpio3b_p GPIO3B PU/PD programmation section, every
			GPIO bit corresponding to 2bits
	RW		2'b00: Z(Noraml operaton);
			2'b01: weak 1(pull-up);
			2'b10: weak 0(pull-down);
			2'b11: Repeater(Bus keeper)

GRF_GPIO3C_P

Address: Operational Base + offset (0x0168) GPIO3C PU/PD control

Bit	Attr	Reset Value	Description
31:16	wo	0×0000	<pre>write_enable bit0~15 write enable When bit 16=1, bit 0 can be written by software . When bit 16=0, bit 0 cannot be written by software; When bit 17=1, bit 1 can be written by software . When bit 17=0, bit 1 cannot be written by software; When bit 31=1, bit 15 can be written by software . When bit 31=0, bit 15 cannot be written by software;</pre>
15:0	RW	0xaaa5	<pre>gpio3c_p GPIO3C PU/PD programmation section, every GPIO bit corresponding to 2bits 2'b00: Z(Noraml operaton); 2'b01: weak 1(pull-up); 2'b10: weak 0(pull-down); 2'b11: Repeater(Bus keeper)</pre>

GRF_GPIO3D_P

Address: Operational Base + offset (0x016c) GPIO3D PU/PD control

Bit Attr Reset Value Description	
--	--

Bit	Attr	Reset Value	Description
31:16	wo	0×0000	<pre>write_enable bit0~15 write enable When bit 16=1, bit 0 can be written by software . When bit 16=0, bit 0 cannot be written by software; When bit 17=1, bit 1 can be written by software . When bit 17=0, bit 1 cannot be written by software; When bit 31=1, bit 15 can be written by software . When bit 31=0, bit 15 cannot be written by software;</pre>
15:0	RW	0x5555	<pre>gpio3d_p GPIO3D PU/PD programmation section, every GPIO bit corresponding to 2bits 2'b00: Z(Noraml operaton); 2'b01: weak 1(pull-up); 2'b10: weak 0(pull-down); 2'b11: Repeater(Bus keeper)</pre>

GRF_GPIO4A_P Address: Operational Base + offset (0x0170) GPIO4A PU/PD control

Bit	Attr	Reset Value	Description
31:16	wo	0×0000	<pre>write_enable bit0~15 write enable When bit 16=1, bit 0 can be written by software . When bit 16=0, bit 0 cannot be written by software; When bit 17=1, bit 1 can be written by software . When bit 17=0, bit 1 cannot be written by software; When bit 31=1, bit 15 can be written by software . When bit 31=0, bit 15 cannot be written by software;</pre>

Bit	Attr	Reset Value	Description
15:0	RW	0x5555	gpio4a_p GPIO4A PU/PD programmation section, every GPIO bit corresponding to 2bits 2'b00: Z(Noraml operaton); 2'b01: weak 1(pull-up);
			2'b10: weak 0(pull-down); 2'b11: Repeater(Bus keeper)

GRF_GPIO4B_P

Address: Operational Base + offset (0x0174) GPIO4B PU/PD control

Bit	Attr	Reset Value	Description
31:16	wo	0×0000	<pre>write_enable bit0~15 write enable When bit 16=1, bit 0 can be written by software . When bit 16=0, bit 0 cannot be written by software; When bit 17=1, bit 1 can be written by software . When bit 17=0, bit 1 cannot be written by software; When bit 31=1, bit 15 can be written by software . When bit 31=0, bit 15 cannot be written by software;</pre>
15:0	RW	0xaaa5	<pre>gpio4b_p GPIO4B PU/PD programmation section, every GPIO bit corresponding to 2bits 2'b00: Z(Noraml operaton); 2'b01: weak 1(pull-up); 2'b10: weak 0(pull-down); 2'b11: Repeater(Bus keeper)</pre>

GRF_GPIO4C_P

Address: Operational Base + offset (0x0178) GPIO4C PU/PD control

Bit Attr Reset Value Description

Bit	Attr	Reset Value	Description
31:16	wo	0x0000	<pre>write_enable bit0~15 write enable When bit 16=1, bit 0 can be written by software . When bit 16=0, bit 0 cannot be written by software; When bit 17=1, bit 1 can be written by software . When bit 17=0, bit 1 cannot be written by software; When bit 31=1, bit 15 can be written by software . When bit 31=0, bit 15 cannot be written by software;</pre>
15:0	RW	0x5559	<pre>gpio4c_p GPIO4C PU/PD programmation section, every GPIO bit corresponding to 2bits 2'b00: Z(Noraml operaton); 2'b01: weak 1(pull-up); 2'b10: weak 0(pull-down); 2'b11: Repeater(Bus keeper)</pre>

GRF_GPIO4D_P Address: Operational Base + offset (0x017c) GPIO4D PU/PD control

Bit	Attr	Reset Value	Description
31:16	wo	0×0000	<pre>write_enable bit0~15 write enable When bit 16=1, bit 0 can be written by software . When bit 16=0, bit 0 cannot be written by software; When bit 17=1, bit 1 can be written by software . When bit 17=0, bit 1 cannot be written by software; When bit 31=1, bit 15 can be written by software . When bit 31=0, bit 15 cannot be written by software;</pre>

Bit	Attr	Reset Value	Description
15:0			gpio4d_p GPIO4D PU/PD programmation section, every
			GPIO bit corresponding to 2bits
	RW		2'b00: Z(Noraml operaton);
			2'b01: weak 1(pull-up);
			2'b10: weak 0(pull-down);
			2'b11: Repeater(Bus keeper)

GRF_GPIO5B_P

Address: Operational Base + offset (0x0184) GPIO5B PU/PD control

Bit	Attr	Reset Value	Description
31:16	WO	0×0000	<pre>write_enable bit0~15 write enable When bit 16=1, bit 0 can be written by software . When bit 16=0, bit 0 cannot be written by software; When bit 17=1, bit 1 can be written by software . When bit 17=0, bit 1 cannot be written by software; When bit 31=1, bit 15 can be written by software . When bit 31=0, bit 15 cannot be written by software;</pre>
15:0	RW	0x6559	<pre>gpio5b_p GPIO5B PU/PD programmation section, every GPIO bit corresponding to 2bits 2'b00: Z(Noraml operaton); 2'b01: weak 1(pull-up); 2'b10: weak 0(pull-down); 2'b11: Repeater(Bus keeper)</pre>

GRF_GPIO5C_P

Address: Operational Base + offset (0x0188) GPIO5C PU/PD control

Bit Attr Reset Value	Description
----------------------	-------------

Bit	Attr	Reset Value	Description
31:16	wo	0x0000	<pre>write_enable bit0~15 write enable When bit 16=1, bit 0 can be written by software . When bit 16=0, bit 0 cannot be written by software; When bit 17=1, bit 1 can be written by software . When bit 17=0, bit 1 cannot be written by software; When bit 31=1, bit 15 can be written by software . When bit 31=0, bit 15 cannot be written by software;</pre>
15:0	RW	0xaaa9	<pre>gpio5c_p GPIO5C PU/PD programmation section, every GPIO bit corresponding to 2bits 2'b00: Z(Noraml operaton); 2'b01: weak 1(pull-up); 2'b10: weak 0(pull-down); 2'b11: Repeater(Bus keeper)</pre>

GRF_GPIO6A_P Address: Operational Base + offset (0x0190) GPIO6A PU/PD control

Bit	Attr	Reset Value	Description
31:16	wo	0×0000	<pre>write_enable bit0~15 write enable When bit 16=1, bit 0 can be written by software . When bit 16=0, bit 0 cannot be written by software; When bit 17=1, bit 1 can be written by software . When bit 17=0, bit 1 cannot be written by software; When bit 31=1, bit 15 can be written by software . When bit 31=0, bit 15 cannot be written by software;</pre>

Bit	Attr	Reset Value	Description
15:0	RW	Охаааа	gpio6a_p GPIO6A PU/PD programmation section, every GPIO bit corresponding to 2bits 2'b00: Z(Noraml operaton); 2'b01: weak 1(pull-up);
			2'b10: weak 0(pull-down); 2'b11: Repeater(Bus keeper)

GRF_GPIO6B_P

Address: Operational Base + offset (0x0194) GPIO6B PU/PD control

Bit	Attr	Reset Value	Description
31:16	wo	0×0000	<pre>write_enable bit0~15 write enable When bit 16=1, bit 0 can be written by software . When bit 16=0, bit 0 cannot be written by software; When bit 17=1, bit 1 can be written by software . When bit 17=0, bit 1 cannot be written by software; When bit 31=1, bit 15 can be written by software . When bit 31=0, bit 15 cannot be written by software;</pre>
15:0	RW	0xaa96	<pre>gpio6b_p GPIO6B PU/PD programmation section, every GPIO bit corresponding to 2bits 2'b00: Z(Noraml operaton); 2'b01: weak 1(pull-up); 2'b10: weak 0(pull-down); 2'b11: Repeater(Bus keeper)</pre>

GRF_GPIO6C_P

Address: Operational Base + offset (0x0198) GPIO6C PU/PD control

	Bit	Attr	Reset Value	Description
--	-----	------	-------------	-------------

Bit	Attr	Reset Value	Description
31:16	wo	0×0000	<pre>write_enable bit0~15 write enable When bit 16=1, bit 0 can be written by software . When bit 16=0, bit 0 cannot be written by software; When bit 17=1, bit 1 can be written by software . When bit 17=0, bit 1 cannot be written by software; When bit 31=1, bit 15 can be written by software . When bit 31=0, bit 15 cannot be written by software;</pre>
15:0	RW	0x5655	<pre>gpio6c_p GPIO6C PU/PD programmation section, every GPIO bit corresponding to 2bits 2'b00: Z(Noraml operaton); 2'b01: weak 1(pull-up); 2'b10: weak 0(pull-down); 2'b11: Repeater(Bus keeper)</pre>

GRF_GPIO7A_P Address: Operational Base + offset (0x01a0) GPIO7A PU/PD control

Bit	Attr	Reset Value	Description
31:16	RW	0×0000	<pre>write_enable bit0~15 write enable When bit 16=1, bit 0 can be written by software . When bit 16=0, bit 0 cannot be written by software; When bit 17=1, bit 1 can be written by software . When bit 17=0, bit 1 cannot be written by software; When bit 31=1, bit 15 can be written by software . When bit 31=0, bit 15 cannot be written by software;</pre>

Bit	Attr	Reset Value	Description
15:0	RW	0x59aa	gpio7a_p GPIO7A PU/PD programmation section, every GPIO bit corresponding to 2bits 2'b00: Z(Noraml operaton); 2'b01: weak 1(pull-up);
			2'b10: weak 0(pull-down); 2'b11: Repeater(Bus keeper)

GRF_GPIO7B_P

Address: Operational Base + offset (0x01a4) GPIO7B PU/PD control

Bit	Attr	Reset Value	Description
31:16	RW	0×0000	<pre>write_enable bit0~15 write enable When bit 16=1, bit 0 can be written by software . When bit 16=0, bit 0 cannot be written by software; When bit 17=1, bit 1 can be written by software . When bit 17=0, bit 1 cannot be written by software; When bit 31=1, bit 15 can be written by software . When bit 31=0, bit 15 cannot be written by software;</pre>
15:0	RW	0xa696	<pre>gpio7b_p GPIO7B PU/PD programmation section, every GPIO bit corresponding to 2bits 2'b00: Z(Noraml operaton); 2'b01: weak 1(pull-up); 2'b10: weak 0(pull-down); 2'b11: Repeater(Bus keeper)</pre>

GRF_GPIO7C_P

Address: Operational Base + offset (0x01a8) GPIO7C PU/PD control

		Deset Value	Description
Bit	Attr	Reset Value	Description

Bit	Attr	Reset Value	Description
31:16	RW	0×0000	<pre>write_enable bit0~15 write enable When bit 16=1, bit 0 can be written by software . When bit 16=0, bit 0 cannot be written by software; When bit 17=1, bit 1 can be written by software . When bit 17=0, bit 1 cannot be written by software; When bit 31=1, bit 15 can be written by software . When bit 31=0, bit 15 cannot be written by software;</pre>
15:0	RW	0x5955	<pre>gpio7c_p GPIO7C PU/PD programmation section, every GPIO bit corresponding to 2bits 2'b00: Z(Noraml operaton); 2'b01: weak 1(pull-up); 2'b10: weak 0(pull-down); 2'b11: Repeater(Bus keeper)</pre>

GRF_GPIO8A_P Address: Operational Base + offset (0x01b0) GPIO8A PU/PD control

Bit	Attr	Reset Value	Description
31:16	RW	0×0000	<pre>write_enable bit0~15 write enable When bit 16=1, bit 0 can be written by software . When bit 16=0, bit 0 cannot be written by software; When bit 17=1, bit 1 can be written by software . When bit 17=0, bit 1 cannot be written by software; When bit 31=1, bit 15 can be written by software . When bit 31=0, bit 15 cannot be written by software;</pre>

Bit	Attr	Reset Value	Description
15:0	RW	0x6555	gpio8a_p GPIO8A PU/PD programmation section, every GPIO bit corresponding to 2bits 2'b00: Z(Noraml operaton);
13.0			2'b01: weak 1(pull-up); 2'b10: weak 0(pull-down); 2'b11: Repeater(Bus keeper)

GRF_GPIO8B_P

Address: Operational Base + offset (0x01b4) GPIO8B PU/PD control

Bit	Attr	Reset Value	Description
31:16	RW	0×0000	<pre>write_enable bit0~15 write enable When bit 16=1, bit 0 can be written by software . When bit 16=0, bit 0 cannot be written by software; When bit 17=1, bit 1 can be written by software . When bit 17=0, bit 1 cannot be written by software; When bit 31=1, bit 15 can be written by software . When bit 31=0, bit 15 cannot be written by software;</pre>
15:0	RW	Охаааа	<pre>gpio8b_p GPIO8B PU/PD programmation section, every GPIO bit corresponding to 2bits 2'b00: Z(Noraml operaton); 2'b01: weak 1(pull-up); 2'b10: weak 0(pull-down); 2'b11: Repeater(Bus keeper)</pre>

GRF_GPIO1D_E

Address: Operational Base + offset (0x01cc) GPIO1D drive strength control

Bit Attr Reset Value Description	
--	--

Bit	Attr	Reset Value	Description
31:16	wo	0×0000	<pre>write_enable bit0~15 write enable When bit 16=1, bit 0 can be written by software . When bit 16=0, bit 0 cannot be written by software; When bit 17=1, bit 1 can be written by software . When bit 17=0, bit 1 cannot be written by software; When bit 31=1, bit 15 can be written by software . When bit 31=0, bit 15 cannot be written by software;</pre>
15:0	RW	0x55aa	gpio1d_e GPIO1D drive strength control, every GPIO bit corresponding to 2bits 2'b00: 2mA 2'b01: 4mA 2'b10: 8mA 2'b11: 12mA

GRF_GPIO2A_E Address: Operational Base + offset (0x01d0) GPIO2A drive strength control

Bit	Attr	Reset Value	Description
31:16	wo	0×0000	<pre>write_enable bit0~15 write enable When bit 16=1, bit 0 can be written by software . When bit 16=0, bit 0 cannot be written by software; When bit 17=1, bit 1 can be written by software . When bit 17=0, bit 1 cannot be written by software; When bit 31=1, bit 15 can be written by software . When bit 31=0, bit 15 cannot be written by software;</pre>

Bit	Attr	Reset Value	Description
15:0	RW	0xaaaa	gpio2a_e GPIO2A drive strength control, every GPIO bit corresponding to 2bits 2'b00: 2mA 2'b01: 4mA 2'b10: 8mA 2'b11: 12mA

GRF_GPIO2B_E

Address: Operational Base + offset (0x01d4) GPIO2B drive strength control

Bit	Attr	Reset Value	Description
31:16	wo	0×0000	<pre>write_enable bit0~15 write enable When bit 16=1, bit 0 can be written by software . When bit 16=0, bit 0 cannot be written by software; When bit 17=1, bit 1 can be written by software . When bit 17=0, bit 1 cannot be written by software; When bit 31=1, bit 15 can be written by software . When bit 31=0, bit 15 cannot be written by software;</pre>
15:0	RW	0xaaaa	gpio2b_e GPIO2B drive strength control, every GPIO bit corresponding to 2bits 2'b00: 2mA 2'b01: 4mA 2'b10: 8mA 2'b11: 12mA

GRF_GPIO2C_E

Address: Operational Base + offset (0x01d8) GPIO2C drive strength control

Bit	Attr	Reset Value	Description	

Bit	Attr	Reset Value	Description
31:16	wo	0×0000	<pre>write_enable bit0~15 write enable When bit 16=1, bit 0 can be written by software . When bit 16=0, bit 0 cannot be written by software; When bit 17=1, bit 1 can be written by software . When bit 17=0, bit 1 cannot be written by software; When bit 31=1, bit 15 can be written by software . When bit 31=0, bit 15 cannot be written by software;</pre>
15:0	RW	0x5555	gpio2c_e GPIO2C drive strength control, every GPIO bit corresponding to 2bits 2'b00: 2mA 2'b01: 4mA 2'b10: 8mA 2'b11: 12mA

GRF_GPIO3A_E Address: Operational Base + offset (0x01e0) GPIO3A drive strength control

Bit	Attr	Reset Value	Description
31:16	wo	0×0000	<pre>write_enable bit0~15 write enable When bit 16=1, bit 0 can be written by software . When bit 16=0, bit 0 cannot be written by software; When bit 17=1, bit 1 can be written by software . When bit 17=0, bit 1 cannot be written by software; When bit 31=1, bit 15 can be written by software . When bit 31=0, bit 15 cannot be written by software;</pre>

Bit	Attr	Reset Value	Description
15:0	RW	0xaaaa	gpio3a_e GPIO3A drive strength control, every GPIO bit corresponding to 2bits 2'b00: 2mA 2'b01: 4mA 2'b10: 8mA 2'b11: 12mA

GRF_GPIO3B_E

Address: Operational Base + offset (0x01e4) GPIO3B drive strength control

Bit	Attr	Reset Value	Description
31:16	wo	0×0000	<pre>write_enable bit0~15 write enable When bit 16=1, bit 0 can be written by software . When bit 16=0, bit 0 cannot be written by software; When bit 17=1, bit 1 can be written by software . When bit 17=0, bit 1 cannot be written by software; When bit 31=1, bit 15 can be written by software . When bit 31=0, bit 15 cannot be written by software;</pre>
15:0	RW	0x5955	gpio3b_e GPIO3B drive strength control, every GPIO bit corresponding to 2bits 2'b00: 2mA 2'b01: 4mA 2'b10: 8mA 2'b11: 12mA

GRF_GPIO3C_E

Address: Operational Base + offset (0x01e8) GPIO3C drive strength control

Bit Attr Reset Value Description	
----------------------------------	--

Bit	Attr	Reset Value	Description
31:16	wo	0×0000	<pre>write_enable bit0~15 write enable When bit 16=1, bit 0 can be written by software . When bit 16=0, bit 0 cannot be written by software; When bit 17=1, bit 1 can be written by software . When bit 17=0, bit 1 cannot be written by software; When bit 31=1, bit 15 can be written by software . When bit 31=0, bit 15 cannot be written by software;</pre>
15:0	RW	0x5565	gpio3c_e GPIO3C drive strength control, every GPIO bit corresponding to 2bits 2'b00: 2mA 2'b01: 4mA 2'b10: 8mA 2'b11: 12mA

GRF_GPIO3D_E Address: Operational Base + offset (0x01ec) GPIO3D drive strength control

Bit	Attr	Reset Value	Description
31:16	wo	0×0000	<pre>write_enable bit0~15 write enable When bit 16=1, bit 0 can be written by software . When bit 16=0, bit 0 cannot be written by software; When bit 17=1, bit 1 can be written by software . When bit 17=0, bit 1 cannot be written by software; When bit 31=1, bit 15 can be written by software . When bit 31=0, bit 15 cannot be written by software;</pre>

Bit	Attr	Reset Value	Description
15:0	RW	0xaaaa	gpio3d_e GPIO3D drive strength control, every GPIO bit corresponding to 2bits 2'b00: 2mA 2'b01: 4mA 2'b10: 8mA 2'b11: 12mA

GRF_GPIO4A_E

Address: Operational Base + offset (0x01f0) GPIO4A drive strength control

Bit	Attr	Reset Value	Description
31:16	wo	0×0000	<pre>write_enable bit0~15 write enable When bit 16=1, bit 0 can be written by software . When bit 16=0, bit 0 cannot be written by software; When bit 17=1, bit 1 can be written by software . When bit 17=0, bit 1 cannot be written by software; When bit 31=1, bit 15 can be written by software . When bit 31=0, bit 15 cannot be written by software;</pre>
15:0	RW	0x5955	gpio4a_e GPIO4A drive strength control, every GPIO bit corresponding to 2bits 2'b00: 2mA 2'b01: 4mA 2'b10: 8mA 2'b11: 12mA

GRF_GPIO4B_E

Address: Operational Base + offset (0x01f4) GPIO4B drive strength control

Bit Attr Reset Value	Description
----------------------	-------------

Bit	Attr	Reset Value	Description
31:16	wo	0×0000	<pre>write_enable bit0~15 write enable When bit 16=1, bit 0 can be written by software . When bit 16=0, bit 0 cannot be written by software; When bit 17=1, bit 1 can be written by software . When bit 17=0, bit 1 cannot be written by software; When bit 31=1, bit 15 can be written by software . When bit 31=0, bit 15 cannot be written by software;</pre>
15:0	RW	0x5556	gpio4b_e GPIO4B drive strength control, every GPIO bit corresponding to 2bits 2'b00: 2mA 2'b01: 4mA 2'b10: 8mA 2'b11: 12mA

GRF_GPIO4C_E Address: Operational Base + offset (0x01f8) GPIO4C drive strength control

Bit	Attr	Reset Value	Description
31:16	wo	0×0000	<pre>write_enable bit0~15 write enable When bit 16=1, bit 0 can be written by software . When bit 16=0, bit 0 cannot be written by software; When bit 17=1, bit 1 can be written by software . When bit 17=0, bit 1 cannot be written by software; When bit 31=1, bit 15 can be written by software . When bit 31=0, bit 15 cannot be written by software;</pre>

Bit	Attr	Reset Value	Description
15:0	RW	0x5555	gpio4c_e GPIO4C drive strength control, every GPIO bit corresponding to 2bits 2'b00: 2mA 2'b01: 4mA 2'b10: 8mA 2'b11: 12mA

GRF_GPIO4D_E

Address: Operational Base + offset (0x01fc) GPIO4D drive strength control

Bit	Attr	Reset Value	Description
31:16	wo	0×0000	<pre>write_enable bit0~15 write enable When bit 16=1, bit 0 can be written by software . When bit 16=0, bit 0 cannot be written by software; When bit 17=1, bit 1 can be written by software . When bit 17=0, bit 1 cannot be written by software; When bit 31=1, bit 15 can be written by software . When bit 31=0, bit 15 cannot be written by software;</pre>
15:0	RW	0x5555	gpio4d_e GPIO4D drive strength control, every GPIO bit corresponding to 2bits 2'b00: 2mA 2'b01: 4mA 2'b10: 8mA 2'b11: 12mA

GRF_GPIO5B_E

Address: Operational Base + offset (0x0204)

GPIO5B drive strength control

Bit Attr Reset Value Description							
	Bit	Attr	r Reset Value	Description			

Bit	Attr	Reset Value	Description
31:16	wo	0×0000	<pre>write_enable bit0~15 write enable When bit 16=1, bit 0 can be written by software . When bit 16=0, bit 0 cannot be written by software; When bit 17=1, bit 1 can be written by software . When bit 17=0, bit 1 cannot be written by software; When bit 31=1, bit 15 can be written by software . When bit 31=0, bit 15 cannot be written by software;</pre>
15:0	RW	0x5555	gpio5b_e GPIO5B drive strength control, every GPIO bit corresponding to 2bits 2'b00: 2mA 2'b01: 4mA 2'b10: 8mA 2'b11: 12mA

GRF_GPIO5C_E Address: Operational Base + offset (0x0208) GPIO5C drive strength control

Bit	Attr	Reset Value	Description
31:16	wo	0×0000	<pre>write_enable bit0~15 write enable When bit 16=1, bit 0 can be written by software . When bit 16=0, bit 0 cannot be written by software; When bit 17=1, bit 1 can be written by software . When bit 17=0, bit 1 cannot be written by software; When bit 31=1, bit 15 can be written by software . When bit 31=0, bit 15 cannot be written by software;</pre>

Bit	Attr	Reset Value	Description
15:0	RW	0x5555	gpio5c_e GPIO5C drive strength control, every GPIO bit corresponding to 2bits 2'b00: 2mA 2'b01: 4mA 2'b10: 8mA 2'b11: 12mA

GRF_GPIO6A_E

Address: Operational Base + offset (0x0210) GPIO6A drive strength control

Bit	Attr	Reset Value	Description
31:16	WO	0x0000	<pre>write_enable bit0~15 write enable When bit 16=1, bit 0 can be written by software . When bit 16=0, bit 0 cannot be written by software; When bit 17=1, bit 1 can be written by software . When bit 17=0, bit 1 cannot be written by software; When bit 31=1, bit 15 can be written by software . When bit 31=0, bit 15 cannot be written by software;</pre>
15:0	RW	0x5555	gpio6a_e GPIO6A drive strength control, every GPIO bit corresponding to 2bits 2'b00: 2mA 2'b01: 4mA 2'b10: 8mA 2'b11: 12mA

GRF_GPIO6B_E

Address: Operational Base + offset (0x0214) GPIO6B drive strength control

Bit Attr Reset Value Description		Description			

Bit	Attr	Reset Value	Description
31:16	wo	0×0000	<pre>write_enable bit0~15 write enable When bit 16=1, bit 0 can be written by software . When bit 16=0, bit 0 cannot be written by software; When bit 17=1, bit 1 can be written by software . When bit 17=0, bit 1 cannot be written by software; When bit 31=1, bit 15 can be written by software . When bit 31=0, bit 15 cannot be written by software;</pre>
15:0	RW	0x5555	gpio6b_e GPIO6B drive strength control, every GPIO bit corresponding to 2bits 2'b00: 2mA 2'b01: 4mA 2'b10: 8mA 2'b11: 12mA

GRF_GPIO6C_E Address: Operational Base + offset (0x0218) GPIO6C drive strength control

Bit	Attr	Reset Value	Description
31:16	wo	0×0000	<pre>write_enable bit0~15 write enable When bit 16=1, bit 0 can be written by software . When bit 16=0, bit 0 cannot be written by software; When bit 17=1, bit 1 can be written by software . When bit 17=0, bit 1 cannot be written by software; When bit 31=1, bit 15 can be written by software . When bit 31=0, bit 15 cannot be written by software;</pre>

Bit	Attr	Reset Value	Description
15:0	RW	0x5555	gpio6c_e GPIO6C drive strength control, every GPIO bit corresponding to 2bits 2'b00: 2mA 2'b01: 4mA 2'b10: 8mA 2'b11: 12mA

GRF_GPIO7A_E

Address: Operational Base + offset (0x0220) GPIO7A drive strength control

Bit	Attr	Reset Value	Description
31:16	RW	0×0000	<pre>write_enable write_enable bit0~15 write enable When bit 16=1, bit 0 can be written by software . When bit 16=0, bit 0 cannot be written by software; When bit 17=1, bit 1 can be written by software . When bit 17=0, bit 1 cannot be written by software; When bit 31=1, bit 15 can be written by software . When bit 31=0, bit 15 cannot be written by software;</pre>
15:0	RW	0x5555	gpio7a_e GPIO7A drive strength control, every GPIO bit corresponding to 2bits 2'b00: 2mA 2'b01: 4mA 2'b10: 8mA 2'b11: 12mA

GRF_GPIO7B_E Address: Operational Base + offset (0x0224) **GPIO**

7 <u>B</u>	drive	strength	control

Ī	Bit	Attr	Reset Value	Description

Bit	Attr	Reset Value	Description
31:16	RW	0×0000	<pre>write_enable bit0~15 write enable When bit 16=1, bit 0 can be written by software . When bit 16=0, bit 0 cannot be written by software; When bit 17=1, bit 1 can be written by software . When bit 17=0, bit 1 cannot be written by software; When bit 31=1, bit 15 can be written by software . When bit 31=0, bit 15 cannot be written by software;</pre>
15:0	RW	0x5555	gpio7b_e GPIO7B drive strength control, every GPIO bit corresponding to 2bits 2'b00: 2mA 2'b01: 4mA 2'b10: 8mA 2'b11: 12mA

GRF_GPIO7C_E Address: Operational Base + offset (0x0228) GPIO7C drive strength control

Bit	Attr	Reset Value	Description
31:16	RW	0×0000	<pre>write_enable bit0~15 write enable When bit 16=1, bit 0 can be written by software . When bit 16=0, bit 0 cannot be written by software; When bit 17=1, bit 1 can be written by software . When bit 17=0, bit 1 cannot be written by software; When bit 31=1, bit 15 can be written by software . When bit 31=0, bit 15 cannot be written by software;</pre>

Bit	Attr	Reset Value	Description
15:0	RW	0x5555	gpio7c_e GPIO7C drive strength control, every GPIO bit corresponding to 2bits 2'b00: 2mA 2'b01: 4mA 2'b10: 8mA 2'b11: 12mA

GRF_GPIO8A_E

Address: Operational Base + offset (0x0230) GPIO8A drive strength control

Bit	Attr	Reset Value	Description
31:16	RW	0×0000	<pre>write_enable bit0~15 write enable When bit 16=1, bit 0 can be written by software . When bit 16=0, bit 0 cannot be written by software; When bit 17=1, bit 1 can be written by software . When bit 17=0, bit 1 cannot be written by software; When bit 31=1, bit 15 can be written by software . When bit 31=0, bit 15 cannot be written by software;</pre>
15:0	RW	0x5555	gpio8a_e GPIO8A drive strength control, every GPIO bit corresponding to 2bits 2'b00: 2mA 2'b01: 4mA 2'b10: 8mA 2'b11: 12mA

GRF_GPIO8B_E

Address: Operational Base + offset (0x0234) GPIO8B drive strength control

Bit	Attr	Reset Value	Description	

Bit	Attr	Reset Value	Description
31:16	RW	0×0000	<pre>write_enable bit0~15 write enable When bit 16=1, bit 0 can be written by software . When bit 16=0, bit 0 cannot be written by software; When bit 17=1, bit 1 can be written by software . When bit 17=0, bit 1 cannot be written by software; When bit 31=1, bit 15 can be written by software . When bit 31=0, bit 15 cannot be written by software;</pre>
15:0	RW	0x5555	gpio8b_e GPIO8B drive strength control, every GPIO bit corresponding to 2bits 2'b00: 2mA 2'b01: 4mA 2'b10: 8mA 2'b11: 12mA

GRF_GPIO_SMT Address: Operational Base + offset (0x0240) GPIO smitter control register

Bit	Attr	Reset Value	Description
31:16	RW	0×0000	<pre>write_enable bit0~15 write enable When bit 16=1, bit 0 can be written by software . When bit 16=0, bit 0 cannot be written by software; When bit 17=1, bit 1 can be written by software . When bit 17=0, bit 1 cannot be written by software; When bit 31=1, bit 15 can be written by software . When bit 31=0, bit 15 cannot be written by software;</pre>
15:12	RO	0x0	reserved

Bit	Attr	Reset Value	Description
			gpio8a1_smt
	DW		GPIO8A_1 SMT control
11	RW	0x1	1'b0: No hysteresis
			1'b1: Schmitt trigger enabled
			gpio8a0_smt
10		0.1	GPIO8A_0 SMT control
10	RW	0x1	1'b0: No hysteresis
			1'b1: Schmitt trigger enabled
			gpio7c4_smt
0	DW		GPIO7C_4 SMT control
9	RW	0x1	1'b0: No hysteresis
			1'b1: Schmitt trigger enabled
			gpio7c3_smt
0	DW		GPIO7C_3 SMT control
8	RW	0x1	1'b0: No hysteresis
			1'b1: Schmitt trigger enabled
			gpio7c2_smt
	RW	0×1	GPIO7C_2 SMT control
7			1'b0: No hysteresis
			1'b1: Schmitt trigger enabled
			gpio7c1_smt
6	RW	0×1	GPIO7C_1 SMT control
			1'b0: No hysteresis
			1'b1: Schmitt trigger enabled
			gpio2c1_smt
_	RW	0x1	GPIO2C_1 SMT control
5			1'b0: No hysteresis
			1'b1: Schmitt trigger enabled
			gpio2c0_smt
	RW	0×1	GPIO2C_0 SMT control
4			1'b0: No hysteresis
			1'b1: Schmitt trigger enabled
	RW	0×1	gpio6b2_smt
2			GPIO6B_2 SMT control
3			1'b0: No hysteresis
			1'b1: Schmitt trigger enabled
	1		gpio6b1_smt
2	RW		GPIO6B_1 SMT control
2		0x1	1'b0: No hysteresis
			1'b1: Schmitt trigger enabled
			gpio8a5_smt
4		01	GPIO8A_5 SMT control
1	RW	0x1	1'b0: No hysteresis
			1'b1: Schmitt trigger enabled

Bit	Attr	Reset Value	Description
	RW	0x1	gpio8a4_smt
0			GPIO8A_4 SMT control
0			1'b0: No hysteresis
			1'b1: Schmitt trigger enabled

GRF_SOC_CON0 Address: Operational Base + offset (0x0244) SoC control register 0

Bit	Attr	Reset Value	Description
31:16	RW	0x0000	<pre>write_enable bit0~15 write enable When bit 16=1, bit 0 can be written by software . When bit 16=0, bit 0 cannot be written by software; When bit 17=1, bit 1 can be written by software . When bit 17=0, bit 1 cannot be written by software; When bit 31=1, bit 15 can be written by software . When bit 31=0, bit 15 cannot be written by</pre>
15	RW	0×0	software; pause_mmc_peri PERI MMC AHB bus arbiter pause control
14	RW	0×0	pause_emem_peri PERI EMEM AHB bus arbiter pause control
13	RW	0x0	pause_usb_peri PERI USB AHB bus arbiter pause control
12	RW	0x1	grf_force_jtag Force select jtag function from sdmmc0 IO
11	RW	0x1	grf_core_idle_req_mode_sel1 core idle request mode selection 1
10	RW	0x1	grf_core_idle_req_mode_sel0 core idle request mode selection 0
9	RW	0x0	ddr1_16bit_en DDR Channel 1 interface 16bit enable
8	RW	0x0	ddr0_16bit_en DDR Channel 0 interface 16bit enable
7	RW	0x0	vcodec_sel vdpu vepu clock select 1'b0: select vepu aclk as vcodec main clock 1'b1: select vdpu aclk as vcodec main clock

Bit	Attr	Reset Value	Description
			upctl1_c_active_in
			Channel 1 DDR clock active in
			External signal from system that flags if a
6	RW	0x0	hardware low power request can be accepted
			or should always be denied.
			1'b0: may be accepted
			1'b1: will be denied
			upctl0_c_active_in
		0x0	Channel 0 DDR clock active in
			External signal from system that flags if a
5	RW		hardware low power request can be accepted
			or should always be denied.
			1'b0: may be accepted
			1'b1: will be denied
			msch1_mainddr3
4	RW	0x1	Channel 1 DDR3 mode control
			1'b1: DDR3 mode
			msch0_mainddr3
3	RW	0x1	Channel 0 DDR3 mode control
			1'b1: DDR3 mode
2	RW	0x0	msch1_mainpartialpop
2			msch1_mainpartialpop bit control
4		0.40	msch0_mainpartialpop
1	RW	0x0	msch0_mainpartialpop bit control
0	RO	0x0	reserved

GRF_SOC_CON1 Address: Operational Base + offset (0x0248) SoC control register 1

Bit	Attr	Reset Value	Description
31:16	RW	0×0000	<pre>write_enable bit0~15 write enable When bit 16=1, bit 0 can be written by software . When bit 16=0, bit 0 cannot be written by software; When bit 17=1, bit 1 can be written by software . When bit 17=0, bit 1 cannot be written by software; When bit 31=1, bit 15 can be written by software . When bit 31=0, bit 15 cannot be written by software;</pre>

Bit	Attr	Reset Value	Description
15	RO	0x0	reserved
			rmii_mode
14	RW	0x1	RMII mode selection
			1'b1: RMII mode
			gmac_clk_sel
			RGMII clock selection
13:12	RW	0x0	2'b00: 125MHz
			2'b11: 25MHz
			2'b10: 2.5MHz
			rmii_clk_sel
11	RW	0×0	RMII clock selection
11	L AN	0×0	1'b1: 25MHz
			1'b0: 2.5MHz
10	RW	0x0	gmac_speed
			MAC speed
10			1'b1: 100-Mbps
			1'b0: 10-Mbps
9	RW	0×0	gmac_flowctrl
			GMAC transmit flow control
			When set high, instructs the GMAC to transmit
			PAUSE Control frames in
			Full-duplex mode. In Half-duplex mode, the
			GMAC enables the Back-pressure
			function until this signal is made low again
	RW	.W 0x1	gmac_phy_intf_sel
			PHY interface select
8:6			3'b001: RGMII
			3'b100: RMII
			All others: Reserved
5	RW	0x0	host_remap
5	K VV		Host interface remap control
4:0	RO	0x0	reserved

Address: Operational Base + offset (0x024c) SoC control register 2

	Bit	Attr	Reset Value	Description
--	-----	------	--------------------	-------------

Bit	Attr	Reset Value	Description
			write_enable
			bit0~15 write enable
			When bit 16=1, bit 0 can be written by
			software .
			When bit 16=0, bit 0 cannot be written by
			software;
			When bit 17=1, bit 1 can be written by
31:16	RW	0x0000	software .
			When bit 17=0, bit 1 cannot be written by
			software;
			When bit 31=1, bit 15 can be written by
			software .
			When bit 31=0, bit 15 cannot be written by
			software;
15:14	RO	0x0	reserved
13	RW	0×0	upctl1_lpddr3_odt_en
			Channel 1 DDR odt enable in LPDDR3 mode
			1'b1: ODT enable
			1'b0: ODT disable
	RW	0×0	upctl1_bst_diable
12			Channel 1 DDR controller burst termination disable control
12			1'b1: disable
			1'b0: enable
			lpddr3_en1
11	RW	0x0	Channel 1 LPDDR3 mode control
			1'b1: LPDDR3 mode
			upctl0_lpddr3_odt_en
			Channel 0 DDR odt enable in LPDDR3 mode
10	RW	0x0	1'b1: ODT enable
			1'b0: ODT disable
			upctl0_bst_diable
	RW		Channel 0 DDR controller burst termination
9		0x0	disable control
			1'b1: disable
			1'b0: enable
			lpddr3_en0
8	RW	0x0	Channel 0 LPDDR3 mode control
			1'b1: LPDDR3 mode

Bit	Attr	Reset Value	Description
			grf_poc_flash0_ctrl
			Flash0 IO domain 1.8V selection source
			1'b0: GPIO3C_3 to decide the flash0 IO
7	RW	0x0	domain voltage, when GPIO3C_3 high, the
·			voltage is 1.8V
			1'b1: grf_io_vsel[2] to decide the flash0 IO
			domain voltage, when grf_io_vsel[2] high, the
			voltage is 1.8V
6	RW	0×0	simcard_mux_sel
			sim card iomux solution selection
			1'b1: use GPIO8A[5:2]
			1'b0: use GPIO8A[7:6] and GPIO8B[1:0]
5:2	RO	0x0	reserved
1	RW	0x1	grf_spdif_2ch_en
			SPDIF solution selection
			1'b0: 8CH SPDIF
			1'b1: 2CH SPDIF
	RW		pwm_sel
0			PWM solution selection
0		0x0	1'b1: RK PWM
			1'b0: PWM(old)

Address: Operational Base + offset (0x0250) SoC control register 3

Bit	Attr	Reset Value	Description
31:16	RW	0×0000	<pre>write_enable write_enable bit0~15 write enable When bit 16=1, bit 0 can be written by software . When bit 16=0, bit 0 cannot be written by software; When bit 17=1, bit 1 can be written by software . When bit 17=0, bit 1 cannot be written by software; When bit 31=1, bit 15 can be written by software . When bit 31=0, bit 15 cannot be written by software;</pre>
15	RW	0×0	rxclk_dly_ena_gmac RGMII RX clock delayline enable 1'b1: enable 1'b0: disable

Copyright 2017 @ FuZhou Rockchip Electronics Co., Ltd.

Bit	Attr	Reset Value	Description
14		0x0	txclk_dly_ena_gmac
			RGMII TX clock delayline enable
	RW		1'b1: enable
			1'b0: disable
12.7	RW	0×10	clk_rx_dl_cfg_gmac
13:7			RGMII RX clock delayline value
C O		0x10	clk_tx_dl_cfg_gmac
6:0	RW		RGMII TX clock delayline value

Address: Operational Base + offset (0x0254) SoC control register 4

Bit	Attr	Reset Value	Description
			write_enable
			bit0~15 write enable
			When bit 16=1, bit 0 can be written by
			software .
			When bit 16=0, bit 0 cannot be written by
			software;
			When bit 17=1, bit 1 can be written by
31:16	RW	0x0000	software .
			When bit 17=0, bit 1 cannot be written by
			software;
			When bit 31=1, bit 15 can be written by
			software .
			When bit 31=0, bit 15 cannot be written by
			software;
	RW	0×0	dfi_eff_stat_en1
15			Channel 1 DFI monitor efficiency statistics
			enable
	RW	0x0	dfi_eff_stat_en0
14			Channel 0 DFI monitor efficiency statistics
			enable
	RW	0×0	mobile_ddr_sel
13			Mobile DDR selection in DFI monitor
10			1'b1: mobile DDR(LPDDR2/LPDDR3)
			1'b0: DDR3
12:10	RW	0x1	host_l3_ocp_sconnect_grf
			Host interface I3_ocp_sconnect signal control
9:8	RW	0x2	host_txport_rst_val_grf
			Host interface txport_rst_val signal control
7:6	RW	0×0	host_rxport_rst_val_grf
			Host interface rxport_rst_val signal control

Bit	Attr	Reset Value	Description
5	RW	0x0	host_wakereq_grf
5	RVV	0.00	Host interface wakereq signal control
4:3	RW	0x0	host_eoi_in_grf
4:5	RW	UXU	Host interface eoi_in signal control
2	RW	0x1	host_mstandy_in_grf
2	RW		Host interface mstandy_in signal control
1		N ()x1	host_mwait_grf
Ţ	RW		Host interface mwait signal control
0	RW	0.1	host_sidle_req_grf
0	K VV	0x1	Host interface sidle_req signal control

Address: Operational Base + offset (0x0258) SoC control register 5

Bit	Attr	Reset Value	Description
			write_enable
			bit0~15 write enable
			When bit 16=1, bit 0 can be written by
			software .
			When bit 16=0, bit 0 cannot be written by
			software;
			When bit 17=1, bit 1 can be written by
31:16	RW	0x0000	software .
			When bit 17=0, bit 1 cannot be written by
			software;
			When bit 31=1, bit 15 can be written by
			software .
			When bit 31=0, bit 15 cannot be written by
			software;
		0×1	host_mux_sel
15	5 RW		Host interface mux selection
			1'b1: 8bits input, 16bits output
			1'b0: 8bits output, 16bits input
		0×0	tsp0_inout_sel
14	RW		TSP0 input/output selection
			1'b1: output
			1'b0: input
			hsadc_clkout_en
13	RW	RW 0x0	hsadc clkout enable
			1'b1: hsadc_clkout
			1'b0: gps_clk
12:3	RW	0x190	host_fclk_freq_rst_val_grf
			Host interface fclk_freq_rst_val signal control

Bit	Attr	Reset Value	Description
			host_I3_iocp_mconnect_grf
2:1	RW	0x3	Host interface I3_iocp_mconnect signal
			control
			host_I3_ocp_mdiscbehave_grf
0	RW	0x1	Host interface I3_ocp_mdiscbehave signal
			control

Address: Operational Base + offset (0x025c) SoC control register 6

Bit	Attr	Reset Value	Description
			write_enable
			bit0~15 write enable
			When bit 16=1, bit 0 can be written by
			software .
			When bit 16=0, bit 0 cannot be written by
			software;
			When bit 17=1, bit 1 can be written by
31:16	RW	0×0000	software .
			When bit 17=0, bit 1 cannot be written by
			software;
			· · · · ·
			When bit 31=1, bit 15 can be written by
			software .
			When bit 31=0, bit 15 cannot be written by
			software;
		0×1	grf_hdmi_edp_sel
4 -	D 14(HDMI source selection
15	RW		1'b1: from HDMI controller
			1'b0: from eDP controller
		0x0	dsi_csi_testbus_sel
14	RW		MIPI PHY TX1RX1 test bus source selection
14	r vv		1'b1: CSI host
			1'b0: DSI host1
		0×0	hsadc_extclk_mux_sel
13	RW		HSADC external clock source selection
15		0,0	1'b1: GPIO7B[1]
			1'b0: GPIO2B[2]
			clk_27m_mux_sel
12	RW	0x0	27M clock input source selection
			1'b1: GPIO0C[1]
			1'b0: GPIO0B[5]
11	RW	0x0	grf_con_dsi1_dpicolorm
_ <u> </u>			DSI host1 dpicolorm bit control

Bit	Attr	Reset Value	Description
10		0.20	grf_con_dsi1_dpishutdn
10	RW	0x0	DSI host1 dpishutdn bit control
			grf_con_dsi1_lcdc_sel
0		0.20	DSI host1 data from VOP selection
9	RW	0x0	1'b1: VOP LIT output to DSI host1
			1'b0: VOP BIG output to DSI host1
8	RW	0x0	grf_con_dsi0_dpicolorm
0	RVV	0x0	DSI host0 dpicolorm bit control
7	RW	0x0	grf_con_dsi0_dpishutdn
/	RVV	UXU	DSI host0 dpishutdn bit control
			grf_con_dsi0_lcdc_sel
c	RW	0.40	DSI host0 data from VOP selection
6	RVV	0x0	1'b1: VOP LIT output to DSI host0
			1'b0: VOP BIG output to DSI host0
			grf_con_edp_lcdc_sel
5	RW	0x0	eDP data from VOP selection
5	RVV	UXU	1'b1: VOP LIT output to eDP
			1'b0: VOP BIG output to eDP
			grf_con_hdmi_lcdc_sel
4	RW		HDMI data from VOP selection
4		0x0	1'b1: VOP LIT output to HDMI
			1'b0: VOP BIG output to HDMI
			grf_con_lvds_lcdc_sel
2	RW	0.20	LVDS data from VOP selection
3	RVV	0x0	1'b1: VOP LIT output to LVDS
			1'b0: VOP BIG output to LVDS
			grf_con_iep_vop_sel
2	DW	0.40	IEP connect to VOP selection
2	RW	0x0	1'b1: IEP connect to VOP LIT
			1'b0: IEP connect to VOP BIG
			grf_con_isp_dphy_sel
1	D\\/	020	ISP connect to MIPI PHY selection
1	RW	0x0	1'b1: MIPI PHY TX1RX1
			1'b0: MIPI PHY RX0
0	D\\/		grf_con_disable_isp
0	RW	0x0	Disable ISP control

Address: Operational Base + offset (0x0260) SoC control register 7

Bit Attr Reset Value Description

Bit	Attr	Reset Value	Description
			write_enable
			bit0~15 write enable
			When bit 16=1, bit 0 can be written by
			software .
			When bit 16=0, bit 0 cannot be written by
			software;
			When bit 17=1, bit 1 can be written by
31:16	RW	0x0000	software .
			When bit 17=0, bit 1 cannot be written by
			software;
			When bit 31=1, bit 15 can be written by
			software .
			When bit 31=0, bit 15 cannot be written by
			software;
			grf_lvds_pwrdwn
15	RW	0x0	LVDS PHY power down control
			1'b1: power down
1.4	DO	00	1'b0: power up
14	RO	0x0	reserved
			grf_lvds_lcdc_trace_sel LVDS IO used as trace bus enable
13	RW	0×0	1'b1: used as trace bus
13	K VV	0.00	1'b0: used as LVDS IO or LCDC RGB output
			port
			grf_lvds_con_enable_2
12	RW	0x0	LVDS controller enable_2 signal control
			grf_lvds_con_enable_1
11	RW	0x0	LVDS controller enable_1 signal control
10			grf_lvds_con_den_polarity
10	RW	0x0	LVDS controller den_polarity signal control
0		0.40	grf_lvds_con_hs_polarity
9	RW	0x0	LVDS controller hs_polarity signal control
8	RW	0x0	grf_lvds_con_clkinv
0		0.00	LVDS controller clkinv signal control
7	RW/	0x0	grf_lvds_con_startphase
<i>'</i>	RW	0.00	LVDS controller startphase signal control
6	RW	0x0	grf_lvds_con_ttl_en
			LVDS controller ttl_en signal control
5	RW	0x0	grf_lvds_con_startsel
			LVDS controller startsel signal control
4	RW	0x0	grf_lvds_con_chasel
			LVDS controller chasel signal control
3	RW	0×0	grf_lvds_con_msbsel
			LVDS controller msbsel signal control

Bit	Attr	Reset Value	Description
2.0	DW/	(\mathbf{x})	grf_lvds_con_select
2.0	2:0 RW		LVDS controller select signal control

Address: Operational Base + offset (0x0264) SoC control register 8

Bit	Attr	Reset Value	Description
			write_enable
			bit0~15 write enable
			When bit 16=1, bit 0 can be written by
			software .
			When bit 16=0, bit 0 cannot be written by
			software;
			When bit 17=1, bit 1 can be written by
31:16	RW	0x0000	software .
			When bit 17=0, bit 1 cannot be written by
			software;
			When bit 31=1, bit 15 can be written by
			software.
			When bit 31=0, bit 15 cannot be written by software;
			grf_edp_hdcp_protect
		0×0	eDP HDCP function protection
15	RW		1'b1: protect
			1'b0: not protect
			grf_edp_bist_en
1 4		0.40	eDP PHY BIST function enabled
14	RW	0x0	1'b1: enable
			1'b0: disable
			grf_edp_mem_ctrl_sel
			eDP memory control selection
13	RW	0x0	1'b1: controlled by eDP controller internal
			logic
			1'b0: controlled by APB BUS
			grf_hdmi_cec_mux_sel
12	RW	0x0	HDMI cec source selection
			1'b1: from GPIO7C[0]
			1'b0: from GPIO7C[7] grf_dphy_tx0_forcetxstopmode
			MIPI DPHY TX0 force lane into transmit mode
11:8	RW	0×0	and generate stop sate.
11.0			Every bit for one lane, bit3 is for lane3, bit2 is

Bit	Attr	Reset Value	Description
			grf_dphy_tx0_forcerxmode
			MIPI DPHY TX0 force lane into receive
7:4	RW	0×0	mode/wait for stop stat.
			Every bit for one lane, bit3 is for lane3, bit2 is
			for lane2, bit1 is for lane1, bit0 is for lane0.
			grf_dphy_tx0_turndisable
2.0		0.40	MIPI DPHY TX0 disable turn around control
3:0	RW 0xe	uxe	Every bit for one lane, bit3 is for lane3, bit2 is
			for lane2, bit1 is for lane1, bit0 is for lane0.

Address: Operational Base + offset (0x0268) SoC control register 9

Bit	Attr	Reset Value	Description
			write_enable
			bit0~15 write enable
			When bit 16=1, bit 0 can be written by
			software .
			When bit 16=0, bit 0 cannot be written by
			software;
			When bit 17=1, bit 1 can be written by
31:16	RW	0x0000	software .
			When bit 17=0, bit 1 cannot be written by
			software;
			When bit 31=1, bit 15 can be written by
			software .
			When bit $31=0$, bit 15 cannot be written by
			software;
			grf_dphy_tx1rx1_enable
15.10		0.40	MIPI DPHY TX1RX1 enable lane N
15:12	RW	0x0	module($N=0\sim3$).
			Every bit for one lane, bit3 is for lane3, bit2 is
			for lane2, bit1 is for lane1, bit0 is for lane0. grf_dphy_tx1rx1_forcetxstopmode
			MIPI DPHY TX1RX1 force lane into transmit
11:8	RW	0x0	mode and generate stop sate.
11.0	1	0.00	Every bit for one lane, bit3 is for lane3, bit2 is
			for lane2, bit1 is for lane1, bit0 is for lane0.
			grf_dphy_tx1rx1_forcerxmode
			MIPI DPHY TX1RX1 force lane into receive
7:4	RW	0x0	mode/wait for stop stat.
			Every bit for one lane, bit3 is for lane3, bit2 is
			for lane2, bit1 is for lane1, bit0 is for lane0.

Bit	Attr	Reset Value	Description
			grf_dphy_tx1rx1_turndisable
			MIPI DPHY TX1RX1 disable turn around
3:0	RW	0xe	control
			Every bit for one lane, bit3 is for lane3, bit2 is
			for lane2, bit1 is for lane1, bit0 is for lane0.

Address: Operational Base + offset (0x026c) SoC control register 10

Bit	Attr	Reset Value	Description
			write_enable
			bit0~15 write enable
			When bit 16=1, bit 0 can be written by
			software .
			When bit 16=0, bit 0 cannot be written by software;
			When bit 17=1, bit 1 can be written by
31:16	RW	0x0000	software .
01110			When bit 17=0, bit 1 cannot be written by
			software;
			When bit 31=1, bit 15 can be written by
			software .
			When bit 31=0, bit 15 cannot be written by
			software;
			grf_dphy_rx0_enable
			MIPI DPHY RX0 enable lane N
15:12	RW	0x0	module(N=0~3).
		0,10	Every bit for one lane, bit3 is for lane3, bit2 is
			for lane2, bit1 is for lane1, bit0 is for lane0.
			grf_dphy_rx0_forcetxstopmode
			MIPI DPHY RX0 force lane into transmit mode
11:8	RW	0x0	and generate stop sate.
			Every bit for one lane, bit3 is for lane3, bit2 is
			for lane2, bit1 is for lane1, bit0 is for lane0.
			grf_dphy_rx0_forcerxmode
			MIPI DPHY RX0 force lane into receive
7:4	RW	0x0	mode/wait for stop stat.
			Every bit for one lane, bit3 is for lane3, bit2 is
			for lane2, bit1 is for lane1, bit0 is for lane0.
			grf_dphy_rx0_turndisable
3:0	RW	0xf	MIPI DPHY RX0 disable turn around control
5.0			Every bit for one lane, bit3 is for lane3, bit2 is
			for lane2, bit1 is for lane1, bit0 is for lane0.

GRF_SOC_CON11 Address: Operational Base + offset (0x0270) SoC control register 11

Bit	Attr	Reset Value	Description
31:16	RW	0×0000	write_enable bit0~15 write enable When bit 16=1, bit 0 can be written by software . When bit 16=0, bit 0 cannot be written by software; When bit 17=1, bit 1 can be written by software . When bit 17=0, bit 1 cannot be written by software; When bit 31=1, bit 15 can be written by software . When bit 31=0, bit 15 cannot be written by software;
15	RW	0×0	gpio8_a2_fall_edge_irq_pd GIIO8A[2] fall edge interrupt pending status 1'b1: enable 1'b0: disable
14	RW	0x0	gpio8_a2_fall_edge_irq_en GIIO8A[2] fall edge interrupt enable 1'b1: enable 1'b0: disable
13	RW	0x0	gpio8_a2_rise_edge_irq_pd GIIO8A[2] rise edge interrupt pending status 1'b1: enable 1'b0: disable
12	RW	0x0	gpio8_a2_rise_edge_irq_en GIIO8A[2] rise edge interrupt enable 1'b1: enable 1'b0: disable
11	RW	0×0	gpio7_c6_fall_edge_irq_pd GIIO7C[6] fall edge interrupt pending status 1'b1: enable 1'b0: disable
10	RW	0×0	gpio7_c6_fall_edge_irq_en GIIO7C[6] fall edge interrupt enable 1'b1: enable 1'b0: disable

Bit	Attr	Reset Value	Description
			gpio7_c6_rise_edge_irq_pd
0		00	GIIO7C[6] rise edge interrupt pending status
9	RW	0x0	1'b1: enable
			1'b0: disable
			gpio7_c6_rise_edge_irq_en
0	RW	0×0	GIIO7C[6] rise edge interrupt enable
8	KW	0.00	1'b1: enable
			1'b0: disable
			gpio7_b3_fall_edge_irq_pd
7	RW	0.20	GIIO7B[3] fall edge interrupt pending status
7	KW	0x0	1'b1: enable
			1'b0: disable
			gpio7_b3_fall_edge_irq_en
6	RW	0x0	GIIO7B[3] fall edge interrupt enable
0		0.00	1'b1: enable
			1'b0: disable
			gpio7_b3_rise_edge_irq_pd
5	RW	0x0	GIIO7B[3] rise edge interrupt pending status
5		UXU	1'b1: enable
			1'b0: disable
			gpio7_b3_rise_edge_irq_en
4	RW	0x0	GIIO7B[3] rise edge interrupt enable
-		0.0	1'b1: enable
			1'b0: disable
			sd_detectn_fall_edge_irq_pd
			sdmmc detect_n fall edge interrupt pending
3	RW	0x0	status
			1'b1: enable
			1'b0: disable
			sd_detectn_fall_edge_irq_en
		0×0	sdmmc0 detect_n signal fall edge interrupt
2	RW		enable
			1'b1: enable
			1'b0: disable
			sd_detectn_rise_edge_irq_pd
		0×0	sdmmc detect_n rise edge interrupt pending
1	RW		status
			1'b1: enable
			1'b0: disable
			sd_detectn_rise_edge_irq_en
		V 0×0	sdmmc0 detect_n signal rise edge interrupt
0	RW		enable
			1'b1: enable
			1'b0: disable

GRF_SOC_CON12 Address: Operational Base + offset (0x0274) SoC control register 12

Bit	Attr	Reset Value	Description
31:16	RW	0×0000	write_enable bit0~15 write enable When bit 16=1, bit 0 can be written by software . When bit 16=0, bit 0 cannot be written by software; When bit 17=1, bit 1 can be written by software .
51.10			When bit 17=0, bit 1 cannot be written by software; When bit 31=1, bit 15 can be written by software . When bit 31=0, bit 15 cannot be written by software;
15:7	RW	0×000	grf_edp_frq_vid_ck_in eDP PHY frequency information of vid_ck_in frq_vid_ck_in<8:0>/8 = freq(vid_ck_in)/10
6	RW	0x0	grf_edp_vid_lock eDP PHY input video PLL stable indicator 1'b1: stable 1'b0: unstable
5	RW	0×0	grf_edp_iddq_en eDP PHY IDDQ enable 1'b0: disable 1'b1: enable, all circuits are power down, all IO are high-z
4	RW	0×1	grf_edp_ref_clk_sel eDP PHY reference clock source selection 1'b0: from PAD(IO_EDP_OSC_CLK_24M) 1'b1: from internal 24MHz or 27MHz clock
3	RW	0x0	grf_edp_dc_tp_i eDP PHY analog DC test point input
2	RO	0x0	reserved
1:0	RW	0x3	grf_filter_cnt_sel the counter select for sd card detect filter 2'b00: 5ms 2'b01: 15ms 2'b10: 35ms 2'b11: 50ms

Address: Operational Base + offset (0x0278) SoC control register 13

Bit	Attr	Reset Value	Description
31:16	RW	0×0000	write_enable bit0~15 write enable When bit 16=1, bit 0 can be written by software . When bit 16=0, bit 0 cannot be written by software; When bit 17=1, bit 1 can be written by software . When bit 17=0, bit 1 cannot be written by software; When bit 31=1, bit 15 can be written by software . When bit 31=0, bit 15 cannot be written by software;
15:12	RW	0x0	grf_edp_tx_bscan_data eDP TX boundary data bit0: boundary data to ch0 bit1: boundary data to ch1 bit2: boundary data to ch2 bit3: boundary data to ch3
11	RW	0×0	grf_edp_tx_bscan_en eDP TX boundary enable 1'b0: disable 1'b1: enable
10	RO	0x0	reserved
9:5	RW	0×00	grf_uart_rts_sel UART polarity selection for rts port Every bit for one UART, bit4 is for UART_EXP, bit3 is for UART_GPS, bit2 is for UART_DBG, bit1 is for UART_BB, bit0 is for UART_BT. 1'b1: high asserted 1'b0: low asserted
4:0	RW	0×00	grf_uart_cts_sel UART polarity selection for cts port Every bit for one UART, bit4 is for UART_EXP, bit3 is for UART_GPS, bit2 is for UART_DBG, bit1 is for UART_BB, bit0 is for UART_BT. 1'b1: high asserted 1'b0: low asserted

GRF_SOC_CON14

Address: Operational Base + offset (0x027c)
SoC control register 14

Bit	Attr	Reset Value	Description
			write_enable
			bit0~15 write enable
			When bit $16=1$, bit 0 can be written by
			software .
			When bit 16=0, bit 0 cannot be written by
			software;
			When bit 17=1, bit 1 can be written by
31:16	RW	0×0000	software .
			When bit 17=0, bit 1 cannot be written by
			software;
			When bit 31=1, bit 15 can be written by
			software.
			When bit 31=0, bit 15 cannot be written by
			software; grf_dphy_tx1rx1_basedir
15	RW	0x0	MIPI DPHY TX1RX1 base direction control
			grf_dphy_tx1rx1_masterslavez
14	RW	0x0	MIPI DPHY TX1RX1 master/slave control
			dphy_rx1_src_sel
			MIPI DPHY RX1 source selection
13	RW	0×0	1'b1: isp
			1'b0: csi host
12	RW	0x0	dphy_tx1rx1_enableclk
12	RVV	0x0	MIPI DPHY TX1RX1 enable clock Lane module
11	RO	0x0	reserved
10:3	RW	0x00	dphy_rx0_testdin
10.5			MIPI DPHY RX0 test bus input data
2	RW	0x0	dphy_rx0_testen
			MIPI DPHY RX0 test bus enable
1	RW	0x0	dphy_rx0_testclk
			MIPI DPHY RX0 test bus clock
0	RW	N 0x0	dphy_rx0_testclr
			MIPI DPHY RX0 test bus clear control

GRF_SOC_STATUS0 Address: Operational Base + offset (0x0280) SoC status register 0

Bit Attr Reset Value	Description
----------------------	-------------

Bit	Attr	Reset Value	Description
31:16	RW	0×0000	ddrupctl1_bbflags DDR channel 1 NIF output vector which provides combined information about the status of each memory bank. The de-assertion is based on when precharge, activates, reads/writes. Bit0 indication Bank0 busy, bit1 indication
15:0	RW	0×0000	Bank1 busy, and so on. ddrupctl0_bbflags DDR channel 0 NIF output vector which provides combined information about the status of each memory bank. The de-assertion is based on when precharge, activates, reads/writes. Bit0 indication Bank0 busy, bit1 indication Bank1 busy, and so on.

Address: Operational Base + offset (0x0284) SoC status register 1

Bit	Attr	Reset Value	Description
			gmac_portselect
31	RW	0x0	MAC Port Select
51	K V V	UXU	A high indicates an MII interface, and a low a
			GMII interface.
30:26	RO	0x0	reserved
25:22	RW	0x0	reserved
21:16	RW	0x00	reserved
		0×0	ddrupctl1_stat
	RW		3'b000: Init_mem
			3'b001: Config
			3'b010: Config_req
15:13			3'b011: Access
			3'b100: Access_req
			3'b101: Low_power
			3'b110: Low_power_entry_req
			3'b111: Low_power_exit_req

Bit	Attr	Reset Value	Description
			ddrupctl0_stat
			3'b000: Init_mem
			3'b001: Config
			3'b010: Config_req
12:10	RW	0x0	3'b011: Access
			3'b100: Access_req
			3'b101: Low_power
			3'b110: Low_power_entry_req
			3'b111: Low_power_exit_req
9	RW	0x0	newpll_lock
5		0.00	NEW PLL lock status
8	RW	.W 0x0	generalpll_lock
0		0.00	GENERAL PLL lock status
7	RW	0×0	codecpll_lock
/			CODEC PLL lock status
6	RW	/ 0x0	armpll_lock
		0.00	ARM PLL lock status
5	DW	RW 0x0	ddrpll_lock
5			DDR PLL lock status
4	RW 0x0	0x0	newpll_clk
-		0.00	NEW PLL clock output
3	RW	V 0x0	generalpll_clk
5		0.00	GENERAL PLL clock output
2	RW	0x0	codecpll_clk
2		0.00	CODEC PLL clock output
1	RW	0x0	armpll_clk
±	KW	0.0	ARM PLL clock output
0	RW	0x0	ddrpll_clk
0			DDR PLL clock output

GRF_SOC_STATUS2 Address: Operational Base + offset (0x0288) SoC status register 2

Bit	Attr	Reset Value	Description
31	RO	0x0	reserved
30	RW	0.0	usbhost0_stat_ohci_bufacc
50	RVV	0x0	USB HOST0 ohci_bufacc signal status
29	RW	0x0	usbhost0_stat_ohci_rmtwkp
29 R	RVV		USB HOST0 ohci_rmtwkp signal status
28:27		W 0x0	usbhost0_utmi_linestate
	RVV		USB HOST0 utmi_linestate signal status
26		W 0x0	usbhost0_stat_ohci_drwe
	RW		USB HOST0 ohci_drwe signal status

Bit	Attr	Reset Value	Description
25	RW	0x0	usbhost0_stat_ohci_rwe
25	RVV	0.00	USB HOST0 ohci_rwe signal status
24	RW	/ 0x0	usbhost0_stat_ohci_ccs
24	KW		USB HOST0 ohci_ccs signal status
23	RW	0x0	usbhost1_utmiotg_iddig
23	KW	0.00	USB HOST1 utmiotg_iddig signal status
22.21	22:21 RW 0x	0.00	usbhost1_utmi_linestate
22:21		UXU	USB HOST1 utmi_linestate signal status
20 5	DW	0x0	usbhost1_utmisrp_bvalid
20	RW		USB HOST1 utmisrp_bvalid signal status
19 RV	DW	0x0	usbhost1_utmiotg_vbusvalid
	RW		USB HOST1 utmiotg_vbusvalid signal status
18	RW	0×0	usbhost1_chirp_on
10	KW		USB HOST1 chirp_on signal status
17 F	RW	0x0	usbotg_utmiotg_iddiq
17	K V V	0.00	USB OTG utmiotg_iddig signal status
16:15	15 RW	0×0	usbotg_utmi_linestate
10.15		0.00	USB OTG utmi_linestate signal status
14	RW	/ 0x0	usbotg_utmisrp_bvalid
14	K V V	0.00	USB OTG utmisrp_bvalid
13	D14/	/ 0x0	usbotg_utmiotg_vbusvalid
13	RW	0.00	USB OTG utmiotg_vbusvalid signal status
12	RO	0x0	reserved
11	RW	0x0	reserved
10:0	RW	0x000	reserved

Address: Operational Base + offset (0x028c) SoC status register 3

Bit	Attr	Reset Value	Description
31:0	RW	0x0000000	nif0_fifo0
51.0		0x00000000	DDR channel0 NIF interface FIFO0 status

GRF_SOC_STATUS4

Address: Operational Base + offset (0x0290) SoC status register 4

Bit	Attr	Reset Value	Description
31:0	RW	0x00000000	nif0_fifo1
51.0		0x00000000	DDR channel0 NIF interface FIFO1 status

GRF_SOC_STATUS5

Address: Operational Base + offset (0x0294)

SoC status register 5

Bit Attr Reset Value Description		Bit	Attr	Reset Value	Description
----------------------------------	--	-----	------	--------------------	-------------

Bit	Attr	Reset Value	Description
31:0	RW	0×00000000	nif0_fifo2 DDR channel0 NIF interface FIFO2 status

Address: Operational Base + offset (0x0298)

SoC status register 6

Bit	Attr	Reset Value	Description
31:0	RW	0x00000000	nif0_fifo3
51.0		0x000000000	DDR channel0 NIF interface FIFO3 status

GRF_SOC_STATUS7

Address: Operational Base + offset (0x029c)

SoC status register 7

	Bit	Attr	Reset Value	Description
2	31:0	RW	0×00000000	nif1_fifo0
5	51.0		0x00000000	DDR channel1 NIF interface FIFO0 status

GRF_SOC_STATUS8

Address: Operational Base + offset (0x02a0) SoC status register 8

Bit	Attr	Reset Value	Description
31:0	RW	0x00000000	nif1_fifo1
51.0	K VV	000000000	DDR channel1 NIF interface FIFO1 status

GRF_SOC_STATUS9

Address: Operational Base + offset (0x02a4) SoC status register 9

Bit	Attr	Reset Value	Description
31:0	RW	0×00000000	nif1_fifo2 DDR channel1 NIF interface FIFO2 status

GRF_SOC_STATUS10

Address: Operational Base + offset (0x02a8) SoC status register 10

Bit	Attr	Reset Value	Description
31:0	RW	0×00000000	nif1_fifo3
51.0		0X00000000	DDR channel1 NIF interface FIFO3 status

GRF_SOC_STATUS11

Address: Operational Base + offset (0x02ac)

SoC status register 11

Bit	Attr	Reset Value	Description
31:0	RW		dfi0_eff_wr_num DDR channel0 DFI interface write command number

Address: Operational Base + offset (0x02b0) SoC status register 12

Bit	Attr	Reset Value	Description
31:0	RW		dfi0_eff_rd_num DDR channel0 DFI interface read command number

GRF_SOC_STATUS13

Address: Operational Base + offset (0x02b4) SoC status register 13

C Sta	Status register 13						
	Bit	Attr	Reset Value	Description			
				dfi0_eff_act_num			
	31:0	RW	0x0000000	DDR channel0 DFI interface active command			
				number			

GRF_SOC_STATUS14

Address: Operational Base + offset (0x02b8) SoC status register 14

Bit	Attr	Reset Value	Description
31:0	RW		dfi0_timer_val DDR channel0 DFI interface statistics timer value

GRF_SOC_STATUS15

Address: Operational Base + offset (0x02bc) SoC status register 15

Bit	Attr	Reset Value	Description
31:0	RW		dfi1_eff_wr_num DDR channel1 DFI interface write command
51.0			number

GRF_SOC_STATUS16

Address: Operational Base + offset (0x02c0) SoC status register 16

Bit	Attr	Reset Value	Description
			dfi1_eff_rd_num
31:0	RW	0x0000000	DDR channel1 DFI interface read command
			number

Address: Operational Base + offset (0x02c4) SoC status register 17

Bit	Attr	Reset Value	Description
			dfi1_eff_act_num
31:0	RW	0x0000000	DDR channel1 DFI interface active command
			number

GRF_SOC_STATUS18

Address: Operational Base + offset (0x02c8) SoC status register 18

Bit	Attr	Reset Value	Description
			dfi1_timer_val
31:0	RW	0x0000000	DDR channel1 DFI interface statistics timer
			value

GRF_SOC_STATUS19

Address: Operational Base + offset (0x02cc) SoC status register 19

Bit	Attr	Reset Value	Description
31	RW	0x0	usbhost1_fsvminus
21	RVV	UXU	USB HOST1 PHY fsvminus bit status
30	RW	0x0	usbhost1_fsvplus
30	RVV	UXU	USB HOST1 PHY fsvplus bit status
29	RW	0x0	usbhost1_chgdet
29	K VV	0.00	USB HOST1 PHY charge detect status
28	RW	0x0	usbhost0_fsvminus
20	K VV	0.00	USB HOST0 PHY fsvminus bit status
27	RW	0x0	usbhost0_fsvplus
27	RVV	UXU	USB HOST0 PHY fsvplus bit status
26	RW	0x0	usbhost0_chgdet
20	RVV		USB HOST0 PHY charge detect status
25	RW	0×0	usbotg_fsvminus
25	K VV		USB OTG PHY fsvminus bit status
24	RW	0x0	usbotg_fsvplus
24	RVV		USB OTG PHY fsvplus bit status
23	D\\/	RW 0x0	usbotg_chgdet
23			USB OTG PHY charge detect status
22:14	RO	0x0	reserved
13:11	RW	0x0	host_I3_ocp_sconnect
12:11	RVV	UXU	Host interface L3 OCP sconnect status
10	RW	0x0	host_I3_ocp_tactive
10	K VV	UXU	Host interface L3 OCP tactive status
9:8	RW	0x0	host_I3_ocp_mconnect
9:0	KVV	UXU	Host interface L3 OCP mconnect status

Bit	Attr	Reset Value	Description
7	RW	0x0	host_wakeack
/		0.00	Host interface wakeack status
6:5	RW	0x0	host_eoi_out
0.5	K V V	UXU	Host interface eoi_out status
4	RW	0x0	host_mwait_out
4	RW		Host interface mwait_out status
3	RW	0x0	host_mwakeup
5	K V V		Host interface mwakeup status
2	RW	0x0	host_mstandby
2	RVV		Host interface mstandby status
1:0		0.20	host_sidle_ack
1.0	RW 0x0	UXU	Host interface sidle ack

Address: Operational Base + offset (0x02d0) SoC status register 20

Bit	Attr	Reset Value	Description
31:0	RW	0x0000000	host_geno Host interface geno bit stauts The GENI GENO is a mechanism that allows the 2 chip to exchange flags (interupts), up to 32 independent flags are available.

GRF_SOC_STATUS21

Address: Operational Base + offset (0x02d4) SoC status register 21

Bit	Attr	Reset Value	Description
31:26	RW	0x00	usbhost0_stat_ehci_usbsts
51:20	RW	0,000	USB host0 ehci_usbsts bit status
25:15	RW	0x000	usbhost0_stat_ehci_xfer_cnt
25.15	K VV	0x000	USB host0 ehci_xfer counter status
14	RW	0x0	usbhost0_stat_ehci_xfer_prdc
14		UXU	USB host0 ehci_xfer_prdc bit status
13:10	RW	0x0	usbhost0_stat_ehci_lpsmc_state
15.10			USB host0 ehci_lpsmc_state bit status
9	RW	0×0	usbhost0_stat_ehci_bufacc
5			USB host0 ehci_bufacc bit status
8	RW	W ()x()	usbhost0_stat_ohci_globalsuspend
0			USB host0 ohci_globalsuspend bit status
7:0	RW	0×00	dphy_rx0_testdout
/.0		0x00	MIPI DPHY RX0 test bus data output

GRF_PERIDMAC_CON0

Address: Operational Base + offset (0x02e0)

MAC cor Bit	Attr	Reset Value	Description
			wirte_enable
			bit0~15 write enable
			When bit $16=1$, bit 0 can be written by
			software .
			When bit 16=0, bit 0 cannot be written by
			software;
31:16	wo	0x0000	When bit 17=1, bit 1 can be written by software .
51.10	VVO	00000	When bit 17=0, bit 1 cannot be written by
			software;
			soltware,
			When bit 31=1, bit 15 can be written by
			software .
			When bit 31=0, bit 15 cannot be written by
			software;
			peridmac_boot_addr
		0x00	peridmac_boot_addr[19:12]
			PERI DMAC boot_addr[19:12] input control
15:8	RW		Configures the address location that contains
			the first instruction the DMAC executes, when
			it exits from reset.
			peridmac_boot_periph_ns
			peridmac_boot_periph_ns[19:16]
			PERI DMAC boot_peri_ns input control
7.4	DW	0xf	Controls the security state of a peripheral
7:4	RW		request interface, when the PERI DMAC exits
			from reset.
			Note: PERI DMAC don't support secure
			feature, these bits don't need to be configured
			peridmac_boot_manager_ns
			PERI DMAC boot_manager_ns input control
			When the DMAC exits from reset , this signal
			controls the security state of the DMA
3	RW	0x1	manager thread:
			1'b0: assigns DMA manager to the secure
			state
			1'b1: assigns DMA manager to the Non-secure
			state

PERI DMAC control register 0

Bit	Attr	Reset Value	Description
2:1 RW			grf_drtype_peridmac
			PERI DMAC type of acknowledgement or
			request for peripheral signals:
	RW	0x1	2'b00: single level request
			2'b01: burst level request
			2'b10: acknowledging a flush request
			2'b11: reserved
			peridmac_boot_from_pc
	RW 0x0		PERI DMAC boot_from_pc input control
			Controls the location in which the DMAC0
			executes its initial instruction, after it exits
0		0x0	from reset :
0			1'b0: DMAC waits for an instruction from APB
			interface
			1'b1: DMAC manager thread executes the
			instruction that is located at the address that
			boot_addr[31:0] provided.

GRF_PERIDMAC_CON1

Address: Operational Base + offset (0x02e4) PERI DMAC control register 1

Bit	Attr	Reset Value	Description
31:16	wo	0×0000	<pre>wirte_enable bit0~15 write enable When bit 16=1, bit 0 can be written by software . When bit 16=0, bit 0 cannot be written by software; When bit 17=1, bit 1 can be written by software . When bit 17=0, bit 1 cannot be written by software; When bit 31=1, bit 15 can be written by software . When bit 31=0, bit 15 cannot be written by software;</pre>
15:12	RO	0x0	reserved
11:0	RW	0×000	peridmac_boot_addr peridmac_boot_addr[31:20] PERI DMAC boot_addr[31:20] input control Configures the address location that contains the first instruction the DMAC executes, when it exits from reset.

GRF_PERIDMAC_CON2

Address: Operational Base + offset (0x02e8) PERI DMAC control register 2

Bit	Attr	Reset Value	Description
31:16	wo	0×0000	<pre>wirte_enable bit0~15 write enable When bit 16=1, bit 0 can be written by software . When bit 16=0, bit 0 cannot be written by software; When bit 17=1, bit 1 can be written by software . When bit 17=0, bit 1 cannot be written by software; When bit 31=1, bit 15 can be written by software . When bit 31=0, bit 15 cannot be written by software;</pre>
15:0	RW	0×ffff	peridmac_boot_irq_ns PERI DMAC boot_irq_ns input control Controls the security state of an event-interrupt resource , when the PERI DMAC exits from reset. Note : PERI DMAC don't support secure feature, these bits don't need to be configured.

GRF_PERIDMAC_CON3

Address: Operational Base + offset (0x02ec) PERI DMAC control register 3

Bit Attr Reset Value	Description
----------------------	-------------

Bit	Attr	Reset Value	Description
31:16	wo	0×0000	<pre>wirte_enable wirte_enable bit0~15 write enable When bit 16=1, bit 0 can be written by software . When bit 16=0, bit 0 cannot be written by software; When bit 17=1, bit 1 can be written by software . When bit 17=0, bit 1 cannot be written by software; When bit 31=1, bit 15 can be written by software . When bit 31=0, bit 15 cannot be written by software;</pre>
15:0	RW	0×ffff	peridmac_boot_periph_ns PERI DMAC boot_peri_ns input control Controls the security state of a peripheral request interface, when the DMAC exits from reset. Note: PERI DMAC don't support secure feature, these bits don't need to be configured.

GRF_DDRC0_CON0

Address: Operational Base + offset (0x02f0) DDRC0 control register 0

Bit	Attr	Reset Value	Description
31:16	RW	0×0000	<pre>write_enable bit0~15 write enable When bit 16=1, bit 0 can be written by software . When bit 16=0, bit 0 cannot be written by software; When bit 17=1, bit 1 can be written by software . When bit 17=0, bit 1 cannot be written by software; When bit 31=1, bit 15 can be written by software . When bit 31=0, bit 15 cannot be written by software;</pre>
15:13	RO	0x0	reserved

Bit	Attr	Reset Value	Description
12:11	RW	0×0	ddr0_dto_lb
12.11	K VV	0.00	DDR0 DTO I/O internal loopback enable
10:9	RW	0.40	ddr0_dto_te
10.9	K VV	0.00	DDR0 DTO I/O on-die termination enable
0.7		0.40	ddr0_dto_pdr
8:7	RW	0.00	DDR0 DTO I/O receiver power down
6:5	RW	0×0	ddr0_dto_pdd
0.5	K VV	0.00	DDR0 DTO I/O driver power down
4:3		N 0×0 N 0×0	ddr0_dto_iom
4.5	RW		DDR0 DTO I/O mode select
2:1	RW	0×0	ddr0_dto_oe
2.1	K VV	0.00	DDR0 DTO I/O output enable
		W 0×0	ddr0_ato_ae
0			Enables, if set, the analog test output I/O.
0			Connects to the AE pin of the analog test
			output I/O

GRF_DDRC1_CON0 Address: Operational Base + offset (0x02f4) DDRC1 control register 0

Bit	Attr	Reset Value	Description
			write_enable bit0~15 write enable When bit 16=1, bit 0 can be written by software . When bit 16=0, bit 0 cannot be written by software; When bit 17=1, bit 1 can be written by
31:16	RW	0×0000	software . When bit 17=0, bit 1 cannot be written by software; When bit 31=1, bit 15 can be written by software . When bit 31=0, bit 15 cannot be written by software;
15:13	RO	0x0	reserved
12:11	RW	0×0	ddr1_dto_lb DDR1 DTO I/O internal loopback enable
10:9	RW	0x0	ddr1_dto_te DDR1 DTO I/O on-die termination enable
8:7	RW	0x0	ddr1_dto_pdr DDR1 DTO I/O receiver power down
6:5	RW	0x0	ddr1_dto_pdd DDR1 DTO I/O driver power down

Bit	Attr	Reset Value	Description	
4:3		0.40	ddr1_dto_iom	
4:5	RW	0x0	DDR1 DTO I/O mode select	
2:1		0.40	ddr1_dto_oe	
2:1	RW	V 10x0	DDR1 DTO I/O output enable	
			ddr1_ato_ae	
0	RW	0×0	Enables, if set, the analog test output I/O.	
U	RVV	UXU	Connects to the AE pin of the analog test	
			output I/O	

GRF_CPU_CON0

Address: Operational Base + offset (0x02f8) CPU control register 0

Bit	Attr	Reset Value	Description
			write_enable
			bit0~15 write enable
			When bit 16=1, bit 0 can be written by
			software .
			When bit 16=0, bit 0 cannot be written by
			software;
			When bit 17=1, bit 1 can be written by
31:16	RW	0x0000	software .
			When bit 17=0, bit 1 cannot be written by
			software;
			When bit 31=1, bit 15 can be written by
			software .
			When bit 31=0, bit 15 cannot be written by
			software;
15	RW	0x1	cfgaddrfilt_en_grf
15			A17 cfgaddrfilt_en bit control
14	RO	0x0	reserved
			cfgend_a17
13:10	RW	0×0	A17 cfgend bit control
13.10			Every bit for one core, bit3 is for core3, bit2 is
			for core2, bit1 is for core1, bit0 is for core0.
9	RW	0x1	tpiu_ctl_grf
		0.12	tpiu_ctl bit control
8:5	RW	0x1	cs_instid_grf
		0.12	Coresight cs_instid bit control
4	RW	0x0	l2rstdisable_grf
· .			A17 l2rstdisable bit control
			l1rstdisable_grf
3:0	RW	0×0	A17 l1rstdisable bit control
			Every bit for one core, bit3 is for core3, bit2 is
			for core2, bit1 is for core1, bit0 is for core0.

GRF_CPU_CON1

Address: Operational Base + offset (0x02fc) CPU control register 1

Bit	Attr	Reset Value	Description
31:16	RW	0×0000	<pre>write_enable bit0~15 write enable When bit 16=1, bit 0 can be written by software . When bit 16=0, bit 0 cannot be written by software; When bit 17=1, bit 1 can be written by software . When bit 17=0, bit 1 cannot be written by software; When bit 31=1, bit 15 can be written by software . When bit 31=0, bit 15 cannot be written by software;</pre>
15:0	RW	0x0ff0	cfgaddrfilt_start_grf A17 non secure filter start address[15:0]

GRF_CPU_CON2

Address: Operational Base + offset (0x0300) CPU control register 2

Bit	Attr	Reset Value	Description
31:16	RW	0x0000	<pre>write_enable bit0~15 write enable When bit 16=1, bit 0 can be written by software . When bit 16=0, bit 0 cannot be written by software; When bit 17=1, bit 1 can be written by software . When bit 17=0, bit 1 cannot be written by software; When bit 31=1, bit 15 can be written by software . When bit 31=0, bit 15 cannot be written by software;</pre>
15:0	RW	0x0fff	cfgaddrfilt_end_grf A17 non secure filter end address[15:0]

GRF_CPU_CON3

Copyright 2017 @ FuZhou Rockchip Electronics Co., Ltd.

Address: Operational Base + offset (0x0304)
CPU control register 3

Bit	Attr	Reset Value	Description
			write_enable
			bit0~15 write enable
			When bit 16=1, bit 0 can be written by
			software .
			When bit 16=0, bit 0 cannot be written by
			software;
	DW		When bit 17=1, bit 1 can be written by
31:16	RW	0×0000	software.
			When bit 17=0, bit 1 cannot be written by
			software;
			When bit 31=1, bit 15 can be written by
			software .
			When bit 31=0, bit 15 cannot be written by
			software;
15:12	RO	0x0	reserved
	RW	0x0	cfgnmfi_a17
11.0			A17 cfgnmfi bit control
11:8			Every bit for one core, bit3 is for core3, bit2 is
			for core2, bit1 is for core1, bit0 is for core0.
7:4	RW	0x0	cfgaddrfilt_end_grf
7:4			A17 non secure filter end address[19:16]
3:0	RW 0x0	0.40	cfgaddrfilt_start_grf
5:0			A17 non secure filter start address[19:16]

GRF_CPU_CON4 Address: Operational Base + offset (0x0308) CPU control register 4

Bit Attr Reset Value Description

Bit	Attr	Reset Value	Description
31:16 RV		0×0000	write_enable
			bit0~15 write enable
			When bit 16=1, bit 0 can be written by
			software .
	RW		When bit 16=0, bit 0 cannot be written by software;
			When bit 17=1, bit 1 can be written by software .
51.10			When bit 17=0, bit 1 cannot be written by
			software;
			soltware,
			When bit 31=1, bit 15 can be written by
			software .
			When bit 31=0, bit 15 cannot be written by
			software;
15.10	DW	0x1	l2_mem_ema_grf
15:13	RW		L2 memory EMA control
12:10		0x1	owl_mem_ema_grf
12:10	RW	UXI	A17 memory EMA control
9	DW	RW 0x0	evento_clear
9			A17 evento clear bit control
8	RW	/ 0x0	eventi_a17
0			A17 eventi bit control
7:4	RO	0x0	reserved
	RW	0×0	teinit_a17
3:0			A17 teinit bit control
			Every bit for one core, bit3 is for core3, bit2 is

GRF_CPU_STATUS0

Address: Operational Base + offset (0x0318) CPU status register 0

Bit	Attr	Reset Value	Description
31:15	RO	0x0	reserved
14	RW	0x0	evento_rising_edge evento signal rising edge
13:10	RW	0×0	owl_pmupl1_grf A17 PMU Privilege level 1 event Every bit for one core, bit3 is for core3, bit2 is for core2, bit1 is for core1, bit0 is for core0.
9:6	RW	0×0	owl_pmupl2_grf A17 PMU Privilege level 2 event Every bit for one core, bit3 is for core3, bit2 is for core2, bit1 is for core1, bit0 is for core0.

Bit	Attr	Reset Value	Description
		00	owl_pmusecure_grf
E. 2	5:2 RW 0x0		A17 pmu secure event
5:2		UXU	Every bit for one core, bit3 is for core3, bit2 is
			for core2, bit1 is for core1, bit0 is for core0.
1		0.40	jtagnsw_st_grf
	RW	0x0	JTAG nsw status
0		0x0	jtagtop_st_grf
	RW		JTAG top status

GRF_UOC0_CON0

Address: Operational Base + offset (0x0320) UOC0 control register 0

Bit	Attr	Reset Value	Description
31:16	RW	0×0000	<pre>write_enable bit0~15 write enable When bit 16=1, bit 0 can be written by software . When bit 16=0, bit 0 cannot be written by software; When bit 17=1, bit 1 can be written by software . When bit 17=0, bit 1 cannot be written by software; When bit 31=1, bit 15 can be written by software . When bit 31=0, bit 15 cannot be written by software;</pre>
15	RW	0x0	usbotg_linestate_irq_pd USB OTG linestate interrupt pending bit
14	RW	0x0	usbotg_linestate_irq_en USB OTG line state interrupt enable
13	RW	0×0	usbotg_siddq USB OTG IDDQ test enable This test signal enables you to perform IDDQ testing by powering down all analog blocks. 1'b1: The analog blocks are powered down. 1'b0: The analog blocks are powered up.

Bit	Attr	Reset Value	Description
			usbotg_port_reset
			USB OTG per-port reset
			When asserted, this customer-specific signal
			resets the corresponding
			port transmit and receive logic without
			disabling the clocks within the PHY.
12	RW	0x0	1'b1: The transmit and receive finite state
			machines (FSMs) are reset, and the line_state
			logic combinatorially reflects the state of the
			single-ended receivers.
			1'b0: The transmit and receive FSMs are
			operational, and the line_state logic becomes
			sequential after 11 PHYCLOCK cycles.
11:10	RO	0x0	reserved
	D 14/		usbotg_scaledown_mode
9:8	RW	0x0	USB OTG scale down mode control
			usbotg_tune
			USB OTG VBUS valid threshold adjustment
			This bus adjusts the voltage level for the VBUS
	RW	0x4	Valid threshold.
			3'b111: +9%
7.5			3'b110: +6%
7:5			3'b101: +3%
			3'b100: Design default
			3'b011: -3%
			3'b010: -6%
			3'b001: -9%
			3'b000: -12%
			usbotg_disable
4	RW	0x0	USB OTG block disable
4		0.00	1'b1: the USB OTG block is power down
			1'b0: the USB OTG block is power up
			usbotg_compdistune
			Disconnect Threshold Adjustment
			This bus adjusts the voltage level for the
			threshold used to detect
			a disconnect event at the host.
			3'b111: +4.5%
3:1	RW	0x4	3'b110: +3%
			3'b101: +1.5%
			3'b100: Design default
			3'b011: -1.5%
			3'b010: -3%
			3'b001: -4.5%
			3'b000: -6%

Bit	Attr	Reset Value	Description
	RW	0×1	usbotg_common_on_n USB OTG common block power-down control This signal controls the power-down signals in the XO, Bias, and PLL blocks when the USB 2.0 PHY is in Suspend or Sleep mode. 1'b1: In Suspend mode, the XO, Bias, and PLL blocks are powered down. In Sleep mode, the Bias and PLL blocks are powered down. 1'b0: In Suspend mode, the XO, Bias, and PLL blocks remain powered in Suspend mode. In Sleep mode, if the reference clock is a crystal, the XO block remains powered.

GRF_UOC0_CON1 Address: Operational Base + offset (0x0324) UOC0 control register 1

Bit	Attr	Reset Value	Description
			write_enable
			bit0~15 write enable
			When bit 16=1, bit 0 can be written by
			software .
			When bit 16=0, bit 0 cannot be written by
			software;
			When bit 17=1, bit 1 can be written by
31:16	RW	0x0000	software .
			When bit 17=0, bit 1 cannot be written by
			software;
			When bit 31=1, bit 15 can be written by
			software .
			When bit 31=0, bit 15 cannot be written by
			software;
			usbotg_txrisetune
			USB OTG HS transmitter rise/fall time
			adjustment
	RW	0x1	This bus adjusts the rise/fall times of the
15:14			high-speed waveform.
			2'b11: -20%
			2'b10: -15%
			2'b01: design default
			2'b00: +10%

Bit	Attr	Reset Value	Description
			usbotg_txhsxvtune
			USB OTG transmitter high-speed crossover
			adjustment
			This bus adjusts the voltage at which the DP
13:12	RW	0x3	and DM signals cross while transmitting in HS
13.12		0.2.5	mode.
			2'b11: Default setting
			2'b10: +15 mV
			2'b01: -15 mV
			2'b00: Reserved
			usbotg_txvreftune
			USB OTG HS DC voltage level adjustment
			This bus adjusts the high-speed DC level
			voltage.
			4'b1111: +8.75%
			4'b1110: +7.5%
	RW	0x3	4'b1101: +6.25%
			4'b1100: +5%
			4'b1011: +3.75%
11:8			4'b1010: +2.5%
			4'b1001: +1.25%
			4'b1000: Design default 4'b0111: -1.25%
			4 b0111: -1.25% 4'b0110: -2.5%
			4'b0110: -2.5% 4'b0101: -3.75%
			4'b0100: -5%
			4'b0011: -6.25%
			4'b0010: -7.5%
			4'b0001: -8.75%
			4'b0000: -10%
			usbotg_txfslstune
			USB OTG FS/LS source impedance
			adjustment
			This bus adjusts the low- and full-speed
			single-ended source
			impedance while driving high. The following
7:4	RW	0x3	adjustment values are based on nominal
			process, voltage, and temperature.
			4'b1111: -5%
			4'b0111: -2.5%
			4'b0011: Design default
			4'b0001: +2.5%
			4'b0000: +5%

Bit	Attr	Reset Value	Description
			usbotg_txpreemppulsetune
			USB OTG HS transmitter pre-emphasis
			duration control
			This signal controls the duration for which the
3	RW	0x0 0x3	HS pre-emphasis current is sourced onto DP0
			or DM0. transition in HS mode.
			1'b1: 1X, short pre-emphasis current duration
			1'b0: (desian default) 2X, long pre-emphasis
			currrent duration
			usbotg_sqrxtune
			USB OTG squelch threshold adjustment
			This bus adjusts the voltage level for the
2:0			threshold used to detect valid high-speed
			data.
			3'b111: -20%
	RW		3'b110: -15%
			3'b101: -10%
			3'b100: -5%
			3'b011: Design default
			3'b010: +5%
			3'b001: +10%
			3'b000: +15%

GRF_UOC0_CON2 Address: Operational Base + offset (0x0328) UOC0 control register 2

Bit	Attr	Reset Value	Description
31:16	RW	0×0000	<pre>write_enable bit0~15 write enable When bit 16=1, bit 0 can be written by software . When bit 16=0, bit 0 cannot be written by software; When bit 17=1, bit 1 can be written by software . When bit 17=0, bit 1 cannot be written by software; When bit 31=1, bit 15 can be written by software . When bit 31=0, bit 15 cannot be written by software;</pre>

Bit	Attr	Reset Value	Description
			usbotg_acaenb
			USB OTG ACA ID_OTG pin resistance
			detection enable
15	RW	0x0	1'b1: enable detection on resistance on the
			ID_OTG pin of an ACA
			1'b0: disable detection on resistance on the
			ID_OTG pin of an ACA
			usbotg_dcdenb
			USB OTG data contact detection enable
14	RW	0.40	1'b1: IDP_SRC current is sourced onto DP,
14		0x0	pull-down resistance on DMA is enabled
			1'b0: IDP_SRC current is disable, pull-down
			resistance on DM is disabled
13	RO	0x0	reserved
			usbotg_txrestune
			USB OTG source impedance adjustment
	RW	0x1	2'b11: source impedance is desreased by
			4ohm
12:11			2'b10: source impedance is desreased by
			2ohm
			2'b01: design default
			2'b00: source impedance is desreased by
			1.5ohm
	RW	0x1	usbotg_sleepm
			USB OTG sleep mode enable
10			Asserting this signal place the USB PHY in
10			sleep mode.
			1'b0: sleep mode enable
			1'b1: normal mode
9	RO	0x0	reserved
			usbotg_retenable_n
8	RW	0x1	USB OTG retention mode enable
8			0: retention mode enable
			1: retention mode disable
			usbotg_vdatsrcenb
7	RW	0x0	USB OTG battery charging sourcing select
			1'b1: data source voltage is enable
			1'b0: data source voltage is disable
			usbotg_vdatdetenb
			USB OTG battery charging attach/connect
6	RW	0×0	detection enable
6			1'b1: enable
			1'b0: disable

Bit	Attr	Reset Value	Description
			usbotg_chrgsel
			USB OTG battery charging source select
5	RW	0x0	1'b1: data source voltage is sourced onto DM
		0.00	and sunk from DP
			1'b0: data source voltage is sourced onto DP
			and sunk from DM
			usbotg_txpreempamptune
			2'b11: 3X pre-emphasis current
4:3	RW	0x1	2'b10: 2X pre-emphasis current
			2'b01: 1X pre-emphasis current
			2'b00: HS Transmitter Pre-Emphasis is
			disabled
			usbotg_soft_con_sel
2	RW	0x0	1'b0: software control usb otg disable
			1'b1: software control usb otg enable
			usbotg_vbusvldextsel
	RW	0×0	USB OTG external VBUS valid select
			This signal selects the VBUSVLDEXT input or
			the internal Session Valid comparator to
1			indicate when the VBUS signal on the USB
			cable is valid.
			1'b1: The VBUSVLDEXT input is used.
			1'b0: The internal Session Valid comparator is
			used.
			usbotg_vbusvldext
			USB OTG external VBUS valid indicator
			This signal is valid in Device mode and only
			when the VBUSVLDEXTSEL signal is set to 1.
			VBUSVLDEXT indicates whether the VBUS
0	RW	0x0	signal on the USB cable is valid. In addition,
			BUSVLDEXT enables the pullup resistor on the
			D+ line.
			1'b1: The VBUS signal is valid, and the pull-up resistor on D+ is enabled.
			1'b0: The VBUS signal is not valid, and the
			-
			pull-up resistor on D+ is disabled.

GRF_UOC0_CON3

Address: Operational Base + offset (0x032c) UOC0 control register 3

Bit Attr Reset Value Description			Bit	Attr	Reset Value	Description
----------------------------------	--	--	-----	------	-------------	-------------

Bit	Attr	Reset Value	Description
			write_enable
			bit0~15 write enable
			When bit 16=1, bit 0 can be written by
			software .
			When bit 16=0, bit 0 cannot be written by
		0x0000	software;
			When bit 17=1, bit 1 can be written by
31:16	RW		software .
			When bit 17=0, bit 1 cannot be written by
			software;
			When bit 31=1, bit 15 can be written by
			software .
			When bit 31=0, bit 15 cannot be written by
			software;
15	RW	0x0	usbotg_dbnce_fltr_bypass
15		0.00	USB OTG debounce filter bypass enable
14	RO	0x0	reserved
 I	RW	0×0	usbotg_iddiq_sel
13			USB OTG iddig soft control enable
13			1'b1: software control
			1'b0: hardware control
12	RW	0x0	usbotg_iddiq
12		0.00	USB OTG iddig software control bit
11:8	RO	0x0	reserved
			usbotg_bypasssel
			transmitter digital bypass select
7	RW	0×0	1'b1: transmitter digital bypass mode is
			enabled
			1'b0: transmitte digital bypass mode is
			disabled
			usbotg_bypassdmen
			DM0 transmitter digital bypass enable
6	RW	0x0	1'b1: DM0 FS/LS driver is enabled and driven
0			with the BYPASSDPDATA0 signals
			1'b0: DM0 FS/LS driver is disabled in
			transmitter digital byapss mode
			usbotg_utmi_termselect
5	RW	0x0	USB OTG utmi termination select
			1'b1: full speed terminations are enabled
			1'b0: high speed terminations are enabled

Bit	Attr	Reset Value	Description
			usbotg_utmi_xcvrselect
			USB OTG utmi transceiver select
			2'b11: sends an LS packet on an FS bus or
4:3	RW	0x0	receives an LS packet
			2'b10: LS transceiver
			2'b01: FS transceiver
			2'b00: HS transceiver
			usbotg_utmi_opmode
	RW	0x0	USB OTG utmi operation mode
			This controller bus selects the UTMI+
			operation mode
2:1			2'b11: normal operation without SYNC or EOP
			generation
			2'b10: disable bit stuffing and NRZI encoding
			2'b01: no-driving
			2'b00: normal
			usbotg_utmi_suspend_n
0	RW	0x1	USB OTG suspend mode enable
0			1'b1: normal operation mode
			1'b0: suspend mode

GRF_UOC0_CON4

Address: Operational Base + offset (0x0330) UOC0 control register 4

Bit	Attr	Reset Value	Description
31:16	RW	0×0000	<pre>write_enable bit0~15 write enable When bit 16=1, bit 0 can be written by software . When bit 16=0, bit 0 cannot be written by software; When bit 17=1, bit 1 can be written by software . When bit 17=0, bit 1 cannot be written by software; When bit 31=1, bit 15 can be written by software . When bit 31=0, bit 15 cannot be written by software;</pre>
15:8	RO	0x0	reserved
7	RW	0×0	usbotg_id_fall_edge_irq_pd USB OTG id fall edge interrupt pending bit, write 1 to this bit , it will be cleared.

Bit	Attr	Reset Value	Description
6	RW	0x0	usbotg_id_fall_edge_irq_en
0	K VV	0.00	USB OTG id fall edge interrupt enable
			usbotg_id_rise_edge_irq_pd
5	RW	0x0	USB OTG id rise edge interrupt pending bit,
5		0.00	write 1 to this bit , it will be cleared.
4	RW	0x0	usbotg_id_rise_edge_irq_en
4		0.00	USB OTG id rise edge interrupt enable
			usbotg_bvalid_irq_pd
3	RW	0x0	USB OTG bvalid interrupt pending bit, write 1
			to this bit, it will be cleared.
2	RW	0x0	usbotg_bvalid_irq_en
2		0.00	USB OTG bvalid interrupt enable
			linestate_cnt_sel
		W 0x3	linestate signal filter time select
1:0	RW		2'b00: 100us
			2'b01: 500us
			2'b10: 2.5ms
			2'b11: 15ms

GRF_UOC1_CON0

Address: Operational Base + offset (0x0334) UOC1 control register 0

Bit	Attr	Reset Value	Description
31:16	RW	0×0000	<pre>write_enable bit0~15 write enable When bit 16=1, bit 0 can be written by software . When bit 16=0, bit 0 cannot be written by software; When bit 17=1, bit 1 can be written by software . When bit 17=0, bit 1 cannot be written by software; When bit 31=1, bit 15 can be written by software . When bit 31=1, bit 15 cannot be written by software . When bit 31=0, bit 15 cannot be written by software;</pre>
15	RW	0x0	usbhost0_linestate_irq_pd USB HOST0 linestate interrupt pending bit
14	RW	0×0	usbhost0_linestate_irq_en USB HOST0 line state interrupt enable

Bit	Attr	Reset Value	Description
			usbhost0_siddq
			USB HOST0 IDDQ test enable
10	DW		This test signal enables you to perform IDDQ
13	RW	0x0	testing by powering down all analog blocks.
			1'b1: The analog blocks are powered down.
			1'b0: The analog blocks are powered up.
			usbhost0_port_reset
			USB HOST0 per-port reset
			When asserted, this customer-specific signal
			resets the corresponding
			port transmit and receive logic without
			disabling the clocks within the PHY.
12	RW	0x0	1'b1: The transmit and receive finite state
			machines (FSMs) are reset, and the line_state
			logic combinatorially reflects the state of the
			single-ended receivers.
			1'b0: The transmit and receive FSMs are
			operational, and the line_state logic becomes
			sequential after 11 PHYCLOCK cycles.
11	RW	0x1	usbhost0_word_if
		0.11	USB HOST0 word_if bit control
10	RW	0x0	usbhost0_sim_mode
			USB HOST0 sim_mode bit control
9	RW	0x1	usbhost0_incrx_en
-			USB HOST0 incrx_en bit control
8	RW	0x1	usbhost0_incr8_en
-			USB HOST0 incr8_en bit control
			usbhost0_tune
			USB HOST0 VBUS valid threshold adjustment
			This bus adjusts the voltage level for the VBUS
			Valid threshold.
			3'b111: +9%
7:5	RW	0x4	3'b110: +6%
			3'b101: +3%
			3'b100: Design default 3'b011: -3%
			3'b010: -6%
			3'b001: -9%
			3'b000: -12%
			usbhost0_disable
			USB HOST0 block disable
4	RW	0x0	1'b1: the USB HOSTO block is power down
			1'b0: the USB HOSTO block is power up

Bit	Attr	Reset Value	Description
			usbhost0_compdistune
			USB HOST0 disconnect threshold adjustment
			This bus adjusts the voltage level for the
			threshold used to detect
			a disconnect event at the host.
			3'b111: +4.5%
3:1	RW	0x4	3'b110: +3%
			3'b101: +1.5%
			3'b100: Design default
			3'b011: -1.5%
			3'b010: -3%
			3'b001: -4.5%
			3'b000: -6%
			usbhost0_common_on_n
			USB HOST0 common block power-down
			control
	RW	0×1	This signal controls the power-down signals in
			the XO, Bias, and PLL blocks when the USB 2.0
			PHY is in Suspend or Sleep mode.
0			1'b1: In Suspend mode, the XO, Bias, and PLL
			blocks are powered down. In Sleep mode, the
			Bias and PLL blocks are powered down.
			1'b0: In Suspend mode, the XO, Bias, and PLL
			blocks remain powered in Suspend mode. In
			Sleep mode, if the reference clock is a crystal,
			the XO block remains powered.

GRF_UOC1_CON1

Address: Operational Base + offset (0x0338)

UOC1 control register 1

Bit Attr Reset Value	Description
----------------------	-------------

Bit	Attr	Reset Value	Description
			write_enable
			bit0~15 write enable
			When bit 16=1, bit 0 can be written by
			software .
			When bit 16=0, bit 0 cannot be written by software;
			When bit 17=1, bit 1 can be written by
31:16	RW	0x0000	software .
			When bit 17=0, bit 1 cannot be written by
			software;
			· · · · · ·
			When bit 31=1, bit 15 can be written by
			software .
			When bit 31=0, bit 15 cannot be written by
			software;
			usbhost0_txrisetune
			USB HOST0 HS transmitter rise/fall time
			adjustment
			This bus adjusts the rise/fall times of the
15:14	RW	0x1	high-speed waveform.
			2'b11: -20%
			2'b10: -15%
			2'b01: design default
			2'b00: +10%
			usbhost0_txhsxvtune
		0x3	USB HOST0 transmitter high-speed crossover
			adjustment
			This bus adjusts the voltage at which the DP
13:12	RW		and DM signals cross while transmitting in HS
			mode.
			2'b11: Default setting
			2'b10: +15 mV
			2'b01: -15 mV
			2'b00: Reserved

Bit	Attr	Reset Value	Description
			usbhost0_txvreftune
			USB HOST0 HS DC voltage level adjustment
			This bus adjusts the high-speed DC level
			voltage.
			4'b1111: +8.75%
			4'b1110: +7.5%
			4'b1101: +6.25%
			4'b1100: +5%
			4'b1011: +3.75%
11:8	RW	0x3	4'b1010: +2.5%
11.0		0.7.5	4'b1001: +1.25%
			4'b1000: Design default
			4'b0111: -1.25%
			4'b0110: -2.5%
			4'b0101: -3.75%
			4'b0100: -5%
			4'b0011: -6.25%
			4'b0010: -7.5%
			4'b0001: -8.75%
			4'b0000: -10%
			usbhost0_txfslstune
			USB HOST0 FS/LS source impedance
			adjustment
			This bus adjusts the low- and full-speed
		0x3	single-ended source
			impedance while driving high. The following
7:4	RW		adjustment values are based on nominal
			process, voltage, and temperature.
			4'b1111: -5%
			4'b0111: -2.5%
			4'b0011: Design default
			4'b0001: +2.5%
			4'b0000: +5%
			usbhost0_txpreemppulsetune
			USB HOST0 HS transmitter pre-emphasis
			duration control
2		0.40	This signal controls the duration for which the
3	RW	0x0	HS pre-emphasis current is sourced onto DPO
			or DM0. transition in HS mode.
			1'b1: 1X, short pre-emphasis current duration
			1'b0: (desian default) 2X, long pre-emphasis
			currrent duration

Bit	Attr	Reset Value	Description
			usbhost0_sqrxtune
			USB HOST0 squelch threshold adjustment
			This bus adjusts the voltage level for the
			threshold used to detect valid high-speed
			data.
			3'b111: -20%
2:0	RW	0x3	3'b110: -15%
			3'b101: -10%
			3'b100: -5%
			3'b011: Design default
			3'b010: +5%
			3'b001: +10%
			3'b000: +15%

GRF_UOC1_CON2 Address: Operational Base + offset (0x033c) UOC1 control register 2

Bit	Attr	Reset Value	Description
31:16	RW	0×0000	<pre>write_enable bit0~15 write enable When bit 16=1, bit 0 can be written by software . When bit 16=0, bit 0 cannot be written by software; When bit 17=1, bit 1 can be written by software . When bit 17=0, bit 1 cannot be written by software; When bit 31=1, bit 15 can be written by software . When bit 31=0, bit 15 cannot be written by software;</pre>
15	RW	0x0	usbhost0_acaenb USB HOST0 ACA ID_OTG pin resistance detection enable 1'b1: enable detection on resistance on the ID_OTG pin of an ACA 1'b0: disable detection on resistance on the ID_OTG pin of an ACA

Bit	Attr	Reset Value	Description
			usbhost0_dcdenb
			USB HOST0 data contact detection enable
14		00	1'b1: IDP_SRC current is sourced onto DP,
14	RW	0x0	pull-down resistance on DMA is enabled
			1'b0: IDP_SRC current is disable, pull-down
			resistance on DM is disabled
10		0.20	usbhost0_app_prt_ovrcur
13	RW	0x0	USB HOST0 app_prt_ovrcur bit control
			usbhost0_txrestune
			USB HOST0 source impedance adjustment
			2'b11: source impedance is desreased by
			4ohm
12:11	RW	0x1	2'b10: source impedance is desreased by
			2ohm
			2'b01: design default
			2'b00: source impedance is desreased by
			1.5ohm
			usbhost0_sleepm
			USB HOST0 sleep mode enable
10	RW	0x1	Asserting this signal place the USB PHY in
10			sleep mode.
			1'b0: sleep mode enable
			1'b1: normal mode
9	RW	0x0	usbhost0_autoppd_on_overcur
			USB HOST0 autoppd_on_overcur bit control
			usbhost0_retenable_n
8	RW	0x1	USB HOST0 retention mode enable
-		0.1	0: retention mode enable
			1: retention mode disable
			usbhost0_vdatsrcenb
7	RW	0x0	USB HOST0 battery charging sourcing select
			1'b1: data source voltage is enable
			1'b0: data source voltage is disable
			usbhost0_vdatdetenb
_			USB HOST0 battery charging attach/connect
6	RW	0x0	detection enable
			1'b1: enable
			1'b0: disable
			usbhost0_chrgsel
5	RW	0×0	USB HOST0 battery charging source select
			1'b1: data source voltage is sourced onto DM
			and sunk from DP
			1'b0: data source voltage is sourced onto DP
			and sunk from DM

Bit	Attr	Reset Value	Description
			usbhost0_txpreempamptune
			2'b11: 3X pre-emphasis current
4:3	RW	0×1	2'b10: 2X pre-emphasis current
4.5	Γ.VV	0.01	2'b01: 1X pre-emphasis current
			2'b00: HS Transmitter Pre-Emphasis is
			disabled
			usbhost0_soft_con_sel
2	RW	0x0	1'b0: software control usb host0 disable
			1'b1: software control usb host0 enable
			usbhost0_vbusvldextsel
			USB HOST0 external VBUS valid select
			This signal selects the VBUSVLDEXT input or
			the internal Session Valid comparator to
1	RW	0x0	indicate when the VBUS signal on the USB
			cable is valid.
			1'b1: The VBUSVLDEXT input is used.
			1'b0: The internal Session Valid comparator is
			used.
			usbhost0_vbusvldext
		0x0	USB HOST0 external VBUS valid indicator
			This signal is valid in Device mode and only
			when the VBUSVLDEXTSEL signal is set to 1.
			VBUSVLDEXT indicates whether the VBUS
0	RW		signal on the USB cable is valid. In addition,
			BUSVLDEXT enables the pullup resistor on the
			D+ line.
			1'b1: The VBUS signal is valid, and the pull-up
			resistor on D+ is enabled.
			1'b0: The VBUS signal is not valid, and the
			pull-up resistor on D+ is disabled.

GRF_UOC1_CON3 Address: Operational Base + offset (0x0340)

UOC1 control register 3

Bit Attr Reset Value	Description
----------------------	-------------

Bit	Attr	Reset Value	Description
			write_enable
			bit0~15 write enable
			When bit 16=1, bit 0 can be written by
			software .
			When bit 16=0, bit 0 cannot be written by
			software;
			When bit 17=1, bit 1 can be written by
31:16	RW	0x0000	software .
			When bit 17=0, bit 1 cannot be written by
			software;
			When bit 31=1, bit 15 can be written by
			software .
			When bit 31=0, bit 15 cannot be written by
			software;
			usbhost0_ohci_susp_lgcy
15	RW	0x0	USB HOST0 ohci_susp_lgcy bit control
			usbhost0_ohci_cntsel
14	RW	0x0	USB HOST0 ohci_cntsel bit control
			usbhost0_utmiotg_idpullup
13	RW	0x0	USB HOST0 idpullup bit control
10	514	0×0000	usbhost0_utmiotg_dppulldown
12	RW	0×1	USB HOST0 dppulldown bit control
		0.1	usbhost0_utmiotg_dmpulldown
11	RW	UXI	USB HOST0 dmpulldown bit control
10	RW	01	usbhost0_utmiotg_drvvbus
10	KW	UXI	USB HOST0 drvvbus bit contrl
9:7	RO	0x0	reserved
6	RW	0×1	usbhost0_ohci_clkcktrst
0		0,1	USB HOST0 ohci_clkcktrst bit conrol
			usbhost0_utmi_termselect
5	RW	0×0	USB HOST0 utmi termination select
5		0,0	1'b1: full speed terminations are enabled
			1'b0: high speed terminations are enabled
			usbhost0_utmi_xcvrselect
			USB HOST0 utmi transceiver select
			2'b11: sends an LS packet on an FS bus or
4:3	RW	0x0	receives an LS packet
	RW RW RW		2'b10: LS transceiver
			2'b01: FS transceiver
			2'b00: HS transceiver

Bit	Attr	Reset Value	Description
			usbhost0_utmi_opmode
			USB HOST0 utmi operation mode
			This controller bus selects the UTMI+
			operation mode
2:1	RW	0x0	2'b11: normal operation without SYNC or EOF
			generation
			2'b10: disable bit stuffing and NRZI encoding
			2'b01: no-driving
			2'b00: normal
			usbhost0_utmi_suspend_n
0	RW	0x1	USB HOST0 suspend mode enable
0	K VV	UXI	1'b1: normal operation mode
			1'b0: suspend mode

GRF_UOC1_CON4

Address: Operational Base + offset (0x0344) UOC1 control register 4

Bit	Attr	Reset Value	Description
31:16	RW	0×0000	<pre>write_enable bit0~15 write enable When bit 16=1, bit 0 can be written by software . When bit 16=0, bit 0 cannot be written by software; When bit 17=1, bit 1 can be written by software . When bit 17=0, bit 1 cannot be written by software; When bit 31=1, bit 15 can be written by software . When bit 31=0, bit 15 cannot be written by software;</pre>
15	RW	0x1	usbhost0_incr4_en USB HOST0 incr4_en bit control
14	RW	0x1	usbhost0_incr16_en USB HOST0 incr16_en bit control
13	RW	0×0	usbhost0_hubsetup_min USB HOST0 hubsetup_min bit control
12	RW	0×0	usbhost0_app_start_clk USB HOST0 app_start_clk bit control
11:6	RW	0x20	usbhost0_fladj_val_common USB HOST0 fladj_val_common bit control
5:0	RW	0x20	usbhost0_fladj USB HOST0 fladj bit control

GRF_UOC2_CON0

Address: Operational Base + offset (0x0348) UOC2 control register 0

Bit	Attr	Reset Value	Description
31:16	RW	0×0000	<pre>write_enable bit0~15 write enable When bit 16=1, bit 0 can be written by software . When bit 16=0, bit 0 cannot be written by software; When bit 17=1, bit 1 can be written by software . When bit 17=0, bit 1 cannot be written by software; When bit 31=1, bit 15 can be written by software . When bit 31=0, bit 15 cannot be written by software;</pre>
15	RW	0x0	usbhost1_linestate_irq_pd USB HOST1 linestate interrupt pending bit
14	RW	0x0	usbhost1_linestate_irq_en USB HOST1 line state interrupt enable
13	RW	0x0	usbhost1_siddq USB HOST1 IDDQ test enable This test signal enables you to perform IDDQ testing by powering down all analog blocks. 1'b1: The analog blocks are powered down. 1'b0: The analog blocks are powered up.
12	RW	0x0	usbhost1_port_reset USB HOST1 per-port reset When asserted, this customer-specific signal resets the corresponding port transmit and receive logic without disabling the clocks within the PHY. 1'b1: The transmit and receive finite state machines (FSMs) are reset, and the line_state logic combinatorially reflects the state of the single-ended receivers. 1'b0: The transmit and receive FSMs are operational, and the line_state logic becomes sequential after 11 PHYCLOCK cycles.
	RO	0x0	reserved

Bit	Attr	Reset Value	Description
			usbhost1_tune
			USB HOST1 VBUS valid threshold adjustment
			This bus adjusts the voltage level for the VBUS
			Valid threshold.
			3'b111: +9%
7.5		04	3'b110: +6%
7:5	KW	0X4	3'b101: +3%
		RW 0×4 RW 0×0 RW 0×4	3'b100: Design default
			3'b011: -3%
			3'b010: -6%
			3'b001: -9%
			3'b000: -12%
			usbhost1_disable
4	DW/	xW 0x0	USB HOST1 block disable
4	r vv	0.00	1'b1: the USB HOST1 block is power down
			1'b0: the USB HOST1 block is power up
			usbhost1_compdistune
			USB HOST1 disconnect threshold adjustment
			This bus adjusts the voltage level for the
			threshold used to detect
			a disconnect event at the host.
			3'b111: +4.5%
3:1	RW 0x4	3'b110: +3%	
			3'b101: +1.5%
		W 0x0 W 0x4	3'b100: Design default
			3'b011: -1.5%
			3'b010: -3%
			3'b001: -4.5%
			3'b000: -6%
			usbhost1_common_on_n
			USB HOST1 common block power-down
			control
			This signal controls the power-down signals in
			the XO, Bias, and PLL blocks when the USB 2.0
			PHY is in Suspend or Sleep mode.
0	RW	0x1	1'b1: In Suspend mode, the XO, Bias, and PLL
			blocks are powered down. In Sleep mode, the
			Bias and PLL blocks are powered down.
			1'b0: In Suspend mode, the XO, Bias, and PLL
			blocks remain powered in Suspend mode. In
			Sleep mode, if the reference clock is a crystal,
			the XO block remains powered.

GRF_UOC2_CON1

Address: Operational Base + offset (0x034c)

Bit	Attr	Reset Value	Description
			write_enable
			bit0~15 write enable
			When bit 16=1, bit 0 can be written by
			software .
			When bit 16=0, bit 0 cannot be written by software;
			When bit 17=1, bit 1 can be written by
31:16	RW	0x0000	software .
51.10	r. vv	0x0000	
			When bit 17=0, bit 1 cannot be written by
			software;
			When bit 31=1, bit 15 can be written by
			software .
			When bit 31=0, bit 15 cannot be written by
			software;
			usbhost1_txrisetune
			USB HOST1 HS transmitter rise/fall time
			adjustment
			This bus adjusts the rise/fall times of the
15:14	RW	0x1	high-speed waveform.
			2'b11: -20%
			2'b10: -15%
			2'b01: design default
			2'b00: +10%
			usbhost1 txhsxvtune
			USB HOST1 transmitter high-speed crossover
			adjustment
			This bus adjusts the voltage at which the DP
			and DM signals cross while transmitting in HS
13:12	RW	0x3	mode.
			2'b11: Default setting
			2'b10: +15 mV
			2'b01: -15 mV
			2'b00: Reserved

UOC2 control register 1

Bit	Attr	Reset Value	Description
			usbhost1_txvreftune
			USB HOST1 HS DC voltage level adjustment
	RW		This bus adjusts the high-speed DC level
			voltage.
			4'b1111: +8.75%
			4'b1110: +7.5%
			4'b1101: +6.25%
			4'b1100: +5%
			4'b1011: +3.75%
11.8	D\M	0×3	4'b1010: +2.5%
11.0		0.025	4'b1001: +1.25%
	1:8 RW (4'b1000: Design default
			4'b0111: -1.25%
			4'b0110: -2.5%
			4'b0101: -3.75%
			4'b0100: -5%
			4'b0011: -6.25%
			4'b0010: -7.5%
			4'b0001: -8.75%
			4'b0000: -10%
			usbhost1_txfslstune
			USB HOST1 FS/LS source impedance
			adjustment
			This bus adjusts the low- and full-speed
	RW		single-ended source
			impedance while driving high. The following
7:4	RW	0x3	adjustment values are based on nominal
			process, voltage, and temperature.
			4'b1111: -5%
			4'b0111: -2.5%
			4'b0011: Design default
			4'b0001: +2.5%
			4'b0000: +5%
			usbhost1_txpreemppulsetune
			USB HOST1 HS transmitter pre-emphasis
			duration control
		W 0x3 W 0x3 W 0x3	This signal controls the duration for which the
3	KW	UXU	HS pre-emphasis current is sourced onto DP0
			or DM0. transition in HS mode.
			1'b1: 1X, short pre-emphasis current duration
			1'b0: (desian default) 2X, long pre-emphasis
			currrent duration

Bit	Attr	Reset Value	Description
			usbhost1_sqrxtune
			USB HOST1 squelch threshold adjustment
			This bus adjusts the voltage level for the
			threshold used to detect valid high-speed
			data.
			3'b111: -20%
2:0	RW	0x3	3'b110: -15%
			3'b101: -10%
			3'b100: -5%
			3'b011: Design default
			3'b010: +5%
			3'b001: +10%
			3'b000: +15%

GRF_UOC2_CON2 Address: Operational Base + offset (0x0350) UOC2 control register 2

Bit	Attr	Reset Value	Description
31:16	RW	0×0000	<pre>write_enable bit0~15 write enable When bit 16=1, bit 0 can be written by software . When bit 16=0, bit 0 cannot be written by software; When bit 17=1, bit 1 can be written by software . When bit 17=0, bit 1 cannot be written by software; When bit 31=1, bit 15 can be written by software . When bit 31=0, bit 15 cannot be written by software;</pre>
15	RW	0×0	usbhost1_acaenb USB HOST1 ACA ID_OTG pin resistance detection enable 1'b1: enable detection on resistance on the ID_OTG pin of an ACA 1'b0: disable detection on resistance on the ID_OTG pin of an ACA

Bit	Attr	Reset Value	Description
			usbhost1_dcdenb
			USB HOST1 data contact detection enable
14		RW 0×0 RO 0×0 RW 0×1 RW 0×1 RW 0×1 RW 0×1 RW 0×1 RW 0×1	1'b1: IDP_SRC current is sourced onto DP,
14	K VV	0.00	pull-down resistance on DMA is enabled
			1'b0: IDP_SRC current is disable, pull-down
			resistance on DM is disabled
13	RO	0x0	reserved
			usbhost1_txrestune
			USB HOST1 source impedance adjustment
			2'b11: source impedance is desreased by
		W0×0O0×0W0×1W0×1O0×0W0×1W0×1	4ohm
12:11	RW		2'b10: source impedance is desreased by
			2ohm
			2'b01: design default
			2'b00: source impedance is desreased by
			1.5ohm
			usbhost1_sleepm
		0×0 0×0 0×1 0×1 0×1 0×1 0×1 0×1 0×1 0×1 0×0 0×1 0×0 0×1 0×1 0×1 0×1 0×1 0×1 0×1 0×1 0×1	USB HOST1 sleep mode enable
10	RW	0x1	Asserting this signal place the USB PHY in
		0x0 0x0 0x1 0x1 0x1 0x1 0x1 0x1 0x1 0x1 0x0 0x1 0x0 0x1 0x0 0x1 0x1 0x1 0x0 0x1	sleep mode.
	RW 0x1 RO 0x0	1'b0: sleep mode enable	
			1'b1: normal mode
9	RO	0x0	reserved
			usbhost1_retenable_n
8	RW	D 0×0 N 0×1 N 0×1 N 0×1 D 0×0 N 0×1	USB HOST1 retention mode enable
			0: retention mode enable
			1: retention mode disable
			usbhost1_vdatsrcenb
7	RW	RO 0×0 RW 0×1	USB HOST1 battery charging sourcing select
			1'b1: data source voltage is enable
			1'b0: data source voltage is disable
			usbhost1_vdatdetenb
			USB HOST1 battery charging attach/connect
6	RW	0x0 0x0 0x1 0x1 0x1 0x1 0x1 0x1 0x0 0x0	detection enable
			1'b1: enable
			1'b0: disable
			usbhost1_chrgsel
			USB HOST1 battery charging source select
5	RW	$\begin{array}{c} RW & 0 \times 1 & \begin{array}{c} 1 \\ RW \\ RW \\ 0 \times 1 & \begin{array}{c} 1 \\ $	1'b1: data source voltage is sourced onto DM
			and sunk from DP
			1'b0: data source voltage is sourced onto DP
			and sunk from DM

Bit	Attr	Reset Value	Description
			usbhost1_txpreempamptune
			2'b11: 3X pre-emphasis current
4:3	DW/	RW 0×1 RW 0×0 RW 0×0	2'b10: 2X pre-emphasis current
4.5		0.01	2'b01: 1X pre-emphasis current
			2'b00: HS Transmitter Pre-Emphasis is
			disabled
			usbhost1_soft_con_sel
2	RW	0x0	1'b0: software control usb host1 disable
			1'b1: software control usb host1 enable
			usbhost1_vbusvldextsel
			USB HOST1 external VBUS valid select
			This signal selects the VBUSVLDEXT input or
		0×0	the internal Session Valid comparator to
1	RW		indicate when the VBUS signal on the USB
			cable is valid.
			1'b1: The VBUSVLDEXT input is used.
			1'b0: The internal Session Valid comparator is
			used.
			usbhost1_vbusvldext
			USB HOST1 external VBUS valid indicator
			This signal is valid in Device mode and only
			when the VBUSVLDEXTSEL signal is set to 1.
			VBUSVLDEXT indicates whether the VBUS
0	RW	0x0	signal on the USB cable is valid. In addition,
			BUSVLDEXT enables the pullup resistor on the
			D+ line.
			1'b1: The VBUS signal is valid, and the pull-up
			resistor on D+ is enabled.
			1'b0: The VBUS signal is not valid, and the
			pull-up resistor on D+ is disabled.

GRF_UOC2_CON3 Address: Operational Base + offset (0x0354)

UOC2 control register 3

Bit Attr Reset Value	Description
----------------------	-------------

Bit	Attr	Reset Value	Description
			write_enable
			bit0~15 write enable
			When bit 16=1, bit 0 can be written by
			software .
			When bit 16=0, bit 0 cannot be written by
			software;
			When bit 17=1, bit 1 can be written by
31:16	RW	0x0000	software .
			When bit 17=0, bit 1 cannot be written by
			software;
			When bit 31=1, bit 15 can be written by
			software .
			When bit 31=0, bit 15 cannot be written by
			software;
15:14	RW	0x0	usbhost1_scaledown_mode
			USB HOST1 scale down mode control
13	RW	0x0	usbhost1_utmiotg_idpullup
			USB HOST1 idpullup bit control
12	RW	0x1	usbhost1_utmiotg_dppulldown USB HOST1 dppulldown bit control
			usbhost1_utmiotg_dmpulldown
11	RW	0x1	USB HOST1 dmpulldown bit control
			usbhost1_utmiotg_drvvbus
10	RW	0x1	USB HOST1 drvvbus bit contrl
9:6	RO	0x0	reserved
			usbhost1 utmi termselect
_		0×0	USB HOST1 utmi termination select
5	RW		1'b1: full speed terminations are enabled
			1'b0: high speed terminations are enabled
			usbhost1_utmi_xcvrselect
			USB HOST1 utmi transceiver select
			2'b11: sends an LS packet on an FS bus or
4:3	RW	0×0	receives an LS packet
			2'b10: LS transceiver
			2'b01: FS transceiver
			2'b00: HS transceiver

Bit	Attr	Reset Value	Description
			usbhost1_utmi_opmode
			USB HOST1 utmi operation mode
			This controller bus selects the UTMI+
			operation mode
2:1	RW	0×0	2'b11: normal operation without SYNC or EOP
			generation
			2'b10: disable bit stuffing and NRZI encoding
			2'b01: no-driving
			2'b00: normal
		0x1	usbhost1_utmi_suspend_n
0	RW		USB HOST1 suspend mode enable
0	IT. VV		1'b1: normal operation mode
			1'b0: suspend mode

GRF_UOC3_CON0

Address: Operational Base + offset (0x0358) UOC3 control register 0

Bit	Attr	Reset Value	Description
31:16	RW	0×0000	<pre>write_enable bit0~15 write enable When bit 16=1, bit 0 can be written by software . When bit 16=0, bit 0 cannot be written by software; When bit 17=1, bit 1 can be written by software . When bit 17=0, bit 1 cannot be written by software; When bit 31=1, bit 15 can be written by software . When bit 31=0, bit 15 cannot be written by software;</pre>
15	RO	0x0	reserved
14:0	RW	0x0	reserved

GRF_UOC3_CON1

Address: Operational Base + offset (0x035c) UOC3 control register 1

Bit Attr Reset Value Description

Bit	Attr	Reset Value	Description
31:16	RW	0×0000	<pre>write_enable bit0~15 write enable When bit 16=1, bit 0 can be written by software . When bit 16=0, bit 0 cannot be written by software; When bit 17=1, bit 1 can be written by software . When bit 17=0, bit 1 cannot be written by software; When bit 31=1, bit 15 can be written by software . When bit 31=0, bit 15 cannot be written by software;</pre>
15:0	RO	0x0	reserved

GRF_UOC4_CON0

Address: Operational Base + offset (0x0360) UOC4 control register 0

Bit	Attr	Reset Value	Description
31:16	RW	0×0000	<pre>write_enable bit0~15 write enable When bit 16=1, bit 0 can be written by software . When bit 16=0, bit 0 cannot be written by software; When bit 17=1, bit 1 can be written by software . When bit 17=0, bit 1 cannot be written by software; When bit 31=1, bit 15 can be written by software . When bit 31=0, bit 15 cannot be written by software;</pre>
15:14	RW	0x0	drvvbus_out_sel0 USB PHY drv vbus output select 0 2'b00: USB OTG drv vbus 2'b01: USB HOST0 drv vbus 2'b1x: USB HOST1 drv vbus

Bit	Attr	Reset Value	Description
			drvvbus_out_sel1
			USB PHY drv vbus output select 1
13:12	RW	0x1	2'b00: USB OTG drv vbus
			2'b01: USB HOST0 drv vbus
			2'b1x: USB HOST1 drv vbus
11:0	RO	0x0	reserved

GRF_UOC4_CON1

Address: Operational Base + offset (0x0364) UOC4 control register 1

Bit	Attr	Reset Value	Description
31:16	RW	0×0000	<pre>write_enable bit0~15 write enable When bit 16=1, bit 0 can be written by software . When bit 16=0, bit 0 cannot be written by software; When bit 17=1, bit 1 can be written by software . When bit 17=0, bit 1 cannot be written by software; When bit 31=1, bit 15 can be written by software . When bit 31=0, bit 15 cannot be written by software;</pre>
15:0	RO	0x0	reserved

GRF_PVTM_CON0

Address: Operational Base + offset (0x0368) PVT monitor control register 0

Bit A	Attr	Reset Value	Description
-------	------	--------------------	-------------

Bit	Attr	Reset Value	Description
			write_enable bit0~15 write enable When bit 16=1, bit 0 can be written by
			software . When bit 16=0, bit 0 cannot be written by software;
31:16	RW	0×0000	When bit 17=1, bit 1 can be written by software .
			When bit 17=0, bit 1 cannot be written by software;
			When bit 31=1, bit 15 can be written by software .
			When bit 31=0, bit 15 cannot be written by software;
15:10	RO	0x0	reserved
9	RW	0×0	pvtm_gpu_osc_en pd_gpu PVT monitor oscilator enable 1'b1: enable 1'b0: disable
8	RW	0x0	pvtm_gpu_start pd_gpu PVT monitor start control
7:2	RO	0x0	reserved
1	RW	0x0	pvtm_core_osc_en pd_core PVT monitor oscilator enable 1'b1: enable 1'b0: disable
0	RW	0×0	pvtm_core_start pd_core PVT monitor start control

GRF_PVTM_CON1

Address: Operational Base + offset (0x036c) PVT monitor control register 1

Bit	Attr	Reset Value	Description
31:0	RW	0x016e3600	pvtm_core_cal_cnt
51.0		0x01062000	pd_core pvtm calculator counter

GRF_PVTM_CON2

Address: Operational Base + offset (0x0370) PVT monitor control register 2

Bit	Attr	Reset Value	Description
31:0	RW	0x016e3600	pvtm_gpu_cal_cnt pd_gpu pvtm calculator counter

GRF_PVTM_STATUS0

Address: Operational Base + offset (0x0374) PVT monitor status register 0

Bit	Attr	Reset Value	Description
31:2	RO	0x0	reserved
1	RW	020	pvtm_core_freq_done pd_core pvtm frequency calculate done stutus
0	RW	0x0	pvtm_gpu_freq_done pd_gpu pvtm frequency calculate done stutus

GRF_PVTM_STATUS1

Address: Operational Base + offset (0x0378) PVT monitor status register 1

Bit	Attr	Reset Value	Description
31:0	RW	0×00000000	pvtm_core_freq_cnt
51.0		0.000000000	pd_core pvtm frequency count

GRF_PVTM_STATUS2

Address: Operational Base + offset (0x037c) PVT monitor status register 2

Bit	Attr	Reset Value	Description
31:1	RO	0x0	reserved
0	RW	0x0	pvtm_gpu_freq_cnt
U		0,0	pd_gpu pvtm frequency count

GRF_IO_VSEL

Address: Operational Base + offset (0x0380) IO voltage select

Bit	Attr	Reset Value	Description
31:16	RW	0×0000	<pre>write_enable bit0~15 write enable When bit 16=1, bit 0 can be written by software . When bit 16=0, bit 0 cannot be written by software; When bit 17=1, bit 1 can be written by software . When bit 17=0, bit 1 cannot be written by software; When bit 31=1, bit 15 can be written by software . When bit 31=0, bit 15 cannot be written by software;</pre>
15:10	RO	0x0	reserved

Bit	Attr	Reset Value	Description
			gpio1830_v18sel
0		0.40	GPIO1830 IO domain 1.8V voltage selection
9		0x0	1'b0: 3.3V
			1'b1: 1.8V
			gpio30_v18sel
0		0x0	GPIO30 IO domain 1.8V voltage selection
8	RVV	0.00	1'b0: 3.3V
			1'b1: 1.8V
			sdcard_v18sel
7		0x0	SDCARD IO domain 1.8V voltage selection
7	RVV	0.00	1'b0: 3.3V
			1'b1: 1.8V
			audio_v18sel
6	RW RW RW RW RW RW RW RW	0x0	AUDIO IO domain 1.8V voltage selection
0	K VV	0.00	1'b0: 3.3V
			1'b1: 1.8V
	D\\/		bb_v18sel
5	D\//	0x0	BB IO domain 1.8V voltage selection
5		RW 0x0	1'b0: 3.3V
			1'b1: 1.8V
			wifi_v18sel
4	D\//	0x0	WIFI IO domain 1.8V voltage selection
4	RW	0.00	1'b0: 3.3V
			1'b1: 1.8V
			flash1_v18sel
3	RW RW	0x0	FLASH1 IO domain 1.8V voltage selection
5		0.0	1'b0: 3.3V
			1'b1: 1.8V
	RW		flash0_v18sel
2	RW/	0x1	FLASH0 IO domain 1.8V voltage selection
2		0,11	1'b0: 3.3V
			1'b1: 1.8V
			dvp_v18sel
1	RW/	0x0	DVP IO domain 1.8V voltage selection
1			1'b0: 3.3V
			1'b1: 1.8V
			lcdc_v18sel
0	RW (0x0	LCDC IO domain 1.8V voltage selection
0			1'b0: 3.3V
			1'b1: 1.8V

GRF_SARADC_TESTBIT

Address: Operational Base + offset (0x0384) SARADC Test bit register

Bit	Attr	Reset Value	Description
31:16	RW	0x0000	<pre>write_enable bit0~15 write enable When bit 16=1, bit 0 can be written by software . When bit 16=0, bit 0 cannot be written by software; When bit 17=1, bit 1 can be written by software . When bit 17=0, bit 1 cannot be written by software; When bit 31=1, bit 15 can be written by software . When bit 31=0, bit 15 cannot be written by software;</pre>
15:8	RO	0x0	reserved
7:0	RW	0x00	saradc_testbit SARADC test bit

GRF_TSADC_TESTBIT_L

Address: Operational Base + offset (0x0388) TSADC Test bit low register

Bit	Attr	Reset Value	Description
31:16	RW	0×0000	<pre>write_enable bit0~15 write enable When bit 16=1, bit 0 can be written by software . When bit 16=0, bit 0 cannot be written by software; When bit 17=1, bit 1 can be written by software . When bit 17=0, bit 1 cannot be written by software; When bit 31=1, bit 15 can be written by software . When bit 31=0, bit 15 cannot be written by software;</pre>
15:0	RW	0x0000	tsadc_testbit_l Low 16bits of TSADC test bit

GRF_TSADC_TESTBIT_H

Address: Operational Base + offset (0x038c) TSADC Test bit high register

Bit	Attr	Reset Value	Description
-----	------	-------------	-------------

Bit	Attr	Reset Value	Description
31:16	RW	0×0000	<pre>write_enable bit0~15 write enable When bit 16=1, bit 0 can be written by software . When bit 16=0, bit 0 cannot be written by software; When bit 17=1, bit 1 can be written by software . When bit 17=0, bit 1 cannot be written by software; When bit 31=1, bit 15 can be written by software . When bit 31=0, bit 15 cannot be written by software;</pre>
15:0	RW	0x0000	tsadc_testbit_h High 16bits of TSADC test bit

GRF_OS_REG0

Address: Operational Base + offset (0x0390) OS register 0

Bit	Attr	Reset Value	Description
31:0	RW	0x00000000	os_reg0 OS register 0

GRF_OS_REG1

Address: Operational Base + offset (0x0394) OS register 1

Bit	Attr	Reset Value	Description
31:0	RW	0×00000000	os_reg1
51.0		0X00000000	OS register 1

GRF_OS_REG2

Address: Operational Base + offset (0x0398) OS register 2

Bit	Attr	Reset Value	Description
31:0	RW	10x00000000	os_reg2
			OS register 2

GRF_OS_REG3

Address: Operational Base + offset (0x039c)

OS register 3

Bit Attr Reset Value Description

Bit	Attr	Reset Value	Description
31:0	RW	0×00000000	os_reg3 OS register 3

GRF_SOC_CON15

Address: Operational Base + offset (0x03a4) SoC control register 15

Bit	Attr	Reset Value	Description
		0x0000	write_enable
			bit0~15 write enable
			When bit 16=1, bit 0 can be written by
			software .
			When bit 16=0, bit 0 cannot be written by
			software;
			When bit 17=1, bit 1 can be written by
31:16	RW		software .
			When bit 17=0, bit 1 cannot be written by
			software;
			When bit $31=1$, bit 15 can be written by
			software.
			When bit 31=0, bit 15 cannot be written by
			software;
			grf_dclk1_lvds_inv_sel Invertion of VOP_LIT dclk for LVDS selection
15	RW	0x0	1'b1: invert
			1'b0: not invert
		0×0	grf_dclk1_lvds_div2_sel
			2 divide frequency of VOP_LIT dclk for LVDS
14	RW		selection
			1'b1: 2 divide frequency
			1'b0: no divide frequency
	RW	0×0	grf_dclk0_lvds_inv_sel
10			Invertion of VOP_BIG dclk for LVDS selection
13			1'b1: invert
			1'b0: not invert
	RW	0×0	grf_dclk0_lvds_div2_sel
			2 divide frequency of VOP_BIG dclk for LVDS
12			selection
			1'b1: 2 divide frequency
			1'b0: no divide frequency
11	RO	0x0	reserved
		0×0	dphy_tx0_turnrequest
10:8	RW		MIPI DPHY TX0 turn around request
			Every bit for one lane, bit2 is for lane3, bit2 is
			for lane2, bit0 is for lane1.

Bit	Attr	Reset Value	Description
7:4	RW	0×0	dphy_tx1rx1_turnrequest
			MIPI DPHY TX1RX1 turn around request
			Every bit for one lane, bit3 is for lane3, bit2 is
			for lane2, bit1 is for lane1, bit0 is for lane0.
3:0	RW	0×0	dphy_rx0_turnrequest
			MIPI DPHY RX0 turn around request
			Every bit for one lane, bit3 is for lane3, bit2 is
			for lane2, bit1 is for lane1, bit0 is for lane0.

GRF_SOC_CON16

Address: Operational Base + offset (0x03a8) SoC control register 16

Bit	Attr	Reset Value	Description
31:16	RW	0×0000	<pre>write_enable bit0~15 write enable When bit 16=1, bit 0 can be written by software . When bit 16=0, bit 0 cannot be written by software; When bit 17=1, bit 1 can be written by software . When bit 17=0, bit 1 cannot be written by software; When bit 31=1, bit 15 can be written by software . When bit 31=0, bit 15 cannot be written by software;</pre>
15:2	RO	0x0	reserved
1	RW	0x0	grf_con_dsi1_dpiupdatecfg DSI host1 dpiupdatecfg bit control
0	RW	0x0	grf_con_dsi0_dpiupdatecfg DSI host0 dpiupdatecfg bit control

Chapter 4 Cortex-A17

4.1 Overview

The Core system of the device is based on the symmetric multiprocessor (SMP) architecture, contain quad Cortex-A17.The Cortex-A17 implements 32KB L1 instruction cache, 32KB L1 data cache, 1MB L2 cache.It delivers higher performance and optimal power management, debug and emulation capabilities.

The core system also contain a bus interconnect, which connect the A17's peripheral port and the generic interrupt controller (GIC400).

The core system contain the ARM's coresight cell , which helps to do debug and trace .

The interrupt controller is also included in this system, for detail description , please reference to chapter 12.

The Core system supports following features:

ARM Coretex-A17 based quad MPU subsystem with SMP architecture Cortex-A17 core revision r0p1 Full implements the ARMv7-A architecture profile that includes SIMDv2 and VFPv4-D32 extensions 32KB L1 I-cache and 32KB L1 D-cache with 64-byte line size and 4-way set associative per CPU A 32-entry, fully associative, instruction micro TLB. A 32-entry, fully associative, data micro TLB. A 1024-entry, 4-way, unified main TLB with hit-under-miss capabilities. Memory management unit (MMU) Automatic cache coherency between L1 data caches within the cluster. Interrupt controller with 128 hardware interrupt inputs. 1MB L2 cache with 64-byte line size, and 16-way set associative. standard CoreSight[™] components to support SMP debug and emulation Program trace macrocell (PTM) Emulation logic (cross-triggers) TPIU for trace.

4.2 Block Diagram

The Core system comprises with:

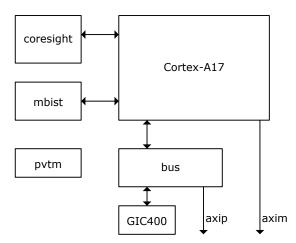


Fig. 4-1 Block Diagram

Chapter 5 Embedded SRAM

5.1 Overview

The Embedded SRAM is the AXI slave device, which supports read and write access to provide system fast access data storage.

5.1.1 Features supported

Provide 96KB access space Support security and non-security access Security or non-security space is software programmable Security space is nx4KB(up to whole memory space) Support 64bit AXI bus

5.1.2 Features not supported

Don't support AXI lock transaction Don't support AXI exclusive transaction Don't support AXI cache function Don't support AXI protection function

5.2 Block Diagram

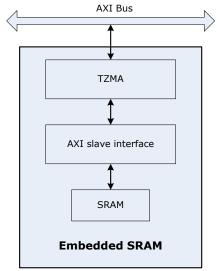


Fig. 5-1 Embedded SRAM block diagram

5.3 Function Description

5.3.1 TZMA

Please refer to 16.3.3 for TZMA functional description. **5.3.2 AXI slave interface**

The AXI slave interface is bridge which translate AXI bus access to SRAM interface.

5.3.3 Embedded SRAM access path

The Embedded SRAM can only be accessed by Cortex-A17 and DMAC_BUS.

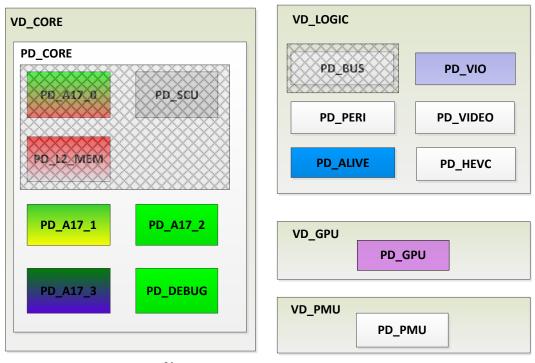
5.3.4 Remap

The Embedded SRAM support remap.

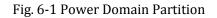
Before remap, the Embedded SRAM address range is 0xff70_0000~0xff71_7fff, After set remap, (ref Security GRF register SGRF_SCON0, bit[7]), the system can still access the Embedded SRAM by the old address. at same time, the system also can access the Embedded SRAM by the new address 0xfffe_0000 ~ 0xffff_7fff (include the bootaddr)

Chapter 6 Power Management Unit (PMU)

6.1 Overview


In order to meet high performance and low power requirements, a power management unit is designed for saving power when RK3288 in low power mode. The RK3288 PMU is dedicated for managing the power of the whole chip.

6.1.1 Features


- Support 4 voltage domains including VD_CORE, VD_LOGIC, VD_GPU and VD_PMU
- Support 15 separate power domains in the whole chip, which can be power up/down by software based on different application scenes
- In low power mode, the pmu could power up/down pd_A17_0, pd_scu, vd_core, and pd_bus by hardware
- Support CORTEX-A17 core source clock gating in low power mode
- Support global interrupt disable in low power mode
- Support PLLs power down/up in low power mode
- Support VD_CORE/VD_LOGIC power down/up in low power mode
- Support pd_alive clock switch to 32KHz in low power mode
- Support pd_pmu clock switch to 32KHz request in low power mode
- Support OSC enable/disable request in low power mode
- Support to clamp all VD_LOGIC output before power off it in low power mode
- Support wakeup reset control in power off mode
- Support DDR self-refresh in low power mode
- Support DDR IO retention in low power mode
- Support DDR IO power off in low power mode
- Support DDR controller clock auto gating in low power mode
- Support to send idle requests to all NIU in the SoC (details will be described later)
- A group of configurable counter in PMU for HW control (such as PLL, PMIC, DDRIO and so on)
- Support varies configurable wakeup source for low power mode

6.2 Block Diagram

6.2.1 power domain partition

Note: VD_* : voltage domain PD_* : power domain

The above diagram describes the power domain and voltage domain partition, and the following table lists all the power domains.

Voltage	Power	Description
Domain	Domain	
	PD_A17_0	A17 primary core logic, L1C and neon
	PD_A17_1	A17 slave core 1 logic, L1C and neon
VD_CORE	PD_A17_2	A17 slave core 2 logic, L1C and neon
(PD_CORE	PD_A17_3	A17 slave core 3 logic, L1C and neon
system)	PD_SCU	SCU RAM, SCU, GIC, Periphral, L2 controller
	PD_DEBUG	A17 Debug
	PD_MEM	L2 Cache
	PD_BUS	Soc architecture subsystem, include soc architecture (NOC), eFuse, TZPC, ROM, DMAC_BUS, Crypto, Host, Timer(6ch), PWM(0~3), UART_DBG, I2C, DDR_PCTL, I2S, Spdif, Internal Memory(96K)
VD_LOGIC	PD_PERI	Peripheral subsystem , include DMAC_PERI, GMAC, NANDC0/1, USB Host0/USB Host1/ USB OTG, SDMMC/SDIO0/SDIO1/eMMC, HSADC, PS2C, TSADC, UART, I2C, SPI, GPS, TSP
	PD_VIO	Video input/output system, include VOPBIG, VOPLIT, ISP, IEP, RGA, MIPI-CSI, MIPI-DSI, LVDS, HDMI, eDP

Voltage Domain	Power Domain	Description
	PD_ALIVE	CRU, GRF, GPIO 1~8, TIMER, WDT
	PD_HEVC	HEVC
	PD_VIDEO	Video Encode&Decode, include VEPU, VDPU
VD_GPU	PD_GPU	GPU
VD_PMU	PD_PMU	PMU, SRAM(4K), Secure GRF, GPIO0

Notes: "Always on" means that their power supply can be switched off only by external PMIC module. Only one "always on" power domain is in a voltage domain.

6.2.2 PMU block diagram

The following figure is the PMU block diagram. The PMU includes the 3 following sections: APB interface and register, which can accept the system configuration Low Power State Control, which generate low power control signals.

Power Switch Control, which control all power domain switch

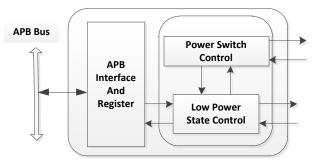


Fig. 6-2 PMU Bock Diagram

6.3 Power Switch Timing Requirement

The following table describe the switch time for power down and power up progress of each power domain. This table gives the time range, and each power domain switch time will be more than the min time and less than the max time.

Power domain	type	Power down Switch Timing① (ns)	Power up Switch Timing① (ns)
	min	170.3	132.4
PD_A17_0	max	306.7	237.5
PD_A17_1	min	170.3	132.4
PD_AI7_I	max	306.7	237.5
	min	181.5	140.7
PD_A17_2	max	326.2	251.9
	min	181.5	140.7
PD_A17_3	max	326.2	251.9
	min	169.4	131.7
PD_DEBUG	max	77.3	60
	min	169.4	131.7
PD_BUS	max	313.6	247
	min	103.7	80.5
PD_PERI	max	199.0	156.1
	min	280.6	217.5
PD_VIO	max	518.5	407.8

Table 6-2 Power Switch Timing

Power domain	type	Power down Switch Timing① (ns)	Power up Switch Timing① (ns)
	min	315.4	244.2
PD_VIDEO	max	586.2	460.4
	min	470.2	364
PD_GPU	max	871.4	684.1
	min	33.4	25.9
PD_HEVC	max	62.4	49
	max	65.6	51.5

Notes: the power switch timing is just the chip power electrical parameter, this is not the parameter for the software to determine the power domain status. The software need to check each power domain status register to determine the power status.

6.4 Function Description

6.4.1 Normal Mode

First of all, we define two modes of power for chip, normal mode and low power mode. In normal mode, the PMU can power off/on all power domain (except pd_A17_0 and pd_bus) by setting PMU_PWRDN_CON register. At same, pmu can send idle request for every power domain by setting PMU_IDLE_REQ register.

Don't set pd_A17_0 and pd_bus power off or send idle_req_core and idle_req_bus in normal mode. This will cause the system to not work properly.

Basically, there are 2 configurations that software can do in normal mode to save power.

- Configure DDR to self-refresh, DDR IO retention and DDR IO power off
- Power down power domains

The first one will save power consumption of using DDR controller and DDR IO. For avoiding confliction, the software must make sure the execution code of this step is not in DDR.

The second one will save power of the power domain which software is shutting down.

6.4.2 Low Power Mode

PMU can work in the Low Power Mode by setting bit[0] of PMU_PWRMODE_CON register. After setting the register, PMU would enter the Low Power mode. In the low power mode, pmu will auto power on/off the specified power domain, send idle req to specified power domain, shut down/up pll and so on. All of above are configurable by setting corresponding registers.

Num	Hardware Flow	Description of Flow	Corresponding Register
0	NORMAL	in normal	
1	L2FLUSH_REQ	send L2 cache flush request	bit[3] of PMU_PWRMODE_CON
2	STANDBYL2	wait L2 cache standy	
3	A17_CLK_DIS	close A17 clock	bit[1] of PMU_PWRMODE_CON
4	TRANS_NO_FIN	wait the corresponding noc interface end the transaction	PMU_PMRMODE_CON1
5	SREF_ENTER	enter DDR self-refresh	bit[16:15] of PMU_PWRMODE_CON
6	DDR_IO_RET	ddr io retention	bit[18:17] of PMU_PWRMODE_CON
7	DDR_IO_PWROFF	ddr io power off	bit[20:19] of PMU_PWRMODE_CON
8	BUS_PWRDN	pd_bus power down	bit[4] of PMU_PWRMODE_CON
9	A17_0_PWRDN	pd_a17_0 power down	bit[5] of PMU_PWRMODE_CON
10	L2MEM_PWRDN	pd_l2mem power down (vd_core power down)	bit[6] of PMU_PWRMODE_CON
11	ALIVE_PMU_LF	pd_alive& pd_pmu switch to 32KHz clock	bit[11:10] of PMU_PWRMODE_CON
12	PLL_PWRDN	pll power down	bit[7] of PMU_PWRMODE_CON
13	INPUT_CLAMP	isolation cell input clamp	bit[13] of PMU_PWRMODE_CON
14	POWEROFF	chip power off	bit[8] of PMU_PWRMODE_CON
15	24M_OSC_DIS	close 24MHz OSC	bit[12] of PMU_PWRMODE_CON
16	WAIT_WAKEUP	wait wakeup source	PMU_WAKEUP_CFG0/1
17	WAKEUP_RESET	send reset after wakeup	
18	EXT_PWRUP	pmic power up whole chip	
19	RELEASE_CLAMP	release isolation cell clamp	
20	24M_OSC_EN	open 24MHz OSC	
21	ALIVE_PMU_HF	switch pd_alive and pd_pmu back to 24MHz	
22	WAKEUP_RESET_CLR	release wakeup reset	
23	PLL_PWRUP	Pll power up	
24	BUS_PWRUP	PD_BUS power up	
25	DDR_IO_PWRUP	ddr io power up	
26	SREF_EXIT	exit ddr self-refresh	
27	L2MEM_PWRUP	pd_l2mem power up	
28	A17_0_PWRUP	pd_a17_0 power up	
29	TRANS_RESTORE	restore the transaction	
30	A17_CLK_EN	enable a17 clock	

Table 6-3 Low Power State

The Low Power mode have three steps:

Enter Low Power mode, there are some sub-steps in the enter step, every sub-step can be enable/disable by setting the corresponding register.

Wait wakeup, you can select the wakeup source by setting PMU_WAKEUP_CFG0/1 register Exit Low Power mode, the sub-step are executed depend on whether they were executed in enter low power step.

6.4.3 Wakeup source of AP

The wakeup source is a group of signals which can trigger PMU from power mode to normal mode, such as SDMMC detect, core interrupt, GPIO0, and gpio interrupt.

Num	Wakeup Source	Description
1	software control	software control (in normal mode)
2	arm interrupt	a17 interrupt
3	pmu_gpio	gpio0, in pd_pmu
4	sdmmc0	detect_n of sdmmc0
5	gpio int	gpio interrupt outside of pd_pmu

Table 6-4 Wakeup Source

If software expect PMU be woken up from power mode by a wake up source, it should be enabled by write 1 to the corresponding bit of PMU_WAKEUP_CFG0/1 register before entering into power mode.

Technically, wakeup source can be used in every power mode if only the path from wakeup source to PMU is not shut down.

6.5 Register Description

6.5.1 Register Summary

Name	Offset	Size	Reset Value	Description
PMU_WAKEUP_CFG0	0x0000	W	0x00000000	PMU wake-up source configuration register0
PMU_WAKEUP_CFG1	0x0004	W	0x00000000	PMU wake-up source configuration register1
PMU_PWRDN_CON	0x0008	W	0x00000000	System power gating configuration register
PMU_PWRDN_ST	0x000c	W	0x00000000	System power gating status register
PMU_IDLE_REQ	0x0010	W	0x0000000	PMU Noc idle req control
PMU_IDLE_ST	0x0014	W	0x0000000	PMU Noc idle status
PMU_PWRMODE_CON	0x0018	W	0x00000000	PMU configuration register in power mode flow
PMU_PWR_STATE	0x001c	W	0x0000000	PMU Low power mode state
PMU_OSC_CNT	0x0020	W	0x00005dc0	24MHz OSC stabilization counter threshold
PMU_PLL_CNT	0x0024	W	0x10004000	PLL lock counter threshold
PMU_STABL_CNT	0x0028	W	0x00005dc0	External PMU stabilization counter threshold
PMU_DDR0IO_PWRON_CNT	0x002c	W	0x00005dc0	DDR0 IO power on counter threshold
PMU_DDR1IO_PWRON_CNT	0x0030	W	0x00005dc0	DDR1 IO power on counter threshold
PMU_CORE_PWRDWN_CNT	0x0034	W	0x00005dc0	CORE domain power down waiting counter in sleep mode
PMU_CORE_PWRUP_CNT	0x0038	W	0x00005dc0	CORE domain power up waiting counter in sleep mode
PMU_GPU_PWRDWN_CNT	0x003c	W	0x00005dc0	GPU domain power down waiting counter in sleep mode
PMU_GPU_PWRUP_CNT	0x0040	W	0x00005dc0	GPU domain power up waiting counter in sleep mode
PMU_WAKEUP_RST_CLR_CNT	0x0044	W	0x00005dc0	Wakeup reset deassert state wait counter in power off mode
PMU_SFT_CON	0x0048	W	0×00000000	PMU Software control in normal mode
PMU_DDR_SREF_ST	0x004c	W	0x00000000	PMU DDR self refresh status
PMU_INT_CON	0x0050	W	0x00000000	PMU interrupt configuration register
PMU_INT_ST	0x0054	W	0x00000000	PMU interrupt status register
PMU_BOOT_ADDR_SEL	0x0058	W	0x00005dc0	boot_addr_sel in power mode
PMU_GRF_CON	0x005c	W	0x0000008	grf control register

Name	Offset	Size	Reset Value	Description
PMU_GPIO_SR	0x0060	W	0x00020000	GPIO slew rate control
	0x0064	14/	0x0000555a	GPIO0A input to PU/PD
PMU_GPIO0_A_PULL	0x0064	vv	0x00005558	programmation section
PMU_GPIO0_B_PULL	0x0068	\٨/	0x00005555	GPIO0B input to PU/PD
	0x0008	vv	0X00003333	programmation section
PMU_GPIO0_C_PULL	0x006c	\ \ /	0x00000015	GPIO0C input to PU/PD
FM0_GF100_C_F0EL	0,0000	vv	0X00000015	programmation section
PMU_GPIO0_A_DRV	0x0070	W	0x0000555a	GPIO0A Drive strength slector
PMU_GPIO0_B_DRV	0x0074	W	0x00005555	GPIO0B Drive strength slector
PMU_GPIO0_C_DRV	0x0078	W	0x0000015	GPIO0C Drive strength slector
PMU_GPIO_OP	0x007c	W	0x0000000	GPIO0 output value
PMU_GPIO0_SEL18	0x0080	W	0x0000006	gpio0 1.8v/3.3v sel
PMU_GPIO0_A_IOMUX	0x0084	W	0x0000000	GPIO0A iomux sel
PMU_GPIO0_B_IOMUX	0x0088	W	0x0000000	GPIO0B iomux sel
PMU_GPIO0_C_IOMUX	0x008c	W	0x0000000	GPIO0C iomux sel
PMU_PWRMODE_CON1	0x0090	W	0x0000000	PMU power mode controll1
PMU_SYS_REG0	0x0094	W	0x0000000	PMU system register0
PMU_SYS_REG1	0x0098	W	0x0000000	PMU system register1
PMU_SYS_REG2	0x009c	W	0x0000000	PMU system register2
PMU_SYS_REG3	0x00a0	W	0x0000000	PMU system register3

6.5.2 Detail Register Description

PMU_WAKEUP_CFG0

Address: Operational Base + offset (0x0000) PMU wake-up source configuration register0

Bit	Attr	Reset Value	Description
31:19	RO	0x0	reserved
			gpio0c_2_wakeup_en
18	RW	0×0	GPIO0c bit2 wakeup enable
10	r vv	0.00	1'b0: disable
			1'b1: enable
			gpio0c_1_wakeup_en
17	RW	0x0	GPIO0c bit1 wakeup enable
17			1'b0: disable
			1'b1: enable
		W 0×0	gpio0c_0_wakeup_en
16	RW		GPIO0c bit0 wakeup enable
10			1'b0: disable
			1'b1: enable
		RW 0×0	gpio0b_7_wakeup_en
15	15 DW		GPIO0b bit7 wakeup enable
1.5			1'b0: disable
			1'b1: enable

Bit	Attr	Reset Value	Description
			gpio0b_6_wakeup_en
	D 14		GPIO0b bit6 wakeup enable
14	14 RW	0×0	1'b0: disable
			1'b1: enable
			gpio0b_5_wakeup_en
10	D 14		GPIO0b bit5 wakeup enable
13	RW	0×0	1'b0: disable
			1'b1: enable
			gpio0b_4_wakeup_en
			GPIO0 bit12 wakeup enable
12	RW	0x0	1'b0: disable
			1'b1: enable
			gpio0b_3_wakeup_en
			GPIO0b bit3 wakeup enable
11	RW	0x0	1'b0: disable
			1'b1: enable
			gpio0b_2_wakeup_en
			GPIO0b bit2 wakeup enable
10	RW	0x0	1'b0: disable
			1'b1: enable
			gpio0b_1_wakeup_en
		0x0	GPIO0b bit1 wakeup enable
9	RW		1'b0: disable
			1'b1: enable
			gpio0b_0_wakeup_en
			GPIO0b bit0 wakeup enable
8	RW	0x0	1'b0: disable
			1'b1: enable
			gpio0a_7_wakeup_en
			GPIO0a bit7 wakeup enable
7	RW	0×0	1'b0: disable
			1'b1: enable
			gpio0a_6_wakeup_en
			GPIO0a bit6 wakeup enable
6	RW	0×0	1'b0: disable
			1'b1: enable
			gpio0a_5_wakeup_en
-		W 0x0	GPIO0a bit5 wakeup enable
5	RW		1'b0: disable
			1'b1: enable
			gpio0a_4_wakeup_en
4	RW	0x0	1'b0: disable
		1'b1: enable	
4	RW	0×0	gpio0a_4_wakeup_en GPIO0a bit4 wakeup enable 1'b0: disable

Bit	Attr	Reset Value	Description
			gpio0a_3_wakeup_en
3	RW	0x0	GPIO0a bit3 wakeup enable
5		0.00	1'b0: disable
			1'b1: enable
			gpio0a_2_wakeup_en
2	RW	0x0	GPIO0a bit2 wakeup enable
2		0x0	1'b0: disable
			1'b1: enable
		/ 0x0	gpio0a_1_wakeup_en
1	RW		GPIO0a bit1 wakeup enable
1			1'b0: disable
			1'b1: enable
		/ 0x0	gpio0a_0_wakeup_en
0	RW		GPIO0a bit0 wakeup enable
0			1'b0: disable
			1'b1: enable

PMU_WAKEUP_CFG1

Address: Operational Base + offset (0x0004) PMU wake-up source configuration register1

Bit	Attr	Reset Value	Description
31:4	RO	0x0	reserved
			gpioint_wakeup_en
3	RW	0x0	GPIO Interrupt wake enable
5		0.00	1'b0: disable
			1'b1: enable
			sdmmc0_wakeup_en
2	RW	0x0	SDMMC0 wake-up enable
Z	K VV	0x0	1'b0: disable
			1'b1: enable
		0x0	pmu_gpio_wakeup_type
1	RW		GPIO in pmu wakeup type
1			1'b0: posedge
			1'b1: negedge
		0x0	armint_wakeup_en
0	RW		ARM interrupt wake-up enable
0	rx vv		1'b0: disable
			1'b1: enable

PMU_PWRDN_CON

Address: Operational Base + offset (0x0008) System power gating configuration register

Bit	Attr	Reset Value	Description
31:15	RO	0x0	reserved

Bit	Attr	Reset Value	Description
			PD_HEVC_DWN_EN
			Power domain HEVC power down enable
14	RW	0×0	1'b0: power on
			1'b1: power off
			CHIP_PWROFF_EN
10	514		software conifg power off chip logic
13	RW	0x0	1'b1: power off
			1'b0: not power off
			CORE_PWROFF_EN
10	RW	0.40	software conifg power off pd_core
12	RVV	0x0	1'b1: power off
			1'b0: not power off
			PD_SCU_DWN_EN
11	RW	0x0	Power domain SCU power down enable
		0.00	1'b0: power on
			1'b1: power off
10	RO	0x0	reserved
			PD_GPU_DWN_EN
9	RW	0x0	Power domain GPU power down enable
5			1'b0: power on
			1'b1: power off
			PD_VIDEO_DWN_EN
8	RW	0x0	Power domain VIDEO power down enable
0		0.00	1'b0: power on
			1'b1: power off
			PD_VIO_DWN_EN
7	RW	0x0	Power domain VIO power down enable
ĺ.		0x0	1'b0: power on
			1'b1: power off
			PD_PERI_DWN_EN
6	RW	0x0	Power domain PERI power down enable
Ũ			1'b0: power on
			1'b1: power off
			PD_BUS_DWN_EN
5	RW	0x0	Power domain BUS power down enable
			1'b0: power on
			1'b1: power off
4	RO	0x0	reserved
			PD_A17_3_DWN_EN
	RW		Power Domain A17 slave core 3 power down
3		0x0	enable
			1'b0: power on
			1'b1: power off

Bit	Attr	Reset Value	Description
			PD_A17_2_DWN_EN
			Power Domain A17 slave core 2 power down
2	RW	0x0	enable
			1'b0: power on
			1'b1: power off
			PD_A17_1_DWN_EN
	RW	0×0	Power domain A17 slave core 1 power down
1			enable
			1'b0: power on
			1'b1: power off
			PD_A17_0_DWN_EN
	RW	0×0	Power Domain A17 primary core power down
0			enable
			1'b0: power on
			1'b1: power off

PMU_PWRDN_ST

Address: Operational Base + offset (0x000c) System power gating status register

Bit	Attr	Reset Value	Description
31:14	RO	0x0	reserved
13	RW	0x0	l2_standywfi
12	RW	0x0	l2_flush_done
			pd_scu_pwr_st
11	RO	0×0	Power domain SCU power status
	RU	UXU	1'b0: power on
			1'b1: power off
			pd_hevc_pwr_st
10	RO	0x0	Power domain HEVC power status
10	ĸŪ	0x0	1'b0: power on
			1'b1: power off
			pd_gpu_pwr_st
9	RO	0x0	Power domain GPU power status
5	i co	0.00	1'b0: power on
			1'b1: power off
		0×0	pd_video_pwr_st
8	RO		Power domain VIDEO power status
0			1'b0: power on
			1'b1: power off
			pd_vio_pwr_st
7	RO	0x0	Power domain VIO power status
`	ĸŬ		1'b0: power on
			1'b1: power off

Bit	Attr	Reset Value	Description
			pd_peri_pwr_st
c	RO	0x0	Power domain PERI power status
6	RU	UXU	1'b0: power on
			1'b1: power off
			pd_bus_pwr_st
5	RO	0x0	Power domain BUS power status
5	ĸŪ	0.00	1'b0: power on
			1'b1: power off
4	RO	0x0	reserved
			pd_A17_3_pwr_st
2		00	Power domain A17 slave core 3 power status
3	RW	0x0	1'b0: power on
			1'b1: power off
			pd_A17_2_pwr_st
2	D 14	0.40	Power domain A17 slave core 2 power status
2	RW	0x0	1'b0: power on
			1'b1: power off
			pd_A17_1_pwr_st
1		0×0	Power domain A17 slave core 1 power status
1	RW		1'b0: power on
			1'b1: power off
			pd_A17_0_pwr_st
	RW	V 0×0	Power domain A17 primary core power status
0			1'b0: power on
			1'b1: power off

PMU_IDLE_REQ Address: Operational Base + offset (0x0010) PMU Noc idle req control

Bit	Attr	Reset Value	Description
31:10	RO	0x0	reserved
			idle_req_hevc_cfg
			software config HEVC domain flush trasaction
9	RW	0x0	request
			1'b1: idle req
			1'b0: not idle req
			idle_req_cpup_cfg
			software config CPUP domain flush trasaction
8	RW	0x0	request
			1'b1: idle req
			1'b0: not idle req
			idle_req_dma_cfg
			software config DMA domain flush trasaction
7	RW	0x0	request
			1'b1: idle req
			1'b0: not idle req

Bit	Attr	Reset Value	Description
			idle_req_alive_cfg
			software config ALIVE domain flush trasaction
6	RW	0x0	request
			1'b1: idle req
			1'b0: not idle req
			idle_req_core_cfg
			software config CORE domain flush trasaction
5	RW	0x0	request
			1'b1: idle req
			1'b0: not idle req
			idle_req_vio_cfg
			software config VIO domain flush trasaction
4	RW	0x0	request
			1'b1: idle req
			1'b0: not idle req
			idle_req_video_cfg
			software config VIDEO domain flush
3	RW	0x0	trasaction request
			1'b1: idle req
			1'b0: not idle req
			idle_req_gpu_cfg
			software config GPU domain flush trasaction
2	RW	0x0	request
			1'b1: idle req
			1'b0: not idle req
			idle_req_peri_cfg
			software config PERI domain flush trasaction
1	RW	0x0	request
			1'b1: idle req
			1'b0: not idle req
			idle_req_bus_cfg
	RW	0×0	software config BUS domain flush trasaction
0			request
			1'b1: idle req
			1'b0: not idle req

PMU_IDLE_ST Address: Operational Base + offset (0x0014) PMU Noc idle status

Bit	Attr	Reset Value	Description
31:26	RO	0x0	reserved
		W 0×0	idle_ack_hevc
25			hevc domain flush transaction acknowledge
25	5 RW		1'b0: no ack
			1'b1: ack

Bit	Attr	Reset Value	Description
			idle_ack_cpup
24			cpup domain flush transaction acknowledge
	RW	0x0	1'b0: no ack
			1'b1: ack
			idle_ack_dma
	D 14/		dma domain flush transaction acknowledge
23	RW	0×0	1'b0: no ack
			1'b1: ack
			idle_ack_alive
	D 14/		ALIVE domain flush transaction acknowledge
22	RW	0×0	1'b0: no ack
			1'b1: ack
			idle_ack_core
24	DIA		core domain flush transaction acknowledge
21	RW	0×0	1'b0: no ack
			1'b1: ack
			idle_ack_vio
20	DIA		VIO domain flush transaction acknowledge
20	RW	0×0	1'b0: no ack
			1'b1: ack
	RW	0x0	idle_ack_video
10			VIDEO domain flush transaction acknowledge
19			1'b0: no ack
			1'b1: ack
			idle_ack_gpu
10		00	GPU domain flush transaction acknowledge
18	RW	0x0	1'b0: no ack
			1'b1: ack
			idle_ack_peri
17		0.20	PERI domain flush transaction acknowledge
17	RW	/ 0x0	1'b0: no ack
			1'b1: ack
			idle_ack_bus
16	RW	0x0	BUS domain flush transaction acknowledge
10	K VV	0.00	1'b0: no ack
			1'b1: ack
15:10	RO	0x0	reserved
			IDLE_HEVC
0	DW/	0×0	HEVC domain flush transaction finish(idle)
9	RW	UXU	1'b0: no finish
			1'b1: finish
			IDLE_CPUP
8	RW	0x0	CPUP domain flush transaction finish(idle)
0			1'b0: no finish
			1'b1: finish

Bit	Attr	Reset Value	Description
			IDLE_DMA
7	RW	0x0	DMA domain flush transaction finish(idle)
7	ĸw	UXU	1'b0: no finish
			1'b1: finish
			IDLE_ALIVE
6	RW	0x0	ALIVE domain flush transaction finish(idle)
0	r vv	0.00	1'b0: no finish
			1'b1: finish
			IDLE_CORE
5	RW	0x0	CORE domain flush transaction finish(idle)
5		0.00	1'b0: no finish
			1'b1: finish
		0x0	IDLE_VIO
4	RW		VIO domain flush transaction finish(idle)
–			1'b0: no finish
			1'b1: finish
	RW		IDLE_VIDEO
3		0x0	VIDEO domain flush transaction finish(idle)
5		0.0	1'b0: no finish
			1'b1: finish
		0×0	IDLE_GPU
2	RW		GPU domain flush transaction finish(idle)
-			1'b0: no finish
			1'b1: finish
			IDLE_PERI
1	RW	0×0	PERI domain flush transaction finish(idle)
-			1'b0: no finish
			1'b1: finish
	RW	0×0	IDLE_BUS
0			BUS domain flush transaction finish(idle)
			1'b0: no finish
			1'b1: finish

PMU_PWRMODE_CON

Address: Operational Base + offset (0x0018) PMU configuration register in power mode flow

Bit	Attr	Reset Value	Description
31:23	RO	0x0	reserved
			ddr1io_ret_de_req
22	RW	0.20	ddr1io retention de-assert request
22	RW	0x0	1'b0: de-assert request
			1'b1: not de-assert request
		0x0	ddr0io_ret_de_req
21	RW		ddr0io retention de-assert request
21 RW	K VV		1'b0: de-assert request
			1'b1: not de-assert request

Bit	Attr	Reset Value	Description
			ddrc1_gating_en
			ddrc1 clock auto gating after self-refresh in
20	RW	0x0	low power mode
			1'b1: auto gating
			1'b0: not auto gating
			ddr0_gating_en
10		0.40	ddrc0 auto gating in low power mode
19	RW	0×0	1'b0: disable
			1'b1: enable
			ddr1io_ret_en
10		0.40	ddr1 io ret enable in low power mode
18	RW	0×0	1'b1: enable
			1'b0: disable
			ddr0io_ret_en
17	RW	0.20	DDR0 IO retention function enable or not
17	K VV	0x0	1'b0: DDR0 IO retention disable
			1'b1: DDR0 IO retention enable
	RW	0x0	sref1_enter_en
16			ddr1 enter self-refresh in low power mode
10			1'b1: enable
			1'b0: disable
			sref0_enter_en
			DDR0 enter self-refresh enable in low power
15	RW	0x0	mode
			1'b0: disable DDR0 enter self-refresh
			1'b1: enable DDR0 enter self-refresh
			wakeup_reset_en
14	RW	0x0	wakeup reset enable if power up
			1'b0: diable
			1'b1: enable
			input_clamp_en
			input clamp enable if power off
13	RW	0×0	input clamp for PD_PMU enable if power off
			1'b0: disable
			1'b1: enable
			osc_24m_dis
12	RW	0x0	24MHz OSC disable in low power mode
			1'b0: 24MHz OSC enable
			1'b1: 24MHz OSC disable
			pmu_use_lf
11	RW	0x0	pmu domain clock switch to 32.768kHz enable
			1'b0: not switch to 32.768kHz
			1'b1: switch to 32.768kHz

Bit	Attr	Reset Value	Description
			alive_use_lf
			ALIVE domain clock switch to 32.768kHz
10	RW	0x0	enable
			1'b0: not switch to 32.768kHz
			1'b1: switch to 32.768kHz
			pwroff_comb
0		00	three power off signal combination
9	RW	0x0	1'b0: not combine
			1'b1: combine enable
			chip_pd_en
-	DW		chip power down enable in power mode flow
8	RW	0x0	1'b0: chip power on
			1'b1: chip power off
			pll_pd_en
-	D 144		pll power down enable in power mode flow
7	RW	0×0	1'b0: pll power on
			1'b1: pll power off
	RW	0×0	scu_en
c .			scu power down enable in power mode flow
6			1'b0: scu power on
			1'b1: scu power off
			A17_0_pd_en
_	5.44		A17_0 power down in power mode flow
5	RW	0x0	1'b0: A17_0 power on
			1'b1: A17_0 power off
			bus_pd_en
	DW	0×0	bus power off enable in low power mode
4	RW		1'b0: bus power on
			1'b1: bus power off
			l2flush_en
2	DW		l2 flush enable
3	RW	0x0	1'b1: l2 flush enable
			1'b0: l2 flush disable
			global_int_disable
2		00	Global interrupt disable
2	RW	0x0	1'b0: enable global interrupt
			1'b1: disable global interrupt
			clk_core_src_gate_en
	RW		A17 core clock source gating enable in idle
1		0x0	mode
			1'b0: enable
			1'b1: disable

Bit	Attr	Reset Value	Description
		0x0	power_mode_en
0			power mode flow enable
U	0 RW		1'b0: disable
			1'b1: enable

PMU_PWR_STATE

Address: Operational Base + offset (0x001c) PMU Low power mode state

Bit	Attr	Reset Value	Description
31	RO	0x0	reserved
			A17_CLK_EN
20	DW	00	A17 source clock enable
30	RW	0x0	1'b0: state not happened
			1'b1: state happened
			TRANS_RESTORE
20		0.00	noc trans restore
29	RW	0x0	1'b0: state not happened
			1'b1: state happened
			A17_0_PWRUP
28	RW	0x0	A17 core0 power up state
20	RVV	0.00	1'b0: state not happened
			1'b1: state happened
		0x0	L2MEM_PWRUP
27	RW		pd_l2mem powerup state
27			1'b0: state not happened
			1'b1: state happened
	RW	0×0	SREF_EXIT
26			ddr exit self-refresh
20			1'b0: state not happened
			1'b1: state happened
			DDR_IO_PWRUP
25	RW	W 0×0	ddr io powerup state
25			1'b0: state not happened
			1'b1: state happened
			BUS_PWRUP
24	RW	0×0	pd_bus powerup state
			1'b0: state not happened
			1'b1: state happened
			PLL_PWRUP
23	RW	0x0	pll power up state
20			1'b0: state not happened
			1'b1: state happened
			WAKEUP_RESET_CLR
22	RW	0x0	deassert wakeup reset
			1'b0: state not happened
			1'b1: state happened

Bit	Attr	Reset Value	Description
			ALIVE_PMU_HF
			pd_alive & pd_pmu switch to normal clock
21	RW	0x0	1'b0: state not happened
			1'b1: state happened
			X24M_OSC_EN
			24MHz OSC enable
20	RW	0x0	1'b0: state not happened
			1'b1: state happened
			RELEASE_CLAMP
			release pd_pmu input clamp
19	RW	0x0	1'b0: state not happened
			1'b1: state happened
			EXT_PWRUP
			ext pmic power up
18	RW	0×0	1'b0: state not happened
			1'b1: state happened
			WAKEUP_RESET
	RW		wakeup reset
17		0x0	1'b0: state not happened
			1'b1: state happened
			WAIT_WAKEUP
		0×0	wati wakeup state
16	RW		1'b0: state not happened
			1'b1: state happened
			X24M OSC DIS
			24MHz soc diable state
15	RW	0x0	1'b0: state not happened
			1'b1: state happened
			POWEROFF
1.4		00	chip power off state
14	RW	0x0	1'b0: state not happened
			1'b1: state happened
			INPUT_CLAMP
10	DIA		pd_pmu input clamp
13	RW	0x0	1'b0: state not happened
			1'b1: state happened
			PLL_PWRDN
10		0.40	pll power down state
12	RW	0x0	1'b0: state not happened
			1'b1: state happened
			ALIVE_PMU_LF
4.4		0×0	pd_alive&pd_pmu switch to 32khz
11	RW		1'b0: state not happened
			1'b1: state happened

Bit	Attr	Reset Value	Description
			L2MEM_PWRDN
10			l2 mem power down state
10	RW	0×0	1'b0: state not happened
			1'b1: state happened
			A17_0_PWRDN
0	DW		A17 core0 power down state
9	RW	0x0	1'b0: state not happened
			1'b1: state happened
			BUS_PWRDN
0		00	pd_bus power down state
8	RW	0x0	1'b0: A17_0 power on
			1'b1: A17_0 power off
			DDR_IO_PWROFF
_	D 144		ddr io power off
7	RW	0x0	1'b0: state not happened
			1'b1: state happened
			DDR_IO_RET
~	D 144		DDR io retention
6	RW	0×0	1'b0: state not happened
			1'b1: state happened
	RW	0x0	SREF_ENTER
_			ddr selfrefresh enter
5			1'b0: state not happened
			1'b1: state happened
			TRANS_NO_FIN
			transfer no finish
4	RW	0×0	1'b0: state not happened
			1'b1: state happened
			A17_CLK_DIS
2	DW		A17 clock disable
3	RW	0x0	1'b0: state not happened
			1'b1: state happened
			STANDBYL2
2	DW		L2 Standby
2	RW	0x0	1'b0: state not happened
			1'b1: state happened
			L2FLUSH_REQ
			L2 Flush req
1	RW	0×0	1'b0: state not happened
			1'b1: state happened
			NORMAL
		0×0	normal state
0	RW		1'b0: state not happened
			1'b1: state happened

PMU_OSC_CNT

Address: Operational Base + offset (0x0020) 24MHz OSC stabilization counter threshold

Bit	Attr	Reset Value	Description
31:20	RO	0x0	reserved
19:0		0x0Ede0	osc_stabl_cnt_thresh
19:0	RW	0x05dc0	24MHz OSC stabilization counter threshold

PMU_PLL_CNT

Address: Operational Base + offset (0x0024)

PLL lock counter threshold

Bit	Attr	Reset Value	Description
31:20	31:20 RW 0x100	pllrst_cnt_thresh	
51.20	K V V	0x100	PLL reset wait counter threshold
10.0	9:0 IRW 10x04000	plllock_cnt_thresh	
19:0		PLL lock wait counter threshold	

PMU_STABL_CNT

Address: Operational Base + offset (0x0028) External PMU stabilization counter threshold

Bit	Attr	Reset Value	Description
31:20	RO	0x0	reserved
19:0	RW	0x05dc0	pmu_stabl_cnt_thresh External PMU stabilization counter threshold

PMU_DDR0IO_PWRON_CNT

Address: Operational Base + offset (0x002c) DDR0 IO power on counter threshold

Bit	Attr	Reset Value	Description
31:20	RO	0x0	reserved
19:0	RW	0x05dc0	ddr0io_pwron_cnt_thresh DDR0 IO power on counter threshold

PMU_DDR1IO_PWRON_CNT

Address: Operational Base + offset (0x0030) DDR1 IO power on counter threshold

Bit	Attr	Reset Value	Description
31:20	RO	0x0	reserved
19:0	RW 0x05dc0	0x05dc0	ddr1io_pwron_cnt_thresh
19.0	K VV	0x05000	DDR1 IO power on counter threshold

PMU_CORE_PWRDWN_CNT

Address: Operational Base + offset (0x0034) CORE domain power down waiting counter in sleep mode

Bit	Attr	Reset Value	Description
31:20	RO	0x0	reserved
19:0	RW		core_pwrdwn_cnt_thresh CORE domain power down waiting counter threshold

PMU_CORE_PWRUP_CNT

Address: Operational Base + offset (0x0038) CORE domain power up waiting counter in sleep mode

Bit	Attr	Reset Value	Description
31:20	RO	0x0	reserved
			core_pwrup_cnt_thresh
19:0	RW	0x05dc0	CORE domain power up waiting counter
			threshold

PMU_GPU_PWRDWN_CNT

Address: Operational Base + offset (0x003c) GPU domain power down waiting counter in sleep mode

Bit	Attr	Reset Value	Description
31:20	RO	0x0	reserved
19:0	RW	0x05dc0	gpu_pwrdwn_cnt_thresh GPU domain power down waiting counter threshold

PMU_GPU_PWRUP_CNT

Address: Operational Base + offset (0x0040) GPU domain power up waiting counter in sleep mode

Bit	Attr	Reset Value	Description
31:20	RO	0x0	reserved
19:0	RW	0x05dc0	gpu_pwrup_cnt_thresh GPU domain power up waiting counter threshold

PMU_WAKEUP_RST_CLR_CNT

Address: Operational Base + offset (0x0044) Wakeup reset deassert state wait counter in power off mode

Bit	Attr	Reset Value	Description
31:20	RO	0x0	reserved
19:0	RW	0x05dc0	wakeup_rst_clr_cnt_thresh Power off mode wakeup reset clear counter threshold

PMU_SFT_CON

Address: Operational Base + offset (0x0048) PMU Software control in normal mode

Bit	Attr	Reset Value	Description
31:16	RO	0x0	reserved
			l2flush_cfg
1 5		0×0	I2 flush config in normal mode
15	RW		1'b1: l2 flush req
			1'b0: l2 flush disable
	DW	0×0	osc_disable_cfg
14			software config OSC disable
14	RW		1'b1: OSC disable
			1'b0: OSC enable

Bit	Attr	Reset Value	Description
			osc_bypass
10		0×0	osc bypass control
13	RW	UXU	1'b0: disable
			1'b1: enable
			alive_lf_ena_cfg
			software config ALIVE domain clock switch to
12	RW	0x0	32.768kHz
			1'b1: switch to 32.768kHz
			1'b0: not switch
			pmu_lf_ena_cfg
			software config PMU domain clock switch to
11	RW	0x0	32.768kHz
			1'b1: switch to 32.768kHz
			1'b0: not switch
			power_off_ddr1io_cfg
10	RW	0×0	software conifg power off DDR1 IO
10			1'b1: power off
			1'b0: not power off
	RW	0x0	ddr1_io_ret_cfg
9			software config DDR1 IO retention
5			1'b1: retention
			1'b0: not retention
			upctl1_c_sysreq_cfg
			software config enter DDR1 self-refresh by
8	RW	0x0	lowpower interface
			1'b1: request enter self-refresh
			1'b0: not enter self-refresh
	RW	0x0	power_off_ddr0io_cfg
7			software conifg power off DDR0 IO
-			1'b1: power off
			1'b0: not power off
			ddr0_io_ret_cfg
6	RW	0x0	software config DDR0 IO retention
			1'b1: retention
			1'b0: not retention
			upctl0_c_sysreq_cfg
			software config enter DDR0 self-refresh by
5	RW	0x0	lowpower interface
			1'b1: request enter self-refresh
			1'b0: not enter self-refresh
			clk_core_src_gating_cfg
4	RW	0×0	software config A17 core clock source gating
			1'b1: gating
			1'b0: not gating

Bit	Attr	Reset Value	Description
			dbgnopwrdwn3_enable
			ARM CORE3 DBGNOPWRDWN function
3	RW	0x0	support enable
			1'b0: not support
			1'b1: support
			dbgnopwrdwn2_enable
			ARM CORE2 DBGNOPWRDWN function
2	RW	0x0	support enable
			1'b0: not support
			1'b1: support
			dbgnopwrdwn1_enable
			ARM CORE1 DBGNOPWRDWN function
1	RW	0x0	support enable
			1'b0: not support
			1'b1: support
			dbgnopwrdwn0_enable
		0x0	ARM CORE0 DBGNOPWRDWN function
0	RW		support enable
			1'b0: not support
			1'b1: support

PMU_DDR_SREF_ST

Address: Operational Base + offset (0x004c) PMU DDR self refresh status

Bit	Attr	Reset Value	Description
31:4	RO	0x0	reserved
			upctl0_c_sysack
3	RW	0x0	DDR0 enter self-refresh acknowledge
5	K VV	0.00	1'b0: no ack
			1'b1: ack
			upctl0_c_active
2	RW	0x0	DDR0 enter self-refresh
2		0.00	1'b0: no active
			1'b1: active
	RW		upctl1_c_sysack
1		0x0	DDR1 enter self-refresh acknowledge
1 1			1'b0: no ack
			1'b1: ack
	RW	0x0	upctl1_c_active
0			DDR1 enter self-refresh
0			1'b0: no active
			1'b1: active

PMU_INT_CON

Address: Operational Base + offset (0x0050) PMU interrupt configuration register

Bit	Attr	Reset Value	Description
31:28	RO	0x0	reserved
			pd_mem_int_en Power domain L2 MEM power switch interrupt
27	RW	0x0	enable
			1'b0: disable
			1'b1: enable
			pd_hevc_int_en
			Power domain hevc power switch interrupt
26	RW	0x0	enable
			1'b0: disable
			1'b1: enable
			pd_gpu_int_en
			Power domain GPU power switch interrupt
25	RW	0x0	enable
			1'b0: disable
			1'b1: enable
			pd_video_int_en
			Power domain VIDEO power switch interrupt
24	RW	0x0	enable
			1'b0: disable
			1'b1: enable
			pd_vio_int_en
			Power domain VIO power switch interrupt
23	RW	0x0	enable
			1'b0: disable
			1'b1: enable
			pd_peri_int_en
			Power domain PERI power switch interrupt
22	RW	0x0	enable
			1'b0: disable
			1'b1: enable
			pd_bus_int_en
			Power domain BUS power switch interrupt
21	RW	0x0	enable
			1'b0: disable
			1'b1: enable
20	RO	0x0	reserved
			pd_a2_3_int_en
			Power domain A17 slave core 3 power switch
19	RW	0x0	interrupt enable
			1'b0: disable
			1'b1: enable

Bit	Attr	Reset Value	Description
			pd_A17_2_int_en
			Power domain A17 slave core 2 power switch
18	RW	0x0	interrupt enable
			1'b0: disable
			1'b1: enable
			pd_A17_1_int_en
			Power domain A17 slave core 1 power switch
17	RW	0x0	interrupt enable
			1'b0: disable
			1'b1: enable
			pd_A17_0_int_en
			Power domain A17 primary core power switch
16	RW	0x0	interrupt enable
			1'b0: disable
			1'b1: enable
15:6	RO	0x0	reserved
	RW	0x0	pwrmode_wakeup_int_en
-			wakeup interrupt enable in power mode
5			1'b0: disable
			1'b1: enable
			gpioint_wakeup_int_en
1	RW	0.20	gpio interrupt wakeup interrupt enable
4	KW	0×0	1'b0: disable
			1'b1: enable
			sdmmc0_wakeup_int_en
2	DW	0×0	SDMMC0 wakeup status interrupt enable
3	RW		1'b0: disable
			1'b1: enable
			gpio_wakeup_int_en
2		0.20	GPIO0 wakeup status interrupt enable
2	RW	0x0	1'b0: disable
			1'b1: enable
			armint_wakeup_int_en
4		0×0	ARM interrupt wakeup status interrupt enable
1	RW		1'b0: disable
			1'b1: enable
			pmu_int_en
	D) 1/	0×0	PMU interrupt enable
0	RW		1'b0: disable
			1'b1: enable

PMU_INT_ST

Address: Operational Base + offset (0x0054)

PMU in	terrupt	status	register

Bit	Attr	Reset Value	Description
31:28	RO	0x0	reserved

Bit	Attr	Reset Value	Description
			pd_mem_int_st
27	5.44		Power domain I2 mem power switch status
	RW	0×0	1'b0: no power switch happen
			1'b1: power switch happen
			pd_hevc_int_st
			Power domain HEVC power switch status
26	RW	0×0	1'b0: no power switch happen
			1'b1: power switch happen
			pd_gpu_int_st
			Power domain GPU power switch status
25	W1C	0x0	1'b0: no power switch happen
			1'b1: power switch happen
			pd_video_int_st
			Power domain VIDEO power switch status
24	W1C	0x0	1'b0: no power switch happen
			1'b1: power switch happen
			pd_vio_int_st
			Power domain VIO power switch status
23	W1C	0x0	1'b0: no power switch happen
			1'b1: power switch happen
			pd_peri_int_st
22	W1C	0x0	Power domain PERI power switch status
			1'b0: no power switch happen
			1'b1: power switch happen
			pd_bus_int_st
21	W1C	0x0	Power domain BUS power switch status
			1'b0: no power switch happen
			1'b1: power switch happen
20	RO	0x0	reserved
			pd_A17_3_int_st
		V 0×0	Power domain A17 slave core 3 power switch
19	RW		status
			1'b0: no power switch happen
			1'b1: power switch happen
			pd_A17_2_int_st
			Power domain A17 slave core 2 power switch
18	RW	0x0	status
			1'b0: no power switch happen
			1'b1: power switch happen
			pd_A17_1_int_st
			Power domain A17 slave core 1 power switch
17	RW	0x0	status
			1'b0: no power switch happen
			1'b1: power switch happen

Bit	Attr	Reset Value	Description
			pd_A17_0_int_st
			Power domain A17 primary core power switch
16	RW	0x0	status
			1'b0: no power switch happen
			1'b1: power switch happen
15:5	RO	0x0	reserved
			pwrmode_wakeup_event_trig
1		0x0	power mode flow wakeup
4	RW	UXU	1'b0: no wakeup
			1'b1: wakeup
			gpioint_wakeup_event_trig
3	RW	0×0	ARM interrupt wake-up enent trigger
3	RVV		1'b0: no wakeup
			1'b1: wakeup
		0x0	sdmmc0_wakeup_event_trig
2	W1C		SDMMC0 wake-up enent trigger
2	WIC		1'b0: no wakeup
			1'b1: wakeup
		LC 0x0	gpio_wakeup_event_trig
1	W1C		GPIO0 wake-up enent trigger
1	WIC		1'b0: no wakeup
			1'b1: wakeup
			armint_wakeup_event_trig
	RW	0×0	ARM interrupt wake-up enent trigger
0			1'b0: no wakeup
			1'b1: wakeup

PMU_BOOT_ADDR_SEL

Address: Operational Base + offset (0x0058) boot_addr_sel in power mode

Bit	Attr	Reset Value	Description
31:0	31:0 RW	0x00005dc0	boot_addr_sel
51.0		0x00003000	boot addr sel when wakeup from power mode

PMU_GRF_CON

Address: Operational Base + offset (0x005c) grf control register

Bit	Attr	Reset Value	Description
31:16	RO	0x0	reserved
15:10	RW	0x00	GRF_NPOR_CRNT_CTRL
	RW		Npor signal crnt control register
0 - 1		0×00	GRF_TEST_CRNT_CTRL
9:4	RW		Test signal crnt control register
3:2	RW	0x2	GRF_X32K_CRNT_CTRL
	K VV		X32K signal crnt control register

Bit	Attr	Reset Value	Description
1:0 RW	D\//	0.20	GRF_X24M_CRNT_CTRL
1.0	0 RW	0x0	X24M signal crnt control register

PMU_GPIO_SR

Address: Operational Base + offset (0x0060) GPIO slew rate control

Bit	Attr	Reset Value	Description
31:19	RO	0x0	reserved
			gpio0_c2_sr
18	RW	0x0	gpio0_c2 slew rate control
10	K V V	0.00	1'b0: slow (half frequency)
			1'b1: fast
			gpio0_c1_sr
17	RW	0x1	gpio0_c1 slew rate control
17		0.11	1'b0: slow (half frequency)
			1'b1: fast
			gpio0_c0_sr
16	RW	0x0	gpio0_c0 slew rate control
10		0.00	1'b0: slow (half frequency)
			1'b1: fastl
			gpio0_b7_sr
15	RW	0x0	gpio0_b7 slew rate control
15		UXU	1'b0: slow (half frequency)
			1'b1: fast
	RW	0×0	gpio0_b6_sr
14			gpio0_b6 slew rate control
14			1'b0: slow (half frequency)
			1'b1: fast
			gpio0_b5_sr
13	RW	0x0	gpio0_b5 slew rate control
15			1'b0: slow (half frequency)
			1'b1: fast
			gpio0_b4_sr
12	D\//	RW 0x0	gpio0_b4 slew rate control
12			1'b0: slow (half frequency)
			1'b1: fast
			gpio0_b3_sr
11	RW	0×0	gpio0_b3 slew rate control
	1		1'b0: slow (half frequency)
			1'b1: fast
			gpio0_b2_sr
10	RW	0×0	gpio0_b2 slew rate control
			1'b0: slow (half frequency)
			1'b1: fast

Bit	Attr	Reset Value	Description
			gpio0_b1_sr
0		00	gpio0_b1 slew rate control
9	RW	0×0	1'b0: slow (half frequency)
			1'b1: fast
			gpio0_b0_sr
0	RW	0×0	gpio0_b0 slew rate control
8	KW	UXU	1'b0: slow (half frequency)
			1'b1: fast
			gpio0_a7_sr
7	RW	0×0	gpio0_a7 slew rate control
/	RVV	UXU	1'b0: slow (half frequency)
			1'b1: fastll
			gpio0_a6_sr
6	RW	0×0	gpio0_a6 slew rate control
0	KW	UXU	1'b0: slow (half frequency)
			1'b1: fast
			gpio0_a5_sr
5	RW	0x0	gpio0_a5 slew rate control
5	K VV		1'b0: slow (half frequency)
			1'b1: fast
			gpio0_a4_sr
4	RW	0x0	gpio0_a4 slew rate control
4		0.00	1'b0: slow (half frequency)
			1'b1: fast
	RW		gpio0_a3_sr
3		0×0	gpio0_a3 slew rate control
5			1'b0: slow (half frequency)
			1'b1: fast
			gpio0_a2_sr
2	RW	0×0	gpio0_a2 slew rate control
2		0,0	1'b0: slow (half frequency)
			1'b1: fast
			gpio0_a1_sr
1	RW	0x0	gpio0_a1 slew rate control
1			1'b0: slow (half frequency)
			1'b1: fast
			gpio0_a0_sr
0	RW	0×0	gpio0_a0 slew rate control
			1'b0: slow (half frequency)
			1'b1: fast

PMU_GPIO0_A_PULL

Address: Operational Base + offset (0x0064) GPIO0A input to PU/PD programmation section

100/	Ob <u>A input to ror b programmation section</u>					
	Bit	Attr	Reset Value	Description		
	31:16	RO	0x0	reserved		

Bit	Attr	Reset Value	Description
			gpio0_a7_pull
			gpio0_a7 pu/pd programmation section
			[p2:p1]
15:14	RW	0x1	2'b00: Z(Normal operation)
			2'b01: weak 1 (pull-up)
			2'b10: weak 0 (pull-down)
			2'b11: repeater (bus keeper)
			gpio0_a6_pull
			gpio0_a6 pu/pd programmation section
			[p2:p1]
13:12	RW	0x1	2'b00: Z(Normal operation)
			2'b01: weak 1 (pull-up)
			2'b10: weak 0 (pull-down)
			2'b11: repeater (bus keeper)
			gpio0_a5_pull
			gpio0_a5 pu/pd programmation section
			[p2:p1]
11:10	RW	0x1	2'b00: Z(Normal operation)
			2'b01: weak 1 (pull-up)
			2'b10: weak 0 (pull-down)
			2'b11: repeater (bus keeper)
			gpio0_a4_pull
			gpio0_a4 pu/pd programmation section
			[p2:p1]
9:8	RW	0x1	2'b00: Z(Normal operation)
			2'b01: weak 1 (pull-up)
			2'b10: weak 0 (pull-down)
			2'b11: repeater (bus keeper)
			gpio0_a3_pull
			gpio0_a3 pu/pd programmation section
			[p2:p1]
7:6	RW	0x1	2'b00: Z(Normal operation)
			2'b01: weak 1 (pull-up)
			2'b10: weak 0 (pull-down)
			2'b11: repeater (bus keeper)
			gpio0_a2_pull
			gpio0_a2 pu/pd programmation section
			[p2:p1]
5:4	RW	0x1	2'b00: Z(Normal operation)
			2'b01: weak 1 (pull-up)
			2'b10: weak 0 (pull-down)
			2'b11: repeater (bus keeper)

Bit	Attr	Reset Value	Description
			gpio0_a1_pull
			gpio0_a1 pu/pd programmation section
			[p2:p1]
3:2	RW	0x2	2'b00: Z(Normal operation)
			2'b01: weak 1 (pull-up)
			2'b10: weak 0 (pull-down)
			2'b11: repeater (bus keeper)
			gpio0_a0_pull
			gpio0_a0 pu/pd programmation section
			[p2:p1]
1:0	RW	0x2	2'b00: Z(Normal operation)
			2'b01: weak 1 (pull-up)
			2'b10: weak 0 (pull-down)
			2'b11: repeater (bus keeper)

PMU_GPIO0_B_PULL

Address: Operational Base + offset (0x0068) GPIO0B input to PU/PD programmation section

Bit	Attr	Reset Value	Description
31:16	RO	0x0	reserved
			gpio0_b7_pull
			gpio0_b7 pu/pd programmation section
			[p2:p1]
15:14	RW	0x1	2'b00: Z(Normal operation)
			2'b01: weak 1 (pull-up)
			2'b10: weak 0 (pull-down)
			2'b11: repeater (bus keeper)
			gpio0_b6_pull
			gpio0_b6 pu/pd programmation section
			[p2:p1]
13:12	RW	0x1	2'b00: Z(Normal operation)
			2'b01: weak 1 (pull-up)
			2'b10: weak 0 (pull-down)
			2'b11: repeater (bus keeper)
			gpio0_b5_pull
			gpio0_b5 pu/pd programmation section
			[p2:p1]
11:10	RW	0x1	2'b00: Z(Normal operation)
			2'b01: weak 1 (pull-up)
			2'b10: weak 0 (pull-down)
			2'b11: repeater (bus keeper)

Bit	Attr	Reset Value	Description
			gpio0_b4_pull
			gpio0_b4 pu/pd programmation section
			[p2:p1]
9:8	RW	0x1	2'b00: Z(Normal operation)
			2'b01: weak 1 (pull-up)
			2'b10: weak 0 (pull-down)
			2'b11: repeater (bus keeper)
			gpio0_b3_pull
			gpio0_b3 pu/pd programmation section
			[p2:p1]
7:6	RW	0x1	2'b00: Z(Normal operation)
			2'b01: weak 1 (pull-up)
			2'b10: weak 0 (pull-down)
			2'b11: repeater (bus keeper)
			gpio0_b2_pull
			gpio0_b2 pu/pd programmation section
			[p2:p1]
5:4	RW	0x1	2'b00: Z(Normal operation)
			2'b01: weak 1 (pull-up)
			2'b10: weak 0 (pull-down)
			2'b11: repeater (bus keeper)
			gpio0_b1_pull
			gpio0_b1 pu/pd programmation section
			[p2:p1]
3:2	RW	0x1	2'b00: Z(Normal operation)
			2'b01: weak 1 (pull-up)
			2'b10: weak 0 (pull-down)
			2'b11: repeater (bus keeper)
			gpio0_b0_pull
			gpio0_b0 pu/pd programmation section
			[p2:p1]
1:0	RW	0x1	2'b00: Z(Normal operation)
			2'b01: weak 1 (pull-up)
			2'b10: weak 0 (pull-down)
			2'b11: repeater (bus keeper)

PMU_GPIO0_C_PULL

Address: Operational Base + offset (0x006c) GPIO0C input to PU/PD programmation section

Bit	Attr	Reset Value	Description
31:6	RO	0x0	reserved

Bit	Attr	Reset Value	Description
			gpio0_c2_pull
			gpio0_c2 pu/pd programmation section
			[p2:p1]
5:4	RW	0x1	2'b00: Z(Normal operation)
			2'b01: weak 1 (pull-up)
			2'b10: weak 0 (pull-down)
			2'b11: repeater (bus keeper)
			gpio0_c1_pull
			gpio0_c1 pu/pd programmation section
			[p2:p1]
3:2	RW	0x1	2'b00: Z(Normal operation)
			2'b01: weak 1 (pull-up)
			2'b10: weak 0 (pull-down)
			2'b11: repeater (bus keeper)
			gpio0_c0_pull
			gpio0_c0 pu/pd programmation section
			[p2:p1]
1:0	RW	0x1	2'b00: Z(Normal operation)
			2'b01: weak 1 (pull-up)
			2'b10: weak 0 (pull-down)
			2'b11: repeater (bus keeper)

PMU_GPIO0_A_DRV

Address: Operational Base + offset (0x0070)GPIO0A Drive strength slector

Bit	Attr	Reset Value	Description
31:16	RO	0x0	reserved
			gpio0_a7_e
			gpio0_a7 drive strength slector
			[e2:e1]
15:14	RW	0x1	2′b00: 2mA
			2′b01: 4mA
			2′b10: 8mA
			2′b11: 12mA
			gpio0_a6_e
			gpio0_a6 drive strength slector
			[e2:e1]
13:12	RW	0x1	2′b00: 2mA
			2′b01: 4mA
			2′b10: 8mA
			2′b11: 12mA

Bit	Attr	Reset Value	Description
			gpio0_a5_e
			gpio0_a5 drive strength slector
			[e2:e1]
11:10	RW	0x1	2′b00: 2mA
			2′b01: 4mA
			2′b10: 8mA
			2′b11: 12mA
			gpio0_a4_e
			gpio0_a4 drive strength slector
			[e2:e1]
9:8	RW	0x1	2′b00: 2mA
			2'b01: 4mA
			2′b10: 8mA
			2′b11: 12mA
			gpio0_a3_e
			gpio0_a3 drive strength slector
			[e2:e1]
7:6	RW	0x1	2′b00: 2mA
			2′b01: 4mA
			2′b10: 8mA
			2′b11: 12mA
			gpio0_a2_e
			gpio0_a2 drive strength slector
			[e2:e1]
5:4	RW	0x1	2′b00: 2mA
			2′b01: 4mA
			2'b10: 8mA
			2′b11: 12mA
			gpio0_a1_e
			gpio0_a1 drive strength slector
			[e2:e1]
3:2	RW	0x2	2′b00: 2mA
			2'b01: 4mA
			2'b10: 8mA
			2′b11: 12mA
			gpio0_a0_e
			gpio0_a0 drive strength slector
			[e2:e1]
1:0	RW	0x2	2′b00: 2mA
			2'b01: 4mA
			2′b10: 8mA
			2′b11: 12mA

PMU_GPIO0_B_DRV

Address: Operational Base + offset (0x0074) GPIO0B Drive strength slector

Bit	Attr	Reset Value	Description
31:16	RO	0x0	reserved
			gpio0_b7_e
			gpio0_b7 drive strength slector
			[e2:e1]
15:14	RW	0x1	2′b00: 2mA
			2′b01: 4mA
			2′b10: 8mA
			2′b11: 12mA
			gpio0_b6_e
			gpio0_b6 drive strength slector
			[e2:e1]
13:12	RW	0x1	2′b00: 2mA
			2'b01: 4mA
			2′b10: 8mA
			2′b11: 12mA
			gpio0_b5_e
			gpio0_b5 drive strength slector
			[e2:e1]
11:10	RW	0x1	2′b00: 2mA
			2'b01: 4mA
			2′b10: 8mA
			2′b11: 12mA
			gpio0_b4_e
			gpio0_b4 drive strength slector
			[e2:e1]
9:8	RW	0x1	2′b00: 2mA
			2′b01: 4mA
			2′b10: 8mA
			2′b11: 12mA
			gpio0_b3_e
			gpio0_b3 drive strength slector
7.0		0.1	[e2:e1]
7:6	RW	0x1	2'b00: 2mA
			2'b01: 4mA
			2′b10: 8mA
			2'b11: 12mA
			gpio0_b2_e gpio0_b2 drive strength slector
			[e2:e1]
5:4	RW	0x1	[22.01] 2'b00: 2mA
J.+			2'b01: 4mA
			2'b10: 8mA
			2'b11: 12mA
			2 UII. 12111A

Bit	Attr	Reset Value	Description
			gpio0_b1_e
			gpio0_b1 drive strength slector
			[e2:e1]
3:2	RW	0x1	2′b00: 2mA
			2′b01: 4mA
			2′b10: 8mA
			2′b11: 12mA
			gpio0_b0_e
			gpio0_b0 drive strength slector
			[e2:e1]
1:0	RW	0x1	2′b00: 2mA
			2'b01: 4mA
			2′b10: 8mA
			2′b11: 12mA

PMU_GPIO0_C_DRV

Address: Operational Base + offset (0x0078) GPIO0C Drive strength slector

Bit	Attr	Reset Value	Description
31:6	RO	0x0	reserved
			gpio0_c2_e
			gpio0_c2 drive strength slector
			[e2:e1]
5:4	RW	0x1	2′b00: 2mA
			2'b01: 4mA
			2′b10: 8mA
			2′b11: 12mA
			gpio0_c1_e
			gpio0_c1 drive strength slector
			[e2:e1]
3:2	RW	0x1	2′b00: 2mA
			2'b01: 4mA
			2′b10: 8mA
			2′b11: 12mA
			gpio0_c0_e
			gpio0_c0 drive strength slector
			[e2:e1]
1:0	RW	0x1	2′b00: 2mA
			2'b01: 4mA
			2′b10: 8mA
			2′b11: 12mA

PMU_GPIO_OP

Address: Operational Base + offset (0x007c)

GPIO0 output value

Bit	Attr	Reset Value	Description
-----	------	-------------	-------------

Bit	Attr	Reset Value	Description
31:19	RO	0x0	reserved
10			gpio0_c2_op
18	RW	0x0	gpio0_c2 output value
17		0.40	gpio0_c1_op
17	RW	0×0	gpio0_c1 output value
16	RW	0x0	gpio0_c0_op
16	K VV	0.00	gpio0_c0 output value
15	RW	0x0	gpio0_b7_op
13		0.00	gpio0_b7 output value
14	RW	0x0	gpio0_b6_op
14		0.00	gpio0_b6 output value
13	RW	0x0	gpio0_b5_op
13		0.00	gpio0_b5 output value
12	RW	0x0	gpio0_b4_op
12		0.00	gpio0_b4 output value
11	RW	0x0	gpio0_b3_op
11		0.00	gpio0_b3 output value
10	RW	0x0	gpio0_b2_op
10		0.00	gpio0_b2 output value
9	DW	RW 0x0	gpio0_b1_op
9			gpio0_b1 output value
8	RW	0x0	gpio0_b0_op
0		0.00	gpio0_b0 output value
7	RW	W 0x0	gpio0_a7_op
<i>'</i>		0.00	gpio0_a7 output value
6	RW	.W 0x0	gpio0_a6_op
0		0.00	gpio0_a6 output value
5	RW	0x0	gpio0_a5_op
5		0.00	gpio0_a5 output value
4	RW	0x0	gpio0_a4_op
-		0.00	gpio0_a4 output value
3	RW	/ 0x0	gpio0_a3_op
5		0.00	gpio0_a3 output value
2	RW	W 0x0	gpio0_a2_op
	1		gpio0_a2 output value
1	RW	0x0	gpio0_a1_op
-		UXU	gpio0_a1 output value
0	RW	0x0	gpio0_a0_op
	1		gpio0_a0 output value

PMU_GPIO0_SEL18

Address: Operational Base + offset (0x0080)

gpio0 1.8v/3.3v sel

Bit	Attr	Reset Value	Description
31:3	RO	0x0	reserved

Bit	Attr	Reset Value	Description
2	RW	0x1	gpio0_c0_smt
1		0x1	gpio0_b7_smt
	RW		gpio0_a0 output value
		0x0	gpio0_a0_op
0			gpio0_a0 output value
0	RW		1′b0: >=2.5v
			1′b1: <=1.8v

PMU_GPIO0_A_IOMUX

Address: Operational Base + offset (0x0084) GPIO0A iomux sel

Bit	Attr	Reset Value	Description
31:8	RO	0x0	reserved
			gpio0_a3 iomux
7:6	RW	0x0	1'b0: gpioa3
			1'b1: ddr1_retention
5	RO	0x0	reserved
			gpio0_a2 iomux
4	RW	0x0	1'b0: gpioa2
			1'b1: ddr0_retention
3	RO	0x0	reserved
			gpio0_a1 iomux
2	RW	0x0	1'b0: gpioa1
			1'b1: ddrio_pwroff
1	RO	0x0	reserved
			gpio0_a0 iomux
0	RW	0x0	1'b0: gpioa0
			1'b1: global_pwroff

PMU_GPIO0_B_IOMUX

Address: Operational Base + offset (0x0088) GPIO0B iomux sel

Bit	Attr	Reset Value	Description
31:15	RO	0x0	reserved
			gpio0_b7 iomux
14	RW	0x0	1'b0: gpiob7
			1'b1: i2c0pmu_sda
13:11	RO	0x0	reserved
			gpio0_b5 iomux
10	RW	0x0	1'b0: gpiob5
			1′b1: CLK_27M
9:5	RO	0x0	reserved
			gpio0_b2 iomux
4	RW	0x0	1'b0: gpiob2
			1'b1: tsadc_int
3:0	RO	0x0	reserved

PMU_GPIO0_C_IOMUX

Address: Operational Base + offset (0x008c) GPIO0C iomux sel

Bit	Attr	Reset Value	Description
31:4	RO	0x0	reserved
			gpio0_c1 iomux
			2'b00: gpioc1
3:2	RW	0x0	2'b01: test_clkout
			2′b10: clkt1_27m
			2'b11: reserved
1	RO	0x0	reserved
			gpio0_c0 iomux
0	RW	0x0	1'b0: gpioc0
			1'b1: i2c0pmu_scl

PMU_PWRMODE_CON1

Address: Operational Base + offset (0x0090) PMU PowerMode CON1

Bit	Attr	Reset Value	Description
31:10	-	0x0	reserved
			clr_vio
9	RW	0x0	issue idle_req_vio in low power mode
9	K VV	0.00	1'b0: not issue
			1'b1: issue
			clr_hevc
8	RW	0x0	issue idle_req_hevc in low power mode
0		0.00	1'b0: not issue
			1'b1: issue
			clr_video
7	RW	0x0	issue idle_req_video in low power mode
/			1'b0: not issue
			1'b1: issue
			clr_gpu
6	RW	0x0	issue idle_req_gpu in low power mode
0		0.00	1'b0: not issue
			1'b1: issue
			clr_peri
5	RW	0x0	issue idle_req_peri in low power mode
5		UXU	1'b0: not issue
			1'b1: issue
			clr_dma
4	RW	0x0	issue idle_req_dma in low power mode
-			1'b0: not issue
			1'b1: issue

Bit	Attr	Reset Value	Description
			clr_alive
3	RW	0x0	issue idle_req_alive in low power mode
5		0.00	1'b0: not issue
			1'b1: issue
			clr_cpup
2	RW	0x0	issue idle_req_cpup in low power mode
2		0.00	1'b0: not issue
			1'b1: issue
			clr_core
1	RW	0x0	issue idle_req_core in low power mode
1		0.00	1'b0: not issue
			1'b1: issue
			clr_bus
0	RW	0x0	issue idle_req_bus in low power mode
			1'b0: not issue
			1'b1: issue

PMU_SYS_REG0

Address: Operational Base + offset (0x0094) PMU system register0

Bit	Attr	Reset Value	Description
31:0	RW	0x00000000	pmu_sys_reg0 PMU system register0

PMU_SYS_REG1

Address: Operational Base + offset (0x0098) PMU system register1

Bit	Attr	Reset Value	Description
31:0	RW	10X00000000	pmu_sys_reg1 PMU system register1

PMU_SYS_REG2

Address: Operational Base + offset (0x009c) PMU system register2

Bit	Attr	Reset Value	Description
31:0	RW	0x000000000	pmu_sys_reg2 PMU system register2

PMU_SYS_REG3

Address: Operational Base + offset (0x00a0) PMU system register3

Bit	Attr	Reset Value	Description
31:0	RW	10X000000000	pmu_sys_reg3 PMU system register3

6.6 Timing Diagram

6.6.1 Each domain power switch timing

The following figure is the each domain power down and power up timing.

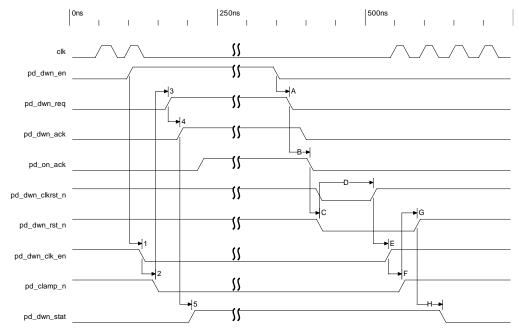


Fig. 6-3 Each Domain Power Switch Timing

6.6.2 External wakeup PAD timing

The PMU supports a lot of external wakeup sources, such as SD/MMDC, USBDEV, SIM0/1 detect wakeup, GPIO0 wakeup source and so on. All these external wakeup sources must meet the timing requirement (at least 200us) when the wakeup event is asserted. The following figure gives the timing information.

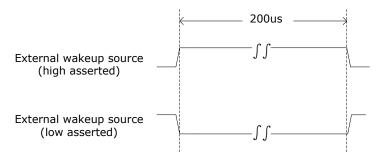


Fig. 6-4 External Wakeup Source PAD Timing

6.7 Application Notes

6.7.1 Recommend configurations for power mode.

The PMU is a design with great flexibilities, but just for facilities and inheritances, a group of recommend configurations will be shown below for software. And for convenience, we will define several modes.

The RK3288 can support following 5 recommended power modes:

- normal
- idle mode
- deep idle mode
- sleep mode
- power off mode

The following table lists the detailed description of the modes.

Power Domain				Power Mode		
		Mode0(normal)	Mode1(idle)	Mode2(didle)	Mode3(sleep)	Mode4(poweroff)
	PD_A17_0	Running	Standby	Power off	Power off	Power off
	PD_A17_1	Running/Standby/Power off	Running/Standby/Power off	Power off	Power off	Power off
	PD_A17_2	Running/Standby/Power off	Running/Standby/Power off	Power off	Power off	Power off
VD_CORE	PD_A17_3	Running/Standby/Power off	Running/Standby/Power off	Power off	Power off	Power off
	PD_SCU	Running	Running	Running	Power off	Power off
	PD_CS	Power on	Power off	Running	Power off	Power off
	PD_MEM	Runing	Runing	Running	Power off	Power off
	PD_BUS	Power on	Power on	Running	Power off	Power off
	PD_PERI	Power on	Power on/off	Power on/off	Power off	Power off
	PD_VIO	Power on	Power on/off	Power on/off	Power off	Power off
PD_VIDEO		Power on	Power on/off	Power on/off	Power off	Power off
PD_HEVC PD_GPU PD_ALIVE PD_PMU		Power on	Power on/off	Power on/off	Power off	Power off
		Power on	Power on/off	Power on/off	Power off	Power off
		Power on	Power on	Power on	Power on. Clocked by 24MHz or 32KHz	Power off
		Power on	Power on	Power on	Power on. Clocked by 24MHz or 32KHz	Power on. Clocked by 32KHz
	PLL	All PLLs on	All PLLs on	All PLLs on	ALL PLLs off	ALL PLLs off
0	DSC_24MHz	OSC enable	OSC enable	OSC enable	OSC enable/disable	OSC disable
DDR		Running	Running	Self refresh	Self refresh	Self refresh
Wa	keup Sources	Software control to wake	1. all arm interrupts (include EVENTI input) 2. sdmmc0 detect_n 3. gpio int(not gpio0)	1. all arm interrupts (include EVENTI input) 2. sdmmc0 detect_n 3. gpio int(not gpio0)	1. sdmmc0 detect_n 2. gpio io int(not gpio0)	
		off or clock off states	4. gpio0 io	4. gpio0 io	3. gpio0 io	GPIO0 IO

Table 6-5 Power Domain Status Summary in all Work Mode

Normal mode

In this mode, you can power off/on or enable/disable the following power domain to save power: PD_PERI/PD_VIO/PD_VIDEO/PD_HEVC/PD_GPU

Idle mode

This mode is used when the core do not have load for a shot while such as waiting for interrupt and the software want to save power by gating Cortex-A17 source clock.

In idle mode, core1/2/3 of Cortex-A17 should be either power off or in WFI/WFE state. The core0 of A17 should be in WFI/WFE state. The configurations of core clock source gating and disable global interrupt are presented. The Cortex-A17 can waked up by an interrupt.

Deep idle mode

Deep idle mode is used in the scenario of audio player. In deep idle mode, powering off Cortex-A17 cores or VD_CORE voltage domain is operational, and others are same as normal mode.

In deep idle mode, you can set ddr enter the self-refresh, and power off DDRIO and enable DDR retention function in this mode, but it will takes a longer time for the recovery of DDR IO.

Sleep mode

The sleep mode can power off all power domains except PD_ALIVE. The VD_CORE is turned off externally, PD_BUS power off by hardware, and other domains power off by software. In sleep mode the clock of PD_ALIVE can be switched from 24MHz to 32.768kHz optionally by hardware.

In sleep mode all PLLs power down mandatorily to save power by hardware.

In sleep mode OSC can be disabled optionally by hardware.

In sleep mode DDR self-refresh can be issued by hardware mandatorily.

In sleep mode DDR IO can power off and enter retention optionally by hardware.

Power off mode

The power off mode turns off the power of all VD_LOGIC externally.

In power off mode all PLLs power down mandatorily to save power by hardware.

In power off mode OSC disable request should be send by hardware.

In power off mode DDR self-refresh should be issued mandatorily by hardware.

In power off mode DDR IO can power off and enter retention optionally by hardware.

6.7.2 System Register

PMU support 4 words register: PMU_SYS_REG0, PMU_SYS_REG1, PMU_SYS_REG2,

PMU_SYS_REG3. These registers are always on no matter what low power mode. So software can use these registers to retain some information which is useful after wakeup from any mode.

6.7.3 Configuration Constraint

In order to shut down the power domains correctly, the software must obey the rules bellow: Send NIU request to the NIU in power domain that you want to shut down.

Querying PMU_NOC_ST register to get the information until the pacific NIU is in idle state. Send power request to the power domain through PMU_PWRDN_CON register.

Querying PMU_PWRDN_ST register to make sure the pacific power domain is power down. The power domains controlled only by software are showing below:

PD_VIO, PD_PERI, PD_GPU, PD_VIDEO, PD_HEVC, and PD_A17_1 and PD_A17_2 to PD_A17_3.

So you must power off these power domains before enter low power mode if you need. **6.7.4 Poweroff Request Combine**

There is only two poweroff request, one is for VD_CORE and VD_LOGIC (power_off_req), another is for DDRIO (power_off_ddrio).

POWER_OFF_REQ

In normal mode, If you set the chip power down (bit[13] of PMU_PWRDN_CON), or set core power down (bit[12] of PMU_PWRDN_CON), the power_off_req will be set to 1 immediate. In Low Power mode, if you set the chip power down (bit[8] of PMU_PWRMODE_CON) or set core power down (bit[6] of PMU_PWRMODE_CON), the power_off_req will be set to 1 at the sub-step POWEROFF.

POWER_OFF_DDRIO

In normal mode, If you set the power_off_ddr0io_cfg (bit[7] of PMU_SFT_CON), or set power_off_ddr1io_cfg (bit[10] of PMU_SFT_CON), the power_off_ddrio will be set to 1 immediate.

In Low Power mode, if you set the ddr0io_ret_en (bit[17] of PMU_PWRMODE_CON) or set ddr1io_ret_en (bit[18] of PMU_PWRMODE_CON), the power_off_ddrio will be set to 1 at the sub-step DDR_IO_POWEROFF.

In Low Power mode, if you set pwroff_comb (bit[9] of PMU_PWRMODE_CON) at same time, the power_off_ddrio would not be set to 1, and the power_off_req would be set to 1 at the sub-step DDR_IO_POWEROFF.

Chapter 7 Memory Management Unit (MMU)

7.1 Overview

An MMU controls address translation, access permissions, memory attribute.determination, and checking at a memory system level.

The MMU used in other modules will be introduced below.

7.2 Block Diagram

The MMU divides memory into 4KB pages, where each page can be individually configured. The MMU uses a 2-level page table structure:

1. The first level, the Page Directory consists of 1024 Directory Table Entries (DTEs), each pointing to a Page Table.

2. The second level, the Page Table consists of 1024 Page Table Entries (PTEs), each pointing to a page in memory

Fig. 11-1 shows the structure of the two-level page table.

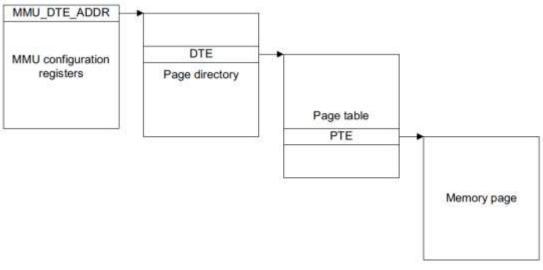


Fig. 7-1 Power Domain Partition

Fig. 11-2 shows the arrangement of the MMU address bits.

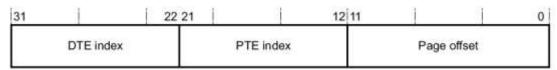


Fig. 7-2 Power Domain Partition

The MMU uses the following algorithm to translate an address:

 Find the DTE at address given by: MMU_DTE_ADDR + (4 * DTE index)
 Find the PTE at address given by: Page table address from DTE + (4 * PTE index)
 Calculate effective address as follows: Page address from PTE + Page offset.

The page directory is a 4KB data structure that contains 1024 32-bit DTEs. The page directory

must align at a 4KB boundary in memory.

Each DTE contains the address of a page table and a page table present bit. The system:

- initializes the entire page directory before use
- clears the page table present bit for any DTE that does not point to a valid page table.

Fig. 11-3 shows the page bit assignments.

Bits	Name	Function	
[31:12]	Page table	This field stores bits [31:12] of the address for a page table	
	address		
[11:1]	Reserved	Reserved, write as zero	
[0]	Page table	This bit indicates when the page table address points to a valid	
	present	page table.	
		0 = page table not valid	
		1= page table valid.	

Fig. 7-3 Page directory entry bit assignments

The page table is a 4KB data structure containing 1024 32-bit PTEs. The page table must be aligned at a 4KB boundary in memory.

Each PTE contains the address of a page of memory, a Page Table present bit, and Read/Write Permission bits. The entire Page Table must be initialized before use, and any PTE not pointing to a valid page must clear the Page Present bit.

Fig.11-3 shows the page table entry bit assignments.



Fig. 7-4 Page directory entry bit assignments

Bits	Name	Function
[31:12]	Page table address	This field stores bits [31:12] of the address for a page table
[11:9]	Reserved	Reserved, write as zero
[8]	Read allocate	If set, allocate cache space on read misses. Must not be set if the Read cacheable bit is not set. Only used for reads, if the Override cache attributes bit is set.
[7]	Read cacheable	If set, enable caching or prefetching of data. Only used for reads, if the Override cache attributes bit is set.
[6]	Write bufferable	If set, enable write to be delayed on their way to memory. Only used for writes, if the Override cache attributes bit is set.
[5]	Write allocate	If set, allocate cache space on write misses. Must not be set if the Write cachecable bit is not set. Only used for writes, if the Override cache attributes is set.
[4]	Write cachecable	If set, enable different writes to be merged together. Only used for writes, if the Override cache attributes bit is set.
[3]	Override cache attributes	If set, the cacheability attributes specified in bits [8:4] are used to control the cache attributes used on the memory bus. If cleared, the default cacheability attributes from the specific processors are used on the system bus.
[2]	Write permission	Enable write accesses to the page, if present.
[1]	Read permission	Enable read accesses from the page, if present.
[0]	Page present	This bit indicates when the page table field points to a valid page. 0 = page not valid 1 = page valid.

7.3 Register Description

7.3.1 Register Summary

Name	Offset	Size	Reset Value	Description
MMU_DTE_ADDR	0x0000	W	0x0000000	MMU current page table address
MMU_STATUS	0x0004	W	0x0000018	MMU status register
MMU_CMD	0x0008	W	0x0000000	MMU command register
MMU_PAGE_FAULT_ADDR	0x000c	w	0x000000000	MMU logic address of last page fault
				register
MMU_ZAP_ONE_LINE	0x0010	W	0x00000000	MMU zap cache line register
MMU_INT_RAWSTAT	0x0014	W	0x00000000	MMU raw interrupt status register
MMU_INT_CLEAR	0x0018	W	0x0000000	MMU interrupt clear register
MMU_INT_MASK	0x001c	W	0x0000000	MMU interrupt mask register
MMU_INT_STATUS	0x0020	W	0x0000000	MMU interrupt status register

Name	Offset	Size	Reset Value	Description
MMU_AUTO_GATING	0x0024	W	0x0000000	clock atuo gating register
Notes: Size : R - Byte (8 h	its) access	НИ	I - Half WORD (1	16 hits) access W-WORD (32 hits)

Notes: <u>Size</u> : **B** - Byte (8 bits) access, **HW** - Half WORD (16 bits) access, **W** -WORD (32 bits) access

7.3.2 Detail Register Description

MMU_DTE_ADDR

Address: Operational Base + offset (0x0000) MMU current page table address

Bit	Attr	Reset Value	Description
31:0	RW	0x00000000	mmu_dte_addr page table address

MMU_STATUS

Address: Operational Base + offset (0x0004) MMU status register

Bit	Attr	Reset Value	Description
31:11	RO	0x0	reserved
			mmu_page_fault_bus_id
10:6	RO	0x00	Index of master responsible for the last page
			fault
			mmu_page_fault_is_write
5	PO	0×0	The direction of access for last page fault:
5	RO 0x00 RO 0x0 RO 0x1 RO 0x1 RO 0x1	0.00	0: read
			1:write
4	PO	0v1	mmu_replay_buffer_empty
4	ĸŪ	UXI	The MMU replay buffer is empty.
			mmu_idle
			the MMu is idle when accesses are being
			translated and there are no unfinished
3	RO	0x1	translated access. The MMU_IDLE signal only
			reports idle when the MMU processor is idle
			and accesses are active on the external bus.
			Note: the MMU can be idle in page fault mode.
			mmu_stall_active
2	RO	0x0	MMU stall mode currently enabled. The mode
			is enabled by command.
			mmu_page_fault_active
1	RO	0x0	MMU page fault mode currently enabled. The
			mode is enabled by command
0	RO	0x0	mmu_paging_enabled
0	KU	UXU	mmu paging is enabled.

MMU_CMD

Address: Operational Base + offset (0x0008) MMU command register

Bit Attr Reset Value	Description
----------------------	-------------

Bit	Attr	Reset Value	Description
31:3	RO	0x0	reserved
2:0	RW	0×0	 mmu_cmd 0: MMU_ENABLE_PAGING. enable paging. 1: MMU_DISABLE_PAGING. disable paging. 2: MMU_ENABLE_STALL. turn on stall mode. 3: MMU_DISABLE_STALL. turn off stall mode. 4: MMU_ZAP_CACHE. zap the entire page table cache. 5: MMU_PAGE_FAULT_DONE. leave page fault mode. 6: MMU_FORCE_RESET. reset the mmu. The MMU_ENABLE_STALL command can always be issued. Other commands are ignored unless the MMU is idle or stalled.

MMU_PAGE_FAULT_ADDR

Address: Operational Base + offset (0x000c) MMU logic address of last page fault register

Bit	Attr	Reset Value	Description
31:0	RO	0x00000000	mmu_page_fault_addr
51.0	κυ	0x00000000	address of last page fault

MMU_ZAP_ONE_LINE

Address: Operational Base + offset (0x0010) MMU zap cache line register

Bit	Attr	Reset Value	Description
31:0	RW		mmu_zap_one_line address to be invalidated from the page table cache.

MMU_INT_RAWSTAT

Address: Operational Base + offset (0x0014) MMU raw interrupt status register

Bit	Attr	Reset Value	Description
31:2	RO	0x0	reserved
1	PO	read_bus_error	read_bus_error
1 L	1 RO 0x0	UXU	read bus error
0		00	page_fault
U	RO	0x0	page fault

MMU_INT_CLEAR

Address: Operational Base + offset (0x0018) MMU interrupt clear register

Bit	Attr	Reset Value	Description
31:2	RO	0x0	reserved
1	RW	0x0	read_bus_error_clear read bus error interrupt clear. write 1 to this register can clear read bus error interrupt.

Bit	Attr	Reset Value	Description
0	RW		page_fault_clear page fault interrupt clear, write 1 to this register can clear page fault interrupt.

MMU_INT_MASK

Address: Operational Base + offset (0x001c)

MMU interrupt mask register

Bit	Attr	Reset Value	Description
31:2	RO	0x0	reserved
1	RW	0x0	read_bus_error_int_en read bus error interrupt enable
0	RW	0×0	page_fault_int_en page fault interrupt enable

MMU_INT_STATUS

Address: Operational Base + offset (0x0020) MMU interrupt status register

Bit	Attr	Reset Value	Description
31:2	RO	0x0	reserved
1	0.40	ead_bus_error	
L	L RW 0x0	read bus error interrupt	
0			page_fault
U	RO	0x0	page fault interrupt

MMU_AUTO_GATING

Address: Operational Base + offset (0x0024) clock atuo gating register

Bit	Attr	Reset Value	Description
31:1	RO	0x0	reserved
			reserved mmu_atuo_gating mmu clock auto gating
0	RW	0x0	mmu clock auto gating
			when it is 1, the mmu will auto gating itself

7.4 MMU Base address

The table below shows the MMU base address in different modules.

ISP_MMU0_BASE	ISP_BASEADDR + 0x4000
ISP_MMU1_BASE	ISP_BASEADDR + 0x5000
VOP_BIG_MMU_BASE	VOP_BIG_BASEADDR + 0x300
VOP_LIT_MMU_BASE	VOP_LIT_BASEADDR + 0x300
IEP_MMU_BASE	IEP_BASE + 0x800

VIP_MMU_BASE

Chapter 8 Timer

8.1 Overview

Timer is a programmable timer peripheral. This component is an APB slave device.

Timer0~4 and Timer6 count down from a programmed value and generate an interrupt when the count reaches zero.

Timer5 and Timer7 count up from zero to a programmed value and generate an interrupt when the count reaches the programmed value.

Timer supports the following features:

- Two APB timers in the soc system. One is in the alive subsystem, include two
 programmable 64 bits timer channel, acts as TIMER6 and TIMER7; The other is in the cpu
 subsystem, include six programmable 64 bits timer channel, acts as TIMER0, TIMER1,
 TIMER2, TIMER3, TIMER4, and TIMER5 respectively.
- Two operation modes: free-running and user-defined count.
- Maskable for each individual interrupt.
- TIMER5 is used for gpu ; TIMER7 is used for core.

8.2 Block Diagram

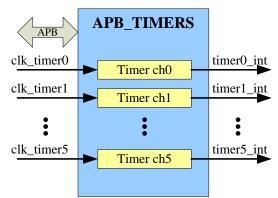


Fig. 8-1 Timers Block Diagram

The above figure shows the architecture of the APB timers (include six programmable timer channel) that in the cpu subsystem. The other APB timers that in the alive subsystem only include one programmable timer channel.

8.3 Function description

8.3.1 Timer clock

TIMER0, TIMER1, TIMER2, Timer3, TIMER4 and TIMER5 are in the CPU subsystem, using timer ch0 \sim ch5 respectively. The timer clock is 24MHz OSC.

TIMER6 and TIMER7 are in the ALIVE subsystem, using timer ch0 \sim ch1. The timer clock is 24MHz OSC.

8.3.2 Programming sequence

1. Initialize the timer by the TIMERn_CONTROLREG ($0 \le n \le 5$) register:

- Disable the timer by writing a "0" to the timer enable bit (bit 0). Accordingly, the timer_en output signal is de-asserted.
- Program the timer mode—user-defined or free-running—by writing a "0" or "1" respectively, to the timer mode bit (bit 1).
- Set the interrupt mask as either masked or not masked by writing a "0" or "1" respectively, to the timer interrupt mask bit (bit 2).

2. Load the timer count value into the TIMERn_LOAD_COUNT1 ($0 \le n \le 5$) and TIMERn_LOAD_COUNT1 ($0 \le n \le 5$) register

LOAD_COUNT0 (0 \leq n \leq 5) register.

3. Enable the timer by writing a `1' to bit 0 of TIMERn_CONTROLREG (0 \leq n \leq 5).

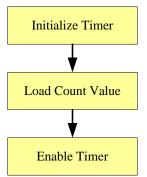


Fig. 8-2 Timer Usage Flow

8.3.3 Loading a timer count value

The initial value for each timer — that is, the value from which it counts down — is loaded into the timer using the load count register (TIMERn_LOAD_ COUNT1 ($0 \le n \le 5$) and TIMERn_LOAD_COUNT0 ($0 \le n \le 5$)). Two events can cause a timer to load the initial value from its load count register:

- Timer is enabled after reset or disabled.
- Timer counts down to 0, when timer is configured into free-running mode.

8.3.4 Timer mode selection

- User-defined count mode Timer loads TIMERn_LOAD_COUNT1 ($0 \le n \le 5$) and TIMERn_LOAD_ COUNT0 ($0 \le n \le 5$) register as initial value. Timer will not automatically load the count register, when timer counts down to 0. User need to disable timer firstly and follow the programming sequence to make timer work again.
- Free-running mode Timer loads the TIMERn_LOAD_COUNT1 ($0 \le n \le 5$) and TIMERn_LOAD_COUNT0 ($0 \le n \le 5$) register as initial value. Timer will automatically load the count register, when timer counts down to 0.

8.4 Register Description

This section describes the control/status registers of the design. Software should read and write these registers using 32-bits accesses.

8.4.1 Registers Summary

Timer0 - Timer5 Base = 0xff6b 0000

Name	Offset	Size	Reset Value	Description
TIMER0_LOAD_COUNT0	0x0000	W	0x00000000	Timer0 Load Count Register
TIMER0_LOAD_COUNT1	0x0004	W	0x00000000	Timer0 Load Count Register
TIMER0_CURRENT_VALUE0	0x0008	W	0x00000000	Timer0 Current Value Register
TIMER0_CURRENT_VALUE1	0x000C	W	0x00000000	Timer0 Current Value Register
TIMER0_CONTROLREG	0x0010	W	0x00000000	Timer0 Control Register
TIMER0_INTSTATUS	0x0018	W	0x00000000	Timer0 Interrupt Status Register
TIMER1_LOAD_COUNT0	0x0020	W	0x00000000	Timer1 Load Count Register
TIMER1_LOAD_COUNT1	0x0024	W	0x00000000	Timer1 Load Count Register
TIMER1_CURRENT_VALUE0	0x0028	W	0x00000000	Timer1 Current Value Register
TIMER1_CURRENT_VALUE1	0x002c	W	0x00000000	Timer1 Current Value Register
TIMER1_CONTROLREG	0x0030	W	0x00000000	Timer1 Control Register
TIMER1_INTSTATUS	0x0038	W	0x00000000	Timer1 Interrupt Status Register
TIMER2_LOAD_COUNT0	0x0040	W	0x00000000	Timer2 Load Count Register
TIMER2_LOAD_COUNT1	0x0044	W	0x00000000	Timer2 Load Count Register
TIMER2_CURRENT_VALUE0	0x0048	W	0x00000000	Timer2 Current Value Register
TIMER2_CURRENT_VALUE1	0x004c	W	0x0000000	Timer2 Current Value Register

Name	Offset	Size	Reset Value	Description
TIMER2_CONTROLREG	0x0050	W	0x00000000	Timer2 Control Register
TIMER2_INTSTATUS	0x0058	W	0x00000000	Timer2 Interrupt Status Register
TIMER3_LOAD_COUNT0	0x0060	W	0x00000000	Timer3 Load Count Register
TIMER3_LOAD_COUNT1	0x0064	W	0x00000000	Timer3 Load Count Register
TIMER3_CURRENT_VALUE0	0x0068	W	0x00000000	Timer3 Current Value Register
TIMER3_CURRENT_VALUE1	0x006c	W	0x00000000	Timer3 Current Value Register
TIMER3_CONTROLREG	0x0070	W	0x00000000	Timer3 Control Register
TIMER3_INTSTATUS	0x0078	W	0x00000000	Timer3 Interrupt Status Register
TIMER4_LOAD_COUNT0	0x0080	W	0x00000000	Timer4 Load Count Register
TIMER4_LOAD_COUNT1	0x0084	W	0x00000000	Timer4 Load Count Register
TIMER4_CURRENT_VALUE0	0x0088	W	0x00000000	Timer4 Current Value Register
TIMER4_CURRENT_VALUE1	0x008c	W	0x00000000	Timer4 Current Value Register
TIMER4_CONTROLREG	0x0090	W	0x00000000	Timer4 Control Register
TIMER4_INTSTATUS	0x0098	W	0x00000000	Timer4 Interrupt Status Register
TIMER5_LOAD_COUNT0	0x00a0	W	0x00000000	Timer5 Load Count Register
TIMER5_LOAD_COUNT1	0x00a4	W	0x00000000	Timer5 Load Count Register
TIMER5_CURRENT_VALUE0	0x00a8	W	0x00000000	Timer5 Current Value Register
TIMER5_CURRENT_VALUE1	0x00ac	W	0x00000000	Timer5 Current Value Register
TIMER5_CONTROLREG	0x00b0	W	0x00000000	Timer5 Control Register
TIMER5_INTSTATUS	0x00b8	W	0×00000000	Timer5 Interrupt Status Register

Timer6-7

Base: 0xff81_0000

Name	Offset	Size	Reset Value	Description
TIMER6_LOAD_COUNT0	0x0000	W	0x00000000	Timer6 Load Count Register
TIMER6_LOAD_COUNT1	0x0004	W	0x00000000	Timer6 Load Count Register
TIMER6_CURRENT_VALUE0	0x0008	W	0x00000000	Timer6 Current Value Register
TIMER6_CURRENT_VALUE1	0x000C	W	0x00000000	Timer6 Current Value Register
TIMER6_CONTROLREG	0x0010	W	0x00000000	Timer6 Control Register
TIMER6_INTSTATUS	0x0018	W	0x00000000	Timer6 Interrupt Status Register
TIMER7_LOAD_COUNT0	0x0020	W	0x00000000	Timer7 Load Count Register
TIMER7_LOAD_COUNT1	0x0024	W	0x00000000	Timer7 Load Count Register
TIMER7_CURRENT_VALUE0	0x0028	W	0x00000000	Timer7 Current Value Register
TIMER7_CURRENT_VALUE1	0x002c	W	0x00000000	Timer7 Current Value Register
TIMER7_CONTROLREG	0x0030	W	0x00000000	Timer7 Control Register
TIMER7_INTSTATUS	0x0038	W	0×00000000	Timer7 Interrupt Status Register

Notes: <u>Size</u>: **B** – Byte (8 bits) access, **HW** – Half WORD (16 bits) access, **W** –WORD (32 bits) access

8.4.2 Detail Register Description

TIMERn_LOAD_COUNT0

Address: Operational Base + offset(0x00+n*0x20)

Timer n Load Count Register ($0 \le n \le 5$)

Bit Attr Reset Value Description

Bit	Attr	Reset Value	Description
31:0	31.0 DW		Low 32 bits Value to be loaded into Timer n. This is the
51.0			value from which counting commences.

TIMERn_LOAD_COUNT1

Address: Operational Base + offset(0x04+n*0x20)

Timer n Load Count Register ($0 \le n \le 5$)

Bit	Attr	Reset Value	Description
31:0	RW	0x0	High 32 bits Value to be loaded into Timer n. This is the value from which counting commences.

TIMERn_CURRENT_VALUE0

Address: Operational Base + offset(0x08+n*0x20) Timer n Current Value Register ($0 \le n \le 5$)

Bit	Attr	Reset Value	Description
31:0	R	0x0	Low 32 bits of Current Value of Timer n.

TIMERn_CURRENT_VALUE1

Address: Operational Base + offset(0x0c+n*0x20)

Timer n Current Value Register ($0 \le n \le 5$)

Bit	Attr	Reset Value	Description
31:0	R	0x0	High 32 bits of Current Value of Timer n.

TIMERn_CONTROLREG

Address: Operational Base + offset(0x10+n*0x20) Timer n Control Register ($0 \le n \le 5$)

Timer n Control Register ($0 \le n \le 5$)BitAttrReset Value

Bit	Attr	Reset Value	Description
31:3	-	-	Reserved
			Timer interrupt mask.
2	RW	0x0	1'b0: mask
			1'b1: not mask
			Timer mode.
1	RW	0x0	1'b0: free-running mode
			1'b1: user-defined count mode
			Timer enable.
0	RW	0x0	1'b0: disable
			1'b1: enable

TIMERn_INTSTATUS

Address: Operational Base + offset(0x18+n*0x20) Timer n Interrupt Status Register ($0 \le n \le 5$)

Bit	Attr	Reset Value	Description
31:1	-	-	Reserved
0	RW	0x0	This register contains the interrupt status for timer n Write 1 to this register will clear the interrupt

Notes: Attr: RW - Read/writable, R - read only, W - write only

8.5 Application Notes

In the chip, the timer_clk is from 24MHz OSC, asynchronous to the pclk. When user disable the timer enable bit (bit 0 of TIMERn_CONTROLREG ($0 \le n \le 5$)), the timer_en output signal is de-asserted, and timer_clk will stop. When user enable the timer, the timer_en signal is asserted and timer_clk will start running.

The application is only allowed to re-config registers when timer_en is low.

timer_clk	
timer_en	

Fig. 8-3 Timing between timer_en and timer_clk Please refer to funciton description section for the timer usage flow.

Chapter 9 Interrupt Controller

9.1 Overview

The generic interrupt controller (GIC400) in this device has two interfaces, the distributor interface connects to the interrupt source, and the CPU interface connects to Cortex-A17.

It supports the following features:

Supports 160 hardware interrupt inputs Masking of any interrupts Prioritization of interrupts Distribution of the interrupts to the target Cortex-A17 processor(s) Generation of interrupts by software Supports Security Extensions

9.2 Block Diagram

The generic interrupt controller comprises with:

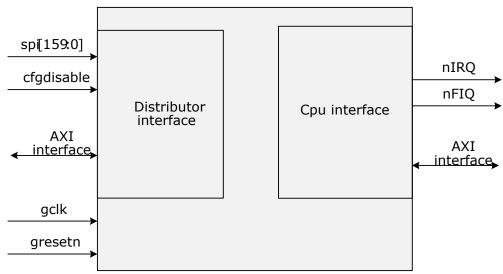


Fig. 9-1 Block Diagram

9.3 Function Description

Please refer to the document IHI0048B_gic_architecture_specification.pdf for the cpu detail description.

Chapter 10 DMA Controller for Bus System (DMAC_BUS)

10.1 Overview

This device supports 2 Direct Memory Access (DMA) tops, one for cpu system (DMAC_BUS), and the other one for Peripheral system (PERI_DMAC).Both of these two dma support transfers between memory and memory, peripheral and memory.

DMAC_BUS supports TrustZone technology and is under secure state after reset. The secure state can be changed by configuring TZPC module.

DMAC_BUS is mainly used for data transfer of the following slaves: I2S0/I2S1/ SPDIF/UART0/Embedded SRAM and transfer data from/to external DDR SDRAM.

Following table shows the DMAC_BUS peripheral request mapping scheme.

Req number	Source	Polarity
0	I2S tx	High level
1	I2S rx	High level
2	SPDIF	High level
3	SPDIF (8ch)	High level
4	UART DBG tx	High level
5	UART DBG rx	High level

Table 10-1 DMAC_BUS Request Mapping Table

DMAC_BUS supports the following features:

- Supports Trustzone technology
- Supports 6 peripheral request
- Up to 64bits data size
- 5 channel at the same time
- Up to burst 16
- 10 interrupt output and 1 abort output
- Supports 32 MFIFO depth

10.2 Block Diagram

Figure 14-1 shows the block diagram of DMAC_BUS

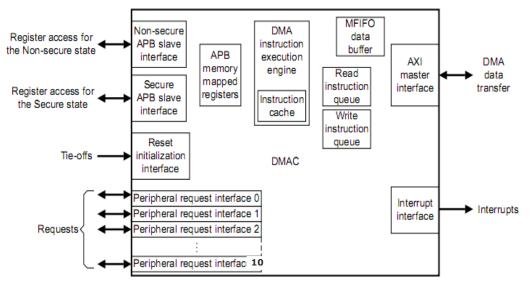


Fig. 10-1 Block diagram of DMAC_BUS

As the DMAC_BUS supports Trustzone technology, so dual APB interfaces enable the operation of the DMAC_BUS to be partitioned into the secure state and Non-secure state. You can use the APB interfaces to access status registers and also directly execute instructions in the DMAC_BUS.The default interface after reset is secure apb interface.

10.3 Function Description

10.3.1 Introduction

The DMAC contains an instruction processing block that enables it to process program code that controls a DMA transfer. The program code is stored in a region of system memory that the DMAC accesses using its AXI interface. The DMAC stores instructions temporarily in a cache.

DMAC_BUS supports 6 channels, each channel capable of supporting a single concurrent thread of DMA operation. In addition, a single DMA manager thread exists, and you can use it to initialize the DMA channel threads. The DMAC executes up to one instruction for each AXI clock cycle. To ensure that it regularly executes each active thread, it alternates by processing the DMA manager thread and then a DMA channel thread. It uses a round-robin process when selecting the next active DMA channel thread to execute.

The DMAC uses variable-length instructions that consist of one to six bytes. It provides a separate Program Counter (PC) register for each DMA channel. When a thread requests an instruction from an address, the cache performs a look-up. If a cache hit occurs, then the cache immediately provides the data. Otherwise, the thread is stalled while the DMAC uses the AXI interface to perform a cache line fill. If an instruction is greater than 4 bytes, or spans the end of a cache line, the DMAC performs multiple cache accesses to fetch the instruction.

When a cache line fill is in progress, the DMAC enables other threads to access the cache, but if another cache miss occurs, this stalls the pipeline until the first line fill is complete.

When a DMA channel thread executes a load or store instruction, the DMAC adds the instruction to the relevant read or write queue. The DMAC uses these queues as an instruction storage buffer prior to it issuing the instructions on the AXI bus. The DMAC also contains a Multi First-In-First-Out (MFIFO) data buffer that it uses to store data that it reads, or writes, during a DMA transfer.

10.3.2 Operating states

Figure shows the operating states for the DMA manager thread and DMA channel threads.

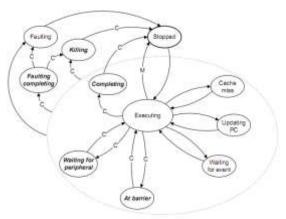


Fig. 10-2 DMAC_BUS operation states

Note:

arcs with no letter designator indicate state transitions for the DMA manager and DMA channel threads, otherwise use is restricted as follows:

C DMA channel threads only.

M DMA manager thread only.

After the DMAC exits from reset, it sets all DMA channel threads to the stopped state, and the status of boot_from_pc(tie-off interface of dmac) controls the DMA manager thread state:

boot_from_pc is LOW :DMA manager thread moves to the Stopped state. boot_from_pc is HIGH :DMA manager thread moves to the Executing state.

10.4 Register Description

10.4.1 Register summary

Name	Offset	Size	Reset Value	Description
DMAC_BUS_DSR	0x0000	W	0x0	DMA Status Register.
DMAC_BUS_DPC	0x0004	W	0x0	DMA Program Counter Register.
-	-	-	-	reserved
DMAC_BUS_INTEN	0x0020	W	0x0	Interrupt Enable Register
DMAC_BUS_EVENT_RIS	0x0024	W	0x0	Event Status Register.
DMAC_BUS_INTMIS	0x0028	W	0x0	Interrupt Status Register
DMAC_BUS_INTCLR	0x002C	W	0x0	Interrupt Clear Register
DMAC_BUS_FSRD	0x0030	W	0x0	Fault Status DMA Manager Register.
DMAC_BUS_FSRC	0x0034	W	0x0	Fault Status DMA Channel Register.
DMAC_BUS_FTRD	0x0038	W	0x0	Fault Type DMA Manager Register.
-	-	-	-	reserved
DMAC_BUS_FTR0	0x0040	W	0x0	Fault type for DMA Channel 0
DMAC_BUS_FTR1	0x0044	W	0x0	Fault type for DMA Channel 1
DMAC_BUS_FTR2	0x0048	W	0x0	Fault type for DMA Channel 2
DMAC_BUS_FTR3	0x004C	W	0x0	Fault type for DMA Channel 3
DMAC_BUS_FTR4	0x0050	W	0x0	Fault type for DMA Channel 4
DMAC_BUS_FTR5	0x0054	W	0x0	Fault type for DMA Channel 5
-	-	-	-	reserved
DMAC_BUS_CSR0	0x0100	W	0x0	Channel Status for DMA Channel 0

RK3288 TRM-Part1

Name	Offset	Size	Reset Value	Description
DMAC_BUS_CSR1	0x0108	W	0x0	Channel Status for DMA Channel 1
DMAC_BUS_CSR2	0x0110	W	0x0	Channel Status for DMA Channel 2
DMAC_BUS_CSR3	0x0118	W	0x0	Channel Status for DMA Channel 3
DMAC_BUS_CSR4	0x0120	W	0x0	Channel Status for DMA Channel 4
DMAC_BUS_CSR5	0x0128	W	0x0	Channel Status for DMA Channel 5
DMAC_BUS_CPC0	0x0104	W	0x0	Channel PC for DMA Channel 0
DMAC_BUS_CPC1	0x010c	W	0x0	Channel PC for DMA Channel 1
DMAC_BUS_CPC2	0x0114	W	0x0	Channel PC for DMA Channel 2
DMAC_BUS_CPC3	0x011c	W	0x0	Channel PC for DMA Channel 3
DMAC_BUS_CPC4	0x0124	W	0x0	Channel PC for DMA Channel 4
DMAC_BUS_CPC5	0x012c	W	0x0	Channel PC for DMA Channel 5
DMAC_BUS_SAR0	0x0400	W	0x0	Source Address for DMA Channel 0
DMAC_BUS_SAR1	0x0420	W	0x0	Source Address for DMA Channel 1
DMAC_BUS_SAR2	0x0440	W	0x0	Source Address for DMA Channel 2
DMAC_BUS_SAR3	0x0460	W	0x0	Source Address for DMA Channel 3
DMAC_BUS_SAR4	0x0480	W	0x0	Source Address for DMA Channel 4
DMAC_BUS_SAR5	0x04a0	W	0x0	Source Address for DMA Channel 5
DMAC_BUS_DAR0	0x0404	W	0x0	Dest Address for DMAChannel 0
DMAC_BUS_DAR1	0x0424	W	0x0	Dest Address for DMAChannel 1
DMAC_BUS_DAR2	0x0444	W	0x0	Dest Address for DMAChannel 2
DMAC_BUS_DAR3	0x0464	W	0x0	Dest Address for DMAChannel 3
DMAC_BUS_DAR4	0x0484	W	0x0	Dest Address for DMAChannel 4
DMAC_BUS_DAR5	0x04a4	W	0x0	Dest Address for DMAChannel 5
DMAC_BUS_CCR0	0x0408	W	0x0	Channel Control for DMA Channel 0
DMAC_BUS_CCR1	0x0428	W	0x0	Channel Control for DMA Channel 1
DMAC_BUS_CCR2	0x0448	W	0x0	Channel Control for DMA Channel 2
DMAC_BUS_CCR3	0x0468	W	0x0	Channel Control for DMA Channel 3
DMAC_BUS_CCR4	0x0488	W	0x0	Channel Control for DMA Channel 4
DMAC_BUS_CCR5	0x04a8	W	0x0	Channel Control for DMA Channel 5
DMAC_BUS_LC0_0	0x040C	W	0x0	Loop Counter 0 for DMA Channel 0
DMAC_BUS_LC0_1	0x042C	W	0x0	Loop Counter 0 for DMA Channel 1
DMAC_BUS_LC0_2	0x044C	W	0x0	Loop Counter 0 for DMA Channel 2
DMAC_BUS_LC0_3	0x046C	W	0x0	Loop Counter 0 for DMA Channel 3
DMAC_BUS_LC0_4	0x048C	W	0x0	Loop Counter 0 for DMA Channel 4
DMAC_BUS_LC0_5	0x04aC	W	0x0	Loop Counter 0 for DMA Channel 5
DMAC_BUS_LC1_0	0x0410	W	0x0	Loop Counter 1 for DMA Channel 0
DMAC_BUS_LC1_1	0x0430	W	0x0	Loop Counter 1 for DMA Channel 1
DMAC_BUS_LC1_2	0x0450	W	0x0	Loop Counter 1 for DMA Channel 2
DMAC_BUS_LC1_3	0x0470	W	0x0	Loop Counter 1 for DMA Channel 3
DMAC_BUS_LC1_4	0x0490	W	0x0	Loop Counter 1 for DMA Channel 4
DMAC_BUS_LC1_5	0x04b0	W	0x0	Loop Counter 1 for DMA Channel 5
	-	-	-	reserved
DMAC_BUS_DBGST DMAC_BUS_ATUS	0x0D00	W	0x0	Debug Status Register.
DMAC_BUS_DBGCMD	0x0D04	W	0x0	Debug Command Register.
DMAC_BUS_DBGINST0	0x0D08	W	0x0	Debug Instruction-0 Register.
DMAC_BUS_DBGINST1	0x0D0C	W	0x0	Debug Instruction-1 Register.
DMAC_BUS_CR0	0x0E00	W		Configuration Register 0.
DMAC_BUS_CR1	0x0E04	W		Configuration Register 1.
DMAC_BUS_CR2	0x0E08	W		Configuration Register 2.
DMAC_BUS_CR3	0x0E0C	W		Configuration Register 3.
DMAC_BUS_CR4	0x0E10	W		Configuration Register 4.
DMAC_BUS_CRDn	0x0E14	W		Configuration Register Dn.

Name	Offset	Size	Reset Value	Description
DMAC_BUS_WD	0x0E80	W	0x0	Watchdog Register.

Notes:

Size: B - Byte (8 bits) access, HW - Half WORD (16 bits) access, W -WORD (32 bits) access

10.4.2 Detail Register Description

DMAC_BUS_DSR

Address:Operational Base+0x0 DMA Manager Status Register

Bit	Attr	Reset Value	Description
31:10	-	-	Reserved
9	R	0×0	Provides the security status of the DMA manager thread: 0 = DMA manager operates in the Secure state 1 = DMA manager operates in the Non-secure state.
8:4	R	0×0	When the DMA manager thread executes a DMAWFE instruction, it waits for the following event to occur: b00000 = event[0] b00001 = event[1] b00010 = event[2] b11111 = event[31].
3:0	R	0×0	The operating state of the DMA manager: b0000 = Stopped b0001 = Executing b0010 = Cache miss b0011 = Updating PC b0100 = Waiting for event b0101-b1110 = reserved b1111 = Faulting.

DMAC_BUS_DPC

Address:Operational Base+0x4 DMA Program Counter Register

Bit	Attr	Reset Value	Description
31:0	R	0x0	Program counter for the DMA manager thread

DMAC_BUS_INTEN

Address:Operational Base+0x20 Interrupt Enable Register

Bit Attr Reset Value	Description
31:0 RW 0x0 Bit [N] event-ito all o does n signal Bit [N] event-ito all o does n signal	 m the appropriate bit to control how the DMAC ds when it executes DMASEV: = 0 If the DMAC executes DMASEV for the interrupt resource N then the DMAC signals event N if the threads. Set bit [N] to 0 if your system design of use irq[N] to an interrupt request. = 1 If the DMAC executes DMASEV for the interrupt resource N then the DMAC sets irq[N] Set bit [N] to 1 if your system designer requires to signal an interrupt to the interrupt to

DMAC_BUS_EVENT_RIS

Address:Operational Base+0x24 Event-Interrupt Raw Status Register

Bit	Attr	Reset Value	Description
			Returns the status of the event-interrupt resources:
31:0	R	0x0	Bit $[N] = 0$ Event N is inactive or irq $[N]$ is LOW.
			Bit $[N] = 1$ Event N is active or irq $[N]$ is HIGH.

DMAC_BUS_INTMIS

Address:Operational Base+0x28 Interrupt Status Register

Bit	Attr	Reset Value	Description
31:0	R	0x0	Provides the status of the interrupts that are active in the DMAC: Bit $[N] = 0$ Interrupt N is inactive and therefore irq $[N]$ is LOW. Bit $[N] = 1$ Interrupt N is active and therefore irq $[N]$ is HIGH

DMAC_BUS_INTCLR

Address:Operational Base+0x2c Interrupt Clear Register

Bit	Attr	Reset Value	Description
31:0	w	0x0	Controls the clearing of the irq outputs: Bit $[N] = 0$ The status of irq $[N]$ does not change. Bit $[N] = 1$ The DMAC sets irq $[N]$ LOW if the INTEN Register programs the DMAC to signal an interrupt. Otherwise, the status of irq $[N]$ does not change.

DMAC_BUS_FSRD

Address:Operational Base+0x30 Fault Status DMA Manager Register

Bit	Attr	Reset Value	Description
31:0	R	0x0	Provides the fault status of the DMA manager. Read as: 0 = the DMA manager thread is not in the Faulting state 1 = the DMA manager thread is in the Faulting state.

DMAC_BUS_FSRC

Address:Operational Base+0x34 Fault Status DMA Channel Register

Bit	Attr	Reset Value	Description
31:0	R	0x0	Each bit provides the fault status of the corresponding channel. Read as: Bit $[N] = 0$ No fault is present on DMA channel N. Bit $[N] = 1$ DMA channel N is in the Faulting or Faulting completing state.

DMAC_BUS_FTRD

Address:Operational Base+0x38 Fault Type DMA Manager Register

Bit	Attr	Reset Value	Description
31	-	-	reserved
30	R	0x0	If the DMA manager aborts, this bit indicates if the erroneous instruction was read from the system memory or from the debug interface: 0 = instruction that generated an abort was read from

Bit	Attr	Reset Value	Description
			system memory
			1 = instruction that generated an abort was read from the
			debug interface.
29:17	-	-	reserved
16	R	0x0	Indicates the AXI response that the DMAC receives on the RRESP bus, after the DMA manager performs an instruction fetch: 0 = OKAY response 1 = EXOKAY, SLVERR, or DECERR response
15:6	-	-	reserved
5	R	0×0	Indicates if the DMA manager was attempting to execute DMAWFE or DMASEV with inappropriate security permissions: 0 = DMA manager has appropriate security to execute DMAWFE or DMASEV 1 = a DMA manager thread in the Non-secure state attempted to execute either: • DMAWFE to wait for a secure event • DMASEV to create a secure event or secure interrupt
4	R	0×0	ndicates if the DMA manager was attempting to execute DMAGO with inappropriate security permissions: 0 = DMA manager has appropriate security to execute DMAGO 1 = a DMA manager thread in the Non-secure state attempted to execute DMAGO to create a DMA channel operating in the Secure state.
3:2	-	-	reserved
1	R	0x0	Indicates if the DMA manager was attempting to execute an instruction operand that was not valid for the configuration of the DMAC: 0 = valid operand 1 = invalid operand.
0	R	0×0	Indicates if the DMA manager was attempting to execute an undefined instruction: 0 = defined instruction 1 = undefined instruction.

DMAC_BUS_FTR0~DMAC_BUS_FTR5

Address:Operational Base+0x40 Operational Base+0x44 Operational Base+0x48 Operational Base+0x4c Operational Base+0x50 Operational Base+0x54 Fault Type DMA Channel Register

Tuult Typ		Liannel Register	
Bit	Attr	Reset Value	Description
31	R	0x0	Indicates if the DMA channel has locked-up because of resource starvation: 0 = DMA channel has adequate resources 1 = DMA channel has locked-up because of insufficient resources. This fault is an imprecise abort
30	R	0x0	If the DMA channel aborts, this bit indicates if the erroneous instruction was read from the system memory or from the debug interface:

Bit	Attr	Reset Value	Description
			0 = instruction that generated an abort was read from
			system memory
			1 = instruction that generated an abort was read from the
			debug interface.
			This fault is an imprecise abort but the bit is only valid
			when a precise abort occurs.
29:19	-	-	reserved
			Indicates the AXI response that the DMAC receives on the
			RRESP bus, after the DMA channel thread performs a data
18	R	0x0	read:
			0 = OKAY response
			1 = EXOKAY, SLVERR, or DECERR response. This fault is an imprecise abort
			Indicates the AXI response that the DMAC receives on the
			BRESP bus, after the DMA channel thread performs a data
			write:
17	R	0x0	0 = OKAY response
			1 = EXOKAY, SLVERR, or DECERR response.
			This fault is an imprecise abort.
			Indicates the AXI response that the DMAC receives on the
			RRESP bus, after the DMA channel thread performs an
10			instruction fetch:
16	R	0x0	0 = OKAY response
			1 = EXOKAY, SLVERR, or DECERR response.
			This fault is a precise abort.
15:14	-	-	reserved
			Indicates if the MFIFO did not contain the data to enable
			the DMAC to perform the DMAST:
			0 = MFIFO contains all the data to enable the DMAST to
13	R	0x0	complete
			1 = previous DMALDs have not put enough data in the
			MFIFO to enable the DMAST to complete.
			This fault is a precise abort.
			Indicates if the MFIFO prevented the DMA channel thread
			from executing DMALD or DMAST. Depending on the
			instruction:
			DMALD $0 = MFIFO$ contains sufficient space
12	R	0x0	1 = MFIFO is too small to hold the data that DMALD
			requires. DMAST 0 = MFIFO contains sufficient data
			1 = MFIFO is too small to store the data to enable DMAST
			to complete.
			This fault is an imprecise abort
11:8	-	-	reserved
			Indicates if a DMA channel thread, in the Non-secure
			state, attempts to program the CCRn Register to perform
			a secure read or secure write:
_		0.0	0 = a DMA channel thread in the Non-secure state is not
7	R	0x0	violating the security permissions
			1 = a DMA channel thread in the Non-secure state
			attempted to perform a secure read or secure write.
			This fault is a precise abort
			Indicates if a DMA channel thread, in the Non-secure
6	R	0x0	state, attempts to execute DMAWFP, DMALDP, DMASTP,
		0.0	or DMAFLUSHP with inappropriate security permissions:
			0 = a DMA channel thread in the Non-secure state is not

Bit	Attr	Reset Value	Description
			 violating the security permissions 1 = a DMA channel thread in the Non-secure state attempted to execute either: DMAWFP to wait for a secure peripheral DMALDP or DMASTP to notify a secure peripheral DMAFLUSHP to flush a secure peripheral. This fault is a precise abort.
5	R	0x0	 Indicates if the DMA channel thread attempts to execute DMAWFE or DMASEV with inappropriate security permissions: 0 = a DMA channel thread in the Non-secure state is not violating the security permissions 1 = a DMA channel thread in the Non-secure state attempted to execute either: DMAWFE to wait for a secure event DMASEV to create a secure event or secure interrupt. This fault is a precise abort.
4:2	-	-	reserved
1	R	0x0	Indicates if the DMA channel thread was attempting to execute an instruction operand that was not valid for the configuration of the DMAC: 0 = valid operand 1 = invalid operand. This fault is a precise abort.
0	R	0x0	Indicates if the DMA channel thread was attempting to execute an undefined instruction: 0 = defined instruction 1 = undefined instruction. This fault is a precise abort

DMAC_BUS_CSR0~DMAC_BUS_CSR5

Address:Operational Base+0x100 Operational Base+0x108 Operational Base+0x110 Operational Base+0x118 Operational Base+0x120 Operational Base+0x128 Channel Status Registers

Bit Attr Reset Description Value 31:22 _ _ reserved The channel non-secure bit provides the security of the DMA channel: 21 R 0x00 = DMA channel operates in the Secure state 1 = DMA channel operates in the Non-secure state 20:16 reserved --When the DMA channel thread executes DMAWFP this bit indicates if the periph operand was set: 15 R 0x0 0 = DMAWFP executed with the periph operand not set 1 = DMAWFP executed with the periph operand set When the DMA channel thread executes DMAWFP this bit indicates if the burst or single operand were set: 14 R 0x0 0 = DMAWFP executed with the single operand set 1 = DMAWFP executed with the burst operand set. 13:9 -reserved

Bit	Attr	Reset Value	Description
8:4	R	0x0	If the DMA channel is in the Waiting for event state or the Waiting for peripheral state then these bits indicate the event or peripheral number that the channel is waiting for: b00000 = DMA channel is waiting for event, or peripheral, 0 b00001 = DMA channel is waiting for event, or peripheral, 1 b00010 = DMA channel is waiting for event, or peripheral, 2 b11111 = DMA channel is waiting for event, or peripheral, 31
3:0	R	0x0	The channel status encoding is: b0000 = Stopped b0001 = Executing b0010 = Cache miss b0011 = Updating PC b0100 = Waiting for event b0101 = At barrier b0110 = reserved b0111 = Waiting for peripheral b1000 = Killing b1001 = Completing b1010-b1101 = reserved b1110 = Faulting completing b1111 = Faulting

DMAC_BUS_CPC0~DMAC_BUS_CPC5

Address:Operational Base+0x104 Operational Base+0x10c Operational Base+0x114 Operational Base+0x11c Operational Base+0x124 Operational Base+0x12c Channel Program Counter Registers

Bit	Attr	Reset Value	Description
31:0	R	0x0	Program counter for the DMA channel n thread

DMAC_BUS_SAR0~DMAC_BUS_SAR5

Address:Operational Base+0x400 Operational Base+0x420 Operational Base+0x440 Operational Base+0x460 Operational Base+0x480 Operational Base+0x480

Source Address Registers

Bit	Attr	Reset Value	Description
31:0	R	0x0	Address of the source data for DMA channel n

DMAC_BUS_DAR0~DMAC_BUS_DAR5

Address:Operational Base+0x404

- Operational Base+0x424
 - Operational Base+0x444
- Operational Base+0x464
- Operational Base+0x484
- Operational Base+0x4a4

DestinationAddress Registers

Bit	Attr	Reset Value	Description
31:0	R	0x0	Address of the Destinationdata for DMA channel n

DMAC_BUS_CCR0~DMAC_BUS_CCR5

Address:Operational Base+0x408 Operational Base+0x428 Operational Base+0x448 Operational Base+0x468 Operational Base+0x488 Operational Base+0x488

Channel Control Registers

Bit	Attr	Reset Value	Description
31:28	-	-	reserved
27:25	R	0x0	Programs the state of AWCACHE[3,1:0]a when the DMAC writes the destination data. Bit [27] 0 = AWCACHE[3] is LOW 1 = AWCACHE[3] is HIGH. Bit [26] 0 = AWCACHE[1] is LOW 1 = AWCACHE[1] is HIGH. Bit [25] 0 = AWCACHE[0] is LOW 1 = AWCACHE[0] is HIGH
24:22	R	0x0	Programs the state of AWPROT[2:0]a when the DMAC writes the destination data. Bit [24] 0 = AWPROT[2] is LOW 1 = AWPROT[2] is HIGH. Bit [23] 0 = AWPROT[1] is LOW 1 = AWPROT[1] is HIGH. Bit [22] 0 = AWPROT[0] is LOW 1 = AWPROT[0] is HIGH
21:18	R	0x0	For each burst, these bits program the number of data transfers that the DMAC performs when it writes the destination data: b0000 = 1 data transfer b0001 = 2 data transfers b0010 = 3 data transfers b1111 = 16 data transfers. The total number of bytes that the DMAC writes out of the MFIFO when it executes a DMAST instruction is the product of dst_burst_len and dst_burst_size
17:15	R	0x0	For each beat within a burst, it programs the number of bytes that the DMAC writes to the destination: b000 = writes 1 byte per beat b001 = writes 2 bytes per beat b010 = writes 4 bytes per beat b011 = writes 8 bytes per beat b100 = writes 16 bytes per beat b101-b111 = reserved. The total number of bytes that the DMAC writes out of the MFIFO when it executes a DMAST instruction is the product of dst_burst_len and dst_burst_size.
14	R	0x0	Programs the burst type that the DMAC performs when it writes the destination data: 0 = Fixed-address burst. The DMAC signals AWBURST[0] LOW. 1 = Incrementing-address burst. The DMAC signals AWBURST[0] HIGH.
13:11	R	0x0	Set the bits to control the state of ARCACHE[2:0]a when the DMAC reads the source data.

Bit	Attr	Reset Value	Description
			Bit [13] 0 = ARCACHE[2] is LOW
			1 = ARCACHE[2] is HIGH.
			Bit [12] 0 = ARCACHE[1] is LOW
			1 = ARCACHE[1] is HIGH.
			Bit $[11]$ 0 = ARCACHE[0] is LOW
			1 = ARCACHE[0] is HIGH.
			Programs the state of ARPROT[2:0]a when the DMAC
			reads the source data.
			Bit $[10]$ 0 = ARPROT $[2]$ is LOW
10:8	R	0x0	1 = ARPROT[2] is HIGH.
			Bit [9] 0 = ARPROT[1] is LOW
			1 = ARPROT[1] is HIGH.
			Bit [8] $0 = ARPROT[0]$ is LOW
			1 = ARPROT[0] is HIGH. For each burst, these bits program the number of data
			transfers that the DMAC performs when it reads the
			source data:
			b0000 = 1 data transfer
			b0001 = 2 data transfers
7:4	R	0x0	b0010 = 3 data transfers
/			
			b1111 = 16 data transfers.
			The total number of bytes that the DMAC reads into the
			MFIFO when it executes a DMALD instruction is the
			product of src_burst_len and src_burst_size
			For each beat within a burst, it programs the number of
			bytes that the DMAC reads from the source:
			b000 = reads 1 byte per beat
			b001 = reads 2 bytes per beat
			b010 = reads 4 bytes per beat
3:1	R	0x0	b011 = reads 8 bytes per beat
			b100 = reads 16 bytes per beat
			b101-b111 = reserved.
			The total number of bytes that the DMAC reads into the
			MFIFO when it executes a DMALD instruction
			is the product of src_burst_len and src_burst_size
			Programs the burst type that the DMAC performs when it
			reads the source data:
0	R	0x0	0 = Fixed-address burst. The DMAC signals ARBURST[0]
			LOW.
			1 = Incrementing-address burst. The DMAC signals
			ARBURST[0] HIGH

DMAC_BUS_LC0_0~DMAC_BUS_LC0_5

Address:Operational Base+0x40c Operational Base+0x42c Operational Base+0x44c Operational Base+0x46c Operational Base+0x48c Operational Base+0x4ac Loop Counter 0 Registers

Bit	Attr	Reset Value	Description
31:8	-	-	reserved
7:0	R	0x0	Loop counter 0 iterations

DMAC_BUS_LC1_0~DMAC_BUS_LC1_5

Address:Operational Base+0x410

Operational Base+0x430 Operational Base+0x450 Operational Base+0x470

Operational Base+0x490

Operational Base+0x4b0

Loop Counter 1 Registers

Bit	Attr	Reset Value	Description
31:8	-	-	reserved
7:0	R	0x0	Loop counter 1 iterations

DMAC_BUS_DBGSTATUS

Address:Operational Base+0xd00

Debug Status Register

Bit	Attr	Reset Value	Description
31:2	-	-	reserved
1:0	R	0×0	The debug encoding is as follows: b00 = execute the instruction that the DBGINST [1:0] Registers contain b01 = reserved b10 = reserved b11 = reserved.

DMAC_BUS_DBGCMD

Address:Operational Base+0xd04 Debug Command Register

Bit	Attr	Reset Value	Description
31:2	-	-	reserved
1:0	w	0×0	The debug encoding is as follows: b00 = execute the instruction that the DBGINST [1:0] Registers contain b01 = reserved b10 = reserved b11 = reserved

DMAC_BUS_DBGINST0

Address:Operational Base+0xd08 Debug Instruction-0 Register

Bit	Attr	Reset Value	Description
31:24	W	0x0	Instruction byte 1
23:16	W	0x0	Instruction byte 0
15:11	-	-	reserved
10:8	w	0x0	DMA channel number: b000 = DMA channel 0 b001 = DMA channel 1 b010 = DMA channel 2 b111 = DMA channel 7
7:1	-	-	reserved
0	w	0x0	The debug thread encoding is as follows: 0 = DMA manager thread 1 = DMA channel.

DMAC_BUS_DBGINST1

Address:Operational Base+0xd0c Debug Instruction-1 Register

Bit	Attr	Reset Value	Description
31:24	W	0x0	Instruction byte 5
23:16	W	0x0	Instruction byte 4
15:8	W	0x0	Instruction byte 3
7:0	W	0x0	Instruction byte 2

DMAC_BUS_CR0

Address:Operational Base+0xe00 Configuration Register 0

Bit	Attr	Reset Value	Description
31:22	-	-	reserved
21:17	R	0x2	Number of interrupt outputs that the DMAC provides: b00000 = 1 interrupt output, irq[0] b00001 = 2 interrupt outputs, irq[1:0] b00010 = 3 interrupt outputs, irq[2:0] b11111 = 32 interrupt outputs, irq[31:0].
16:12	R	0x7	Number of peripheral request interfaces that the DMAC provides: b00000 = 1 peripheral request interface b00001 = 2 peripheral request interfaces b00010 = 3 peripheral request interfaces b11111 = 32 peripheral request interfaces.
11:7	-	-	reserved
6:4	R	0x5	Number of DMA channels that the DMAC supports: b000 = 1 DMA channel b001 = 2 DMA channels b010 = 3 DMA channels b111 = 8 DMA channels.
3	-	-	reserved
2	R	0x0	Indicates the status of the boot_manager_ns signal when the DMAC exited from reset: 0 = boot_manager_ns was LOW 1 = boot_manager_ns was HIGH.
1	R	0x0	Indicates the status of the boot_from_pc signal when the DMAC exited from reset: 0 = boot_from_pc was LOW 1 = boot_from_pc was HIGH
0	R	0x1	Supports peripheral requests: 0 = the DMAC does not provide a peripheral request interface 1 = the DMAC provides the number of peripheral request interfaces that the num_periph_req field specifies.

DMAC_BUS_CR1

Address:Operational Base+0xe04 Configuration Register 1

Bit	Attr	Reset Value	Description
31:8	-	-	reserved
7:4	R	0x5	<pre>[7:4] num_i-cache_lines Number of i-cache lines: b0000 = 1 i-cache line b0001 = 2 i-cache lines b0010 = 3 i-cache lines </pre>

Bit	Attr	Reset Value	Description	
			b1111 = 16 i-cache lines.	
3	-	-	reserved	
2:0	R	0x7	The length of an i-cache line: b000-b001 = reserved b010 = 4 bytes b011 = 8 bytes b100 = 16 bytes b101 = 32 bytes b110-b111 = reserved	

DMAC_BUS_CR2

Address:Operational Base+0xe08 Configuration Register 2

Bit	Attr	Reset Value	Description
31:0	R	0x0	Provides the value of boot_addr[31:0] when the DMAC exited from reset

DMAC_BUS_CR3

Address:Operational Base+0xe0c Configuration Register 3

Bit	Attr	Reset Value	Description
31:0	R	0x0	Provides the security state of an event-interrupt resource: Bit [N] = 0 Assigns event <n> or irq[N] to the Secure state. Bit [N] = 1 Assigns event<n> or irq[N] to the Non-secure state.</n></n>

DMAC_BUS_CR4

Address:Operational Base+0xe10 Configuration Register 4

Bit	Attr	Reset Value	Description
31:0	R	0x6	Provides the security state of the peripheral request interfaces: Bit [N] = 0 Assigns peripheral request interface N to the Secure state. Bit [N] = 1 Assigns peripheral request interface N to the Non-secure state

DMAC_BUS_CRDn

Address:Operational Base+0xe14 DMA Configuration Register

Bit	Attr	Reset Value	Description
31:30	-	-	reserved
29:20	R	0x20	The number of lines that the data buffer contains: b000000000 = 1 line b000000001 = 2 lines b111111111 = 1024 lines
19:16	R	0x9	The depth of the read queue: b0000 = 1 line b0001 = 2 lines b1111 = 16 lines.
15	-	-	reserved

Bit	Attr	Reset Value	Description
14:12	R	0x4	Read issuing capability that programs the number of outstanding read transactions: b000 = 1 b001 = 2 b111 = 8
11:8	R	0x7	The depth of the write queue: b0000 = 1 line b0001 = 2 lines b1111 = 16 lines.
7	-	-	reserved
6:4	R	0x3	Write issuing capability that programs the number of outstanding write transactions: b000 = 1 b001 = 2 b111 = 8
3	-	_	reserved
2:0		0x3	The data bus width of the AXI interface: b000 = reserved b001 = reserved b010 = 32-bit b011 = 64-bit b100 = 128-bit b101-b111 = reserved.

DMAC_BUS_WD

Address:Operational Base+0xe80 DMA Watchdog Register

Bit	Attr	Reset Value	Description
-	-	-	reserved
0	RW	0x0	Controls how the DMAC responds when it detects a lock-up condition: 0 = the DMAC aborts all of the contributing DMA channels and sets irq_abort HIGH 1 = the DMAC sets irq_abort HIGH.

10.5 Timing Diagram

Following picture shows the relationship between dma_req and dma_ack.

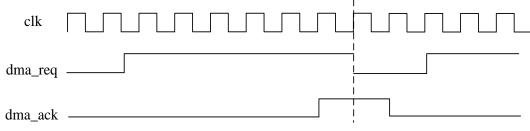


Fig. 10-3 DMAC_BUS request and acknowledge timing

10.6 Interface Description

DMAC_BUS has the following tie-off signals. It can be configured by GRF register or TZPC register. (Please refer to these two chapters to find how to configure)

interface	Reset value	Control source
boot_addr	0x0	Secure GRF
boot_from_pc	0x0	Secure GRF
boot_manager_ns	0x0	Secure GRF / TZPC
boot_irq_ns	0x0	Secure GRF / TZPC
boot_periph_ns	0x0	TZPC

boot_addr

Configures the address location that contains the first instruction the DMAC executes, when it exits from reset.

boot_from_pc

Controls the location in which the DMAC executes its initial instruction, after it exits from reset:

0 = DMAC waits for an instruction from either APB interface

1 = DMA manager thread executes the instruction that is located at the address that

boot_manager_ns

When the DMAC exits from reset, this signal controls the security state of the DMA manager thread:

0 = assigns DMA manager to the Secure state

1 = assigns DMA manager to the Non-secure state.

boot_irq_ns

Controls the security state of an event-interrupt resource, when the DMAC exits from reset: boot_irq_ns[x] is LOW

The DMAC assigns event <x> or irq[x] to the Secure state.

boot_irq_ns[x] is HIGH

The DMAC assigns event $\langle x \rangle$ or irq[x] to the Non-secure state.

boot_periph_ns

Controls the security state of a peripheral request interface, when the DMAC exits from reset: boot_periph_ns[x] is LOW

The DMAC assigns peripheral request interface x to the Secure state.

boot_periph_ns[x] is HIGH

The DMAC assigns peripheral request interface x to the Non-secure state.

10.7 Application Notes

10.7.1 Using the APB slave interfaces

You must ensure that you use the appropriate APB interface, depending on the security state in which the boot_manager_ns initializes the DMAC to operate. For example, if the DMAC is in the secure state, you must issue the instruction using the secure APB interface, otherwise the DMAC ignores the instruction. You can use the secure APB interface, or the non-secure APB interface, to start or restart a DMA channel when the DMAC is in the Non-secure state. The necessary steps to start a DMA channel thread using the debug instruction registers as following:

1. Create a program for the DMA channel.

- 2. Store the program in a region of system memory.
- 3. Poll the DBGSTATUS Register to ensure that debug is idle, that is, the dbgstatus bit is 0.
- 4. Write to the DBGINSTO Register and enter the:
- Instruction byte 0 encoding for DMAGO.

• Instruction byte 1 encoding for DMAGO.

• Debug thread bit to 0. This selects the DMA manager thread.

5. Write to the DBGINST1 Register with the DMAGO instruction byte [5:2] data, see Debug Instruction-1 Register o. You must set these four bytes to the address of the first instruction in the program, that was written to system memory in step 2.

6. Writing zero to the DBGCMD Register. The DMAC starts the DMA channel thread and sets the dbgstatus bit to 1.

10.7.2 Security usage

When the DMAC exits from reset, the status of the configuration signals that tie-off signals which descripted in chapter 10.6.

DMA manager thread is in the secure state

If the DNS bit is 0, the DMA manager thread operates in the secure state and it only performs secure instruction fetches. When a DMA manager thread in the secure state processes:

DMAGO

It uses the status of the ns bit, to set the security state of the DMA channel thread by writing to the CNS bit for that channel.

DMAWFE

It halts execution of the thread until the event occurs. When the event occurs, the DMAC continues execution of the thread, irrespective of the security state of the corresponding INS bit.

DMASEV

It sets the corresponding bit in the INT_EVENT_RIS Register, irrespective of the security state of the corresponding INS bit.

DMA manager thread is in the Non-secure state

If the DNS bit is 1, the DMA manager thread operates in the Non-secure state, and it only performs non-secure instruction fetches. When a DMA manager thread in the Non-secure state processes:

DMAGO

The DMAC uses the status of the ns bit, to control if it starts a DMA channel

thread. If:

ns = 0

The DMAC does not start a DMA channel thread and instead it:

1. Executes a NOP.

- 2. Sets the FSRD Register, see Fault Status DMA Manager
- 3. Sets the dmago_err bit in the FTRD Register, see Fault Type DMA Manager Register.
- 4. Moves the DMA manager to the Faulting state.

ns = 1

The DMAC starts a DMA channel thread in the Non-secure state and programs the CNS bit to be non-secure.

DMAWFE

The DMAC uses the status of the corresponding INS bit, in the CR3 Register, to control if it waits for the event. If:

INS = 0

The event is in the Secure state. The DMAC:

- 1. Executes a NOP.
- 2. Sets the FSRD Register, see Fault Status DMA Manager Register.
- 3. Sets the mgr_evnt_err bit in the FTRD Register, see Fault Type DMA Manager Register.
- 4. Moves the DMA manager to the Faulting state.
- INS = 1

The event is in the Non-secure state. The DMAC halts execution of the thread and waits for the event to occur.

DMASEV

The DMAC uses the status of the corresponding INS bit, in the CR3Register, to control if it creates the event-interrupt. If:

INS = 0

The event-interrupt resource is in the Secure state. The DMAC:

1. Executes a NOP.

2. Sets the FSRD Register, see Fault Status DMA Manager Register.

3. Sets the mgr evnt err bit in the FTRD Register, see Fault Type DMA Manager Register.

4. Moves the DMA manager to the Faulting state.

INS = 1

The event-interrupt resource is in the Non-secure state. The DMAC creates the event-interrupt. DMA channel thread is in the secure state

When the CNS bit is 0, the DMA channel thread is programmed to operate in the Secure state and it only performs secure instruction fetches.

When a DMA channel thread in the secure state processes the following instructions:

DMAWFE

The DMAC halts execution of the thread until the event occurs. When the event occurs, the DMAC continues execution of the thread, irrespective of the security state of the corresponding INS bit, in the CR3 Register.

DMASEV

The DMAC creates the event-interrupt, irrespective of the security state of the corresponding INS bit, in the CR3 Register.

DMAWFP

The DMAC halts execution of the thread until the peripheral signals a DMA request. When this occurs, the DMAC continues execution of the thread, irrespective of the security state of the corresponding PNS bit, in the CR4 Register.

DMALDP, DMASTP

The DMAC sends a message to the peripheral to communicate that data transfer

is complete, irrespective of the security state of the corresponding PNS bit, in the CR4 Register. DMAFLUSHP

The DMAC clears the state of the peripheral and sends a message to the peripheral to resend its level status, irrespective of the security state of the corresponding PNS bit, in the CR4 Register.

When a DMA channel thread is in the Secure state, it enables the DMAC to perform secure and non-secure AXI accesses

DMA channel thread is in the Non-secure state

When the CNS bit is 1, the DMA channel thread is programmed to operate in the Non-secure state and it only performs non-secure instruction fetches.

When a DMA channel thread in the Non-secure state processes the following instructions: **DMAWFE**

The DMAC uses the status of the corresponding INS bit, in the CR3 Register, to control if it waits for the event. If:

INS = 0

The event is in the Secure state. The DMAC:

1. Executes a NOP.

2. Sets the appropriate bit in the FSRC Register that corresponds to the DMA channel number. See Fault Status DMA Channel Register.

3. Sets the ch evnt err bit in the FTRn Register, see Fault Type DMA Channel Registers.

4. Moves the DMA channel to the Faulting completing state.

INS = 1

The event is in the Non-secure state. The DMAC halts execution of the thread and waits for the event to occur.

DMASEV

The DMAC uses the status of the corresponding INS bit, in the CR3 Register, to control if it creates the event. If:

INS = 0

The event-interrupt resource is in the Secure state. The DMAC:

1. Executes a NOP.

2. Sets the appropriate bit in the FSRC Register that corresponds to the DMA channel number. See Fault Status DMA Channel Register.

3. Sets the ch evnt err bit in the FTRn Register, see Fault Type DMA Channel Registers.

4. Moves the DMA channel to the Faulting completing state.

INS = 1

The event-interrupt resource is in the Non-secure state. The DMAC creates the event-interrupt. **DMAWFP**

The DMAC uses the status of the corresponding PNS bit, in the CR4 Register, to control if it waits for the peripheral to signal a request. If:

PNS = 0

The peripheral is in the Secure state. The DMAC:

1. Executes a NOP.

2. Sets the appropriate bit in the FSRC Register that corresponds to the DMA channel number. See Fault Status DMA Channel Register.

3. Sets the ch_periph_err bit in the FTRn Register, see Fault Type DMA Channel Registers.

4. Moves the DMA channel to the Faulting completing state.

PNS = 1

The peripheral is in the Non-secure state. The DMAC halts execution of the thread and waits for the peripheral to signal a request.

DMALDP, DMASTP

The DMAC uses the status of the corresponding PNS bit, in the CR4 Register, to control if it sends an acknowledgement to the peripheral. If:

PNS = 0

The peripheral is in the Secure state. The DMAC:

1. Executes a NOP.

2. Sets the appropriate bit in the FSRC Register that corresponds to the DMA channel number. See Fault Status DMA Channel Register.

3. Sets the ch_periph_err bit in the FTRn Register, see Fault Type DMA Channel Registers.

4. Moves the DMA channel to the Faulting completing state.

PNS = 1

The peripheral is in the Non-secure state. The DMAC sends a message to the peripheral to communicate when the data transfer is complete.

DMAFLUSHP

The DMAC uses the status of the corresponding PNS bit, in the CR4 Register, to control if it sends a flush request to the peripheral. If:

PNS = 0

The peripheral is in the Secure state. The DMAC:

1. Executes a NOP.

2. Sets the appropriate bit in the FSRC Register that corresponds to the DMA channel number. See Fault Status DMA Channel Registe.

3. Sets the ch_periph_err bit in the FTRn Register, see Fault Type DMA Channel Registers.

4. Moves the DMA channel to the Faulting completing state.

PNS = 1

The peripheral is in the Non-secure state. The DMAC clears the state of the peripheral and sends a message to the peripheral to resend its level status.

When a DMA channel thread is in the Non-secure state, and a DMAMOV CCR instruction attempts to program the channel to perform a secure AXI transaction, the DMAC:

1. Executes a DMANOP.

2. Sets the appropriate bit in the FSRC Register that corresponds to the DMA channel number. See Fault Status DMA Channel Registe.

3. Sets the ch_rdwr_err bit in the FTRn Register, see Fault Type DMA Channel Registers.

4. Moves the DMA channel thread to the Faulting completing state.

10.7.3 Programming restrictions

Fixed unaligned bursts

The DMAC does not support fixed unaligned bursts. If you program the following conditions, the DMAC treats this as a programming error:

Unaligned read

• src_inc field is 0 in the CCRn Register

• the SARn Register contains an address that is not aligned to the size of data

that the src_burst_size field contain

Unaligned write

• dst_inc field is 0 in the CCRn Register

• the DARn Register contains an address that is not aligned to the size of data that the dst_burst_size field contains

Endian swap size restrictions

If you program the endian_swap_size field in the CCRn Register, to enable a DMA channel to perform an endian swap then you must set the corresponding SARn Register and the corresponding DARn Register to contain an address that is aligned to the value that the endian_swap_size field contains.

Updating DMA channel control registers during a DMA cyclerestrictions

Prior to the DMAC executing a sequence of DMALD and DMAST instructions, the values you program in to the CCRn Register, SARn Register, and DARn Register control the data byte lane manipulation that the DMAC performs when it transfers the data from the source address to the destination address. You'd better not update these registers during a DMA cycle.

Resource sharing between DMA channels

DMA channel programs share the MFIFO data storage resource. You must not start a set ofconcurrently running DMA channel programs with a resource requirement that exceeds theconfigured size of the MFIFO. If you exceed this limit then the DMAC might lock up and generate a Watchdog abort.

10.7.4 Unaligned transfers may be corrupted

For a configuration with more than one channel, if any of channels 1 to 7 is performing transfers between certain types of misaligned source and destination addresses, then the output data may be corrupted by the action of channel 0.

Data corruption might occur if all of the following are true:

1. Two beats of AXI read data are received for one of channels 1 to 7.

2. Source and destination address alignments mean that each read data beat is

split across two lines in the data buffer (see Splitting data, below).

3. There is one idle cycle between the two read data beats .

4. Channel 0 performs an operation that updates channel control information

during this idle cycle (see Updates to channel control information, below)

Splitting data

Depending upon the programmed values for the DMA transfer, one beat of read data from the AXI interface mneed to be split across two lines in the internal data buffer. This occurs when the read data beat contains datbytes which will be written to addresses that wrap around at the AXI interface data width, so that these bytes could not be transferred by a single AXI write data beat of the full interface width.

Most applications of DMA-330 do not split data in this way, so are NOT vulnerable to data corruption from thisdefect.

The following cases are NOT vulnerable to data corruption because they do not split data:

- Byte lane offset between source and destination addresses is 0 When source and destination addresses have the same byte lane alignment, the offset is 0 and a wrap operation that splits data cannot occur.
- Byte lane offset between source and destination addresses is a multiple of source size

Source size in CCRn	Allowed offset between SARn and DARn
SS8	any offset allowed.
SS16	0,2,4,6,8,10,12,14
SS32	0,4,8,12
SS64	0,8

10.7.5 Interrupt shares between channel.

As the DMAC_BUS does not record which channel (or list of channels) have asserted an interrupt. So it will depend on your program and whether any of the visible information for that

program can be used to determine progress, and help identify the interrupt source.

There are 4 likely information sources that can be used to determine the progress made by a program:

- Program counter (PC)
- Source address
- Destination address
- Loop counters (LC)

For example, a program might emit an interrupt each time that it iterates around a loop. In this case, the interrupt service routine (ISR) would need to store the loop value of each channel when it is called, and then compare against the new value when it is next called. A change in value would indicate that the program has progressed.

The ISR must be carefully written to ensure that no interrupts are lost. The sequence of operations is as follows:

- 1. Disable interrupts
- 2. Immediately clear the interrupt in DMA-330
- 3. Check the relevant registers for both channels to determine which must be serviced
- 4. Take appropriate action for the channels
- 5. Re-enable interrupts and exit ISR

10.7.6 Instruction sets

Mnemonic	Instruction	Thread usage: • M = DMA manager • C = DMA channel
DMAADDH	Add Halfword	С
DMAEND	End	M/C
DMAFLUSHP	Flush and notify Peripheral	C
DMAGO	Go	Μ
DMAKILL	Kill	С
DMALD	Load	С
DMALDP	Load Peripheral	С
DMALP	Loop	С
DMALPEND	Loop End	С
DMALPFE	Loop Forever	С
DMAMOV	Move	С
DMANOP	No operation	M/C
DMARMB	Read Memory Barrier	С
DMASEV	Send Event	M/C
DMAST	Store	С
DMASTP	Store and notify Peripheral	C
DMASTZ	Store Zero	С
DMAWFE	Wai t For Event M	M/C
DMAWFP	Wait For Peripheral	С
DMAWMB	Write Memory Barrier	С
DMAADNH	Add Negative Halfword	С

10.7.7 Assembler directives

In this document, only DMMADNH instruction is took as an example to show the way the instruction assembled. *For the other instructions , please refer to pl330_trm.pdf.* **DMAADNH**

Add Negative Halfword adds an immediate negative 16-bit value to the SARn Register or DA Rn Register, for the DMA channel thread. This enables the DMAC to support 2D DMA operati ons, or reading or writing an area of memory in adifferent order to naturally incrementing ad dresses. See Source Address Registers and Destination Address Registers.

The immediate unsigned 16-bit value is one-extended to 32 bits, to create a value that is th e two's complement representation of a negative number between -65536 and -1, before th e DMAC adds it to the address using 32-bit addition. The DMAC discards the carry bit so that addresses wrap from 0xFFFFFFF to 0x00000000. The net effect is to subtract between 655 36 and 1 from the current value in the Source or Destination Address Register. Following table shows the instruction encoding.

ving	ng table shows the instruction encoung.										
	Imm[15:8]	Imm[7:0]	0	1	0	1	1	1	ra	0	

Assembler syntax

DMAADNH <address_register>, <16-bit immediate>

where:

<address_register>

Selects the address register to use. It must be either:

SAR SA

SARn Register and sets ra to 0. DAR

DARn Register and sets ra to 1.

<16-bit immediate>

The immediate value to be added to the <address_register>.

You should specify the 16-bit immediate as the number that is to be represented in the instruction encoding. For example, DMAADNH DAR, 0xFFF0 causes the value 0xFFFFFF0 to be a dded to the current value of the Destination Address Register, effectively subtracting 16 from the DAR.

You can only use this instruction in a DMA channel thread.

Chapter 11 DMA Controller for Peripheral System

(DMAC_PERI)

11.1 Overview

DMAC_PERI does not support TrustZone technology and work under non-secure state only.

DMAC_PERI is mainly used for data transfer of the following slaves: HSADC, UART BT, UART BB, UART GPS, UART EXP, SPI0, SPI1, SPI2.

	Table 11-1 DMAC_PERI Request Mapping Table									
Req number	Source	Polarity								
0	HSADC/TSI	High level								
1	UART BT tx	High level								
2	UART BT rx	High level								
3	UART BB tx	High level								
4										

Following table shows the DMAC_PERI request mapping scheme.

Source	Polarity
HSADC/TSI	High level
UART BT tx	High level
UART BT rx	High level
UART BB tx	High level
UART BB rx	High level
Reserved	
Reserved	
UART GPS tx	High level
UART GPS rx	High level
UART EXP tx	High level
UART EXP rx	High level
SPI0 tx	High level
SPI0 rx	High level
SPI1 tx	High level
SPI1 rx	High level
SPI2 tx	High level
SPI2 rx	High level
Reserved	
Reserved	
Reserved	
	HSADC/TSI UART BT tx UART BT rx UART BB tx UART BB rx Reserved Reserved UART GPS tx UART GPS tx UART GPS rx UART GPS rx UART EXP rx SPI0 tx SPI0 tx SPI0 rx SPI1 tx SPI1 rx SPI1 rx SPI2 tx SPI2 rx Reserved Reserved

DMAC_PERI supports the following features:

- Supports 20 peripheral request.
- Up to 64bits data size.
- 8 channel at the same time.
- Up to burst 16.
- 16 interrupts output and 1 abort output.
- Supports 64 MFIFO depth.

11.2 Block Diagram

Figure 11-1 shows the block diagram of DMAC_PERI.

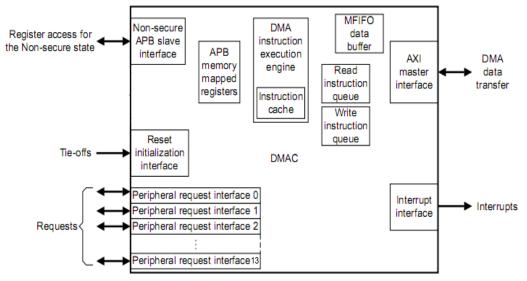


Fig. 11-1 Block diagram of DMAC_PERI

11.3 Function Description

Please refer to chapter 14.3 for the similar description.

11.4 Register Description

11.4.1 Register summary

Name	Offset	Size	Reset Value	Description
DMAC_PERI_DSR	0x0000	W	0x0	DMA Status Register.
DMAC_PERI_DPC	0x0004	W	0x0	DMA Program Counter Register.
-	-	-	-	reserved
DMAC_PERI_INTEN	0x0020	W	0x0	Interrupt Enable Register
DMAC_PERI_EVENT_RIS	0x0024	W	0x0	Event Status Register.
DMAC_PERI_INTMIS	0x0028	W	0x0	Interrupt Status Register
DMAC_PERI_INTCLR	0x002C	W	0x0	Interrupt Clear Register
DMAC_PERI_FSRD	0x0030	w	0x0	Fault Status DMA Manager Register.
DMAC_PERI_FSRC	0x0034	W	0x0	Fault Status DMA Channel Register.
DMAC_PERI_FTRD	0x0038	W	0x0	Fault Type DMA Manager Register.
-	-	-	-	reserved
DMAC_PERI_FTR0	0x0040	W	0x0	Fault type for DMA Channel 0
DMAC_PERI_FTR1	0x0044	W	0x0	Fault type for DMA Channel 1
DMAC_PERI_FTR2	0x0048	W	0x0	Fault type for DMA Channel 2
DMAC_PERI_FTR3	0x004C	W	0x0	Fault type for DMA Channel 3
DMAC_PERI_FTR4	0x0050	W	0x0	Fault type for DMA Channel 4
DMAC_PERI_FTR5	0x0054	W	0x0	Fault type for DMA Channel 5
DMAC_PERI_FTR6	0x0058	W	0x0	Fault type for DMA Channel 6
-	-	-	-	reserved
DMAC_PERI_CSR0	0x0100	W	0x0	Channel Status for DMA Channel 0
DMAC_PERI_CSR1	0x0108	W	0x0	Channel Status for DMA Channel 1
DMAC_PERI_CSR2	0x0110	W	0x0	Channel Status for DMA Channel 2
DMAC_PERI_CSR3	0x0118	W	0x0	Channel Status for DMA Channel 3
DMAC_PERI_CSR4	0x0120	W	0x0	Channel Status for DMA Channel 4
DMAC_PERI_CSR5	0x0128	W	0x0	Channel Status for DMA Channel 5

Name	Offset	Size	Reset Value	Description
DMAC_PERI_CSR6	0x0130	W	0x0	Channel Status for DMA Channel 6
DMAC_PERI_CPC0	0x0104	W	0x0	Channel PC for DMA Channel 0
DMAC_PERI_CPC1	0x010c	W	0x0	Channel PC for DMA Channel 1
DMAC_PERI_CPC2	0x0114	W	0x0	Channel PC for DMA Channel 2
DMAC_PERI_CPC3	0x011c	W	0x0	Channel PC for DMA Channel 3
DMAC_PERI_CPC4	0x0124	W	0x0	Channel PC for DMA Channel 4
DMAC_PERI_CPC5	0x012c	W	0x0	Channel PC for DMA Channel 5
DMAC_PERI_CPC6	0x0134	W	0x0	Channel PC for DMA Channel 6
DMAC_PERI_SAR0	0x0400	W	0x0	Source Address for DMA Channel 0
DMAC_PERI_SAR1	0x0420	W	0x0	Source Address for DMA Channel 1
DMAC_PERI_SAR2	0x0440	W	0x0	Source Address for DMA Channel 2
DMAC PERI SAR3	0x0460	W	0x0	Source Address for DMA Channel 3
DMAC PERI SAR4	0x0480	W	0x0	Source Address for DMA Channel 4
DMAC PERI SAR5	0x04a0	W	0x0	Source Address for DMA Channel 5
DMAC PERI SAR6	0x04c0	W	0x0	Source Address for DMA Channel 6
DMAC PERI DAR0	0x0404	W	0x0	Dest Address for DMAChannel 0
DMAC PERI DAR1	0x0424	W	0x0	Dest Address for DMAChannel 1
DMAC PERI DAR2	0x0444	W	0x0	Dest Address for DMAChannel 2
DMAC PERI DAR3	0x0464	W	0x0	Dest Address for DMAChannel 3
DMAC PERI DAR4	0x0484	W	0x0	Dest Address for DMAChannel 4
DMAC PERI DAR5	0x04a4	W	0x0	Dest Address for DMAChannel 5
DMAC PERI DAR6	0x04c4	W	0x0	Dest Address for DMAChannel 6
DMAC PERI CCR0	0x0408	W	0x0	Channel Control for DMA Channel 0
DMAC PERI CCR1	0x0428	Ŵ	0x0	Channel Control for DMA Channel 1
DMAC PERI CCR2	0x0448	W	0x0	Channel Control for DMA Channel 2
DMAC PERI CCR3	0x0468	Ŵ	0x0	Channel Control for DMA Channel 3
DMAC PERI CCR4	0x0488	W	0x0	Channel Control for DMA Channel 4
DMAC PERI CCR5	0x04a8	W	0x0	Channel Control for DMA Channel 5
DMAC PERI CCR6	0x04c8	W	0x0	Channel Control for DMA Channel 6
DMAC PERI LCO 0	0x040C	W	0x0	Loop Counter 0 for DMA Channel 0
DMAC PERI LCO 1	0x040C	W	0x0	Loop Counter 0 for DMA Channel 1
DMAC_PERI_LC0_2	0x044C	W	0x0	Loop Counter 0 for DMA Channel 2
DMAC_PERI_LC0_3	0x044C	W	0x0	Loop Counter 0 for DMA Channel 3
DMAC_PERI_LC0_4	0x048C	W	0x0	Loop Counter 0 for DMA Channel 4
DMAC PERI LCO 5	0x040C	W	0x0	Loop Counter 0 for DMA Channel 5
DMAC_PERI_LC0_6	0x04aC 0x04cC	W	0x0 0x0	Loop Counter 0 for DMA Channel 6
DMAC_PERI_LC0_0	0x04cc 0x0410	W	0x0 0x0	Loop Counter 1 for DMA Channel 0
DMAC_PERI_LC1_1	0x0410	W	0x0	Loop Counter 1 for DMA Channel 1
DMAC_PERI_LC1_1	0x0450	W	0x0	Loop Counter 1 for DMA Channel 2
DMAC_PERI_LC1_2	0x0430	W	0x0 0x0	
DMAC_PERI_LC1_3	0x0470	W		Loop Counter 1 for DMA Channel 3
	-	-	0x0	Loop Counter 1 for DMA Channel 4
DMAC_PERI_LC1_5	0x04b0	W	0x0	Loop Counter 1 for DMA Channel 5
DMAC_PERI_LC1_6	0x04d0	W	0x0	Loop Counter 1 for DMA Channel 6
DMAC_PERI_DBGST DMAC_PERI_ATUS	- 0x0D00	W	- 0x0	reserved Debug Status Register.
DMAC PERI DBGCMD	0x0D04	W	0x0	Debug Command Register.
DMAC_PERI_DBGINSTO	0x0D04	W	0x0	Debug Instruction-0 Register.
DMAC_PERI_DBGINSTO	0x0D08 0x0D0C	W	0x0 0x0	Debug Instruction-1 Register.
DMAC_PERI_DBGINSTI	0x0D0C	W	0.00	
		W		Configuration Register 0.
DMAC_PERI_CR1	0x0E04			Configuration Register 1.
DMAC_PERI_CR2	0x0E08	W		Configuration Register 2.
DMAC_PERI_CR3	0x0E0C	W		Configuration Register 3.

Name	Offset	Size	Reset Value	Description
DMAC_PERI_CR4	0x0E10	W		Configuration Register 4.
DMAC_PERI_CRDn	0x0E14	W		Configuration Register Dn.
DMAC_PERI_WD	0X0E80	W		Watchdog Register

Notes:

Size: B - Byte (8 bits) access, HW - Half WORD (16 bits) access, W -WORD (32 bits) access

11.4.2 Detail Register Description

DMAC_PERI_DSR

Address:Operational Base+0x0 DMA Manager Status Register

Bit	Attr	Reset Value	Description
31:10	-	-	Reserved
9	R	0×0	Provides the security status of the DMA manager thread: 0 = DMA manager operates in the Secure state 1 = DMA manager operates in the Non-secure state.
8:4	R	0x0	When the DMA manager thread executes a DMAWFE instruction, it waits for the following event to occur: b00000 = event[0] b00001 = event[1] b00010 = event[2] b11111 = event[31].
3:0	R	0×0	The operating state of the DMA manager: b0000 = Stopped b0001 = Executing b0010 = Cache miss b0011 = Updating PC b0100 = Waiting for event b0101-b1110 = reserved b1111 = Faulting.

DMAC_PERI_DPC

Address:Operational Base+0x4 DMA Program Counter Register

Bit	Attr	Reset Value	Description
31:0	R	0x0	Program counter for the DMA manager thread

DMAC_PERI_INTEN

Address:Operational Base+0x20

Interrup	Interrupt Enable Register				
Bit	Attr	Reset Value	Description		
31:0	RW	0×0	Program the appropriate bit to control how the DMAC responds when it executes DMASEV: Bit $[N] = 0$ If the DMAC executes DMASEV for the event-interrupt resource N then the DMAC signals event N to all of the threads. Set bit $[N]$ to 0 if your system design does not use irq $[N]$ to signal an interrupt request. Bit $[N] = 1$ If the DMAC executes DMASEV for the event-interrupt resource N then the DMAC sets irq $[N]$ HIGH. Set bit $[N]$ to 1 if your system designer requires irq $[N]$ to signal an interrupt request.		

DMAC_PERI_EVENT_RIS

Address:Operational Base+0x24

Event-L	Event-Interrupt Raw Status Register				
Bit	Attr	Reset Value	Description		
31:0	R	0x0	Returns the status of the event-interrupt resources: Bit $[N] = 0$ Event N is inactive or irq $[N]$ is LOW. Bit $[N] = 1$ Event N is active or irq $[N]$ is HIGH.		

DMAC_PERI_INTMIS

Address:Operational Base+0x28 Interrupt Status Register

Bit	Attr	Reset Value	Description	
31:0	R	0x0	Provides the status of the interrupts that are active in the DMAC: Bit $[N] = 0$ Interrupt N is inactive and therefore irq $[N]$ is LOW. Bit $[N] = 1$ Interrupt N is active and therefore irq $[N]$ is HIGH	

DMAC_PERI_INTCLR

Address:Operational Base+0x2c Interrupt Clear Register

Bit	Attr	Reset Value	Description
31:0	W	0x0	Controls the clearing of the irq outputs: Bit $[N] = 0$ The status of irq $[N]$ does not change. Bit $[N] = 1$ The DMAC sets irq $[N]$ LOW if the INTEN
51.0	vv		Register programs the DMAC to signal an interrupt. Otherwise, the status of irq[N] does not change.

DMAC_PERI_FSRD

Address:Operational Base+0x30 Fault Status DMA Manager Register

Bit	Attr	Reset Value	Description
31:0	R	0x0	Provides the fault status of the DMA manager. Read as: 0 = the DMA manager thread is not in the Faulting state 1 = the DMA manager thread is in the Faulting state.

DMAC_PERI_FSRC

Address:Operational Base+0x34 Fault Status DMA Channel Register

Bit	Attr	Reset Value	Description
31:0	R	0x0	Each bit provides the fault status of the corresponding channel. Read as: Bit $[N] = 0$ No fault is present on DMA channel N. Bit $[N] = 1$ DMA channel N is in the Faulting or Faulting completing state.

DMAC_PERI_FTRD

Address:Operational Base+0x38 Fault Type DMA Manager Register

Bit	Attr	Reset Value	Description
31	-	-	reserved
30	R	0×0	If the DMA manager aborts, this bit indicates if the erroneous instruction was read from the system memory or from the debug interface: 0 = instruction that generated an abort was read from

Bit	Attr	Reset Value	Description
			system memory
			1 = instruction that generated an abort was read from the
			debug interface.
29:17	-	-	reserved
16	R	0x0	Indicates the AXI response that the DMAC receives on the RRESP bus, after the DMA manager performs an instruction fetch: 0 = OKAY response 1 = EXOKAY, SLVERR, or DECERR response
15:6	-	-	reserved
5	R	0×0	Indicates if the DMA manager was attempting to execute DMAWFE or DMASEV with inappropriate security permissions: 0 = DMA manager has appropriate security to execute DMAWFE or DMASEV 1 = a DMA manager thread in the Non-secure state attempted to execute either: • DMAWFE to wait for a secure event • DMASEV to create a secure event or secure interrupt
4	R	0x0	ndicates if the DMA manager was attempting to execute DMAGO with inappropriate security permissions: 0 = DMA manager has appropriate security to execute DMAGO 1 = a DMA manager thread in the Non-secure state attempted to execute DMAGO to create a DMA channel operating in the Secure state.
3:2	-	-	reserved
1	R	0x0	Indicates if the DMA manager was attempting to execute an instruction operand that was not valid for the configuration of the DMAC: 0 = valid operand 1 = invalid operand.
0	R	0x0	Indicates if the DMA manager was attempting to execute an undefined instruction: 0 = defined instruction 1 = undefined instruction.

DMAC_PERI_FTR0~DMAC_PERI_FTR6

Address:Operational Base+0x40 Operational Base+0x44 Operational Base+0x48 Operational Base+0x4c Operational Base+0x50 Operational Base+0x54 Operational Base+0x58 Fault Type DMA Channel Register

/I					
Bit	Attr	Reset Value	Description		
31	R	0x0	Indicates if the DMA channel has locked-up because of resource starvation: 0 = DMA channel has adequate resources 1 = DMA channel has locked-up because of insufficient resources. This fault is an imprecise abort		
30	R	0x0	If the DMA channel aborts, this bit indicates if the		

Bit	Attr	Reset Value	Description
_	_		erroneous instruction was read from the system memory
			or from the debug interface:
			0 = instruction that generated an abort was read from
			system memory
			1 = instruction that generated an abort was read from the
			debug interface.
			This fault is an imprecise abort but the bit is only valid
			when a precise abort occurs.
29:19	-	-	reserved
			Indicates the AXI response that the DMAC receives on the
			RRESP bus, after the DMA channel thread performs a data
10		0.40	read:
18	R	0x0	0 = OKAY response
			1 = EXOKAY, SLVERR, or DECERR response.
			This fault is an imprecise abort
			Indicates the AXI response that the DMAC receives on the
			BRESP bus, after the DMA channel thread performs a data
17	R	0x0	write:
1/	R		0 = OKAY response
			1 = EXOKAY, SLVERR, or DECERR response.
			This fault is an imprecise abort.
			Indicates the AXI response that the DMAC receives on the
			RRESP bus, after the DMA channel thread performs an
16	R	0x0	instruction fetch:
10			0 = OKAY response
			1 = EXOKAY, SLVERR, or DECERR response.
			This fault is a precise abort.
15:14	-	-	reserved
			Indicates if the MFIFO did not contain the data to enable
			the DMAC to perform the DMAST:
			0 = MFIFO contains all the data to enable the DMAST to
13	R	0x0	complete
			1 = previous DMALDs have not put enough data in the
			MFIFO to enable the DMAST to complete.
			This fault is a precise abort.
			Indicates if the MFIFO prevented the DMA channel thread
			from executing DMALD or DMAST. Depending on the
			instruction:
			DMALD $0 = MFIFO$ contains sufficient space
12	R	0x0	1 = MFIFO is too small to hold the data that DMALD
			requires.
			DMAST 0 = MFIFO contains sufficient data 1 = MFIFO is too small to store the data to enable DMAST
			to complete.
11:8	_	_	This fault is an imprecise abort reserved
11.0			Indicates if a DMA channel thread, in the Non-secure
			state, attempts to program the CCRn Register to perform
			a secure read or secure write:
7			0 = a DMA channel thread in the Non-secure state is not
	R	0x0	
			violating the security permissions 1 = a DMA channel thread in the Non-secure state
			attempted to perform a secure read or secure write. This fault is a precise abort
			Indicates if a DMA channel thread, in the Non-secure
6	R	0x0	state, attempts to execute DMAWFP, DMALDP, DMASTP,
	I	1	state, attempts to execute DMAWIP, DMALDP, DMASTP,

Bit	Attr	Reset Value	Description
			or DMAFLUSHP with inappropriate security permissions:
			0 = a DMA channel thread in the Non-secure state is not
			violating the security permissions
			1 = a DMA channel thread in the Non-secure state
			attempted to execute either:
			 DMAWFP to wait for a secure peripheral
			 DMALDP or DMASTP to notify a secure peripheral
			• DMAFLUSHP to flush a secure peripheral.
			This fault is a precise abort.
			Indicates if the DMA channel thread attempts to execute DMAWFE or DMASEV with inappropriate security
			permissions:
	R	0×0	0 = a DMA channel thread in the Non-secure state is not
5			violating the security permissions
5			1 = a DMA channel thread in the Non-secure state
			attempted to execute either:
			 DMAWFE to wait for a secure event
			• DMASEV to create a secure event or secure interrupt.
			This fault is a precise abort.
4:2	-	-	reserved
			Indicates if the DMA channel thread was attempting to
			execute an instruction operand that was not valid for the
1	R	0x0	configuration of the DMAC:
			0 = valid operand
			1 = invalid operand.
			This fault is a precise abort.
			Indicates if the DMA channel thread was attempting to
		00	execute an undefined instruction:
0	R	0x0	0 = defined instruction
			1 = undefined instruction.
			This fault is a precise abort

DMAC_PERI_CSR0~DMAC_PERI_CSR6

Address:Operational Base+0x100 Operational Base+0x108 Operational Base+0x110 Operational Base+0x118 Operational Base+0x120 Operational Base+0x128 Operational Base+0x130

Channel Status Registers

Bit	Attr	Reset Value	Description
31:22	_	- value	reserved
21	R	0x0	The channel non-secure bit provides the security of the DMA channel: 0 = DMA channel operates in the Secure state 1 = DMA channel operates in the Non-secure state
20:16	-	-	reserved
15	R	0x0	When the DMA channel thread executes DMAWFP this bit indicates if the periph operand was set: 0 = DMAWFP executed with the periph operand not set 1 = DMAWFP executed with the periph operand set
14	R	0x0	When the DMA channel thread executes DMAWFP this bit indicates if the burst or single operand were set:

			0 = DMAWFP executed with the single operand set
			1 = DMAWFP executed with the burst operand set.
13:9	_	-	reserved
8:4	R	0×0	If the DMA channel is in the Waiting for event state or the Waiting for peripheral state then these bits indicate the event or peripheral number that the channel is waiting for: b00000 = DMA channel is waiting for event, or peripheral, 0 b00001 = DMA channel is waiting for event, or peripheral, 1 b00010 = DMA channel is waiting for event, or peripheral, 2 b11111 = DMA channel is waiting for event, or peripheral, 31
3:0	R	0x0	The channel status encoding is: b0000 = Stopped b0001 = Executing b0010 = Cache miss b0011 = Updating PC b0100 = Waiting for event b0101 = At barrier b0110 = reserved b0111 = Waiting for peripheral b1000 = Killing b1001 = Completing b1010-b1101 = reserved b1110 = Faulting completing b1111 = Faulting

DMAC_PERI_CPC0~DMAC_PERI_CPC6

Address:Operational Base+0x104

- Operational Base+0x10c Operational Base+0x114
- Operational Base+0x11c
 - Operational Base+0x124
 - Operational Base+0x12c
 - Operational Base+0x120

Channel Program Counter Registers

Bit	Attr	Reset Value	Description
31:0	R	0x0	Program counter for the DMA channel n thread

DMAC_PERI_SAR0~DMAC_PERI_SAR6

Address:Operational Base+0x400

Operational Base+0x420 Operational Base+0x440 Operational Base+0x460 Operational Base+0x480 Operational Base+0x480 Operational Base+0x480

Source Address Registers

Bit	Attr	Reset Value	Description
31:0	R	0x0	Address of the source data for DMA channel n

DMAC_PERI_DAR0~DMAC_PERI_DAR5

Address:Operational Base+0x404 Operational Base+0x424 Operational Base+0x444 Operational Base+0x464 Operational Base+0x484 Operational Base+0x484

DestinationAddress Registers

Bit	Attr	Reset Value	Description
31:0	R	0x0	Address of the Destinationdata for DMA channel n

DMAC_PERI_CCR0~DMAC_PERI_CCR6

Address:Operational Base+0x408 Operational Base+0x428 Operational Base+0x448 Operational Base+0x468 Operational Base+0x468 Operational Base+0x488 Operational Base+0x4a8 Operational Base+0x4c8 Channel Control Registers

Bit	Attr	Reset Value	Description
31:28	-	-	reserved
27:25	R	0x0	Programs the state of AWCACHE[3,1:0]a when the DMAC writes the destination data. Bit [27] 0 = AWCACHE[3] is LOW 1 = AWCACHE[3] is HIGH. Bit [26] 0 = AWCACHE[1] is LOW 1 = AWCACHE[1] is HIGH. Bit [25] 0 = AWCACHE[0] is LOW 1 = AWCACHE[0] is HIGH
24:22	R	0x0	Programs the state of AWPROT[2:0]a when the DMAC writes the destination data. Bit [24] 0 = AWPROT[2] is LOW 1 = AWPROT[2] is HIGH. Bit [23] 0 = AWPROT[1] is LOW 1 = AWPROT[1] is HIGH. Bit [22] 0 = AWPROT[0] is LOW 1 = AWPROT[0] is HIGH
21:18	R	0x0	For each burst, these bits program the number of data transfers that the DMAC performs when it writes the destination data: b0000 = 1 data transfer b0001 = 2 data transfers b0010 = 3 data transfers b1111 = 16 data transfers. The total number of bytes that the DMAC writes out of the MFIFO when it executes a DMAST instruction is the product of dst_burst_len and dst_burst_size
17:15	R	0x0	For each beat within a burst, it programs the number of bytes that the DMAC writes to the destination: b000 = writes 1 byte per beat b001 = writes 2 bytes per beat b010 = writes 4 bytes per beat b011 = writes 8 bytes per beat b100 = writes 16 bytes per beat b101-b111 = reserved. The total number of bytes that the DMAC writes out of the MFIFO when it executes a DMAST instruction is the product of dst_burst_len and dst_burst_size.
14	R	0x0	Programs the burst type that the DMAC performs when it writes the destination data: 0 = Fixed-address burst. The DMAC signals AWBURST[0] LOW.

Bit	Attr	Reset Value	Description
			1 = Incrementing-address burst. The DMAC signals AWBURST[0] HIGH.
13:11	R	0×0	Set the bits to control the state of ARCACHE[2:0]a when the DMAC reads the source data. Bit [13] 0 = ARCACHE[2] is LOW 1 = ARCACHE[2] is HIGH. Bit [12] 0 = ARCACHE[1] is LOW 1 = ARCACHE[1] is HIGH. Bit [11] 0 = ARCACHE[0] is LOW 1 = ARCACHE[0] is HIGH.
10:8	R	0×0	Programs the state of ARPROT[2:0]a when the DMAC reads the source data. Bit [10] 0 = ARPROT[2] is LOW 1 = ARPROT[2] is HIGH. Bit [9] 0 = ARPROT[1] is LOW 1 = ARPROT[1] is HIGH. Bit [8] 0 = ARPROT[0] is LOW 1 = ARPROT[0] is HIGH.
7:4	R	0x0	For each burst, these bits program the number of data transfers that the DMAC performs when it reads the source data: b0000 = 1 data transfer b0001 = 2 data transfers b0010 = 3 data transfers b1111 = 16 data transfers. The total number of bytes that the DMAC reads into the MFIFO when it executes a DMALD instruction is the product of src_burst_len and src_burst_size
3:1	R	0×0	For each beat within a burst, it programs the number of bytes that the DMAC reads from the source: b000 = reads 1 byte per beat b001 = reads 2 bytes per beat b010 = reads 4 bytes per beat b011 = reads 8 bytes per beat b100 = reads 16 bytes per beat b101-b111 = reserved. The total number of bytes that the DMAC reads into the MFIFO when it executes a DMALD instruction is the product of src_burst_len and src_burst_size
0	R	0×0	Programs the burst type that the DMAC performs when it reads the source data: 0 = Fixed-address burst. The DMAC signals ARBURST[0] LOW. 1 = Incrementing-address burst. The DMAC signals ARBURST[0] HIGH

DMAC_PERI_LCO_0~DMAC_PERI_LCO_6

Address:Operational Base+0x40c Operational Base+0x42c Operational Base+0x44c Operational Base+0x46c Operational Base+0x46c Operational Base+0x48c Operational Base+0x4ac Operational Base+0x4cc Loop Counter 0 Registers

Copyright 2017 @ FuZhou Rockchip Electronics Co., Ltd.

Bit	Attr	Reset Value	Description
31:8	-	-	reserved
7:0	R	0x0	Loop counter 0 iterations

DMAC_PERI_LC1_0~DMAC_PERI_LC1_6

Address:Operational Base+0x410 Operational Base+0x430 Operational Base+0x450 Operational Base+0x470 Operational Base+0x490 Operational Base+0x4b0 Operational Base+0x4e0

Loop Counter 1 Registers

Bit	Attr	Reset Value	Description
31:8	-	-	reserved
7:0	R	0x0	Loop counter 1 iterations

DMAC_PERI_DBGSTATUS

Address:Operational Base+0xd00 Debug Status Register

Bit	Attr	Reset Value	Description
31:2	-	-	reserved
1:0	R	0x0	The debug encoding is as follows: b00 = execute the instruction that the DBGINST [1:0] Registers contain b01 = reserved b10 = reserved b11 = reserved.

DMAC_PERI_DBGCMD

Address:Operational Base+0xd04 Debug Command Register

Bit	Attr	Reset Value	Description
31:2	-	-	reserved
1:0	w	0×0	The debug encoding is as follows: b00 = execute the instruction that the DBGINST [1:0] Registers contain b01 = reserved b10 = reserved b11 = reserved

DMAC_PERI_DBGINST0

Address:Operational Base+0xd08 Debug Instruction-0 Register

Bit	Attr	Reset Value	Description
31:24	W	0x0	Instruction byte 1
23:16	W	0x0	Instruction byte 0
17:11	-	-	reserved
10:8	w	0x0	DMA channel number: b000 = DMA channel 0 b001 = DMA channel 1 b010 = DMA channel 2 b111 = DMA channel 7

Bit	Attr	Reset Value	Description
7:1	-	-	reserved
0	W	0x0	The debug thread encoding is as follows: 0 = DMA manager thread 1 = DMA channel.

DMAC_PERI_DBGINST1

Address:Operational Base+0xd0c

Debug Instruction-1 Register

Bit	Attr	Reset Value	Description
31:24	W	0x0	Instruction byte 5
23:16	W	0x0	Instruction byte 4
15:8	W	0x0	Instruction byte 3
7:0	W	0x0	Instruction byte 2

DMAC_PERI_CR0

Address:Operational Base+0xe00 Configuration Register 0

Bit	ration Re Attr	Reset Value	Description	
31:22	-	-	reserved	
21:17	R	0x2	Number of interrupt outputs that the DMAC provides: b00000 = 1 interrupt output, irq[0] b00001 = 2 interrupt outputs, irq[1:0] b00010 = 3 interrupt outputs, irq[2:0] b11111 = 32 interrupt outputs, irq[31:0].	
16:12	R	0x7	Diffic = 32 interrupt outputs, inq[51.0].Number of peripheral request interfaces that the DMACprovides:b00000 = 1 peripheral request interfaceb00001 = 2 peripheral request interfacesb00010 = 3 peripheral request interfacesb11111 = 32 peripheral request interfaces.	
11:7	-	-	reserved	
6:4	R	0x5	Number of DMA channels that the DMAC supports: b000 = 1 DMA channel b001 = 2 DMA channels b010 = 3 DMA channels b111 = 8 DMA channels.	
3	-	-	reserved	
2	R	0×0	Indicates the status of the boot_manager_ns signal when the DMAC exited from reset: 0 = boot_manager_ns was LOW 1 = boot_manager_ns was HIGH.	
1	R	0×0	Indicates the status of the boot_from_pc signal when the DMAC exited from reset: 0 = boot_from_pc was LOW 1 = boot_from_pc was HIGH	
0	R	0x1	Supports peripheral requests: 0 = the DMAC does not provide a peripheral request interface 1 = the DMAC provides the number of peripheral request interfaces that the num_periph_req field specifies.	

DMAC_PERI_CR1

Address:Operational Base+0xe04

Configui	Configuration Register 1			
Bit	Attr	Reset Value	Description	
31:8	-	-	reserved	
7:4	R	0x5	<pre>[7:4] num_i-cache_lines Number of i-cache lines: b0000 = 1 i-cache line b0001 = 2 i-cache lines b0010 = 3 i-cache lines b1111 = 16 i-cache lines.</pre>	
3	-	-	reserved	
2:0	R	0x7	reservedThe length of an i-cache line:b000-b001 = reservedb010 = 4 bytesb011 = 8 bytesb100 = 16 bytesb101 = 32 bytesb110-b111 = reserved	

DMAC_PERI_CR2

Address:Operational Base+0xe08 Configuration Register 2

Bit	Attr	Reset Value	Description	
31:0	R	0x0	Provides the value of boot_addr[31:0] when the DMAC exited from reset	

DMAC_PERI_CR3

Address:Operational Base+0xe0c Configuration Register 3

Bit	Attr	Reset Value	Description	
31:0	R	0x0	Provides the security state of an event-interrupt resource: Bit [N] = 0 Assigns event <n> or irq[N] to the Secure state. Bit [N] = 1 Assigns event<n> or irq[N] to the Non-secure state.</n></n>	

DMAC_PERI_CR4

Address:Operational Base+0xe10 Configuration Register 4

Bit	Attr	Reset Value	Description
31:0	R	0x6	Provides the security state of the peripheral request interfaces: Bit [N] = 0 Assigns peripheral request interface N to the Secure state. Bit [N] = 1 Assigns peripheral request interface N to the Non-secure state

DMAC_PERI_CRDn

Address:Operational Base+0xe14 DMA Configuration Register

Bit	Attr	Reset Value	Description
31:30	-	-	reserved
29:20	R	0x20	The number of lines that the data buffer contains: b000000000 = 1 line b000000001 = 2 lines

Bit	Attr	Reset Value	Description
			b111111111 = 1024 lines
			The depth of the read queue:
			b0000 = 1 line
19:16	R	0x9	b0001 = 2 lines
			b1111 = 16 lines.
15	-	-	reserved
			Read issuing capability that programs the number of
			outstanding read transactions:
14:12	R	0x4	b000 = 1
			b001 = 2
			 b111 = 8
			The depth of the write queue:
			b0000 = 1 line
11:8	R	0x7	b0001 = 2 lines
11.0			
			b1111 = 16 lines.
7	-	-	reserved
			Write issuing capability that programs the number of
			outstanding write transactions:
6:4	R	0x3	b000 = 1
0.4		0.23	b001 = 2
_			b111 = 8
3	-	-	reserved
			The data bus width of the AXI interface:
			b000 = reserved
2.0		0.2	b001 = reserved
2:0		0x3	b010 = 32-bit b011 = 64-bit
			b101 = 64-bit b100 = 128-bit
			b100 = 128-bit b101- $b111 = reserved.$
			DTOT-DTTT - IESEIVEU.

DMAC_PERI_WD

Address:Operational Base+0xe80 DMA Watchdog Register

Bit	Attr	Reset Value	Description	
31:1	-	-	reserved	
0	RW	0x0	Controls how the DMAC responds when it detects a lock-up condition: 0 = the DMAC aborts all of the contributing DMA channels and sets irq_abort HIGH 1 = the DMAC sets irq_abort HIGH.	

11.5 Timing Diagram

Please refer to chapter 14.5 for the similar description.

11.6 Interface Description

DMAC_PERI has the following tie-off signals. It can be configured by GRF register. (Please refer

to the chapter to find how to configure)

DMAC_PERI

interface	Reset value	Control source			
boot_addr	0x0	GRF			
boot_from_pc	0x0	GRF			
boot_manager_ns	0x0	GRF			
boot_irq_ns	0xf	GRF			
boot_periph_ns	0xfffff	GRF			

boot_addr

Configures the address location that contains the first instruction the DMAC executes, when it exits from reset.

boot_from_pc

Controls the location in which the DMAC executes its initial instruction, after it exits from reset: 0 = DMAC waits for an instruction from either APB interface

1 = DMA manager thread executes the instruction that is located at the address that

boot_manager_ns

When the DMAC exits from reset, this signal controls the security state of the DMA manager thread:

0 = assigns DMA manager to the Secure state

1 = assigns DMA manager to the Non-secure state.

boot_irq_ns

Controls the security state of an event-interrupt resource, when the DMAC exits from reset: boot_irq_ns[x] is LOW

The DMAC assigns event $\langle x \rangle$ or irq[x] to the Secure state.

boot_irq_ns[x] is HIGH

The DMAC assigns event $\langle x \rangle$ or irq[x] to the Non-secure state.

boot_periph_ns

Controls the security state of a peripheral request interface, when the DMAC exits from reset: boot_periph_ns[x] is LOW

The DMAC assigns peripheral request interface x to the Secure state.

boot_periph_ns[x] is HIGH

The DMAC assigns peripheral request interface x to the Non-secure state.

11.7 Application Notes

Please refer to chapter 14.7 for the similar description.

Chapter 12 Temperature Sensor ADC(TSADC)

12.1 Overview

TS-ADC Controller module supports user-defined mode and automatic mode. User-defined mode refers, TSADC all the control signals entirely by software writing to register for direct control. Automatic mode refers to the module automatically poll TSADC output, and the results were checked. If you find that the temperature High in a period of time, an interrupt is generated to the processor down-measures taken; if the temperature over a period of time High, the resulting TSHUT gave CRU module, let it reset the entire chip, or via GPIO give PMIC. TS-ADC Controller supports the following features:

Support User-Defined Mode and Automatic Mode

In User-Defined Mode, start_of_conversion can be controlled completely by software, and also can be generated by hardware.

In Automatic Mode, the temperature of alarm interrupt can be configurable In Automatic Mode, the temperature of system reset can be configurable Support to 4 channel TS-ADC, the temperature criteria of each channel can be configurable In Automatic Mode, the time interval of temperature detection can be configurable In Automatic Mode, when detecting a high temperature, the time interval of temperature detection can be configurable

High temperature debounce can be configurable

12.2 Block Diagram

TS-ADC controller comprises with: APB Interface

TS-ADC control logic

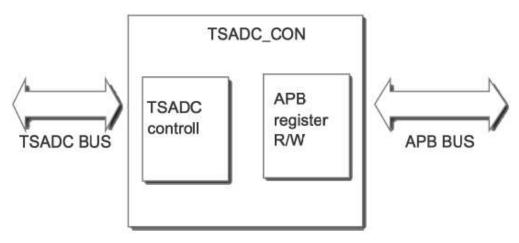


Fig. 12-1 TS-ADC Controller Block Diagram

12.3 Function Description

12.3.1 APB Interface

There is an APB Slave interface in TS-ADC Controller, which is used to configure the TS-ADC Controller registers and look up the temperature from the temperature sensor.

12.3.2 TS-ADC Controller

This block is exploited to realize binary search algorithm, storing the intermediate result and generate control signal for analog block. This block compares the analog input with the voltage generated from D/A Converter, and output the comparison result to SAR and Control Logic Block for binary search. Three level amplifiers are employed in this comparator to provide enough gain.

12.4 Register Description

12.4.1 Registers Summary

Name	Offset	Size	Reset Value	Description
	0.0000	\	0,00000000	The control register of A/D
TSADC_USER_CON	0x0000	W	0x00000208	Converter.
TSADC_AUTO_CON	0x0004	W	0x0000000	TSADC auto mode control register
TSADC_INT_EN	0x0008	W	0x0000000	Interrupt enable
TSADC_INT_PD	0x000c	W	0x00000000	Interrupt Status
TSADC_DATA0	0x0020	W	0x00000000	This register contains the data after A/D Conversion.
TSADC_DATA1	0x0024	w	0×00000000	This register contains the data after A/D Conversion.
TSADC_DATA2	0x0028	w	0×00000000	This register contains the data after A/D Conversion.
TSADC_DATA3	0x002c	w	0×00000000	This register contains the data after A/D Conversion.
TSADC_COMP0_INT	0x0030	w	0x00000000	TSADC high temperature level for source 0
TSADC_COMP1_INT	0x0034	w	0x00000000	TSADC high temperature level for source 1
TSADC_COMP2_INT	0x0038	w	0x00000000	TSADC high temperature level for source 2
TSADC_COMP3_INT	0x003c	w	0x00000000	TSADC high temperature level for source 3
TSADC_COMP0_SHUT	0x0040	w	0x00000000	TSADC high temperature level for source 0
TSADC_COMP1_SHUT	0x0044	w	0x00000000	TSADC high temperature level for source 1
TSADC_COMP2_SHUT	0x0048	w	0x00000000	TSADC high temperature level for source 2
TSADC_COMP3_SHUT	0x004c	w	0x00000000	TSADC high temperature level for source 3
TSADC_HIGHT_INT_DEB OUNCE	0x0060	w	0x00000003	high temperature debounce
TSADC_HIGHT_TSHUT_ DEBOUNCE	0x0064	w	0x00000003	high temperature debounce
TSADC_AUTO_PERIOD	0x0068	W	0x00010000	TSADC auto access period
TSADC_AUTO_PERIOD_ HT	0x006c	w	0x00010000	TSADC auto access period when temperature is high

Notes: <u>Size</u>: **B**- Byte (8 bits) access, **HW**- Half WORD (16 bits) access, **W**-WORD (32 bits) access

12.4.2 Detail Register Description

TSADC_USER_CON

Address: Operational Base + offset (0x0000)

Copyright 2017 @ FuZhou Rockchip Electronics Co., Ltd.

Bit	Attr	Reset Value	Description
31:13	RO	0x0	reserved
			adc_status
12	RO	0x0	ADC status (EOC)
12	ĸŪ	0.00	0: ADC stop;
			1: Conversion in progress.
			inter_pd_soc
11:6	RW	0x08	interleave between power down and start of
			conversion
			start
			When software write 1 to this bit ,
5	RW	0x0	start_of_conversion will be assert.
			This bit will be cleared after TSADC access
			finishing.
			start_mode
			start mode.
			0: tsadc controller will asert
4	RW	0x0	start_of_conversion after "inter_pd_soc"
			cycles.
			1: the start_of_conversion will be controlled
			by TSADC_USER_CON[5].
			adc_power_ctrl
3	RW	0x1	ADC power down control bit
			0: ADC power down;
			1: ADC power up and reset.
			adc_input_src_sel
			ADC input source selection(CH_SEL[2:0]).
		V 0×0	111 : Input source 0 (SARADC_AIN[0])
2:0	RW		110 : Input source 1 (SARADC_AIN[1])
			101 : Input source 2 (SARADC_AIN[2])
			100 : Input source 3 (SARADC_AIN[3])
			Others : Reserved

The control register of A/D Converter.

TSADC_AUTO_CON

Address: Operational Base + offset (0x0004) TSADC auto mode control register

Bit	Attr	Reset Value	Description
31:25	RO	0x0	reserved
			last_tshut
			TSHUT status.
24	RW	0x0	This bit will set to 1 when tshut is valid, and
			only be cleared when application write 1 to it.
			This bit will not be cleared by system reset.
23:18	RO	0x0	reserved

Bit	Attr	Reset Value	Description
			sample_dly_sel
17	RO	0x0	0: AUTO_PERIOD is used.
			1: AUTO_PERIOD_HT is used.
			auto_status
16	RO	0x0	0: auto mode stop;
			1: auto mode in progress.
15:9	RO	0x0	reserved
			tshut polarity
8	RW	0x0	0: low active
			1: high active
			src3_en
7	RW	0x0	0: do not care the temperature of source 3
/		0.00	1: if the temperature of source 3 is too high ,
			TSHUT will be valid
			src2_en
6	RW	0x0	0: do not care the temperature of source 2
0			1: if the temperature of source 2 is too high ,
			TSHUT will be valid
			src1_en
5	RW	0x0	0: do not care the temperature of source 1
5			1: if the temperature of source 1 is too high ,
			TSHUT will be valid
			src0_en
4	RW	0×0	0: do not care the temperature of source 0
-			1: if the temperature of source 0 is too high ,
			TSHUT will be valid
3:1	RO	0x0	reserved
			auto_en
0 RW	RW	V 0×0	0: TSADC controller works at user-define
			mode
			1: TSADC controller works at auto mode

TSADC_INT_EN

Address: Operational Base + offset (0x0008)

Bit	Attr	Reset Value	Description
31:13	RO	0x0	reserved
			eoc_int_en
			eoc_Interrupt enable.
12	RW	0x0	eoc_interrupt enable in user defined mode
			0: Disable;
			1: Enable
			tshut_2cru_en_src3
11		0×0	0: TSHUT output to cru disabled. TSHUT
	RW	0.00	output will always keep low .
			1: TSHUT output works.

Bit	Attr	Reset Value	Description
			tshut_2cru_en_src2
			0: TSHUT output to cru disabled. TSHUT
10	RW	0×0	output will always keep low
			1: TSHUT output works.
			tshut_2cru_en_src1
			0: TSHUT output to cru disabled. TSHUT
9	RW	0×0	output will always keep low
			1: TSHUT output works.
			tshut_2cru_en_src0
			0: TSHUT output to cru disabled. TSHUT
8	RW	0x0	output will always keep low .
			1: TSHUT output works.
			tshut_2gpio_en_src3
			0: TSHUT output to gpio0b2 disabled.
7	RW	0x0	TSHUT output will always keep low .
			1: TSHUT output works.
			tshut_2gpio_en_src2
			0: TSHUT output to gpio0b2 disabled.
6 RW	0x0	TSHUT output will always keep low .	
			1: TSHUT output works.
			tshut_2gpio_en_src1
			0: TSHUT output to gpio0b2 disabled.
5	RW	0x0	TSHUT output will always keep low .
			1: TSHUT output works.
			tshut_2gpio_en_src0
			0: TSHUT output to gpio0b2 disabled.
4	RW	0x0	TSHUT output will always keep low .
			1: TSHUT output works.
			ht_inten_src3
			high temperature interrupt enable for src3
3	RW	0x0	0: disable
			1: enable
			ht_inten_src2
			high temperature interrupt enable for src2
2	RW	0x0	0: disable
			1: enable
			ht_inten_src1
			high temperature interrupt enable for src1
1 RW	0x0	0: disable	
		1: enable	
			ht_inten_src0
			high temperature interrupt enable for src0
0	RW	0×0	0: disable
			1: enable

TSADC_INT_PD

Address: Operational Base + offset (0x000c)

Bit	Attr	Reset Value	Description
31:9	RO	0x0	reserved
			eoc_int_pd
			Interrupt status.
8	RW	0x0	This bit will be set to 1 when
			end-of-conversion.
			Set 0 to clear the interrupt.
7	RW	0x0	tshut_o_src3
/	RVV	0.00	TSHUT output status
6	RW	0.20	tshut_o_src2
0	RVV	0x0	TSHUT output status
F		0.40	tshut_o_src1
5	RW	0x0	TSHUT output status
4	D)4/	00	tshut_o_src0
4	RW	0x0	TSHUT output status
			ht_irq_src3
			When TSADC output is smaller than
2		0×0	COMP_INT, this bit will be valid, which means
3	RW		temperature is high, and the application
			should in charge of this.
			write 1 to it , this bit will be cleared.
			ht_irq_src2
			When TSADC output is smaller than
2		0.40	COMP_INT, this bit will be valid, which means
2	RW	0x0	temperature is high, and the application
			should in charge of this.
			write 1 to it , this bit will be cleared.
			ht_irq_src1
			When TSADC output is smaller than
1		0.40	COMP_INT, this bit will be valid, which means
1	RW	0x0	temperature is high, and the application
			should in charge of this.
		write 1 to it , this bit will be cleared.	
			ht_irq_src0
		0×0	When TSADC output is smaller than
0	0 RW		COMP_INT, this bit will be valid, which means
U			temperature is high, and the application
			should in charge of this.
			write 1 to it , this bit will be cleared.

TSADC_DATA0

Address: Operational Base + offset (0x0020) This register contains the data after A/D Conversion.

Bit	Attr	Reset Value	Description
31:12	RO	0x0	reserved
			adc_data
11:0	RO	0x000	A/D value of the channel 0 last conversion
			(DOUT[9:0]).

TSADC_DATA1

Address: Operational Base + offset (0x0024) This register contains the data after A/D Conversion.

Bit	Attr	Reset Value	Description
31:12	RO	0x0	reserved
			adc_data
11:0	RO	0x000	A/D value of the channel 1 last conversion
			(DOUT[9:0]).

TSADC_DATA2

Address: Operational Base + offset (0x0028)

This register contains the data after A/D Conversion.

Bit	Attr	Reset Value	Description
31:12	RO	0x0	reserved
			adc_data
11:0	RO	0x000	A/D value of the channel 2 last conversion
			(DOUT[9:0]).

TSADC_DATA3

Address: Operational Base + offset (0x002c) This register contains the data after A/D Conversion.

Bit	Attr	Reset Value	Description
31:12	RO	0x0	reserved
			adc_data
11:0	RO	0x000	A/D value of the channel 3 last conversion
			(DOUT[9:0]).

TSADC_COMP0_INT

Address: Operational Base + offset (0x0030)TSADC high temperature level for source 0

Bit	Attr	Reset Value	Description
31:12	RO	0x0	reserved
			tsadc_comp_src0
			TSADC high temperature level.
11:0	RW	0x000	TSADC output is smaller than tsadc_comp,
			means the temperature is high.
			TSADC_INT will be valid.

TSADC_COMP1_INT

Address: Operational Base + offset (0x0034) TSADC high temperature level for source 1

Bit	Attr	Reset Value	Description
31:12	RO	0x0	reserved

Bit	Attr	Reset Value	Description
			tsadc_comp_src1
			TSADC high temperature level.
11:0	RW	0x000	TSADC output is smaller than tsadc_comp,
			means the temperature is high.
			TSADC_INT will be valid.

TSADC_COMP2_INT

Address: Operational Base + offset (0x0038) TSADC high temperature level for source 2

Bit	Attr	Reset Value	Description
31:12	RO	0x0	reserved
			tsadc_comp_src2
			TSADC high temperature level.
11:0	RW	0x000	TSADC output is smaller than tsadc_comp,
			means the temperature is high.
			TSADC_INT will be valid.

TSADC_COMP3_INT

Address: Operational Base + offset (0x003c) TSADC high temperature level for source 3

Bit	Attr	Reset Value	Description
31:12	RO	0x0	reserved
			tsadc_comp_src3
			TSADC high temperature level.
11:0	RW	0x000	TSADC output is smaller than tsadc_comp,
			means the temperature is high.
			TSADC_INT will be valid.

TSADC_COMP0_SHUT

Address: Operational Base + offset (0x0040)TSADC high temperature level for source 0

Bit	Attr	Reset Value	Description
31:12	RO	0x0	reserved
			tsadc_comp_src0
			TSADC high temperature level.
11:0	RW	0x000	TSADC output is smaller than tsadc_comp,
			means the temperature is too high.
			TSHUT will be valid.

TSADC_COMP1_SHUT

Address: Operational Base + offset (0x0044) TSADC high temperature level for source 1

Bit	Attr	Reset Value	Description
31:12	RO	0x0	reserved

Bit	Attr	Reset Value	Description
			tsadc_comp_src1
			TSADC high temperature level.
11:0	RW	0x000	TSADC output is smaller than tsadc_comp,
			means the temperature is too high.
			TSHUT will be valid.

TSADC_COMP2_SHUT

Address: Operational Base + offset (0x0048) TSADC high temperature level for source 2

Bit	Attr	Reset Value	Description
31:12	RO	0x0	reserved
			tsadc_comp_src2
			TSADC high temperature level.
11:0	RW	0x000	TSADC output is smaller than tsadc_comp,
			means the temperature is too high.
			TSHUT will be valid.

TSADC_COMP3_SHUT

Address: Operational Base + offset (0x004c) TSADC high temperature level for source 3

Bit	Attr	Reset Value	Description
31:12	RO	0x0	reserved
			tsadc_comp_src3
			TSADC high temperature level.
11:0	RW	0x000	TSADC output is smaller than tsadc_comp,
			means the temperature is too high.
			TSHUT will be valid.

TSADC_HIGHT_INT_DEBOUNCE

Address: Operational Base + offset (0x0060) high temperature debounce

Bit	Attr	Reset Value	Description
31:8	RO	0x0	reserved
	RW	0x03	debounce
7:0			TSADC controller will only generate interrupt
7:0			or TSHUT when temperature is higher than
			COMP_INT for "debounce" times.

TSADC_HIGHT_TSHUT_DEBOUNCE

Address: Operational Base + offset (0x0064) high temperature debounce

Bit	Attr	Reset Value	Description
31:8	RO	0x0	reserved
		0x03	debounce
7:0	RW		TSADC controller will only generate interrupt
7.0			or TSHUT when temperature is higher than
			COMP_SHUT for "debounce" times.

TSADC_AUTO_PERIOD

Address: Operational Base + offset (0x0068) TSADC auto access period

Bit	Attr	Reset Value	Description
31:0	RW	0×00010000	auto_period when auto mode is enabled, this register controls the interleave between every two accessing of TSADC.

TSADC_AUTO_PERIOD_HT

Address: Operational Base + offset (0x006c) TSADC auto access period when temperature is high

Bit	Attr	Reset Value	Description
31:0	RW	0×00010000	auto_period This register controls the interleave between every two accessing of TSADC after the temperature is higher than COMP_SHUT or COMP_INT

12.5 Application Notes

12.5.1 Channel Select

The system has three Temperature Sensors, channel0 is reserve, and channel 1 is for CPU, and channel 2 is for GPU.

12.5.2 Single-sample conversion

To saving power, the TS-ADC used single-sample conversion. The timing as flowing picture:

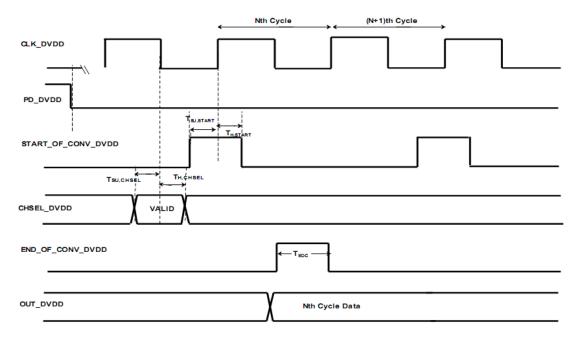


Fig. 12-2 Single-sample conversion

Fig. 12-3 Clock Timing Diagram

The below timing constraints are applicable for single-sample conversion mode.

Timing Symbol Value Unit Description Min Max Тур START_OF_CONV Set Up time for START_OF_CONV TSU,START 5 ns w.r.t CLKIN rising edge Setup time START_OF_CONV Hold time for START_OF_CONV w.r.t TH,START 5 ns Hold time CLKIN rising edge Set Up time for CHSEL w.r.t CLKIN CHSEL setup time TSU,CHSEL 5 ns falling edge Hold time for CHSEL w.r.t CLKIN CHSEL Hold time TH, CHSEL 5 ns falling edge Set Up time for output data w.r.t either CLKIN rising edge or END_OF_CONV Data Setup TSU, DATA 11 15 us falling edge Hold time for output data w.r.t either Data Hold TH, DATA 5 9 us CLKIN rising edge or END_OF_CONV falling edge Data access time TDAC 5 9 us Valid data w.r.t CLKIN rising edge Delay between Valid data and 5 Delay time TDelay ns EOC_DVDD rising edge EOC Pulse Width TEOC 11 15 Pulse width of EOC us (max frequency) 2 **CLKIN Rise Time** TCR ns **CLKIN Rise Time CLKIN Fall Time** TCF 2 **CLKIN Fall Time** ns **CLK Pulse** TCPW 55 % 45 CLKIN High/Low Time Period Width(Duty Cycle) CLK Period TCP 20 **CLKIN** Time Period us

Table 12-1 Timing parameters

Note: The time from negedge of PD_DVDD to posedge of START_OF_CONV_DVDD is more than 8 cycles of CLK_DVDD, and less than 500us at same time.

12.5.3 Temperature-to-code mapping

Table 12-2 Temperature Code Mapping

temp (C)	Code
-40	3800
-40 -35	3792
-30	3783
-25	3774
-20 -15 -10	3765
-15	3756
-10	3747
-5 0	3737 3728
	3728
5	3718
10	3708
15	3698
20 25 30	3688
25	3678
30	3667
35	3656
40	3645
45 50 55	3634
50	3623
55	3611
60	3600
65	3588
70 75	3575
75	3563
80	3550
85	3537
90	3524
95	3510
100	3496 3482
105	3482
110	3467
115	3452
110 115 120 125	3467 3452 3437 3421
125	3421

Note:

Code to Temperature mapping of the Temperature sensor is a piece wise linear curve. Any temperature, code faling between to 2 give temperatures can be linearly interpolated. Code to Temperature mapping should be updated based on sillcon results.

12.5.4 User-Define Mode

In user-define mode, the PD_DVDD and CHSEL_DVDD are generate by setting register TSADC_USER_CON, bit[3] and bit[2:0]. In order to ensure timing between PD_DVDD and CHSEL_DVDD, the CHSEL_DVDD must be set before the PD_DVDD.

In user-define mode, you can choose the method to control the START_OF_CONVERSION by setting bit[4] of TSADC_USER_CON. If set to 0, the start_of_conversion will be assert after "inter_pd_soc" cycles, which could be set by bit[11:6] of TSADC_USER_CON. And if start_mode was set 1, the start_of_conversion will be controlled by bit[5] of TSADC_USER_CON.

Software can get the four channel temperature from TSADC_DATAn (n=0,1,2,3). **12.5.5 Automatic Mode**

You can use the automatic mode with the following step:

Set TSADC_AUTO_PERIOD, configure the interleave between every two accessing of TSADC in normal operation.

Set TSADC_AUTO_PERIOD_HT. configure the interleave between every two accessing of TSADC after the temperature is higher than COMP_SHUT or COMP_INT.

Set TSADC_COMPn_INT(n=0,1,2,3), configure the high temperature level, if tsadc output is smaller than the value, means the temperature is high, tsadc_int will be asserted. Set TSADC_COMPn_SHUT(n=0,1,2,3), configure the super high temperature level, if tsadc output is smaller than the value, means the temperature is too high, TSHUT will be asserted.

Set TSADC_INT_EN, you can enable the high temperature interrupt for all channel; and you can also set TSHUT output to gpio to reset the whole chip; and you can set TSHUT output to cru to reset the whole chip.

Set TSADC_HIGHT_INT_DEBOUNCE and TSADC_HIGHT_TSHUT_DEBOUNCE, if the temperature is higher than COMP_INT or COMP_SHUT for "debounce" times, TSADC controller will generate interrupt or TSHUT.

Set TSADC_AUTO_CON, enable the TSADC controller.

Chapter 13 eFuse

13.1 Overview

In RK3288, there are two eFuse. One is organized as 32bits by 8 one-time programmable electrical fuses with random access interface, and the other is organized as 32bits by 32 one-time programmable electrical fuses.

The 32x32 eFuse can only be accessed by APB bus when IO_SECURITYsel is high. It is a type of non-volatile memory fabricated in standard CMOS logic process. The main features are as follows:

- Programming condition : VQPS_EFUSE = $1.5V \pm 10\%$ •
- Program time : $10us \pm 0.2us$.
- Read condition : VOPS EFUSE = 0V
- Provide standby mode

13.2 Block Diagram

In the following diagram, all the signals except power supply VDD_EFUSE and VQPS_EFUSE are controlled by registers. For detailed description, please refer to detailed register descriptions.

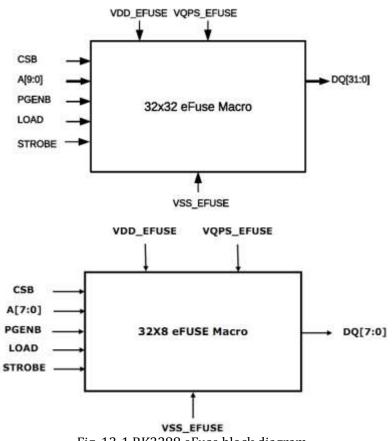


Fig. 13-1 RK3288 eFuse block diagram

13.3 Function description

eFuse has three operation modes. They are defined as standby, read and programming. Program (PGM) Mode

In order to enter programming mode, the following conditions need to be satisfied: VQPS EFUSE is at high voltage, LOAD signal is low, PGENB signal is low, and CSB signal is low. All bits can be individually programmed (one at a time) with the proper address selected, the STROBE signal high and the address bits satisfying setup and hold time with respect to STROBE.

Read Mode

In order to enter read mode the following conditions need to be satisfied: VQPS_EFUSE is at ground, the LOAD signal is high, the PGENB signal is high, and the CSB is low. An entire 8-bit word of data can be read in one read operation with STROBE being high and a proper address selected (address signals A5~A7 are "don't cares").

Standby Mode

Standby is defined when the macro is not being programmed or read. The conditions for standby mode are: the LOAD signal is low, the STROBE signal is low, the CSB signal is high and PGENB is high.

13.4 Register Description

This section describes the control/status registers of the design.

13.4.1 Registers Summary

Name	Offset	Size	Reset Value	Description
EFUSE_CTRL	0x0000	W	0x00000000	efuse control register
EFUSE_DOUT	0x0004	W	0x0000000	efuse data out register

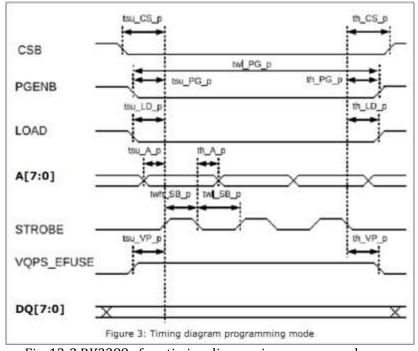
Notes: Size: B- Byte (8 bits) access, HW- Half WORD (16 bits) access, W- WORD (32 bits) access

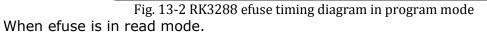
13.4.2 Detail Register Description

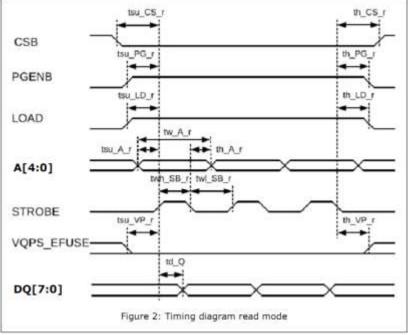
EFUSE_CTRL

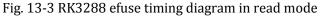
Address: Operational Base + offset (0x0000) eFuse control register

Bit	Attr	Reset Value	Description
31:14	RO	0x0	reserved
15.6	DW	0x00	efuse_addr
15:6	RW	000	efuse address pins : A[7:0] / A[9:0]
5:4	RO	0x0	reserved
2	3 RW	0.20	efuse_pgenb
5		0x0	efuse program enable (active low) : PGENB
		0×0	efuse_load
2	RW		efuse turn on sense amplifier and load data into latch
			(active high) : LOAD
			efuse_strobe
1	RW	0×0	efuse turn on the array for read or program access
			(active high) : STROBE
0	D\\/		efuse_csb
Ŭ	0 RW	0x0	efuse chip select enable signal, active low : CSB


EFUSE_DOUT


Address: Operational Base + offset (0x0004) eFuse data out register


Bit	Attr	Reset Value	Description
31:0		RO 10x00	efuse_dout
51.0	ĸŬ		efuse data output


13.5 Timing Diagram

When efuse is in program(PGM) mode.

The following table has shows the detailed value for timing parameters in the above diagram.

Table 13-1 RK3288 eFuse timing parameters list

Mode	Item	Description	Min	Тур	Max	Unit
	twh_SB_r	Pulse width high of STROBE read strobe	20	10 20	-	ns
	twl_SB_r	Pulse width low of STROBE read strobe		10.		ns
	tsu_A_r	A[7:0] to STROBE setup time in read mode		ľ.		ns
	th_A_r	A[7:0] to STROBE hold time in read mode	3	343	-	ns
	tw_A_r	A[7:0] pulse width while LOAD high in read mode	48		100	ns
	tsu_CS_r	CSB to STROBE setup time in read mode	16	13		ns
Read	th_CS_r	CSB to STROBE hold time in read mode	6			ns
Mode	tsu_PG_r	PGENB to STROBE setup time in read mode	14	345	1	ns
	th_PG_r	PGENB to STROBE hold time in read mode	10		-	ns
	tsu_LD_r	LOAD to STROBE setup time in read mode	10	(3)		ns
	th_LD_r	LOAD to STROBE hold time in read mode		1		ns
	tsu_VP_r	VQPS_EFUSE to STROBE setup time in read mode	20	200	1	ns
	th_VP_r	VQPS_EFUSE to STROBE hold time in read mode	20	12 12	-	ns
	td_Q	DQ[7:0] delay time after STROBE high	0		8	ns
	twh_SB_p	Pulse width high of STROBE PGM strobe		10	10.2	US
	twl_SB_p	Pulse width low of STROBE PGM strobe		1.2	-	ns
	tsu_A_p	A[7:0] to STROBE setup time in PGM mode		92 92	-	ns
	th_A_p	A[7:0] to STROBE hold time in PGM mode		202	÷	ns
	tsu_CS_p	CSB to STROBE setup time in PGM mode	16		1.0	ns
	th_CS_p	CSB to STROBE hold time in PGM mode	6		-	ns
PGM Mode	tsu_PG_p	PGENB to STROBE setup time in PGM mode	14	92 92	-	ns
	th_PG_p	PGENB to STROBE hold time in PGM mode	10	202	÷.	ns
	twl_PG_p	PGENB pulse width low (cumulative) in PGM mode			100	ms
	tsu_LD_p	LOAD to STROBE setup time in PGM mode	10	102 205	-	ns
	th_LD_p	LOAD to STROBE hold time in PGM mode		12	-	ns
	tsu_VP_p	VQPS_EFUSE to STROBE setup time in PGM mode	20			ns
	th_VP_p	VQPS_EFUSE to STROBE hold time in PGM mode	20		-	ns

13.6 Application Notes

During usage of efuse, customers must pay more attention to the following items:

- 1. In condition of program(PGM) mode, VQPS_EFUSE= 1.5V±10%.
- 2. Q0~Q7/Q31 will be reset to "0" once CSB at high.
- 3. No data access allowed at the rising edge of CSB.

4. All the program timing for each signal must be more than the value defined in the timing table.

Chapter 14 WatchDog(WDT)

14.1 Overview

Watchdog Timer (WDT) is an APB slave peripheral that can be used to prevent system lockup that may be caused by conflicting parts or programs in a SoC.The WDT would generated interrupt or reset signal when it's counter reaches zero, then a reset controller would reset the system.

WDT supports the following features:

- 32 bits APB bus width
- WDT counter's clock is pclk
- 32 bits WDT counter width
- Counter counts down from a preset value to 0 to indicate the occurrence of a timeout
- WDT can perform two types of operations when timeout occurs: Generate a system reset
 First generate an interrupt and if this is not cleared by the service routine by the time a second timeout occurs then generate a system reset
- Programmable reset pulse length
- Total 16 defined-ranges of main timeout period

14.2 Block Diagram

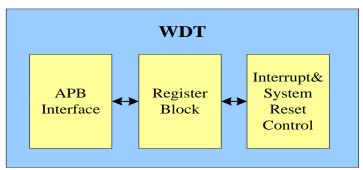


Fig. 14-1 WDT block diagram

Block Descriptions:

APB Interface

The APB Interface implements the APB slave operation. It's data bus width is 32 bits. **Register Block**

A register block that read coherence for the current count register.

Interrupt & system reset control

An interrupt/system reset generation block comprising of a decrementing counter and control logic.

14.3 Function description

14.3.1 Operation

Counter

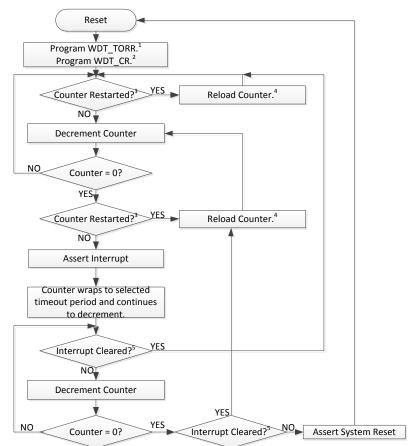
The WDT counts from a preset (timeout) value in descending order to zero. When the counter reaches zero, depending on the output response mode selected, either a system reset or an interrupt occurs. When the counter reaches zero, it wraps to the selected timeout value and continues decrementing. The user can restart the counter to its initial value. This is programmed by writing to the restart register at any time. The process of restarting the watchdog counter is sometimes referred as kicking the dog. As a safety feature to prevent accidental restarts, the value 0x76 must be written to the Current Counter Value Register (WDT_CRR).

Interrupts

The WDT can be programmed to generate an interrupt (and then a system reset) when a timeout occurs. When a 1 is written to the response mode field (RMOD, bit 1) of the Watchdog

Timer Control Register (WDT_CR), the WDT generates an interrupt. If it is not cleared by the time a second timeout occurs, then it generates a system reset. If a restart occurs at the same time the watchdog counter reaches zero, an interrupt is not generated.

System Resets


When a 0 is written to the output response mode field (RMOD, bit 1) of the Watchdog Timer Control Register (WDT_CR), the WDT generates a system reset when a timeout occurs.

Reset Pulse Length

The reset pulse length is the number of pclk cycles for which a system reset is asserted. When a system reset is generated, it remains asserted for the number of cycles specified by the reset pulse length or until the system is reset. A counter restart has no effect on the system reset once it has been asserted.

14.3.2 Programming sequence

Operation Flow Chart (Response mode=1)

1. Select required timeout period.

- 2. Set reset pulse length, response mode, and enable WDT.
- 3. Write 0x76 to WDT_CRR.
- 4. Starts back to selected timeout period.
- 5. Can clear by reading WDT_EOI or restarting (kicking) the counter by writing 0x76 to WDT_CRR.

Fig. 14-2 WDT Operation Flow

14.4 Register Description

This section describes the control/status registers of the design.

14.4.1 Registers Summary

Name	Offset	Size	Reset Value	Description
WDT_CR	0x0000	W	0x0000000a	Control Register
WDT_TORR	0x0004	W	0x0000000	Timeout range Register

Offset	Size	Reset Value	Description
0x0008	W	0x0000000	Current counter value Register
0x000c	W	0x0000000	Counter restart Register
0x0010	W	0x0000000	Interrupt status Register
0x0014	W	0x0000000	Interrupt clear Register
	0x0008 0x000c 0x0010	0x0008 W 0x000c W 0x0010 W	0x0008 W 0x0000000 0x000c W 0x0000000 0x0010 W 0x0000000

Notes: <u>Size</u>: **B**- Byte (8 bits) access, **HW**- Half WORD (16 bits) access, **W**-WORD (32 bits) access

14.4.2 Detail Register Description

WDT_CR

Address: Operational Base + offset (0x0000) Control Register

Bit	Attr	Reset Value	Description
31:5	RO	0x0	reserved
			rst_pluse_lenth
			Reset pulse length.
			This is used to select the number of pclk cycles
			for which the system reset stays asserted.
			3'b000: 2 pclk cycles
4:2	RW	0x2	3'b001: 4 pclk cycles
4.2		0.72	3'b010: 8 pclk cycles
			3'b011: 16 pclk cycles
			3'b100: 32 pclk cycles
			3'b101: 64 pclk cycles
			3'b110: 128 pclk cycles
			3'b111: 256 pclk cycles
			resp_mode
		0×1	Response mode.
			Selects the output response generated to a timeout.
1	RW		1'b0: Generate a system reset
			1'b1: First generate an interrupt and if it is not
			cleared by the time a second timeout occurs then
			generate a system reset
			wdt_en
0	RW	0x0	WDT enable
			1'b0: WDT disabled
			1'b1: WDT enabled

WDT_TORR

Address: Operational Base + offset (0x0004) Timeout range Register

Bit	Attr	Reset Value	Description	
31:4	RO	0x0	reserved	

Bit	Attr	Reset Value	Description
			timeout_period
			Timeout period.
			This field is used to select the timeout period from
			which the watchdog counter restarts. A change of the
			timeout period takes effect only after the next
			counter restart (kick).
			The range of values available for a 32-bit watchdog
			counter are:
			4'b0000: 0x0000ffff
		0x0	4'b0001: 0x0001ffff
			4′b0010: 0x0003ffff
3:0	RW		4'b0011: 0x0007ffff
			4'b0100: 0x000ffff
			4′b0101: 0x001fffff
			4'b0110: 0x003ffff
			4'b0111: 0x007ffff
			4'b1000: 0x00fffff
			4'b1001: 0x01fffff
			4'b1010: 0x03ffffff 4'b1011: 0x07ffffff
			4'b1100: 0x0ffffff
			4'b1100: 0x0mm 4'b1101: 0x1fffffff
			4'b1110: 0x3ffffff
			4'b1111: 0x7ffffff
			4 01111. 07/111111

WDT_CCVR

Address: Operational Base + offset (0x0008) Current counter value Register

Bit	Attr	Reset Value	Description
			cur_cnt
			Current counter value
31:0	RO	0x00000000	This register, when read, is the current value of the
			internal counter. This value is read coherently when
			ever it is read

WDT_CRR

Address: Operational Base + offset (0x000c) Counter restart Register

Bit	Attr	Reset Value	Description
31:8	RO	0x0	reserved

Bit	Attr	Reset Value	Description
7:0		0×00	cnt_restart
			Counter restart
	W1C		This register is used to restart the WDT counter. As a
	VV IC		safety feature to prevent accidental restarts, the
			value 0x76 must be written. A restart also clears the
			WDT interrupt. Reading this register returns zero.

WDT_STAT

Address: Operational Base + offset (0x0010) Interrupt status Register

Bit	Attr	Reset Value	Description
31:1	RO	0x0	reserved
0	RO	0x0	wdt_status
			This register shows the interrupt status of the WDT.
			1'b1: Interrupt is active regardless of polarity.
			1'b0: Interrupt is inactive.

WDT_EOI

Address: Operational Base + offset (0x0014) Interrupt clear Register

Bit	Attr	Reset Value	Description	
31:1	RO	0x0	reserved	
0		0×0	wdt_int_clr	
			Clears the watchdog interrupt.	
	RO		This can be used to clear the interrupt without	
			restarting the watchdog counter.	

14.5 Application Notes

Please refer to the function description section.

Chapter 15 Pulse Width Modulation (PWM)

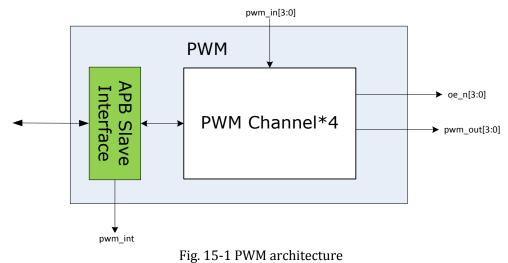
15.1 Overview

The pulse-width modulator (PWM) feature is very common in embedded systems. It provides a way to generate a pulse periodic waveform for motor control or can act as a digital-to-analog converter with some external components.

The PWM Module supports the following features:

- 4-built-in PWM channels
- Configurable to operate in capture mode Measures the high/low polarity effective cycles of this input waveform Generates a single interrupt at the transition of input waveform polarity 32-bit high polarity capture register 32-bit low polarity capture register 32-bit current value register
- Configurable to operate in continuous mode or one-shot mode
 32-bit period counter
 32-bit duty register
 32-bit current value register

Configurable PWM output polarity in inactive state and duty period pulse polarity Period and duty cycle are shadow buffered. Change takes effect when the end of the effective period is reached or when the channel is disabled


Programmable center or left aligned outputs, and change takes effect when the end of the effective period is reached or when the channel is disabled

8-bit repeat counter for one-shot operation. One-shot operation will produce N + 1 periods of the waveform, where N is the repeat counter value, and generates a single interrupt at the end of operation

Continuous mode generates the waveform continuously, and do not generates any interrupts

- pre-scaled operation to bus clock and then further scaled
- Available low-power mode to reduce power consumption when the channel is inactive.

15.2 Block Diagram

15.2.1 PWM APB Slave Interface

The host processor gets access to PWM Register Block through the APB slave interface with 32-bit bus width, and asserts the active-high level interrupt.

15.2.2 PWM Channels

This is the control logic of PWM module, and controls the operation of PWM module according to the configured working mode.

15.3 Functional description

The PWM supports three operation modes: reference mode, one-shot mode and continuous mode. For the one-shot mode and the continuous mode, the PWM output can be configured as the left-aligned mode or the center-aligned mode.

15.3.1 Reference mode

The reference mode is used to measure the PWM channel input waveform high/low effective cycles with the PWM channel clock, and asserts an interrupt when the polarity of the input waveform changes. The number of the high effective cycles is recorded in the PWMx_PERIOD_HPC register, while the number of the low effective cycles is recorded in the PWMx_DUTY_LPC register.

Note: the PWM input waveform is doubled buffered when the PWM channel is working in order to filter unexpected shot-time polarity transition, and therefore the interrupt is asserted several cycles after the input waveform polarity changes, and so does the change of the values of PWMx_PERIOD_HPC and PWMx_DUTY_LPC.

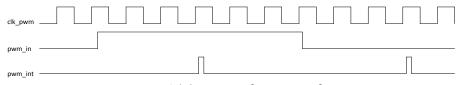


Fig. 15-2 PWM Reference Mode

15.3.2 Continuous Mode

The PWM channel generates a series of the pulses continuously as expected once the channel is enabled with continuous mode.

In the continuous mode, the PWM output waveforms can be in one form of the two output mode: left-aligned mode or center-aligned mode.

For the left-aligned output mode, the PWM channel firstly starts the duty cycle with the configured duty polarity (PWMx_CTRL.duty_pol). Once duty cycle number (PWMx_DUTY_LPC) is reached, the output is switched to the opposite polarity. After the period number (PWMx_PERIOD_HPC) is reached, the output is again switched to the opposite polarity to start another period of desired pulse.

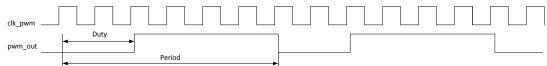


Fig. 15-3 PWM Left-aligned Output Mode

For the center-aligned output mode, the PWM channel firstly starts the duty cycle with the configured duty polarity (PWMx_CTRL.duty_pol). Once one half of duty cycle number (PWMx_DUTY_LPC) is reached, the output is switched to the opposite polarity. Then if there is one half of duty cycle left for the whole period , the output is again switched to the opposite polarity. Finally after the period number (PWMx_PERIOD_HPC) is reached, the output starts another period of desired pulse.

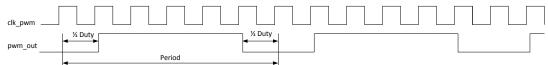


Fig. 15-4 PWM Center-aligned Output Mode

Once disable the PWM channel, the channel stops generating the output waveforms and output polarity is fixed as the configured inactive polarity (PWMx_CTRL.inactive_pol).

15.3.3 One-shot Mode

Unlike the continuous mode, the PWM channel generates the output waveforms within the configured periods (PWM_CTRL.rpt + 1), and then stops. At the same times, an interrupt is asserted to inform that the operation has been finished.

There are also two output modes for the one-shot mode: the left-aligned mode and the center-aligned mode.

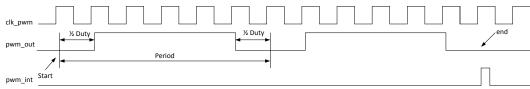


Fig. 15-5 PWM Center-aligned Output Mode

15.4 Register Description

15.4.1 Register Summary

Name	Offset	Size	Reset Value	Description
PWM_PWM0_CNT	0x0000	W	0x0000000	PWM Channel 0 Counter Register
PWM_PWM0_PERIOD_HPR	020004	W	0x00000000	PWM Channel 0 Period Register/High
	0x0004	vv	0x00000000	Polarity Capture Register
PWM_PWM0_DUTY_LPR	0x0008	w	0x00000000	PWM Channel 0 Duty Register/Low
	0,0000	vv	0,00000000	Polarity Capture Register
PWM_PWM0_CTRL	0x000c	W	0x0000000	PWM Channel 0 Control Register
PWM_PWM1_CNT	0x0010	W	0x00000000	PWM Channel 1 Counter Register
PWM_PWM1_PERIOD_HPR	0,0014	w	0x00000000	PWM Channel 1 Period Register/High
PWM_PWM1_PERIOD_HPR	0X0014	vv	0x00000000	Polarity Capture Register
PWM_PWM1_DUTY_LPR	0x0018	\\/	0,000,000,000	PWM Channel 1 Duty Register/Low
PWM_PWMI_DUIT_LPR	0X0010	W	0x00000000	Polarity Capture Register
PWM_PWM1_CTRL	0x001c	W	0x00000000	PWM Channel 1 Control Register
PWM_PWM2_CNT	0x0020	W	0x00000000	PWM Channel 2 Counter Register
	0,0024	w	0x0000000	PWM Channel 2 Period Register/High
PWM_PWM2_PERIOD_HPR	0X0024			Polarity Capture Register
PWM_PWM2_DUTY_LPR	0x0028	w	0x00000000	PWM Channel 2 Duty Register/Low
		vv		Polarity Capture Register
PWM_PWM2_CTRL	0x002c	W	0x00000000	PWM Channel 2 Control Register
PWM_PWM3_CNT	0x0030	W	0x00000000	PWM Channel 3 Counter Register
	0,0024	14/	0,000,000,000	PWM Channel 3 Period Register/High
PWM_PWM3_PERIOD_HPR	0X0034	W	0x00000000	Polarity Capture Register
	0,0020	14/	0,000,000,000	PWM Channel 3 Duty Register/Low
PWM_PWM3_DUTY_LPR	0x0038	W	0x00000000	Polarity Capture Register
PWM_PWM3_CTRL	0x003c	W	0x0000000	PWM Channel 3 Control Register
PWM_INTSTS	0x0040	W	0x0000000	Interrupt Status Register
PWM_INT_EN	0x0044	W	0x0000000	Interrupt Enable Register

Notes: <u>Size</u> : **B** - Byte (8 bits) access, **HW** - Half WORD (16 bits) access, **W** -WORD (32 bits) access

15.4.2 Detail Register Description

PWM_PWM0_CNT

Address: Operational Base + offset (0x0000) PWM Channel 0 Counter Register

Bit	Attr	Reset Value	Description
31:0	RO 0x0000	10x00000000	CNT
			Timer Counter
			The 32-bit indicates current value of PWM
			Channel 0 counter. The counter runs at the
			rate of PWM clock.
			The value ranges from 0 to (2^{32-1}) .

PWM_PWM0_PERIOD_HPR

Address: Operational Base + offset (0x0004) PWM Channel 0 Period Register/High Polarity Capture Register

PWM_PWM0_DUTY_LPR

Address: Operational Base + offset (0x0008)

PWM Channel 0 Duty Register/Low Polarity Capture Register

Bit Attr Reset Value Description

Bit	Attr	Reset Value	Description
31:0	RW	0×00000000	DUTY_LPR Output Waveform Duty Cycle/Input Waveform Low Polarity Cycle If PWM is operated at the continuous mode or one-shot mode, this value defines the duty cycle of the output waveform. The PWM starts the output waveform with duty cycle. Note that, if the PWM is operated at the center-aligned mode, the period should be an even one, and therefore only the [31:1] is taken into account. If PWM is operated at the capture mode, this value indicates the effective low polarity cycles of input waveform. This value is based on the PWM clock. The value ranges from 0 to (2^32-1).

PWM_PWM0_CTRL

Address: Operational Base + offset (0x000c) PWM Channel 0 Control Register

hannel 0					
Bit	Attr	Reset Value	Description		
31:24	RW	0x00	rpt Repeat Counter This field defines the repeated effective periods of output waveform in one-shot mode. The value N means N+1 repeated effective periods.		
23:16	RW	0x00	scale Scale Factor This fields defines the scale factor applied to prescaled clock. The value N means the clock is divided by 2*N. If N is 0, it means that the clock is divided by 512(2*256).		
15	RO	0x0	reserved		
14:12	RW	0x0	prescale Prescale Factor This field defines the prescale factor applied to input clock. The value N means that the input clock is divided by 2^N.		
11:10	RO	0x0	reserved		

Bit	Attr	Reset Value	Description
			clk_sel
			Clock Source Select
			0: non-scaled clock is selected as PWM clock
9	RW	0x0	source. It means that the prescale clock is
			directly used as the PWM clock source
			1: scaled clock is selected as PWM clock
			source
			lp_en
			Low Power Mode Enable
			0: disabled
			1: enabled
8	RW	0x0	When PWM channel is inactive state and Low
			Power Mode is enabled, the path to PWM Clock
			prescale module is blocked to reduce power
			consumption.
7:6	RO	0x0	reserved
	_		output_mode
			PWM Output mode
5	RW	0x0	0: left aligned mode
			1: center aligned mode
			inactive_pol
			Inactive State Output Polarity
			This defines the output waveform polarity
			when PWM channel is in inactive state. The
4	RW	0x0	inactive state means that PWM finishes the
-			complete waveform in one-shot mode or PWM
			channel is disabled.
			0: negative
			1: positive
			duty_pol
			Duty Cycle Output Polarity
			This defines the polarity for duty cycle. PWM
3	RW	0x0	starts the output waveform with duty cycle.
			0: negative
			1: positive
			pwm_mode
			PWM Operation Mode
			00: One shot mode. PWM produces the
			waveform within the repeated times defined
			by PWMx_CTRL_rpt .
2:1	RW	0x0	01: Continuous mode. PWM produces the
			waveform continuously
			10: Capture mode. PWM measures the cycles
			of high/low polarity of input waveform.
			11: reserved

Bit	Attr	Reset Value	Description
		0x0	pwm_en
	RW		PWM channel enable
			0: disabled
0			1: enabled. If the PWM is worked the one-shot
			mode, this bit will be cleared at the end of
			operation

PWM_PWM1_CNT

Address: Operational Base + offset (0x0010) PWM Channel 1 Counter Register

Bit	Attr	Reset Value	Description
31:0	RO	0×00000000	CNT Timer Counter The 32-bit indicates current value of PWM Channel 1 counter. The counter runs at the rate of PWM clock. The value ranges from 0 to (2^32-1).

PWM_PWM1_PERIOD_HPR

Address: Operational Base + offset (0x0014) PWM Channel 1 Period Register/High Polarity Capture Register

Bit	Attr	Reset Value	Description
Bit 31:0	Attr RW	Reset Value 0×00000000	Description PERIOD_LPR Output Waveform Period/Input Waveform High Polarity Cycle If PWM is operated at the continuous mode or one-shot mode, this value defines the period of the output waveform. Note that, if the PWM is operated at the center-aligned mode, the period should be an even one, and therefore only the bit [31:1] is taken into account and bit [0] always considered as 0. If PWM is operated at the capture mode, this value indicates the effective high polarity
			value indicates the effective high polarity cycles of input waveform.
			cycles of input waveform. This value is based on the PWM clock. The
			value ranges from 0 to (2^{32-1}) .

PWM_PWM1_DUTY_LPR

Address: Operational Base + offset (0x0018)

PWM Channel 1 Duty Register/Low Polarity Capture Register

Bit Attr Reset Value	Description
----------------------	-------------

Bit	Attr	Reset Value	Description
31:0	RW	0×0000000	DUTY_LPR Output Waveform Duty Cycle/Input Waveform Low Polarity Cycle If PWM is operated at the continuous mode or one-shot mode, this value defines the duty cycle of the output waveform. The PWM starts the output waveform with duty cycle. Note that, if the PWM is operated at the center-aligned mode, the period should be an even one, and therefore only the [31:1] is taken into account. If PWM is operated at the capture mode, this value indicates the effective low polarity cycles of input waveform. This value is based on the PWM clock. The value ranges from 0 to (2^32-1).

PWM_PWM1_CTRL

Address: Operational Base + offset (0x001c) PWM Channel 1 Control Register

Bit	Attr	Register Reset Value	Description
DIC	~	Reset value	•
			rpt
			Repeat Counter
31:24	RW	0×00	This field defines the repeated effective
51.24		0,00	periods of output waveform in one-shot mode.
			The value N means N+1 repeated effective
			periods.
			scale
			Scale Factor
22.16		0.400	This fields defines the scale factor applied to
23:16	RW	0x00	prescaled clock. The value N means the clock
			is divided by 2*N. If N is 0, it means that the
			clock is divided by 512(2*256).
15	RO	0x0	reserved
		0×0	prescale
			Prescale Factor
14:12	RW		This field defines the prescale factor applied to
			input clock. The value N means that the input
			clock is divided by 2 ^N .
11:10	RO	0x0	reserved

Bit	Attr	Reset Value	Description
			clk_sel
			Clock Source Select
			0: non-scaled clock is selected as PWM clock
9	RW	0x0	source. It means that the prescale clock is
			directly used as the PWM clock source
			1: scaled clock is selected as PWM clock
			source
			lp_en
			Low Power Mode Enable
			0: disabled
0		0x0	1: enabled
8	RW	UXU	When PWM channel is inactive state and Low
			Power Mode is enabled, the path to PWM Clock
			prescale module is blocked to reduce power
			consumption.
7:6	RO	0x0	reserved
			output_mode
E	RW	0.20	PWM Output mode
5	RVV	0x0	0: left aligned mode
			1: center aligned mode
			inactive_pol
			Inactive State Output Polarity
			This defines the output waveform polarity
			when PWM channel is in inactive state. The
4	RW	0x0	inactive state means that PWM finishes the
			complete waveform in one-shot mode or PWM
			channel is disabled.
			0: negative
			1: positive
			duty_pol
			Duty Cycle Output Polarity
3	RW	0x0	This defines the polarity for duty cycle. PWM
		0.00	starts the output waveform with duty cycle.
			0: negative
			1: positive
			pwm_mode
			PWM Operation Mode
			00: One shot mode. PWM produces the
			waveform within the repeated times defined
2:1	RW	0x0	by PWMx_CTRL_rpt
			01: Continuous mode. PWM produces the
			waveform continuously
			10: Capture mode. PWM measures the cycles
			of high/low polarity of input waveform.
			11: reserved

Bit	Attr	Reset Value	Description
		0x0	pwm_en
	RW		PWM channel enable
			0: disabled
0			1: enabled. If the PWM is worked the one-shot
			mode, this bit will be cleared at the end of
			operation

PWM_PWM2_CNT

Address: Operational Base + offset (0x0020) PWM Channel 2 Counter Register

Bit	Attr	Reset Value	Description
31:0	RO	0×00000000	CNT Timer Counter The 32-bit indicates current value of PWM Channel 2 counter. The counter runs at the rate of PWM clock. The value ranges from 0 to (2^32-1).

PWM_PWM2_PERIOD_HPR

Address: Operational Base + offset (0x0024)

PWM Channel 2 Period Register/High Polarity Capture Register

Bit	Attr	Reset Value	Description
31:0	RW	0×00000000	PERIOD_LPR Output Waveform Period/Input Waveform High Polarity Cycle If PWM is operated at the continuous mode or one-shot mode, this value defines the period of the output waveform. Note that, if the PWM is operated at the center-aligned mode, the period should be an even one, and therefore only the bit [31:1] is taken into account and bit [0] always considered as 0. If PWM is operated at the capture mode, this value indicates the effective high polarity cycles of input waveform. This value is based on the PWM clock. The value ranges from 0 to (2^32-1).

PWM_PWM2_DUTY_LPR

Address: Operational Base + offset (0x0028)

PWM Channel 2 Duty Register/Low Polarity Capture Register

Bit Attr Reset Value	Description
----------------------	-------------

Bit	Attr	Reset Value	Description
31:0	RW	0×0000000	DUTY_LPR Output Waveform Duty Cycle/Input Waveform Low Polarity Cycle If PWM is operated at the continuous mode or one-shot mode, this value defines the duty cycle of the output waveform. The PWM starts the output waveform with duty cycle. Note that, if the PWM is operated at the center-aligned mode, the period should be an even one, and therefore only the [31:1] is taken into account. If PWM is operated at the capture mode, this value indicates the effective low polarity cycles of input waveform. This value is based on the PWM clock. The value ranges from 0 to (2^32-1).

PWM_PWM2_CTRL

Address: Operational Base + offset (0x002c) PWM Channel 2 Control Register

Bit	Attr	Reset Value	Description
31:24	RW	0×00	rpt Repeat Counter This field defines the repeated effective periods of output waveform in one-shot mode. The value N means N+1 repeated effective periods.
23:16	RW	0x00	scale Scale Factor This fields defines the scale factor applied to prescaled clock. The value N means the clock is divided by 2*N. If N is 0, it means that the clock is divided by 512(2*256).
15	RO	0x0	reserved
14:12	RW	0×0	prescale Prescale Factor This field defines the prescale factor applied to input clock. The value N means that the input clock is divided by 2^N.
11:10	RO	0x0	reserved

Bit	Attr	Reset Value	Description
			clk_sel
			Clock Source Select
	Attr RW RW		0: non-scaled clock is selected as PWM clock
9		0x0	source. It means that the prescale clock is
			directly used as the PWM clock source
			1: scaled clock is selected as PWM clock
			source
			lp_en
			Low Power Mode Enable
			0: disabled
0		0x0	1: enabled
8	RW	UXU	When PWM channel is inactive state and Low
			Power Mode is enabled, the path to PWM Clock
			prescale module is blocked to reduce power
			consumption.
7:6	RO	0x0	reserved
			output_mode
E	RW	0x0	PWM Output mode
5	RVV	UXU	0: left aligned mode
			1: center aligned mode
			inactive_pol
			Inactive State Output Polarity
			This defines the output waveform polarity
			when PWM channel is in inactive state. The
4	RW	0x0	inactive state means that PWM finishes the
			complete waveform in one-shot mode or PWM
			channel is disabled.
			0: negative
			1: positive
			duty_pol
			Duty Cycle Output Polarity
3	RW/	0x0	This defines the polarity for duty cycle. PWM
5			starts the output waveform with duty cycle.
			0: negative
			1: positive
			pwm_mode
			PWM Operation Mode
			00: One shot mode. PWM produces the
			waveform within the repeated times defined
2:1	RW	0x0	by PWMx_CTRL_rpt.
L	KW	UXU	01: Continuous mode. PWM produces the
			waveform continuously
			10: Capture mode. PWM measures the cycles
			of high/low polarity of input waveform.
			11: reserved

Bit	Attr	Reset Value	Description
			pwm_en
			PWM channel enable 0: disabled
		0.40	
U	RW	0x0	1: enabled. If the PWM is worked the one-shot
			mode, this bit will be cleared at the end of
			operation

PWM_PWM3_CNT

Address: Operational Base + offset (0x0030) PWM Channel 3 Counter Register

Bit	Attr	Reset Value	Description
31:0	RO	0×00000000	CNT Timer Counter The 32-bit indicates current value of PWM Channel 3 counter. The counter runs at the rate of PWM clock. The value ranges from 0 to (2^32-1).

PWM_PWM3_PERIOD_HPR

Address: Operational Base + offset (0x0034)

PWM Channel 3 Period Register/High Polarity Capture Register

Bit	Attr	Reset Value	Description
31:0	RW	0×00000000	PERIOD_LPR Output Waveform Period/Input Waveform High Polarity Cycle If PWM is operated at the continuous mode or one-shot mode, this value defines the period of the output waveform. Note that, if the PWM is operated at the center-aligned mode, the period should be an even one, and therefore only the bit [31:1] is taken into account and bit [0] always considered as 0. If PWM is operated at the capture mode, this value indicates the effective high polarity cycles of input waveform. This value is based on the PWM clock. The value ranges from 0 to (2^32-1).

PWM_PWM3_DUTY_LPR

Address: Operational Base + offset (0x0038)

PWM Channel 3 Duty Register/Low Polarity Capture Register

Bit Attr Reset Value	Description
----------------------	-------------

Bit	Attr	Reset Value	Description
31:0	RW	0×0000000	DUTY_LPR Output Waveform Duty Cycle/Input Waveform Low Polarity Cycle If PWM is operated at the continuous mode or one-shot mode, this value defines the duty cycle of the output waveform. The PWM starts the output waveform with duty cycle. Note that, if the PWM is operated at the center-aligned mode, the period should be an even one, and therefore only the [31:1] is taken into account. If PWM is operated at the capture mode, this value indicates the effective low polarity cycles of input waveform. This value is based on the PWM clock. The value ranges from 0 to (2^32-1).

PWM_PWM3_CTRL

Address: Operational Base + offset (0x003c) PWM Channel 3 Control Register

Bit	Attr	Reset Value	Description
DIL	Atti	Resel value	-
31:24	RW	0×00	rpt Repeat Counter This field defines the repeated effective periods of output waveform in one-shot mode. The value N means N+1 repeated effective periods.
23:16	RW	0×00	scale Scale Factor This fields defines the scale factor applied to prescaled clock. The value N means the clock is divided by 2*N. If N is 0, it means that the clock is divided by 512(2*256).
15	RO	0x0	reserved
14:12	RW	0×0	prescale Prescale Factor This field defines the prescale factor applied to input clock. The value N means that the input clock is divided by 2^N.
11:10	RO	0x0	reserved

Bit	Attr	Reset Value	Description
			clk_sel
			Clock Source Select
	Attr RW RW		0: non-scaled clock is selected as PWM clock
9		0x0	source. It means that the prescale clock is
			directly used as the PWM clock source
			1: scaled clock is selected as PWM clock
			source
			lp_en
			Low Power Mode Enable
			0: disabled
	D\\/		1: enabled
8	RW	0x0	When PWM channel is inactive state and Low
			Power Mode is enabled, the path to PWM Clock
			prescale module is blocked to reduce power
			consumption.
7:6	RO	0x0	reserved
			output_mode
_	5.47		PWM Output mode
5	RW	0x0	0: left aligned mode
			1: center aligned mode
			inactive_pol
			Inactive State Output Polarity
			This defines the output waveform polarity
			when PWM channel is in inactive state. The
4	RW	0x0	inactive state means that PWM finishes the
			complete waveform in one-shot mode or PWM
			channel is disabled.
			0: negative
			1: positive
			duty_pol
			Duty Cycle Output Polarity
3	D\//	0x0	This defines the polarity for duty cycle. PWM
5		0.0	starts the output waveform with duty cycle.
			0: negative
			1: positive
			pwm_mode
			PWM Operation Mode
			00: One shot mode. PWM produces the
			waveform within the repeated times defined
2:1	RW	0x0	by PWMx_CTRL_rpt
L	KW		01: Continuous mode. PWM produces the
			waveform continuously
			10: Capture mode. PWM measures the cycles
			of high/low polarity of input waveform.
			11: reserved

Bit	Attr	Reset Value	Description
			pwm_en
			PWM channel enable 0: disabled
		0.40	
U	RW	0x0	1: enabled. If the PWM is worked the one-shot
			mode, this bit will be cleared at the end o
			operation

PWM_INTSTS

Address: Operational Base + offset (0x0040) Interrupt Status Register

Bit	Attr	Reset Value	Description
31:12	RO	0x0	reserved
			CH3_Pol
			Channel 3 Interrupt Polarity Flag
			This bit is used in capture mode in order to
			identify the transition of the input waveform
			when interrupt is generated. When bit is 1,
11	RO	0x0	please refer to PWM3_PERIOD_HPR to know
			the effective high cycle of Channel 0 input
			waveform. Otherwise, please refer to
			PWM3_PERIOD_HPR to know the effective low
			cycle of Channel 3 input waveform. Write 1 to
			CH3_IntSts will clear this bit.
			CH2_Pol
			Channel 2 Interrupt Polarity Flag
			This bit is used in capture mode in order to
			identify the transition of the input waveform
			when interrupt is generated. When bit is 1,
10	RO	0×0	please refer to PWM2_PERIOD_HPR to know
			the effective high cycle of Channel 0 input
			waveform. Otherwise, please refer to
			PWM2_PERIOD_HPR to know the effective low
			cycle of Channel 2 input waveform. Write 1 to
			CH2_IntSts will clear this bit.
			CH1_Pol
			Channel 1 Interrupt Polarity Flag This bit is used in capture mode in order to
			identify the transition of the input waveform
			when interrupt is generated. When bit is 1,
9	RO	0x0	please refer to PWM1_PERIOD_HPR to know
_			the effective high cycle of Channel 0 input
			waveform. Otherwise, please refer to
			PWM1_PERIOD_HPR to know the effective low
			cycle of Channel 1 input waveform. Write 1 to
			CH1_IntSts will clear this bit.

Bit	Attr	Reset Value	Description
			CH0_Pol
			Channel 0 Interrupt Polarity Flag
			This bit is used in capture mode in order to
		ident	identify the transition of the input waveform
			when interrupt is generated. When bit is 1,
8	RO	0x0	please refer to PWM0_PERIOD_HPR to know
			the effective high cycle of Channel 0 input
			waveform. Otherwise, please refer to
			PWM0_PERIOD_HPR to know the effective low
			cycle of Channel 0 input waveform. Write 1 to
			CH0_IntSts will clear this bit.
7:4	RO	0x0	reserved
		0×0	CH3_IntSts
3	RW		Channel 3 Interrupt Status
	RW		0: Channel 3 Interrupt not generated
			1: Channel 3 Interrupt generated
			CH2_IntSts
2	RW	0x0	Channel 2 Interrupt Status
		0 0x0 W 0x0 W 0x0 W 0x0	0: Channel 2 Interrupt not generated
			1: Channel 2 Interrupt generated
			CH1_IntSts
1	RW	0x0	Channel 1 Interrupt Status
			0: Channel 1 Interrupt not generated
			1: Channel 1 Interrupt generated
			CH0_IntSts
0	RW	0x0	Channel 0 Raw Interrupt Status
			0: Channel 0 Interrupt not generated
			1: Channel 0 Interrupt generated

PWM_INT_EN

Address: Operational Base + offset (0x0044) Interrupt Enable Register

Bit	Attr	Reset Value	Description	
31:4	RO	0x0	reserved	
3	RW	0×0	CH3_Int_en	
			Channel 3 Interrupt Enable	
			0: Channel 3 Interrupt disabled	
			1: Channel 3 Interrupt enabled	
2	RW	0x0	CH2_Int_en	
			Channel 2 Interrupt Enable	
			0: Channel 2 Interrupt disabled	
			1: Channel 2 Interrupt enabled	

Bit	Attr	Reset Value	Description	
1	RW	0x0	CH1_Int_en	
			Channel 1 Interrupt Enable	
			0: Channel 1 Interrupt disabled	
			1: Channel 1 Interrupt enabled	
0	RW	0×0	CH0_Int_en	
			Channel 0 Interrupt Enable	
			0: Channel 0 Interrupt disabled	
			1: Channel 0 Interrupt enabled	

15.5 Interface Description

Table 15-1 PWM Interface Description

Module pin	Direction	Pad name	ΙΟΜUΧ
pwm3	0	GPIO7_C[7]	GPIO7CH_IOMUX[14:12]=011
pwm2	0	GPIO7_C[6]	GPIO7CH_IOMUX[9:8]=11
pwm1	0	GPIO7_A[1]	GPIO7A_IOMUX[2]=1
pwm0	0	GPIO7_A[0]	GPIO7A_IOMUX[1:0]=01

15.6 Application Notes

15.6.1 PWM Reference Mode Standard Usage Flow

1. Set PWMx_CTRL.pwm_en to '0' to disable the PWM channel.

2. Choose the prescale factor and the scale factor for pclk by programming

PWMx_CTRL.prescale and PWMx_CTRL.scale, and select the clock needed by setting PWMx_CTRL.clk_sel.

3. Configure the channel to work in the reference mode.

4. Enable the INT_EN.chx_int_en to enable the interrupt generation.

5. Enable the channel by writing '1' to PWMx_CTRL.pwm_en bit to start the channel.

6. When an interrupt is asserted, refer to INTSTS register to know the raw interrupt status. If the corresponding polarity flag is set, turn to PWMx_PERIOD_HPC register to know the effective high cycles of input waveforms, otherwise turn to PWMx_DUTY_LPC register to know the effective low cycles.

7. Write '0' to $PWMx_CTRL.pwm_en$ to disable the channel.

15.6.2 PWM One-shot Mode/Continuous Standard Usage Flow

1. Set PWMx_CTRL.pwm_en to '0' to disable the PWM channel.

2. Choose the prescale factor and the scale factor for pclk by programming

PWMx_CTRL.prescale and PWMx_CTRL.scale, and select the clock needed by setting PWMx_CTRL.clk_sel.

3. Choose the output mode by setting PWMx_CTRL.output_mode, and set the duty polarity and inactive polarity by programming PWMx_CTRL.duty_pol and PWMx_CTRL.inactive_pol.

4. Set the PWMx_CTRL.rpt if the channel is desired to work in the one-shot mode;

5. Configure the channel to work in the one-shot mode or the continuous mode.

6. Enable the INT_EN.chx_int_en to enable the interrupt generation if if the channel is desired to work in the one-shot mode;

7. If the channel is working in the one-shot mode, an interrupt is asserted after the end of operation, and the PWMx_CTRL.pwm_en is automatically cleared. Whatever mode the channel is working, write `0' to PWMx_CTRL.pwm_en bit to disable the PWM channel.

15.6.3 Low-power mode

Setting PWMx_CTRL.lp_en to '1' makes the channel enter the low-power mode. When then PWM channel is inactive, the APB bus clock to the clock prescale module is gated in order to reduce the power consumption. It is recommended to disable the channel before entering the low-power mode, and quit the low-power mode before enabling the channel.

15.6.4 Other notes

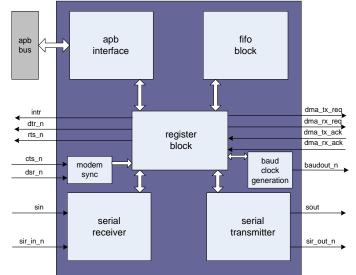
When the channel is active to produce waveforms, it is free to programming the PWMx_PERIOD_HPC and PWMx_DUTY_LPC register. The change will not take effect immediately until the current period ends.

An active channel can be changed to another operation mode without disable the PWM channel. However, during the transition of the operation mode there may be some irregular output waveforms. So does changing the clock division factor when the channel is active. In RK3288, user need to configure the SOC_CON2[0] to "1'b1" before using the PWM.

Chapter 16 UART Interface

16.1 Overview

The Universal Asynchronous Receiver/Transmitter (UART) is used for serial communication with a peripheral, modem (data carrier equipment, DCE) or data set. Data is written from a master (CPU) over the APB bus to the UART and it is converted to serial form and transmitted to the destination device. Serial data is also received by the UART and stored for the master (CPU) to read back.


UART Controller supports the following features:

- AMBA APB interface Allows for easy integration into a Synthesizable Components for AMBA 2 implementation
- Support interrupt interface to interrupt controller
- Contain two 64Bytes FIFOs for data receive and transmit
- Programmable serial data baud rate as calculated by the following: baud rate = (serial clock frequency)/(16×divisor)
- UART_BB/UART_BT/UART_GPS/UART_EXP support auto flow-control, UART_DBG do not support auto flow-control
- UART_DBG support IrDA 1.0 SIR mode with up to 115.2 Kbaud data rate
- UART_BB/UART_BT/UART_GPS/UART_EXP are in peripheral subsystem, UART_DBG is in bus subsystem

16.2 Block Diagram

This section provides a description about the functions and behavior under various conditions. The UART Controller comprises with:

- AMBA APB interface
- FIFO controllers
- Register block
- Modem synchronization block and baud clock generation block
- Serial receiver and serial transmitter

APB INTERFACE

Fig. 16-1 UART Architecture

The host processor accesses data, control, and status information on the UART through the APB interface. The UART supports APB data bus widths of 8, 16, and 32 bits.

Register block

Be responsible for the main UART functionality including control, status and interrupt generation.

Modem Synchronization block

Synchronizes the modem input signal.

FIFO block

Be responsible for FIFO control and storage (when using internal RAM) or signaling to control external RAM (when used).

Baud Clock Generator

Generate the transmitter and receiver baud clock along with the output reference clock signal (baudout_n).

Serial Transmitter

Converts the parallel data, written to the UART, into serial form and adds all additional bits, as specified by the control register, for transmission. This makeup of serial data, referred to as a character can exit the block in two forms, either serial UART format or IrDA 1.0 SIR format.

Serial Receiver

Converts the serial data character (as specified by the control register) received in either the UART or IrDA 1.0 SIR format to parallel form. Parity error detection, framing error detection and line break detection is carried out in this block.

16.3 Function description

UART (RS232) Serial Protocol

Because the serial communication is asynchronous, additional bits (start and stop) are added to the serial data to indicate the beginning and end. An additional parity bit may be added to the serial character. This bit appears after the last data bit and before the stop bit(s) in the character structure to perform simple error checking on the received data, as shown in Figure.

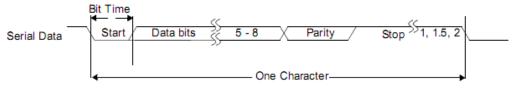
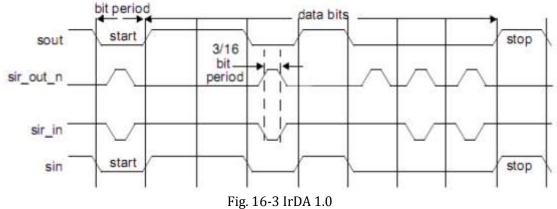
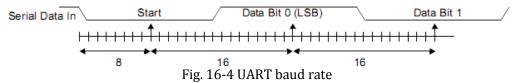



Fig. 16-2 UART Serial protocol

IrDA 1.0 SIR Protocol


The Infrared Data Association (IrDA) 1.0 Serial Infrared (SIR) mode supports bi-directional data communications with remote devices using infrared radiation as the transmission medium. IrDA 1.0 SIR mode specifies a maximum baud rate of 115.2 Kbaud.

Transmitting a single infrared pulse signals a logic zero, while a logic one is represented by not sending a pulse. The width of each pulse is 3/16ths of a normal serial bit time. Data transfers can only occur in half-duplex fashion when IrDA SIR mode is enabled.

Baud Clock

The baud rate is controlled by the serial clock (sclk or pclk in a single clock implementation) and the Divisor Latch Register (DLH and DLL). As the exact number of baud clocks that each bit was transmitted for is known, calculating the mid-point for sampling is not difficult, that is every 16 baud clocks after the mid point sample of the start bit.

FIFO Support

1. NONE FIFO MODE

If FIFO support is not selected, then no FIFOs are implemented and only a single receive data byte and transmit data byte can be stored at a time in the RBR and THR.

2. FIFO MODE

The FIFO depth of UART1/UART2/UART3 is 32bytes and the FIFO depth of UART0 is 64bytes. The FIFO mode of all the UART is enabled by register FCR[0].

Interrupts

The following interrupt types can be enabled with the IER register.

- Receiver Error
- Receiver Data Available
- Character Timeout (in FIFO mode only)
- Transmitter Holding Register Empty at/below threshold (in Programmable THRE Interrupt mode)
- Modem Status

DMA Support

The uart supports DMA signaling with the use of two output signals (dma_tx_req_n and dma_rx_req_n) to indicate when data is ready to be read or when the transmit FIFO is empty. The dma_tx_req_n signal is asserted under the following conditions:

- When the Transmitter Holding Register is empty in non-FIFO mode.
- When the transmitter FIFO is empty in FIFO mode with Programmable THRE interrupt mode disabled.
- When the transmitter FIFO is at, or below the programmed threshold with Programmable THRE interrupt mode enabled.

The dma_rx_req_n signal is asserted under the following conditions:

- When there is a single character available in the Receive Buffer Register in non-FIFO mode.
- When the Receiver FIFO is at or above the programmed trigger level in FIFO mode.

Auto Flow Control

The UART can be configured to have a 16750-compatible Auto RTS and Auto CTS serial data flow control mode available. If FIFOs are not implemented, then this mode cannot be selected. When Auto Flow Control mode has been selected, it can be enabled with the Modem Control Register (MCR[5]). Following figure shows a block diagram of the Auto Flow Control functionality.

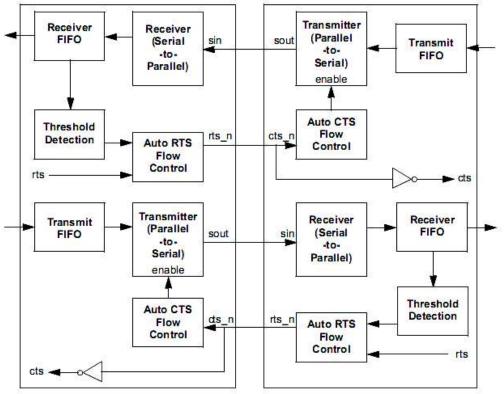


Fig. 16-5 UART Auto flow control block diagram

Auto RTS – Becomes active when the following occurs:

- Auto Flow Control is selected during configuration
- FIFOs are implemented
- RTS (MCR[1] bit and MCR[5]bit are both set)
- FIFOs are enabled (FCR[0]) bit is set)
- SIR mode is disabled (MCR[6] bit is not set)

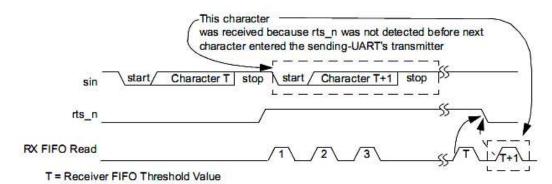


Fig. 16-6 UART AUTO RTS TIMING

Auto CTS – becomes active when the following occurs:

- Auto Flow Control is selected during configuration
- FIFOs are implemented
- AFCE (MCR[5] bit is set)
- FIFOs are enabled through FIFO Control Register FCR[0] bit
- SIR mode is disabled (MCR[6] bit is not set)

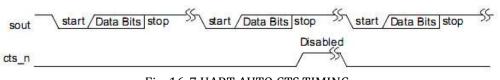


Fig. 16-7 UART AUTO CTS TIMING

16.4 Register Description

This section describes the control/status registers of the design. There are 5 UARTs in RK3288, and each one has its own base address.

16.4.1 Registers Summary

Name	Offset	Size	Reset Value	Description
UART_RBR	0x0000	W	0x0000000	Receive Buffer Register
UART_THR	0x0000	W	0x0000000	Transmit Holding Register
UART_DLL	0x0000	W	0x0000000	Divisor Latch (Low)
UART_DLH	0x0004	W	0x0000000	Divisor Latch (High)
UART_IER	0x0004	W	0x0000000	Interrupt Enable Register
UART_IIR	0x0008	W	0x0000001	Interrupt Identification Register
UART_FCR	0x0008	W	0x0000000	FIFO Control Register
UART_LCR	0x000c	W	0x0000000	Line Control Register
UART_MCR	0x0010	W	0x0000000	Modem Control Register
UART_LSR	0x0014	W	0x0000060	Line Status Register
UART_MSR	0x0018	W	0x0000000	Modem Status Register
UART_SCR	0x001c	W	0x0000000	Scratchpad Register
UART_SRBR	0x0030~0x006c	W	0x0000000	Shadow Receive Buffer Register
	0x0030~0x006c	۱۸/	0x00000000	Shadow Transmit Holding
UART_STHR	0x0030~0x0060	vv	0x00000000	Register
UART_FAR	0x0070	W	0x0000000	FIFO Access Register
UART_TFR	0x0074	W	0x0000000	Transmit FIFO Read
UART_RFW	0x0078	W	0x0000000	Receive FIFO Write
UART_USR	0x007c	W	0x0000006	UART Status Register
UART_TFL	0x0080	W	0x0000000	Transmit FIFO Level
UART_RFL	0x0084	W	0x0000000	Receive FIFO Level
UART_SRR	0x0088	W	0x0000000	Software Reset Register
UART_SRTS	0x008c	W	0x0000000	Shadow Request to Send
UART_SBCR	0x0090	W	0x0000000	Shadow Break Control Register
UART_SDMAM	0x0094	W	0x0000000	Shadow DMA Mode
UART_SFE	0x0098	W	0x0000000	Shadow FIFO Enable
UART_SRT	0x009c	W	0x0000000	Shadow RCVR Trigger
UART_STET	0x00a0	W	0x0000000	Shadow TX Empty Trigger
UART_HTX	0x00a4	W	0x0000000	Halt TX
UART_DMASA	0x00a8	W	0x0000000	DMA Software Acknowledge
UART_CPR	0x00f4	W	0x0000000	Component Parameter Register
UART_UCV	0x00f8	W	0x3330382a	UART Component Version
UART_CTR	0x00fc	W	0x44570110	Component Type Register

Notes: <u>Size</u>: **B** - Byte (8 bits) access, **HW** - Half WORD (16 bits) access, **W** -WORD (32 bits) access

16.4.2 Detail Register Description

UART_RBR

Address: Operational Base + offset (0x0000) Receive Buffer Register

Bit	Attr	Reset Value	Description
31:8	RO	0x0	reserved
7:0	RW	0×00	data_input Data byte received on the serial input port (sin) in UART mode, or the serial infrared input (sir_in) in infrared mode. The data in this register is valid only if the Data Ready (DR) bit in the Line Status Register (LCR) is set. If in non-FIFO mode (FIFO_MODE == NONE) or FIFOs are disabled (FCR[0] set to zero), the data in the RBR must be read before the next data arrives, otherwise it is overwritten, resulting in an over-run error. If in FIFO mode (FIFO_MODE != NONE) and FIFOs are enabled (FCR[0] set to one), this register accesses the head of the receive FIFO. If the receive FIFO is full and this register is not read before the next data character arrives, then the data already in the FIFO is preserved, but any incoming data are lost and an over-run error occurs.

UART_THR

Address: Operational Base + offset (0x0000) Transmit Holding Register

Bit	Attr	Reset Value	Description
31:8	RO	0x0	reserved

Bit	Attr	Reset Value	Description
7:0	RW	0×00	data_output Data to be transmitted on the serial output port (sout) in UART mode or the serial infrared output (sir_out_n) in infrared mode. Data should only be written to the THR when the THR Empty (THRE) bit (LSR[5]) is set. If in non-FIFO mode or FIFOs are disabled (FCR[0] = 0) and THRE is set, writing a single character to the THR clears the THRE. Any additional writes to the THR before the THRE is set again causes the THR before the THRE is set again causes the THR data to be overwritten. If in FIFO mode and FIFOs are enabled (FCR[0] = 1) and THRE is set, x number of characters of data may be written to the THR before the FIFO is full. The number x (default=16) is determined by the value of FIFO Depth that you set during configuration. Any attempt to write data when the FIFO is full results in the write data being lost.

UART_DLL

Address: Operational Base + offset (0x0000) Divisor Latch (Low)

Bit	Attr	Reset Value	Description
31:8	RO	0x0	reserved
7:0	RW	0×00	baud_rate_divisor_L Lower 8-bits of a 16-bit, read/write, Divisor Latch register that contains the baud rate divisor for the UART. This register may only be accessed when the DLAB bit (LCR[7]) is set and the UART is not busy (USR[0] is zero). The output baud rate is equal to the serial clock (sclk) frequency divided by sixteen times the value of the baud rate divisor, as follows: baud rate = (serial clock frequency) / (16 * divisor). Note that with the Divisor Latch Registers (DLL and DLH) set to zero, the baud clock is disabled and no serial communications occur. Also, once the DLH is set, at least 8 clock cycles of the slowest UART clock should be allowed to pass before transmitting or receiving data.

UART_DLH

Address: Operational Base + offset (0x0004) Divisor Latch (High)

Bit	Attr	Reset Value	Description
31:8	RO	0x0	reserved
		N 0x00	baud_rate_divisor_H
7:0	RW		Upper 8 bits of a 16-bit, read/write, Divisor
7:0	RVV		Latch register that contains the baud rate
			divisor for the UART.

UART_IER

Address: Operational Base + offset (0x0004) Interrupt Enable Register

Bit	Attr	Reset Value	Description
31:8	RO	0x0	reserved
			prog_thre_int_en
			Programmable THRE Interrupt Mode Enable
7	RW	0x0	This is used to enable/disable the generation
/		0.00	of THRE Interrupt.
			1'b0: disabled
			1'b1: enabled
6:4	RO	0x0	reserved
			modem_status_int_en
			Enable Modem Status Interrupt.
			This is used to enable/disable the generation
3	RW	0×0	of Modem Status Interrupt. This is the fourth
			highest priority interrupt.
			1'b0: disabled
			1'b1: enabled
			receive_line_status_int_en
			Enable Receiver Line Status Interrupt.
			This is used to enable/disable the generation
2	RW	0x0	of Receiver Line Status Interrupt. This is the
			highest priority interrupt.
			1'b0: disabled
			1'b1: enabled
			trans_hold_empty_int_en
1	RW	0x0	Enable Transmit Holding Register Empty
			Interrupt.

Bit	Attr	Reset Value	Description
			receive_data_available_int_en
			Enable Received Data Available Interrupt.
			This is used to enable/disable the generation
			of Received Data Available Interrupt and the
0	RW	0x0	Character Timeout Interrupt (if in FIFO mode
			and FIFOs enabled). These are the second
			highest priority interrupts.
			1'b0: disabled
			1'b1: enabled

UART_IIR

Address: Operational Base + offset (0x0008) Interrupt Identification Register

Bit	Attr	Reset Value	Description
31:8	RO	0x0	reserved
			fifos_en
			FIFOs Enabled.
7:6	RO	0x0	This is used to indicate whether the FIFOs are
/.0		0.0	enabled or disabled.
			2'b00: disabled
			2'b11: enabled
5:4	RO	0x0	reserved
			int_id
			Interrupt ID
			This indicates the highest priority pending
			interrupt which can be one of the following
		0x1	types:
3:0	RO		4'b0000: modem status
5.0			4'b0001: no interrupt pending
			4′b0010: THR empty
			4'b0100: received data available
			4'b0110: receiver line status
	1		4'b0111: busy detect
			4'b1100: character timeout

UART_FCR

Address: Operational Base + offset (0x0008) FIFO Control Register

Bit	Attr	Reset Value	Description
31:8	RO	0x0	reserved

Bit	Attr	Reset Value	Description
			rcvr_trigger
			RCVR Trigger.
			This is used to select the trigger level in the
			receiver FIFO at which the Received Data
			Available Interrupt is generated. In auto flow
			control mode it is used to determine when the
7.6			rts_n signal is de-asserted. It also determines
7:6	wo	0x0	when the dma_rx_req_n signal is asserted in
			certain modes of operation. The following
			trigger levels are supported:
			2'b00: 1 character in the FIFO
			2'b01: FIFO 1/4 full
			2'b10: FIFO 1/2 full
			2'b11: FIFO 2 less than full
			tx_empty_trigger
			TX Empty Trigger.
			This is used to select the empty threshold
			level at which the THRE Interrupts are
		0×0	generated when the mode is active. It also
5:4	wo		determines when the dma_tx_req_n signal is
5.4	000	0.00	asserted when in certain modes of operation.
			The following trigger levels are supported:
			2'b00: FIFO empty
			2'b01: 2 characters in the FIFO
			2'b10: FIFO 1/4 full
			2'b11: FIFO 1/2 full
			dma_mode
			DMA Mode
			This determines the DMA signalling mode
3	wo	0x0	used for the dma_tx_req_n and
5		0x0	dma_rx_req_n output signals when additional
			DMA handshaking signals are not selected .
			1′b0: mode 0
			1'b1: mode 11100 = character timeout.
			xmit_fifo_reset
			XMIT FIFO Reset.
	wo		This resets the control portion of the transmit
			FIFO and treats the FIFO as empty. This also
2		0×0	de-asserts the DMA TX request and single
			signals when additional DMA handshaking
			signals are select. Note that this bit is
			'self-clearing'. It is not necessary to clear this
			bit.

Bit	Attr	Reset Value	Description
1	wo	0×0	rcvr_fifo_reset RCVR FIFO Reset. This resets the control portion of the receive FIFO and treats the FIFO as empty. This also de-asserts the DMA RX request and single signals when additional DMA handshaking signals are selected. Note that this bit is 'self-clearing'. It is not necessary to clear this bit.
0	wo	0×0	fifo_en FIFO Enable. FIFO Enable. This enables/disables the transmit (XMIT) and receive (RCVR) FIFOs. Whenever the value of this bit is changed both the XMIT and RCVR controller portion of FIFOs is reset.

UART_LCR

Address: Operational Base + offset (0x000c) Line Control Register

Bit	Attr	Reset Value	Description
31:8	RO	0x0	reserved
			div_lat_access
			Divisor Latch Access Bit.
			Writeable only when UART is not busy
			(USR[0] is zero), always readable. This bit is
7	RW	0x0	used to enable reading and writing of the
			Divisor Latch register (DLL and DLH) to set the
			baud rate of the UART. This bit must be
			cleared after initial baud rate setup in order to
			access other registers.
			break_ctrl
			Break Control Bit.
			This is used to cause a break condition to be
			transmitted to the receiving device. If set to
			one the serial output is forced to the spacing
			(logic 0) state. When not in Loopback Mode,
6	RW	0x0	as determined by MCR[4], the sout line is
			forced low until the Break bit is cleared. If
			MCR[6] set to one, the sir_out_n line is
			continuously pulsed. When in Loopback Mode,
			the break condition is internally looped back
			to the receiver and the sir_out_n line is forced
			low.
5	RO	0x0	reserved

Bit	Attr	Reset Value	Description
			even_parity_sel
			Even Parity Select.
			Writeable only when UART is not busy
			(USR[0] is zero), always readable. This is
4	RW	0x0	used to select between even and odd parity,
			when parity is enabled (PEN set to one). If set
			to one, an even number of logic 1s is
			transmitted or checked. If set to zero, an odd
			number of logic 1s is transmitted or checked.
			parity_en
			Parity Enable.
			Writeable only when UART is not busy
			(USR[0] is zero), always readable. This bit is
3	RW	0x0	used to enable and disable parity generation
			and detection in transmitted and received
			serial character respectively.
			1'b0: parity disabled
			1'b1: parity enabled
			stop_bits_num
			Number of stop bits.
			Writeable only when UART is not busy
			(USR[0] is zero), always readable. This is
			used to select the number of stop bits per
			character that the peripheral transmits and
			receives. If set to zero, one stop bit is
_	514		transmitted in the serial data.If set to one and
2	RW	0x0	the data bits are set to 5 (LCR[1:0] set to
			zero) one and a half stop bits is transmitted.
			Otherwise, twostop bits are transmitted. Note
			that regardless of the number of stop bits
			select, the receiver checks only the first stop bit.
			1'b0: 1 stop bit 1'b1: 1 5 stop bits when DLS ($I \subseteq [1:0]$) is
			1'b1: 1.5 stop bits when DLS (LCR[1:0]) is
			zero, else 2 stop bit.

Bit Attr Re	set Value	Description
1:0 RW 0×0		data_length_sel Data Length Select. Writeable only when UART is not busy (USR[0] is zero), always readable. This is used to select the number of data bits per character that the peripheral transmits and receives. The number of bit that may be selected areas follows: 2'b00: 5 bits 1'b01: 6 bits 1'b10: 7 bits 1'b11: 8 bits

UART_MCR

Address: Operational Base + offset (0x0010)Modem Control Register

Bit	Attr	Reset Value	Description
31:7	RO	0x0	reserved
			sir_mode_en
			SIR Mode Enable.
			SIR Mode Enable.
6	RW	0x0	This is used to enable/disable the IrDA SIR
			Mode.
			1'b0: IrDA SIR Mode disabled
			1'b1: IrDA SIR Mode enabled
			auto_flow_ctrl_en
5	RW	0x0	Auto Flow Control Enable.
5			1'b0: Auto Flow Control Mode disabled
			1'b1: Auto Flow Control Mode enabled
		0×0	loopback
4	RW		LoopBack Bit.
-	1		This is used to put the UART into a diagnostic
			mode for test purposes.
		N 0x0	out2
			OUT2.
			This is used to directly control the
3	RW		user-designated Output2 (out2_n) output.
5			The value written to this location is inverted
			and driven out on out2_n, that is:
			1'b0: out2_n de-asserted (logic 1)
			1'b1: out2_n asserted (logic 0)
2	RW	0x0	out1
~	K VV	0.00	OUT1

Bit	Attr	Reset Value	Description
			req_to_send
			Request to Send.
			This is used to directly control the Request to
1	RW	0x0	Send (rts_n) output. The Request To Send
			(rts_n) output is used to inform the modem or
			data set that the UART is ready to exchange
			data.
		/ 0x0	data_terminal_ready
	RW		Data Terminal Ready.
			This is used to directly control the Data
0			Terminal Ready (dtr_n) output. The value
0			written to this location is inverted and driven
			out on dtr_n, that is:
			1'b0: dtr_n de-asserted (logic 1)
			1'b1: dtr_n asserted (logic 0)

UART_LSR Address: Operational Base + offset (0x0014) Line Status Register

Bit	Attr	Reset Value	Description
31:8	RO	0x0	reserved
			receiver_fifo_error
			Receiver FIFO Error bit.
			This bit is relevant FIFOs are enabled (FCR[0]
7	RO	0x0	set to one). This is used to indicate if there is
/	KU	0.00	at least one parity error, framing error, or
			break indication in the FIFO.
			1'b0: no error in RX FIFO
			1'b1: error in RX FIFO
		0x1	trans_empty
			Transmitter Empty bit.
			Transmitter Empty bit. If FIFOs enabled
			(FCR[0] set to one), this bit is set whenever
6	RO		the Transmitter Shift Register and the FIFO
			are both empty. If FIFOs are disabled, this bit
			is set whenever the Transmitter Holding
			Register and the Transmitter Shift Register
			are both empty.

Bit	Attr	Reset Value	Description
			trans_hold_reg_empty
			Transmit Holding Register Empty bit.
			If THRE mode is disabled (IER[7] set to zero)
			and regardless of FIFO's being
			implemented/enabled or not, this bit indicates
			that the THR or TX FIFO is empty.
			This bit is set whenever data is transferred
			from the THR or TX FIFO to the transmitter
5	RO	0x1	shift register and no new data has been
			written to the THR or TX FIFO. This also
			causes a THRE Interrupt to occur, if the THRE
			Interrupt is enabled. If IER[7] set to one and
			FCR[0] set to one respectively, the
			functionality is switched to indicate the
			transmitter FIFO is full, and no longer controls
			THRE interrupts, which are then controlled by
			the FCR[5:4] threshold setting.
		0×0	break_int
4	RO		Break Interrupt bit.
			This is used to indicate the detection of a
			break sequence on the serial input data.
			framing_error
			Framing Error bit. This is used to indicate the occurrence of a
3	RO	0x0	framing error in the receiver. A framing error
			occurs when the receiver does not detect a
			valid STOP bit in the received data.
			parity_eror
			Parity Error bit.
2	RO	0×0	This is used to indicate the occurrence of a
			parity error in the receiver if the Parity Enable
			(PEN) bit (LCR[3]) is set.
			overrun_error
		0x0	Overrun error bit.
1	RO		This is used to indicate the occurrence of an
_			overrun error. This occurs if a new data
			character was received before the previous
			data was read.
			data_ready
	RO		Data Ready bit.
0		0x0	This is used to indicate that the receiver contains at least one character in the RBR or
U			the receiver FIFO.
			1'b0: no data ready
			1'b1: data ready

UART_MSR

Address: Operational Base + offset (0x0018)Modem Status Register

Bit	Attr	Reset Value	Description
31:8	RO	0x0	reserved
			data_carrior_detect
_	50		Data Carrier Detect.
7	RO	0x0	This is used to indicate the current state of the
			modem control line dcd_n.
			ring_indicator
c		00	Ring Indicator.
6	RO	0×0	This is used to indicate the current state of the
			modem control line ri_n.
			data_set_ready
		00	Data Set Ready.
5	RO	0x0	This is used to indicate the current state of the
			modem control line dsr_n.
			clear_to_send
4		0x0	Clear to Send.
4	RO		This is used to indicate the current state of the
			modem control line cts_n.
			delta_data_carrier_detect
			Delta Data Carrier Detect.
3	RO	0x0	This is used to indicate that the modem
			control line dcd_n has changed since the last
			time the MSR was read.
			trailing_edge_ring_indicator
			Trailing Edge of Ring Indicator.
			Trailing Edge of Ring Indicator. This is used to
2	RO	0x0	indicate that a change on the input ri_n (from
			an active-low to an inactive-high state) has
			occurred since the last time the MSR was
			read.
			delta_data_set_ready
			Delta Data Set Ready.
1	RO	0×0	This is used to indicate that the modem
			control line dsr_n has changed since the last
			time the MSR was read.
			delta_clear_to_send
	RO	0x0	Delta Clear to Send.
0			This is used to indicate that the modem
			control line cts_n has changed since the last
			time the MSR was read.

UART_SCR

Address: Operational Base + offset (0x001c) Scratchpad Register

Bit	Attr	Reset Value	Description
31:8	RO	0x0	reserved
			temp_store_space
7:0	RW	0x00	This register is for programmers to use as a
			temporary storage space.

UART_SRBR

Address: Operational Base + offset (0x0030~0x006c) Shadow Receive Buffer Register

Bit	Attr	Reset Value	Description
31:8	RO	0x0	reserved
			shadow_rbr
			This is a shadow register for the RBR and has
			been allocated sixteen 32-bit locations so as
			to accommodate burst accesses from the
			master. This register contains the data byte
			received on the serial input port (sin) in UART
			mode or the serial infrared input (sir_in) in
			infrared mode. The data in this register is valid
			only if the Data Ready (DR) bit in the Line
			status Register (LSR) is set.
7:0	RO	0x00	If FIFOs are disabled (FCR[0] set to zero), the
			data in the RBR must be read before the next
			data arrives, otherwise it is overwritten,
			resulting in an overrun error.
			If FIFOs are enabled (FCR[0] set to one), this
			register accesses the head of the receive
			FIFO. If the receive FIFO is full and this
			register is not read before the next data
			character arrives, then the data already in the
			FIFO are preserved, but any incoming data is
			lost. An overrun error also occurs.

UART_STHR

Address: Operational Base + offset (0x0030~0x006c) Shadow Transmit Holding Register

Bit	Attr	Reset Value	Description
31:8	RO	0x0	reserved
7:0	RO	0x00	shadow_thr
7.0	ĸŪ	0,00	This is a shadow register for the THR.

UART_FAR

Address: Operational Base + offset (0x0070)

FIFO Access Register

Bit	Attr	Reset Value	Description
31:1	RO	0x0	reserved
			fifo_access_test_en
			This register is use to enable a FIFO access
			mode for testing, so that the receive FIFO can
			be written by the master and the transmit
			FIFO can be read by the master when FIFOs
0	RW	0x0	are implemented and enabled. When FIFOs
			are not enabled it allows the RBR to be written
			by the master and the THR to be read by the
			master.
			1'b0: FIFO access mode disabled
			1'b1: FIFO access mode enabled

UART_TFR Address: Operational Base + offset (0x0074) Transmit FIFO Read

Bit	Attr	Reset Value	Description
31:8	RO	0x0	reserved
			trans_fifo_read
			Transmit FIFO Read.
			These bits are only valid when FIFO access
			mode is enabled (FAR[0] is set to one).When
7:0	RO	0x00	FIFOs are implemented and enabled, reading
			this register gives the data at the top of the
			transmit FIFO. Each consecutive read pops
			the transmit FIFO and gives the next data
			value that is currently at the top of the FIFO.

UART_RFW

Address: Operational Base + offset (0x0078) Receive FIFO Write

Bit	Attr	Reset Value	Description
31:10	RO	0x0	reserved
		0×0	receive_fifo_framing_error
0	wo		Receive FIFO Framing Error.
9	WU		These bits are only valid when FIFO access
			mode is enabled (FAR[0] is set to one).
8	wo	0x0	receive_fifo_parity_error
			Receive FIFO Parity Error.
	WO		These bits are only valid when FIFO access
			mode is enabled (FAR[0] is set to one).

Bit	Attr	Reset Value	Description
			receive_fifo_write
			Receive FIFO Write Data.
			These bits are only valid when FIFO access
	wo	0x00	mode is enabled (FAR[0] is set to one). When
7.0			FIFOs are enabled, the data that is written to
7:0			the RFWD is pushed into the receive FIFO.
			Each consecutive write pushes the new data
			to the next write location in the receive FIFO.
			When FIFOs not enabled, the data that is
			written to the RFWD is pushed into the RBR.

UART_USR

Address: Operational Base + offset (0x007c) UART Status Register

Bit	Attr	Reset Value	Description
31:5	RO	0x0	reserved
			receive_fifo_full
			Receive FIFO Full.
			This is used to indicate that the receive FIFO is
4	RO	0x0	completely full.
4	RU	0.00	1'b0: Receive FIFO not full
			1'b1: Receive FIFO Full
			This bit is cleared when the RX FIFO is no
			longer full.
		0×0	receive_fifo_not_empty
			Receive FIFO Not Empty.
			This is used to indicate that the receive FIFO
3	RO		contains one or more entries.
			1'b0: Receive FIFO is empty
			1'b1: Receive FIFO is not empty
			This bit is cleared when the RX FIFO is empty.
			trasn_fifo_empty
		0x1	Transmit FIFO Empty.
			This is used to indicate that the transmit FIFO
2	RO		is completely empty.
			1'b0: Transmit FIFO is not empty
			1'b1: Transmit FIFO is empty
			This bit is cleared when the TX FIFO is no
			longer empty

Bit	Attr	Reset Value	Description
			trans_fifo_not_full
			Transmit FIFO Not Full.
			This is used to indicate that the transmit FIFO
1	RO	0x1	in not full.
			1'b0: Transmit FIFO is full
			1'b1: Transmit FIFO is not full
			This bit is cleared when the TX FIFO is full.
			uart_busy
			UART Busy.
			UART Busy. This is indicates that a serial
0	RO	0x0	transfer is in progress, when cleared indicates
			that the UART is idle or inactive.
			1'b0: UART is idle or inactive
			1'b1: UART is busy (actively transferring data)

UART_TFL

Address: Operational Base + offset (0x0080) Transmit FIFO Level

Bit	Attr	Reset Value	Description
31:5	RO	0x0	reserved
	RW	0×00	trans_fifo_level
1.0			Transmit FIFO Level.
4:0			This is indicates the number of data entries in
			the transmit FIFO.

UART_RFL

Address: Operational Base + offset (0x0084) Receive FIFO Level

Bit	Attr	Reset Value	Description
31:5	RO	0x0	reserved
	RO	0×00	receive_fifo_level
1.0			Receive FIFO Level.
4:0			This is indicates the number of data entries in
			the receive FIFO.

UART_SRR

Address: Operational Base + offset (0x0088) Software Reset Register

Bit	Attr	Reset Value	Description
31:3	RO	0x0	reserved
			xmit_fifo_reset XMIT FIFO Reset.
2	WO	0×0	This is a shadow register for the XMIT FIFO Reset bit (FCR[2]).

Bit	Attr	Reset Value	Description
			rcvr_fifo_reset
1	wo	0×0	RCVR FIFO Reset.
T	000	UXU	This is a shadow register for the RCVR FIFO
			Reset bit (FCR[1]).
	wo	0×0	uart_reset
			UART Reset.
0			This asynchronously resets the UART and
0			synchronously removes the reset assertion.
			For a two clock implementation both pclk and
			sclk domains are reset.

UART_SRTS

Address: Operational Base + offset (0x008c) Shadow Request to Send

Bit	Attr	Reset Value	Description
31:1	RO	0x0	reserved
0		0×0	shadow_req_to_send
			Shadow Request to Send.
	RW		This is a shadow register for the RTS bit
0	RVV		(MCR[1]), this can be used to remove the
			burden of having to performing a
			read-modify-write on the MCR.

UART_SBCR

Address: Operational Base + offset (0x0090) Shadow Break Control Register

Bit	Attr	Reset Value	Description
31:1	RO	0x0	reserved
		0×0	shadow_break_ctrl
			Shadow Break Control Bit.
0	RW		This is a shadow register for the Break bit
0			(LCR[6]), this can be used to remove the
			burden of having to performing a read modify
			write on the LCR.

UART_SDMAM

Address: Operational Base + offset (0x0094) Shadow DMA Mode

Bit	Attr	Reset Value	Description
31:1	RO	0x0	reserved
	RW	0x0	shadow_dma_mode
0			Shadow DMA Mode.
0			This is a shadow register for the DMA mode bit
			(FCR[3]).

UART_SFE

Address: Operational Base + offset (0x0098)

Shadow FIFO Enable

Bit	Attr	Reset Value	Description
31:1	RO	0x0	reserved
		W 0×0	shadow_fifo_en
0	RW		Shadow FIFO Enable.
0	RW		Shadow FIFO Enable. This is a shadow register
			for the FIFO enable bit (FCR[0]).

UART_SRT

Address: Operational Base + offset (0x009c) Shadow RCVR Trigger

Bit	Attr	Reset Value	Description
31:1	RO	0x0 reserved	
		0×0	shadow_rcvr_trigger
1:0	RW		Shadow RCVR Trigger.
1.0	K VV		This is a shadow register for the RCVR trigger
			bits (FCR[7:6]).

UART_STET

Address: Operational Base + offset (0x00a0) Shadow TX Empty Trigger

Bit	Attr	Reset Value	Description
31:1	RO	0x0	reserved
		0×0	shadow_tx_empty_trigger
1:0	RW		Shadow TX Empty Trigger.
1.0	K V V		This is a shadow register for the TX empty
			trigger bits (FCR[5:4]).

UART_HTX

Address: Operational Base + offset (0x00a4) Halt TX

Bit	Attr	Reset Value	Description
31:1	RO	0x0	reserved
			halt_tx_en
			This register is use to halt transmissions for
			testing, so that the transmit FIFO can be filled
0	RW	0x0	by the master when FIFOs are implemented
			and enabled.
			1'b0: Halt TX disabled
			1'b1: Halt TX enabled

UART_DMASA

Address: Operational Base + offset (0x00a8) DMA Software Acknowledge

Bit	Attr	Reset Value	Description	
31:1	RO	0x0	reserved	

Bit	Attr	Reset Value	Description
		0×0	dma_software_ack
0	wo		This register is use to perform a DMA software
0	WO		acknowledge if a transfer needs to be
			terminated due to an error condition.

UART_UCV

Address: Operational Base + offset (0x00f8)

UART Component Version

Bit	Attr	Reset Value	Description
31:0	RO	0x3330382a	ver ASCII value for each number in the version

UART_CTR

Address: Operational Base + offset (0x00fc) Component Type Register

Bit	Attr	Reset Value	Description
31:0	RO	0x44570110	peripheral_id This register contains the peripherals identification code.

16.5 Interface description

Table 16-1 UART Interface Description

Madula nin	Module pin Direction Pad name IOMUX						
Module pli	Direction	Paulianie	ΙΟΜUΧ				
	UART_BT Interface						
uartbt_sin	Ι	GPIO4_C[0]	GPIO1A_IOMUX[0]=1				
uartbt_sout	0	GPIO4_C[1]	GPIO1A_IOMUX[2]=1				
uartbt_cts_n	Ι	GPIO4_C[2]	GPIO1A_IOMUX[4]=1				
uartbt_rts_n	0	GPIO4_C[3]	GPIO1A_IOMUX[6]=1				
		UART_BB Interfa	ace				
uartbb_sin	I	GPIO5_B[0]	GPIO1A_IOMUX[1:0]=01				
uartbb_sout	0	GPIO5_B[1]	GPIO1A_IOMUX[3:2]=01				
uartbb_cts_n	Ι	GPIO5_B[2]	GPIO1A_IOMUX[5:4]=01				
uartbb_rts_n	0	GPIO5_B[3]	GPIO1A_IOMUX[7:6]=01				
		UART_DBG Inter	face				
uartdbg_sin	Ι	GPIO7_C[6]	GPIO7CH_IOMUX[9:8]=01				
uartdbg_sout	0	GPIO7_C[7]	GPIO7CH_IOMUX[14:12]=001				
uartdbg_sirsin	Ι	GPIO7_C[6]	GPIO7CH_IOMUX[9:8]=10				
Uartdbg_sirout	0	GPIO7_C[7]	GPIO7CH_IOMUX[14:12]=010				
		UART_GPS Inter	face				
uartgps_sin	Ι	GPIO7_A[7]	GPIO7A_IOMUX[15:14]=01				
uartgps_sout	0	GPIO7_B[0]	GPIO7B_IOMUX[1:0]=01				
uartgps_cts_n	Ι	GPIO7_B[1]	GPIO7B_IOMUX[3:2]=01				
uartgps_rts_n	0	GPIO7_B[2]	GPIO7B_IOMUX[5:4]=01				
		UART_EXP Interf	ace				
uartexp_sin	Ι	GPIO5_B[7]	GPIO5B_IOMUX[15:14]=11				
uartexp_sout	0	GPIO5_B[6]	GPIO5B_IOMUX[13:12]=11				
uartexp_cts_n	Ι	GPIO5_B[4]	GPIO5B_IOMUX[9:8]=11				
uartexp_rts_n	0	GPIO5_B[5]	GPIO5B_IOMUX[11:10]=11				

16.6 Application Notes

16.6.1 None FIFO Mode Transfer Flow

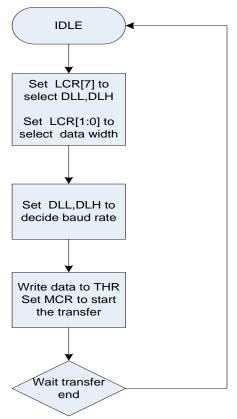


Fig. 16-8 UART none fifo mode

16.6.2 FIFO Mode Transfer Flow

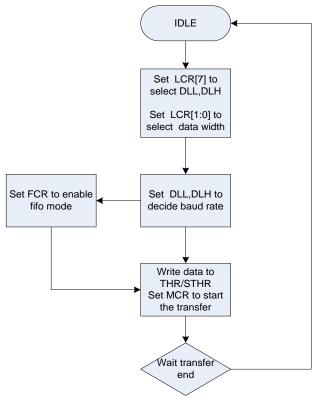


Fig. 16-9 UART fifo mode

The UART is an APB slave performing:

Serial-to-parallel conversion on data received from a peripheral device.

Parallel-to-serial conversion on data transmitted to the peripheral device.

The CPU reads and writes data and control/status information through the APB interface. The transmitting and receiving paths are buffered with internal FIFO memories enabling up to 64-bytes to be stored independently in both transmit and receive modes. A baud rate generator can generate a common transmit and receive internal clock input. The baud rates will depend on the internal clock frequency. The UART will also provide transmit, receive and exception interrupts to system. A DMA interface is implemented for improving the system performance.

16.6.3 Baud Rate Calculation

UART clock generation

The following figures shows the UART clock generation.

UART source clocks can be selected from CODEC PLL and GENERAL PLL outputs. UART_BT source clocks can also be selected from NEW PLL and USBPHY 480M. UART clocks can be generated by 1 to 64 division of its source clock, or can be fractionally divided again, or be provided by XIN24M.

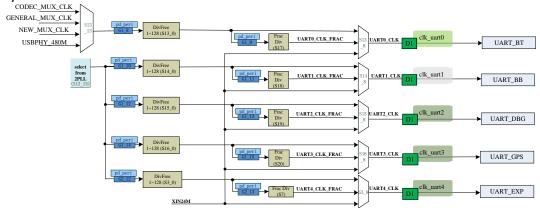


Fig. 16-10 UART clock generation

UART baud rate configuration

The following table provides some reference configuration for different UART baud rates.

Baud Rate	Table 16-2 UART baud rate configuration Reference Configuration
115.2 Kbps	Configure GENERAL PLL to get 648MHz clock output;
112.2 Kbps	Divide 648MHz clock by 1152/50625 to get 14.7456MHz clock;
	Config UART_DLL to 8.
460.8 Kbps	Configure GENERAL PLL to get 648MHz clock output;
400.0 1005	Divide 648MHz clock by 1152/50625 to get 14.7456MHz clock;
	Configure UART DLL to 2.
921.6 Kbps	Configure GENERAL PLL to get 648MHz clock output;
•	Divide 648MHz clock by 1152/50625 to get 14.7456MHz clock;
	Configure UART_DLL to 1.
1.5 Mbps	Choose GENERAL PLL to get 384MHz clock output;
	Divide 384MHz clock by 16 to get 24MHz clock;
	Configure UART_DLL to 1
3 Mbps	Choose GENERAL PLL to get 384MHz clock output;
	Divide 384MHz clock by 8 to get 48MHz clock;
	Configure UART_DLL to 1
4 Mbps	Configure GENERAL PLL to get 384MHz clock output;
	Divide 384MHz clock by 6 to get 64MHz clock;
	Configure UART_DLL to 1

Table 16-2 HART band rate configuration

16.6.4 CTS_n and RTS_n Polarity Configurable

The polarity of cts_n and rts_n ports can be configured by GRF registers.

GRF_SOC_CON13[4:0] (grf_uart_cts_sel[4:0]) used to configure the polarity of cts_n. Every bit for one UART, bit4 is for UART_EXP, bit3 is for UART_GPS, bit2 is for UART_DBG, bit1 is for UART_BB, bit0 is for UART_BT.

GRF_SOC_CON13[9:5] (grf_uart_rts_sel[4:0]) used to configure the polarity of rts_n. Every bit for one UART, bit4 is for UART_EXP, bit3 is for UART_GPS, bit2 is for UART_DBG, bit1 is for UART_BB, bit0 is for UART_BT.

When grf_uart_cts_sel[*] is configured as 1'b1, cts_n is high active. Otherwise, low active. When grf_uart_rts_sel[*] is configured as 1'b1, rts_n is high active. Otherwise, low active.

Chapter 17 GPIO

17.1 Overview

GPIO is a programmable General Purpose Programming I/O peripheral. This component is an APB slave device. GPIO controls the output data and direction of external I/O pads. It also can read back the data on external pads using memory-mapped registers.

GPIO supports the following features:

- 32 bits APB bus width
- 32 independently configurable signals
- Separate data registers and data direction registers for each signal
- Software control for each signal, or for each bit of each signal
- Configurable interrupt mode

17.2 Block Diagram

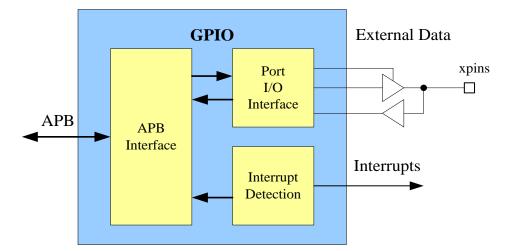


Fig. 17-1 GPIO block diagram

Block descriptions:

APB Interface

The APB Interface implements the APB slave operation. Its data bus width is 32 bits.

Port I/O Interface

External data Interface to or from I/O pads.

Interrupt Detection

Interrupt interface to or from interrupt controller.

17.3 Function description

17.3.1 Operation

Control Mode (software)

Under software control, the data and direction control for the signal are sourced from the data

register (GPIO_SWPORTA_DR) and direction control register (GPIO_SWPORTA_DDR).

The direction of the external I/O pad is controlled by a write to the Porta data direction register (GPIO_SWPORTA_DDR). The data written to this memory- mapped register gets mapped onto an output signal, GPIO_PORTA_DDR, of the GPIO peripheral. This output signal controls the direction of an external I/O pad.

The data written to the Porta data register (GPIO_SWPORTA_DR) drives the output buffer of the I/O pad. External data are input on the external data signal, GPIO_EXT_PORTA. Reading the external signal register (GPIO_EXT_PORTA) shows the value on the signal, regardless of the direction. This register is read-only, meaning that it cannot be written from the APB software interface.

Reading External Signals

The data on the GPIO_EXT_PORTA external signal can always be read. The data on the external GPIO signal is read by an APB read of the memory-mapped register, GPIO_EXT_PORTA.

An APB read to the GPIO_EXT_PORTA register yields a value equal to that which is on the GPIO_EXT_PORTA signal.

Interrupts

Port A can be programmed to accept external signals as interrupt sources on any of the bits of the signal. The type of interrupt is programmable with one of the following settings:

- Active-high and level
- Active-low and level
- Rising edge
- Falling edge

The interrupts can be masked by programming the GPIO_INTMASK register. The interrupt status can be read before masking (called raw status) and after masking.

The interrupts are combined into a single interrupt output signal, which has the same polarity as the individual interrupts. In order to mask the combined interrupt, all individual interrupts have to be masked. The single combined interrupt does not have its own mask bit.

Whenever Port A is configured for interrupts, the data direction must be set to Input. If the data direction register is reprogrammed to Output, then any pending interrupts are not lost. However, no new interrupts are generated.

For edge-detected interrupts, the ISR can clear the interrupt by writing a 1 to the GPIO_PORTA_EOI register for the corresponding bit to disable the interrupt. This write also clears the interrupt status and raw status registers. Writing to the GPIO_PORTA_EOI register has no effect on level-sensitive interrupts. If level-sensitive interrupts cause the processor to interrupt, then the ISR can poll the GPIO_INT_RAWSTATUS register until the interrupt source disappears, or it can write to the GPIO_INTMASK register to mask the interrupt before exiting the ISR. If the ISR exits without masking or disabling the interrupt prior to exiting, then the level-sensitive interrupt until the interrupt is cleared at the source.

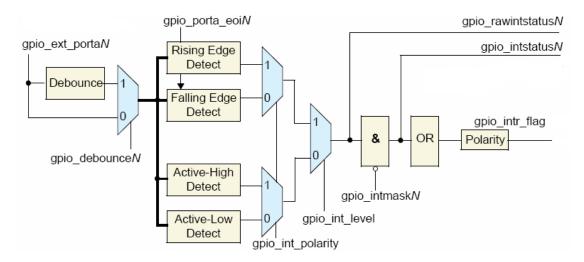


Fig. 17-2 GPIO Interrupt RTL Block Diagram

Debounce operation

Port A has been configured to include the debounce capability interrupt feature. The external signal can be debounced to remove any spurious glitches that are less than one period of the external debouncing clock.

When input interrupt signals are debounced using a debounce clock (pclk), the signals must be active for a minimum of two cycles of the debounce clock to guarantee that they are registered. Any input pulse widths less than a debounce clock period are bounced. A pulse width between one and two debounce clock widths may or may not propagate, depending on its phase relationship to the debounce clock. If the input pulse spans two rising edges of the debounce clock, it is registered. If it spans only one rising edge, it is not registered.

Synchronization of Interrupt Signals to the System Clock

Interrupt signals are internally synchronized to pclk. Synchronization to pclk must occur for edge-detect signals. With level-sensitive interrupts, synchronization is optional and under software control (GPIO_LS_SYNC).

17.3.2 Programming

Programming Considerations

- Reading from an unused location or unused bits in a particular register always returns zeros. There is no error mechanism in the APB.
- Programming the GPIO registers for interrupt capability, edge-sensitive or level-sensitive interrupts, and interrupt polarity should be completed prior to enabling the interrupts on Port A in order to prevent spurious glitches on the interrupt lines to the interrupt controller.
- Writing to the interrupt clear register clears an edge-detected interrupt and has no effect on alevel-sensitive interrupt.

9 GPIOs' hierarchy in the chip

GPIO0 is in PD_PMU subsystem, GPIO1~8 are in PD_ALIVE subsystem.

17.4 Register Description

This section describes the control/status registers of the design. Software should read and write these registers using 32-bits accesses. There are 9 GPIOs (GPIO0 ~ GPIO8), and each of them has same register group. Therefore, 9 GPIOs' register groups have 9 different base

address.

17.4.1 Registers Summary

Name	Offset	Size	Reset Value	Description	
GPIO_SWPORTA_DR	0x0000	W	0x0000000	Port A data register	
GPIO_SWPORTA_DD R	0x0004	W	0x00000000	Port A data direction register	
GPIO_INTEN	0x0030	W	0x0000000	Interrupt enable register	
GPIO_INTMASK	0x0034	W	0x0000000	Interrupt mask register	
GPIO_INTTYPE_LEVE L	0x0038	W	0x00000000	Interrupt level register	
GPIO_INT_POLARITY	0x003c	W	0x0000000	Interrupt polarity register	
GPIO_INT_STATUS	0x0040	W	0x0000000	Interrupt status of port A	
GPIO_INT_RAWSTAT US	0x0044	W	0x00000000	Raw Interrupt status of port A	
GPIO_DEBOUNCE	0x0048	W	0x0000000	Debounce enable register	
GPIO_PORTA_EOI	0x004c	W	0x0000000	Port A clear interrupt register	
GPIO_EXT_PORTA	0x0050	W	0x0000000	Port A external port register	
GPIO_LS_SYNC	0x0060	w	0×00000000	Level_sensitive synchronization enable register	
<u>Size</u> : B - Byte (8 bits)	access.	HW	- Half WORD	(16 bits) access, W -WORD (

Notes: <u>Size</u> : **B** - Byte (8 bits) access, **HW** - Half WORD (16 bits) access, **W** -WORD (32 bits) access

17.4.2 Detail Register Description

GPIO_SWPORTA_DR

Address: Operational Base + offset (0x0000) Port A data register

Bit	Attr	Reset Value	Description
31:0	RW	0×00000000	gpio_swporta_dr Values written to this register are output on the I/O signals for Port A if the corresponding data direction bits for Port A are set to Output mode.The value read back is equal to the last value written to this register.

GPIO_SWPORTA_DDR

Address: Operational Base + offset (0x0004) Port A data direction register

Bit Attr Reset Value Description				
	Bit	Attr	Reset Value	Description

Bit	Attr	Reset Value	Description
31:0	RW		gpio_swporta_ddr Values written to this register independently control the direction of the corresponding data bit in Port A. 1'b0: Input (default) 1'b1: Output

GPIO_INTEN

Address: Operational Base + offset (0x0030) Interrupt enable register

Bit	Attr	Reset Value	Description
31:0	RW	0×0000000	gpio_int_en Allows each bit of Port A to be configured for interrupts. Whenever a 1 is written to a bit of this register, it configures the corresponding bit on Port A to become an interrupt; otherwise, Port A operates as a normal GPIO signal. Interrupts are disabled on the corresponding bits of Port A if the corresponding data direction register is set to Output. 1'b0: Configure Port A bit as normal GPIO signal (default) 1'b1: Configure Port A bit as interrupt

GPIO_INTMASK

Address: Operational Base + offset (0x0034) Interrupt mask register

Bit	Attr	Reset Value	Description
31:0	RW	0×00000000	<pre>gpio_int_mask Controls whether an interrupt on Port A can create an interrupt for the interrupt controller by not masking it. Whenever a 1 is written to a bit in this register, it masks the interrupt generation capability for this signal; otherwise interrupts are allowed through. 1'b0: Interrupt bits are unmasked (default) 1'b1: Mask interrupt</pre>

GPIO_INTTYPE_LEVEL

Address: Operational Base + offset (0x0038)

Interrupt level register

Bit Attr Reset Value	Description
----------------------	-------------

Bit	Attr	Reset Value	Description
			gpio_inttype_level
			Controls the type of interrupt that can occur
31:0	RW	0x0000000	on Port A.
			1'b0: Level-sensitive (default)
			1'b1: Edge-sensitive

GPIO_INT_POLARITY

Address: Operational Base + offset (0x003c) Interrupt polarity register

Bit	Attr	Reset Value	Description
			gpio_int_polarity
			Controls the polarity of edge or level
31:0	RW	0x00000000	sensitivity that can occur on input of Port A.
			1'b0: Active-low (default)
			1'b1: Active-high

GPIO_INT_STATUS

Address: Operational Base + offset (0x0040) Interrupt status of port A

Bit	Attr	Reset Value	Description
31:0	RO	0x00000000	gpio_int_status Interrupt status of Port A
			Interrupt status of Port A

GPIO_INT_RAWSTATUS

Address: Operational Base + offset (0x0044) Raw Interrupt status of port A

Bit	Attr	Reset Value	Description
31:0	RO		gpio_int_rawstatus Raw interrupt of status of Port A (premasking bits

GPIO_DEBOUNCE

Address: Operational Base + offset (0x0048) Debounce enable register

Bit Attr Reset Value Description

Bit	Attr	Reset Value	Description
31:0	RW	0×00000000	<pre>gpio_debounce Controls whether an external signal that is the source of an interrupt needs to be debounced to remove any spurious glitches. Writing a 1 to a bit in this register enables the debouncing circuitry. A signal must be valid for two periods of an external clock before it is internally processed. 1'b0: No debounce (default) 1'b1: Enable debounce</pre>

GPIO_PORTA_EOI

Address: Operational Base + offset (0x004c) Port A clear interrupt register

Bit	Attr	Reset Value	Description
31:0	wo	0×00000000	gpio_porta_eoi Controls the clearing of edge type interrupts from Port A. When a 1 is written into a corresponding bit of this register, the interrupt is cleared. All interrupts are cleared when Port A is not configured for interrupts. 1'b0: No interrupt clear (default) 1'b1: Clear interrupt

GPIO_EXT_PORTA

Address: Operational Base + offset (0x0050) Port A external port register

Bit	Attr	Reset Value	Description
31:0	RO	0×00000000	gpio_ext_porta When Port A is configured as Input, then reading this location reads the values on the signal. When the data direction of Port A is set as Output, reading this location reads the data register for Port A.

GPIO_LS_SYNC

Address: Operational Base + offset (0x0060) Level_sensitive synchronization enable register

Bit	Attr	Reset Value	Description
31:1	RO	0x0	reserved

Bit	Attr	Reset Value	Description
0	RW	0×0	gpio_ls_sync Writing a 1 to this register results in all
			level-sensitive interrupts being synchronized to pclk_intr.
			1'b0: No synchronization to pclk_intr (default)
			1'b1: Synchronize to pclk_intr

17.5 Interface description

Table 17-1 GPIO interface description						
Module Pin	Dir	Pad Name	IOMUX Setting			
	GPIO0 Interface					
gpio0_porta[7:0]	I/O	GPIO0_A[7:0]	GRF_GPIO0A_IOMUX[15:0]=16'h0000			
gpio0_porta[15:8]	I/O	GPIO0_B[7:0]	GRF_GPIO0B_IOMUX[15:0]=16'h0000			
gpio0_porta[23:16]	I/O	GPIO0_C[7:0]	GRF_GPIO0C_IOMUX[15:0]=16'h0000			
gpio0_porta[31:24]	I/O	GPIO0_D[7:0]	GRF_GPIO0D_IOMUX[15:0]=16'h0000			
	-	GPIO1 Interfa	ace			
gpio1_porta[7:0]	I/O	GPIO1_A[7:0]	GRF_GPIO1A_IOMUX[15:0]=16'h0000			
gpio1_porta[15:8]	I/O	GPIO1_B[7:0]	GRF_GPIO1B_IOMUX[15:0]=16'h0000			
gpio1_porta[23:16]	I/O	GPIO1_C[7:0]	GRF_GPIO1C_IOMUX[15:0]=16'h0000			
gpio1_porta[31:24]	I/O	GPIO1_D[7:0]	GRF_GPIO1D_IOMUX[15:0]=16'h0000			
		GPIO2 Interfa	ace			
gpio2_porta[7:0]	I/O	GPIO2_A[7:0]	GRF_GPIO2A_IOMUX[15:0]=16'h0000			
gpio2_porta[15:8]	I/O	GPIO2_B[7:0]	GRF_GPIO2B_IOMUX[15:0]=16'h0000			
gpio2_porta[23:16]	I/O	GPIO2_C[7:0]	GRF_GPIO2C_IOMUX[15:0]=16'h0000			
gpio2_porta[31:24]	I/O	GPIO2_D[7:0]	GRF_GPIO2D_IOMUX[15:0]=16'h0000			
GPIO3 Interface						
gpio3_porta[7:0]	I/O	GPIO3_A[7:0]	GRF_GPIO3A_IOMUX[15:0]=16'h0000			
gpio3_porta[15:8]	I/O	GPIO3_B[7:0]	GRF_GPIO3B_IOMUX[15:0]=16'h0000			
gpio3_porta[23:16]	I/O	GPIO3_C[7:0]	GRF_GPIO3C_IOMUX[15:0]=16'h0000			
gpio3_porta[31:24]	I/O	GPIO3_D[7:0]	GRF_GPIO3D_IOMUX[15:0]=16'h0000			

17.6 Application Notes

Steps to set GPIO's direction

Write GPIO_SWPORT_DDR[x] as 1 to set this gpio as output direction and Write GPIO_SWPORT_DDR[x] as 0 to set this gpio as input direction. Default GPIO's direction is input direction.

Steps to set GPIO's level

Write GPIO_SWPORT_DDR[x] as 1 to set this gpio as output direction. Write GPIO_SWPORT_DR[x] as v to set this GPIO's value.

Steps to get GPIO's level

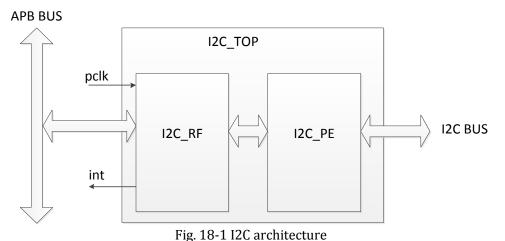
Write GPIO_SWPORT_DDR[x] as 0 to set this gpio as input direction. Read from GPIO_EXT_PORT[x] to get GPIO's value

Steps to set GPIO as interrupt source

Write GPIO_SWPORT_DDR[x] as 0 to set this gpio as input direction. Write GPIO_INTTYPE_LEVEL[x] as v1 and write GPIO_INT_POLARITY[x] as v2 to set interrupt type Write GPIO_INTEN[x] as 1 to enable GPIO's interrupt

Note: Please switch iomux to GPIO mode first!

Chapter 18 I2C Interface


18.1 Overview

The Inter-Integrated Circuit (I2C) is a two wired (SCL and SDA), bi-directional serial bus that provides an efficient and simple method of information exchange between devices. This I2C bus controller supports master mode acting as a bridge between AMBA protocol and generic I2C bus system.

I2C Controller supports the following features:

- Item Compatible with I2C-bus
- AMBA APB slave interface
- Supports master mode of I2C bus
- Software programmable clock frequency and transfer rate up to 400Kbit/sec
- Supports 7 bits and 10 bits addressing modes
- Interrupt or polling driven multiple bytes data transfer
- Clock stretching and wait state generation
- There are two I2C controller in bus sub-system: I2C PMU, and I2C AUDIO. There are four I2C controller in peripheral sub-system: I2C SENSOR, I2C CAM, I2C_TP, and I2C_HDMI.

18.2 Block Diagram

I2C_RF

I2C_RF module is used to control the I2C controller operation by the host with APB interface. It implements the register set and the interrupt functionality. The CSR component operates synchronously with the pclk clock.

I2C_PE

I2C_PE module implements the I2C master operation for transmit data to and receive data from other I2C devices. The I2C master controller operates synchronously with the pclk. **I2C_TOP**

I2C_TOP module is the top module of the I2C controller.

18.3 Function description

This chapter provides a description about the functions and behavior under various conditions. The I2C controller supports only Master function. It supports the 7-bits/10-bits addressing mode and support general call address. The maximum clock frequency and transfer rate can be up to 400Kbit/sec.

The operations of I2C controller is divided to 2 parts and described separately: initialization and master mode programming.

18.3.1 Initialization

The I2C controller is based on AMBA APB bus architecture and usually is part of a SOC. So before I2C operates, some system setting & configuration must be conformed, which includes:

• I2C interrupt connection type: CPU interrupt scheme should be considered. If the I2C

interrupt is connected to extra Interrupt Controller module, we need decide the INTC vector.

• I2C Clock Rate: The I2C controller uses the APB clock as the system clock so the APB clock will determine the I2C bus clock. The correct register setting is subject to the system requirement.

18.3.2 Master Mode Programming

1. SCL Clock: When the I2C controller is programmed in Master mode, the SCL frequency is determine by I2C_CLKDIV register. The SCL frequency is calculated by the following formula: SCL Divisor = 8*(CLKDIVL + 1 + CLKDIVH + 1)

SCL = PCLK/ SCLK Divisor

2. Data Receiver Register Access

When the i2c controller received MRXCNT bytes data, CPU can get the datas through register RXDATA0 ~ RXDATA7. The controller can receive up to 32 byte data in one transaction. When MRXCNT register is written, the I2C controller will start to drive SCL to receive data.

3. Transmit Trasmitter Register

Data to transmit are written to TXDATA0~7 by CPU. The controller can transmit up to 32 byte data in one transaction. The lower byte will be transmitted first.

When MTXCNT register is written, the I2C controller will start to transmit data.

4. Start Command

Write 1 to I2C_CON[3], the controller will send I2C start command.

5. Stop Command

Write 1 to I2C_CON[4], the controller will send I2C stop command

6. I2C Operation mode

There are four i2c operation modes.

When I2C_CON[2:1] is 2'b00, the controller transmit all valid data in TXDATA0~TXDATA7 byte by byte. The controller will transmit lower byte first.

When I2C_CON[2:1] is 2'b01, the controller will transmit device address in MRXADDR first (Write/Read bit = 0) and then transmit device register address in MRXRADDR. After that, the controller will assert restart signal and resend MRXADDR (Write/Read bit = 1). At last, the controller enter receive mode.

When I2C_CON[2:1] is 2'b10, the controller is in receive mode, it will triggered clock to read MRXCNT byte data.

When I2C_CON[2:1] is 2'b11, the controller will transmit device address in MRXADDR first (Write/Read bit = 1) and then transmit device register address in MRXRADDR . After that, the controller will assert restart signal and resend MRXADDR (Write/Read bit = 1). At last, the controller enter receive mode.

7. Read/Write Command

When I2C_OPMODE(I2C_CON[2:1]) is 2'b01 or 2'b11, the Read/Write command bit is decided by controller itself.

In RX only mode (I2C_CON[2:1] is 2'b10), the Read/Write command bit is decided by MRXADDR[0].

In TX only mode (I2C_CON[[2:1] is 2'b00), the Read/Write command bit is decided by TXDATA[0].

8. Master Interrupt Condition

There are 7 interrupt bits in I2C_ISR register related to master mode.

Byte transmitted finish interrupt (Bit 0): The bit is asserted when Master complete transmitting a byte.

Byte received finish interrupt (Bit 1): The bit is asserted when Master complete receiving a byte.

MTXCNT bytes data transmitted finish interrupt (Bit 2): The bit is asserted when Master complete transmitting MTXCNT bytes.

MRXCNT bytes data received finish interrupt (Bit 3): The bit is asserted when Master complete receiving MRXCNT bytes.

Start interrupt (Bit 4): The bit is asserted when Master finish asserting start command to I2C bus.

Stop interrupt (Bit 5): The bit is asserted when Master finish asserting stop command to I2C

bus.

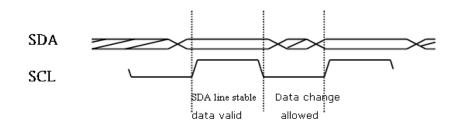
NAK received interrupt (Bit 6): The bit is asserted when Master received a NAK handshake. **9. Last byte acknowledge control**

If I2C_CON[5] is 1, the I2C controller will transmit NAK handshake to slave when the last byte received in RX only mode.

If I2C_CON[5] is 0, the I2C controller will transmit ACK handshake to slave when the last byte received in RX only mode.

10. How to handle nak handshake received

If I2C_CON[6] is 1, the I2C controller will stop all transactions when NAK handshake received. And the software should take responsibility to handle the problem.


If I2C_CON[6] is 0, the I2C controller will ignore all NAK handshake received.

11. I2C controller data transfer waveform

Bit transferring

(a) Data Validity

The SDA line must be stable during the high period of SCL, and the data on SDA line can only be changed when SCL is in low state.

Fig. 18-2 I2C DATA Validity

(b) START and STOP conditions

START condition occurs when SDA goes low while SCL is in high period. STOP condition is generated when SDA line goes high while SCL is in high state.

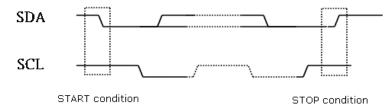


Fig. 18-3 I2C Start and stop conditions

Data transfer

(a) Acknowledge

After a byte of data transferring (clocks labeled as 1~8), in 9th clock the receiver must assert an ACK signal on SDA line, if the receiver pulls SDA line to low, it means "ACK", on the contrary, it's "NOT ACK".

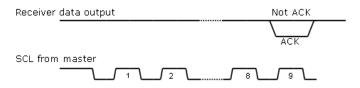


Fig. 18-4 I2C Acknowledge

(b) Byte transfer

The master own I2C bus might initiate multi byte to transfer to a slave. The transfer starts from a "START" command and ends in a "STOP" command. After every byte transfer, the receiver must reply an ACK to transmitter.

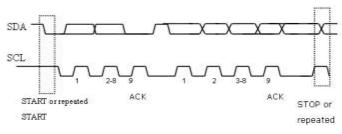


Fig. 18-5 I2C byte transfer

18.4 Register Description

This section describes the control/status registers of the design.

18.4.1 Registers Summary

Name	Offset	Size	Reset Value	Description
I2C_CON	0x0000	W	0x0000000	control register
I2C_CLKDIV	0x0004	W	0x00060006	Clock divisor register
I2C_MRXADDR	0x0008	W	0x00000000	the slave address accessed for master receive mode
I2C_MRXRADDR	0x000c	W	0×00000000	the slave register address accessed for master recevie mode
I2C_MTXCNT	0x0010	W	0x0000000	master transmit count
I2C_MRXCNT	0x0014	W	0x0000000	master receive count
I2C_IEN	0x0018	W	0x0000000	interrupt enable register
I2C_IPD	0x001c	W	0x00000000	interrupt pending register
I2C_FCNT	0x0020	W	0x0000000	finished count
I2C_TXDATA0	0x0100	W	0x0000000	I2C transmit data register 0
I2C_TXDATA1	0x0104	W	0x0000000	I2C transmit data register 1
I2C_TXDATA2	0x0108	W	0x0000000	I2C transmit data register 2
I2C_TXDATA3	0x010c	W	0x0000000	I2C transmit data register 3
I2C_TXDATA4	0x0110	W	0x0000000	I2C transmit data register 4
I2C_TXDATA5	0x0114	W	0x0000000	I2C transmit data register 5
I2C_TXDATA6	0x0118	W	0x0000000	I2C transmit data register 6
I2C_TXDATA7	0x011c	W	0x0000000	I2C transmit data register 7
I2C_RXDATA0	0x0200	W	0x0000000	I2C receive data register 0
I2C_RXDATA1	0x0204	W	0x0000000	I2C receive data register 1
I2C_RXDATA2	0x0208	W	0x00000000	I2C receive data register 2
I2C_RXDATA3	0x020c	W	0x0000000	I2C receive data register 3
I2C_RXDATA4	0x0210	W	0x0000000	I2C receive data register 4
I2C_RXDATA5	0x0214	W	0x0000000	I2C receive data register 5
I2C_RXDATA6	0x0218	W	0x0000000	I2C receive data register 6
I2C_RXDATA7	0x021c			I2C receive data register 7

Notes:<u>Size</u>:**B**- Byte (8 bits) access, **HW**- Half WORD (16 bits) access, **W**-WORD (32 bits) access

18.4.2 Detail Register Description

I2C_CON

Address: Operational Base + offset (0x0000)

control register

Bit	Attr	Reset Value	Description
31:7	RO	0x0	reserved
			act2nak
6	RW	0×0	operation when NAK handshake is received
0		0x0	1'b0: ignored
			1'b1: stop transaction
			ack
		0×0	last byte acknowledge control
5	RW		last byte acknowledge control in master receive
5			mode.
			1′b0: ACK
			1′b1: NAK
			stop
4	W1C	0x0	stop enable
-	WIC	0.0	when this bit is written to 1, I2C will generate stop
			signal. It cleared itself when stop operation ends.
		0x0	start
3	W1C		start enable
5			when this bit is written to 1, I2C will generate start
			signal. It cleared itself when start operation ends.
			i2c_mode
		0x0	2'b00: transmit only
			2'b01: transmit address (device + register address)
2:1	RW		> restart> transmit address -> receive only
2.1			2'b10: receive only
			2'b11: transmit address (device + register address,
			write/read bit is 1)> restart> transmit address
			(device address)> receive data
0	RW	0x0	i2c_en
Ľ			i2c module enable

I2C_CLKDIV

Address: Operational Base + offset (0x0004) Clock divisor register

Bit	Attr	Reset Value	Description
			CLKDIVH
31:16	RW	0x0006	SCL high level clock count
			T (SCL_HIGH) = T(PCLK) * (CLKDIVH +1)* 8
			CLKDIVL
15:0	RW	0x0006	SCL low level clock count
			$T (SCL_LOW) = T(PCLK) * (CLKDIVL+1) * 8$

I2C_MRXADDR

Address: Operational Base + offset (0x0008) the slave address accessed for master receive mode

Bit	Attr	Reset Value	Description
31:27	RO	0x0	reserved
26		0.20	addh∨ld
26	RW	0x0	address high byte valid
25			addmvld
25	RW	0x0	address middle byte valid
24		0x0	addlvld
24	RW	UXU	address low byte valid
			saddr
23:0	RW	0x000000	master address register
			the lowest bit indicate write or read

I2C_MRXRADDR

Address: Operational Base + offset (0x000c) the slave register address accessed for master receive mode

Bit	Attr	Reset Value	Description
31:27	RO	0x0	reserved
26	RW	0x0	sraddhvld
20	RW	UXU	address high byte valid
25	RW	0x0	sraddmvld
25	RVV	0.00	address middle byte valid
24	RW	0.20	sraddlvld
24	RVV	0x0	address low byte valid
22.0	23:0 RW 0x0	0,000000	sraddr
23.0		0×000000	slave register address accessed

I2C_MTXCNT

Address: Operational Base + offset (0x0010) master transmit count

Bit	Attr	Reset Value	Description
31:6	RO	0x0	reserved
5:0		mtxcnt	
5.0	RW	0x00	master transmit count

I2C_MRXCNT

Address: Operational Base + offset (0x0014) master receive count

Bit	Attr	Reset Value	Description
31:6	RO	0x0	reserved
5:0	DW 000	mrxcnt	
5.0	RW	0x00	master receive count

I2C_IEN

Address: Operational Base + offset (0x0018) interrupt enable register

Bit	Attr	Reset Value	Description
31:7	RO	0x0	reserved
6	RW	0x0	nakrcvien
0		0.00	NAK handshake received interrupt enable
5	RW	0x0	stopien
5		0.00	stop operation finished interrupt enable
4	RW	0x0	startien
4		0.00	start operation finished interrupt enable
3	RW	0x0	mbrfien
5			MRXCNT data received finished interrupt enable
2	RW	0x0	mbtfien
2	RVV	UXU	MTXCNT data transmit finished interrupt enable
1		0.40	brfien
1	RW	0x0	byte receive finished interrupt enable
0		0.0	btfien
0	RW	0x0	byte transmit finished interrupt enable

I2C_IPD

Address: Operational Base + offset (0x001c) interrupt pending register

Bit	Attr	Reset Value	Description
31:7	RO	0x0	reserved
6	RW	0.20	nakrcvipd
0	RW	0x0	NAK handshake received interrupt pending bit
5		0.20	stopipd
5	RW	0x0	stop operation finished interrupt pending bit
4	RW	0x0	startipd
4	r vv	0.00	start operation finished interrupt pending bit
3		00	mbrfipd
3	RW	0x0	MRXCNT data received finished interrupt pending bit
2		0.40	mbtfipd
2	RW	0x0	MTXCNT data transmit finished interrupt pending bit
1	RW	00	brfipd
T	K VV	0x0	byte receive finished interrupt pending bit
0	RW	0x0	btfipd
0	r. vv	UXU	byte transmit finished interrupt pending bit

I2C_FCNT

Address: Operational Base + offset (0x0020) finished count

Bit	Attr	Reset Value	Description
31:6	RO	0x0	reserved

Bit	Attr	Reset Value	Description
			fcnt
			finished count
5:0	RW	0x00	the count of data which has been transmitted or
			received
			for debug purpose

I2C_TXDATA0

Address: Operational Base + offset (0x0100) I2C transmit data register 0

Bit	Attr	Reset Value	Description
31:0	RW	0x0000000	txdata0

I2C_TXDATA1

Address: Operational Base + offset (0x0104) I2C transmit data register 1

Bit	Attr	Reset Value	Description
31:0	RW	0x0000000	txdata1

I2C_TXDATA2

Address: Operational Base + offset (0x0108) I2C transmit data register 2

Bit	Attr	Reset Value	Description
31:0	RW	0x0000000	txdata2

I2C_TXDATA3

Address: Operational Base + offset (0x010c) I2C transmit data register 3

Bit	Attr	Reset Value	Description
31:0	RW	0x00000000	txdata3

I2C_TXDATA4

Address: Operational Base + offset (0x0110) I2C transmit data register 4

Bit	Attr	Reset Value	Description
31:0	RW	0x0000000	txdata4

I2C_TXDATA5

Address: Operational Base + offset (0x0114) I2C transmit data register 5

Bit	Attr	Reset Value	Description
31:0	RW	0x0000000	txdata5

I2C_TXDATA6

Address: Operational Base + offset (0x0118)

I2C transmit data register 6

Bit	Attr	Reset Value	Description
31:0	RW	0x00000000	txdata6

I2C_TXDATA7

Address: Operational Base + offset (0x011c) I2C transmit data register 7

Bit	Attr	Reset Value	Description
31:0	RW	0x00000000	txdata7

I2C_RXDATA0

Address: Operational Base + offset (0x0200) I2C receive data register 0

Bit	Attr	Reset Value	Description
31:0	RO	0x00000000	rxdata0

I2C_RXDATA1

Address: Operational Base + offset (0x0204) I2C receive data register 1

Bit	Attr	Reset Value	Description
31:0	RO	0x0000000	rxdata1

I2C_RXDATA2

Address: Operational Base + offset (0x0208)

I2C receive data register 2

Bit	Attr	Reset Value	Description
31:0	RO	0x0000000	rxdata2

I2C_RXDATA3

Address: Operational Base + offset (0x020c) I2C receive data register 3

Bit	Attr	Reset Value	Description
31:0	RO	0x0000000	rxdata3

I2C_RXDATA4

Address: Operational Base + offset (0x0210) I2C receive data register 4

Bit	Attr	Reset Value	Description
31:0	RO	0x0000000	rxdata4

I2C_RXDATA5

Address: Operational Base + offset (0x0214)

I2C receive data register 5

Bit	Attr	Reset Value	Description
31:0	RO	0x00000000	rxdata5

I2C_RXDATA6

Address: Operational Base + offset (0x0218) I2C receive data register 6

Bit	Attr	Reset Value	Description
31:0	RO	0x00000000	rxdata6

I2C_RXDATA7

Address: Operational Base + offset (0x021c) I2C receive data register 7

Bit	Attr	Reset Value	Description
31:0	RO	0x0000000	rxdata7

18.5 Interface description

Table 18-1 I2C Interface Description

Module pin	Direction	Pad name	ΙΟΜUΧ
		I2C PMU Interfac	e
i2c_pmu_sda	I/O	IO_I2C0PMUsda_P MUgpio0b7	GRF_GPIO0B_IOMUX[14]=1
i2c_pmu_scl	I/O	IO_I2C0PMUscl_P MUgpio0c0	GRF_GPIO0C_IOMUX[0]=1
	•	I2C SENSOR Interf	ace
i2c_sensor_sda	I/O	IO_I2C1SENSORsd a_SCrst_GPIO1830 gpio8a4	GRF_GPIO8A_IOMUX[9:8]=01
i2c_sensor_scl	I/O	IO_I2C1SENSORsc I_SCclk_GPIO1830 gpio8a5	GRF_GPIO8A_IOMUX[11:10]=01
		I2C AUDIO Interfa	ice
i2c_audio_sda	I/O	IO_I2C2AUDIOsda _AUDIOgpio6b1	GRF_GPIO6B_IOMUX[2]=1
i2c_audio_scl	I/O	IO_I2C2AUDIOscl_ AUDIOgpio6b2	GRF_GPIO6B_IOMUX[4]=1
		I2C CAM Interfac	e
i2c_cam_sda	I/O	IO_I2C3CAMsda_D VPgpio2c1	GRF_GPIO2C_IOMUX[2]=1
i2c_cam_scl	I/O	IO_I2C3CAMscl_D VPgpio2c0	GRF_GPIO2C_IOMUX[0]=1
		I2C TP Interface	
i2c_tp_sda	I/O	IO_I2C4TPsda_GPI O30gpio7c1	GRF_GPIO7CL_IOMUX[4]=1
i2c_tp_scl	I/O	IO_I2C4TPscl_GPI O30gpio7c2	GRF_GPIO7CL_IOMUX[8]=1
		I2C HDMI Interfac	ce
i2c_hdmi_sda	I/O	IO_I2C5HDMIsda_ EDPHDMII2Csda_G PIO30gpio7c3	GRF_GPIO7CL_IOMUX[13:12]=01
i2c_hdmi_scl	I/O	IO_I2C5HDMIscl_E DPHDMII2Cscl_GPI 030gpio7c4	GRF_GPIO7CH_IOMUX[1:0]=01

18.6 Application Notes

The I2C controller core operation flow chart below is to describe how the software configures and performs an I2C transaction through this I2C controller core. Descriptions are divided into 3 sections, transmit only mode, receive only mode, and mix mode. Users are strongly advised to following.

• Transmit only mode (I2C_CON[1:0]=2'b00)

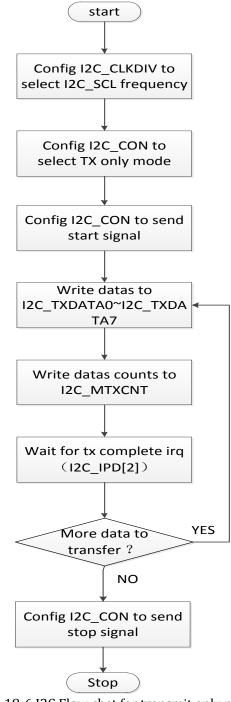


Fig. 18-6 I2C Flow chat for transmit only mode

Receive only mode (I2C_CON[1:0]=2'b10)

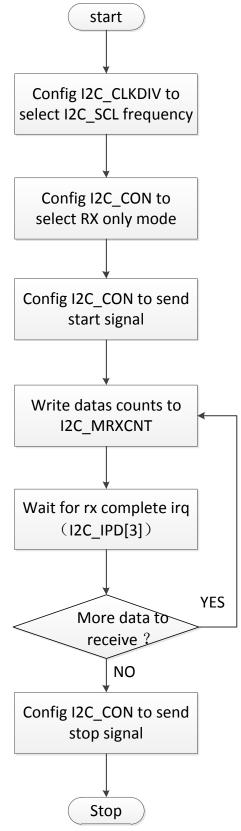
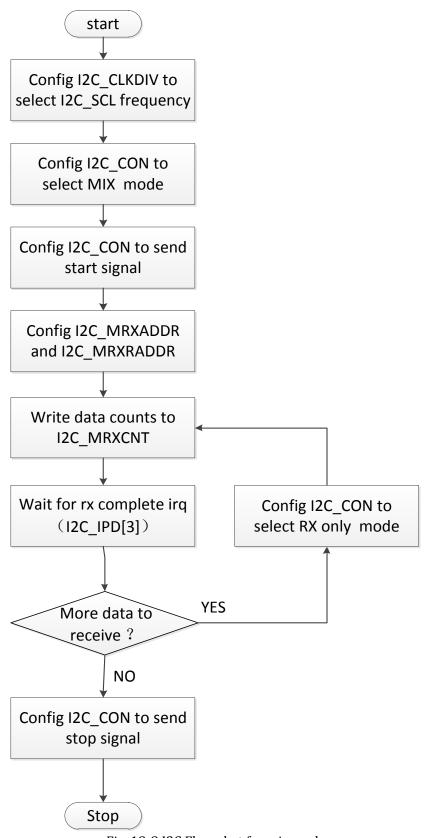
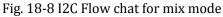




Fig. 18-7 I2C Flow chat for receive only mode

• Mix mode (I2C_CON[1:0]=2'b01 or I2C_CON[1:0]=2'b11)

Chapter 19 I2S/PCM Controller

19.1 Overview

The I2S/PCM controller is designed for interfacing between the AHB bus and the I2S bus. The I2S bus (Inter-IC sound bus) is a serial link for digital audio data transfer between devices in the system and be invented by Philips Semiconductor. Now it is widely used by many semiconductor manufacturers.

Devices often use the I2S bus are ADC, DAC, DSP, CPU, etc. With the I2S interface, we can connect audio devices and the embedded SoC platform together and provide an audio interface solution for the system.

Not only I2S but also PCM mode surround audio output (up to 7.1channel) and stereo input are supported in I2S/PCM controller.

Support five internal 32-bit wide and 32-location deep FIFOs, four for transmitting and one for receiving audio data

Support AHB bus interface

Support 16 ~ 32 bits audio data transfer

Support master and slave mode

Support DMA handshake interface and configurable DMA water level

Support transmit FIFO empty, underflow, receive FIFO full, overflow interrupt and all interrupts can be masked

Support configurable water level of transmit FIFO empty and receive FIFO full interrupt Support combine interrupt output

Support 2,4,6,8 channels audio transmitting in I2S and PCM mode

Support 2 channels audio receiving in I2S and PCM mode

Support up to 192kHz sample rate

Support I2S normal, left and right justified mode serial audio data transfer

Support PCM early, late1, late2, late3 mode serial audio data transfer

Support MSB or LSB first serial audio data transfer

Support 16 to 31 bit audio data left or right justified in 32-bit wide FIFO

Support two 16-bit audio data store together in one 32-bit wide location

Support 3 independent LRCK signals, one for receiving and two for transmitting audio data Support configurable SCLK and LRCK polarity

Support SCLK is equivalent to MCLK divided by an even number range from 2 to 64 in master mode

19.2 Block Diagram



Fig. 19-1 I2S/PCM controller (8 channel) Block Diagram

System Interface

The system interface implements the AHB slave operation. It contains not only control registers of transmitters and receiver inside but also interrupt and DMA handshake interface.

Clock Generator

The Clock Generator implements clock generation function. The input source clock to the module is MCLK_I2S, and by the divider of the module, the clock generator generates SCLK and LRCK to transmitter and receiver.

Transmitters

The Transmitters implement transmission operation. The transmitters can act as either master or slave, with I2S or PCM mode surround (up to 7.1 channel) serial audio interface.

Receiver

The Receiver implements receive operation. The receiver can act as either master or slave, with I2S or PCM mode stereo serial audio interface.

Transmit FIFOs

The Transmit FIFOs are the buffer to store transmitted audio data. Each of the size of the four FIFOs is 32bits x 32.

Receive FIFO

The Receive FIFO is the buffer to store received audio data. The size of the FIFO is 32bits x 32.

19.3 Function description

In the I2S/PCM controller, there are four conditions: transmitter-master & receiver-master; transmitter-master & receiver-slave; transmitter-slave & receiver-master; transmitter-slave & receiver-slave.

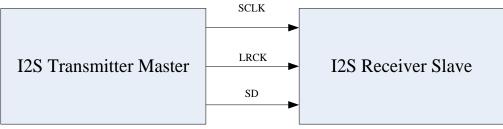


Fig. 19-2 I2S transmitter-master & receiver-slave condition

When transmitter acts as a master, it sends all signals to receiver (slave), and CPU control when to send clock and data to the receiver. When acting as a slave, SD signal still goes from transmitter to receiver, but SCLK and LRCK signals are from receiver (master) to transmitter. Based on three interface specifications, transmitting data should be ready before transmitter receives SCLK and LRCK signals. CPU should know when the receiver to initialize a transaction and when to send data.

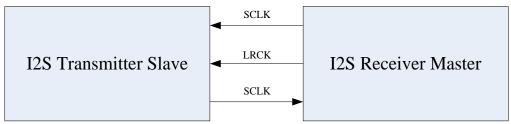
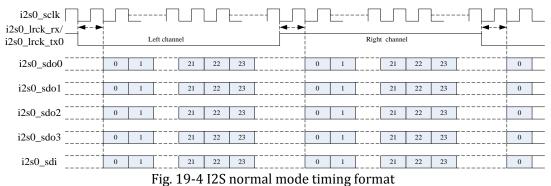
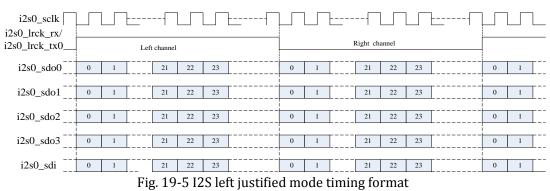


Fig. 19-3 I2S transmitter-slave& receiver-master condition


When the receiver acts as a master, it sends SCLK and LRCK signals to the transmitter (slave)

and receives serial data. So CPU must tell the transmitter when to start a transaction for it to prepare transmitting data then start a transfer and send clock and channel-select signals. When the receiver acts as a slave, CPU should only do initial setting and wait for all signals and then start reading data.

Before transmitting or receiving data, CPU need do initial setting to the I2S register. These includes CPU settings, I2S interface registers settings, and maybe the embedded SoC platform settings. These registers must be set before starting data transfer.


19.3.1 i2s normal mode

This is the waveform of I2S normal mode. For LRCK (i2s_lrck_rx/i2s_lrck_tx0) signal, it goes low to indicate left channel and high to right channel. For SD (i2s_sdo0, i2s_sdo1, i2s_sdo2, i2s_sdo3, i2s_sdi) signal, it transfers MSB or LSB first and sends the first bit one SCLK clock cycle after LRCK changes. The range of SD signal width is from 16 to 32bits.

19.3.2 i2s left justified mode

This is the waveform of I2S left justified mode. For LRCK (i2s_lrck_rx / i2s_lrck_tx0) signal, it goes high to indicate left channel and low to right channel. For SD (i2s_sdo0, i2s_sdo1, i2s_sdo2, i2s_sdo3, i2s_sdi) signal, it transfers MSB or LSB first and sends the first bit at the same time when LRCK changes. The range of SD signal width is from 16 to 32bits.

19.3.3 i2s right justified mode

This is the waveform of I2S right justified mode. For LRCK (i2s_lrck_rx / i2s_lrck_tx0) signal, it goes high to indicate left channel and low to right channel. For SD (i2s_sdo0, i2s_sdo1, i2s_sdo2, i2s_sdo3, i2s_sdi) signal, it transfers MSB or LSB first; but different from I2S normal or left justified mode, its data is aligned to last bit at the edge of the LRCK signal. The range of SD signal width is from 16 to 32bits.

i2s0_sclk			<u></u> {						<u> </u>				
i2s0_lrck_tx0	1	eft channe	1			 	1	Right ch	annel				
i2s0_sdo0	0	1	21	22	23		0	1		21	22	23	
i2s0_sdo1	0	1	21	22	23	 	0	1		21	22	23	
i2s0_sdo2	0	1	21	22	23		0	1		21	22	23	
i2s0_sdo3	0	1	21	22	23	+ +	0	1	[]	21	22	23	
i2s0_sdi	0	1	21	22	23		0	1		21	22	23	
Fig. 10 (120 wight in stifted we deting in a					£								

Fig. 19-6 I2S right justified modetiming format

19.3.4 PCM early mode

This is the waveform of PCM early mode. For LRCK (i2s_lrck_rx / i2s_lrck_tx0) signal, it goes high to indicate the start of a group of audio channels. For SD (i2s_sdo0, i2s_sdi) signal, it transfers MSB or LSB first and sends the first bit at the same time when LRCK goes high. The range of SD signal width is from 16 to 32bits.

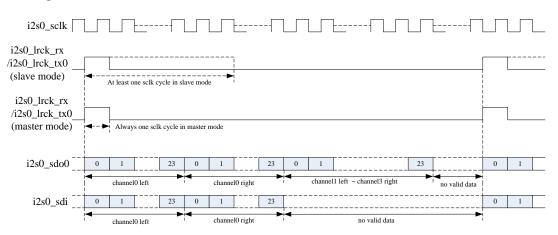
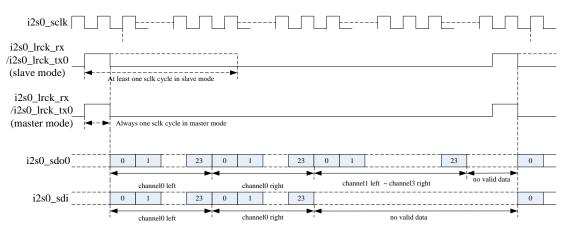
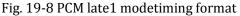
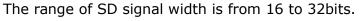
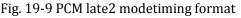




Fig. 19-7 PCM early modetiming format

19.3.5 PCM late1 mode

This is the waveform of PCM early mode. For LRCK (i2s_lrck_rx / i2s_lrck_tx0) signal, it goes high to indicate the start of a group of audio channels. For SD (i2s_sdo0, i2s_sdi) signal, it transfers MSB or LSB first and sends the first bit one SCLK clock cycle after LRCK goes high. The range of SD signal width is from 16 to 32bits.





19.3.6 PCM late2 mode

This is the waveform of PCM early mode. For LRCK (i2s_lrck_rx / i2s_lrck_tx0) signal, it goes high to indicate the start of a group of audio channels. For SD (i2s_sdo0, i2s_sdi) signal, it transfers MSB or LSB first and sends the first bit two SCLK clock cycles after LRCK goes high.

i2s0_sclk ----i2s0_lrck_rx /i2s0_lrck_tx0 (slave mode) At least one sclk cycle in slave mode i2s0_lrck_rx /i2s0_lrck_tx0 (master mode) Always one sclk cycle in master mode i2s0 sdo0 0 23 23 1 0 0 23 1 1 channel1 left ~ channel3 right no valid data channel0 right hannel0 left i2s0 sdi 0 23 23 1 channel0 left channel0 right no valid data

19.3.7 PCM late3 mode

This is the waveform of PCM early mode. For LRCK (i2s_lrck_rx / i2s_lrck_tx0) signal, it goes high to indicate the start of a group of audio channels. For SD (i2s_sdo0, i2s_sdi) signal, it transfers MSB or LSB first and sends the first bit three SCLK clock cycles after LRCK goes high. The range of SD signal width is from 16 to 32bits.

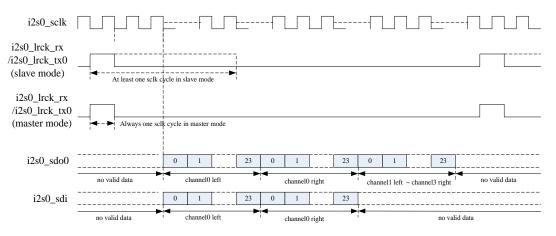


Fig. 19-10 PCM late3 modetiming format

19.4 Register Description

This section describes the control/status registers of the design.

19.4.1 Registers Summary

Name	Offset	Size	Reset Value	Description
I2S_TXCR	0x0000	W	0x000000f	transmit operation control register
I2S_RXCR	0x0004	W	0x000000f	receive operation control register
I2S_CKR	0x0008	W	0x00071f1f	clock generation register
I2S_FIFOLR	0x000c	W	0x0000000	FIFO level register
I2S_DMACR	0x0010	W	0x001f0000	DMA control register
I2S_INTCR	0x0014	W	0x01f00000	interrupt control register
I2S_INTSR	0x0018	W	0x0000000	interrupt status register
I2S_XFER	0x001c	W	0x0000000	Transfer Start Register
I2S_CLR	0x0020	W	0x0000000	SCLK domain logic clear Register
I2S_TXDR	0x0024	W	0x00000000	Transimt FIFO Data Register
I2S_RXDR	0x0028	W	0x00000000	Receive FIFO Data Register

Notes:<u>Size</u>:**B**- Byte (8 bits) access, **HW**- Half WORD (16 bits) access, **W**-WORD (32 bits) access

19.4.2 Detail Register Description

I2S_TXCR

Address: Operational Base + offset (0x0000) transmit operation control register

Bit	Attr	Reset Value	Description
31:23	RO	0x0	reserved
22:17	RW	0×00	RCNT right jusitified counter (Can be written only when XFER[0] bit is 0.) Only vailid in I2S Right justified format and slave tx mode is selected. Start to tramsmit data RCNT sclk cycles after left channel valid.
16:15	RW	0×0	CSR Channel select register (Can be written only when XFER[0] bit is 0.) 0:channel 0 enable 1:channel 0 & channel 1 enable 2:channel 0 & channel 1 & channel 2 enable 3:channel 0 & channel 1 & channel 2 & channel 3 enable
14	RW	0×0	HWT Halfword word transform (Can be written only when XFER[0] bit is 0.) Only valid when VDW select 16bit data. 0:32 bit data valid from AHB/APB bus. Low 16 bit for left channel and high 16 bit for right channel. 1:low 16bit data valid from AHB/APB bus, high 16 bit data invalid.
13	RO	0x0	reserved
12	RW	0×0	SJM Store justified mode (Can be written only when XFER[0] bit is 0.) 16bit~31bit DATA stored in 32 bits width fifo. If VDW select 16bit data, this bit is valid only when HWT select 0.Because if HWT is 1, every fifo unit contain two 16bit data and 32 bit space is full, it is impossible to choose justified mode. 0:right justified 1:left justified
11	RW	0×0	FBM First Bit Mode (Can be written only when XFER[0] bit is 0.) 0:MSB 1:LSB

Bit	Attr	Reset Value	Description
			IBM
			I2S bus mode
			(Can be written only when XFER[0] bit is 0.)
10:9	RW	0x0	0:I2S normal
			1:I2S Left justified
			2:I2S Right justified
			3:reserved
			PBM
			PCM bus mode
			(Can be written only when XFER[0] bit is 0.)
8:7	RW	0x0	0:PCM no delay mode
			1:PCM delay 1 mode
			2:PCM delay 2 mode
			3:PCM delay 3 mode
6	RO	0x0	reserved
		TFS	
			Transfer format select
5	RW	0x0	(Can be written only when XFER[0] bit is 0.)
			0: I2S format
			1: PCM format
			VDW
			Valid Data width
			(Can be written only when XFER[0] bit is 0.)
			0~14:reserved
			15:16bit
			16:17bit
4:0	RW	0x0f	17:18bit
			18:19bit
			28:29bit
			29:30bit
			30:31bit
			31:32bit

I2S_RXCR

Address: Operational Base + offset (0x0004) receive operation control register

Bit	Attr	Reset Value	Description
31:15	RO	0x0	reserved

Bit	Attr	Reset Value	Description
14	RW	0x0	HWT Halfword word transform (Can be written only when XFER[1] bit is 0.) Only valid when VDW select 16bit data. 0:32 bit data valid to AHB/APB bus. Low 16 bit for left channel and high 16 bit for right channel. 1:low 16bit data valid to AHB/APB bus, high 16 bit data invalid.
13	RO	0x0	reserved
12	RW	0×0	SJM Store justified mode (Can be written only when XFER[1] bit is 0.) 16bit~31bit DATA stored in 32 bits width fifo. If VDW select 16bit data, this bit is valid only when HWT select 0.Because if HWT is 1, every fifo unit contain two 16bit data and 32 bit space is full, it is impossible to choose justified mode. 0:right justified 1:left justified
11	RW	0x0	FBM First Bit Mode (Can be written only when XFER[1] bit is 0.) 0:MSB 1:LSB
10:9	RW	0x0	IBM I2S bus mode (Can be written only when XFER[1] bit is 0.) 0:I2S normal 1:I2S Left justified 2:I2S Right justified 3:reserved
8:7	RW	0x0	PBM PCM bus mode (Can be written only when XFER[1] bit is 0.) 0:PCM no delay mode 1:PCM delay 1 mode 2:PCM delay 2 mode 3:PCM delay 3 mode
6	RO	0x0	reserved
5	RW	0x0	TFS Transfer format select (Can be written only when XFER[1] bit is 0.) 0:i2s 1:pcm

Bit	Attr	Reset Value	Description
			VDW
			Valid Data width
			(Can be written only when XFER[1] bit is 0.)
			0~14:reserved
			15:16bit
			16:17bit
4:0	RW	0x0f	17:18bit
			18:19bit
			28:29bit
			29:30bit
			30:31bit
			31:32bit

I2S_CKR

Address: Operational Base + offset (0x0008) clock generation register

Bit	Attr	Reset Value	Description
31:28	RO	0x0	reserved
			MSS
			Master/slave mode select
27	RW	0x0	(Can be written only when XFER[1] or XFER[0] bit is
27	r. vv	0.00	0.)
			0:master mode(sclk output)
			1:slave mode(sclk input)
		0×0	СКР
			Sclk polarity
			(Can be written only when XFER[1] or XFER[0] bit is
26	RW		0.)
20	r. vv		0: sample data at posedge sclk and drive data at
			negedge sclk
			1: sample data at negedge sclk and drive data at
			posedge sclk

Bit	Attr	Reset Value	Description
25	RW	0×0	RLP Receive lrck polarity (Can be written only when XFER[1] or XFER[0] bit is 0.) 0:normal polartiy (I2S normal: low for left channel, high for right channel I2S left/right just: high for left channel, low for right channel PCM start signal:high valid) 1:oppsite polarity (I2S normal: high for left channel, low for right channel I2S left/right just: low for left channel, high for right channel PCM start signal:low valid)
24	RW	0×0	TLP Transmit lrck polarity (Can be written only when XFER[1] or XFER[0] bit is 0.) 0:normal polartiy (I2S normal: low for left channel, high for right channel I2S left/right just: high for left channel, low for right channel PCM start signal:high valid) 1:oppsite polarity (I2S normal: high for left channel, low for right channel I2S left/right just: low for left channel, high for right channel PCM start signal:high valid)

Bit	Attr	Reset Value	Description
			MDIV
			mclk divider
			(Can be written only when XFER[1] or XFER[0] bit is
			0.)
			Serial Clock Divider = Fmclk / Ftxsclk-1.(mclk
			frequecy / txsclk frequecy-1)
			0 :Fmclk=Ftxsclk;
22.10	DW	0.07	1 :Fmclk=2*Ftxsclk;
23:16	RW	0x07	2,3 :Fmclk=4*Ftxsclk;
			4,5 :Fmclk=6*Ftxsclk;
			60,61:Fmclk=62*Ftxsclk;
			62,63:Fmclk=64*Ftxsclk;
			252,253:Fmclk=254*Ftxsclk;
			254,255:Fmclk=256*Ftxsclk;
			RSD
		0x1f	Receive sclk divider
			(Can be written only when XFER[1] or XFER[0] bit is
			Receive sclk divider= Fsclk/Frxlrck
			0~30:reserved
15:8	RW		31: 32fs 32: 33fs
			32. 3315 33: 34fs
			34: 35fs
			253: 254fs
			254: 255fs
			255: 256fs
			TSD
			Transmit sclk divider
			(Can be written only when XFER[1] or XFER[0] bit is
			0.)
			Transmit sclk divider=Ftxsclk/Ftxlrck
			0~30:reserved
7:0	RW	0x1f	31: 32fs
/.0			32: 33fs
			33: 34fs
			34: 35fs
			 252: 254fc
			253: 254fs
			254: 255fs
	<u> </u>		255: 256fs

I2S_FIFOLR

Address: Operational Base + offset (0x000c) FIFO level register

Bit	Attr	Reset Value	Description
31:30	RO	0x0	reserved
			RFL
20.24	29:24 RO	0x00	Receive FIFO Level
29.24		0,00	Contains the number of valid data entries in the
		receive FIFO.	
		TFL3	
23:18	RO	0x00	Transmit FIFO3 Level
25.10	23.10 KU	0,000	Contains the number of valid data entries in the
			transmit FIFO3.
		TFL2	
17:12	RO	0x00	Transmit FIFO2 Level
17.12	ĸo		Contains the number of valid data entries in the
			transmit FIFO2.
			TFL1
11:6	RO	0x00	Transmit FIFO1 Level
11.0		0,00	Contains the number of valid data entries in the
			transmit FIFO1.
			TFLO
5:0	RO	0x00	Transmit FIFO0 Level
5.0			Contains the number of valid data entries in the
			transmit FIFO0.

I2S_DMACR

Address: Operational Base + offset (0x0010) DMA control register

Bit	Attr	Reset Value	Description	
31:25	RO	0x0	reserved	
			RDE	
24	RW	0x0	Receive DMA Enable	
24	RVV	0.00	0 : Receive DMA disabled	
			1 : Receive DMA enabled	
23:21	RO	0x0	reserved	
			RDL	
		0x1f	Receive Data Level	
			This bit field controls the level at which a DMA	
20.16			request is made by the receive logic. The watermark	
20:16	RW		level = DMARDL+1; that is, dma_rx_req is	
			generated when the number of valid data entries in	
			the receive FIFO is equal to or above this field value	
			+ 1.	
15:9	RO	0x0	reserved	

Bit	Attr	Reset Value	Description
			TDE
8	RW	0×0	Transmit DMA Enable
0	K VV	0.00	0 : Transmit DMA disabled
			1 : Transmit DMA enabled
7:5	RO	0x0	reserved
			TDL
		₹W 0×00	Transmit Data Level
	RW		This bit field controls the level at which a DMA
			request is made by the transmit logic. It is equal to
4:0			the watermark level; that is, the dma_tx_req signal
			is generated when the number of valid data entries in
			the TXFIFO(TXFIFO0 if CSR=00;TXFIFO1 if
			CSR=01,TXFIFO2 if CSR=10,TXFIFO3 if CSR=11)is
			equal to or below this field value.

I2S_INTCR

Address: Operational Base + offset (0x0014) interrupt control register

Bit	Attr	Reset Value	Description
31:25	RO	0x0	reserved
			RFT
			Receive FIFO Threshold
24:20	RW	0x1f	When the number of receive FIFO entries is more
			than or equal to this threshold plus 1, the receive
			FIFO full interrupt is triggered.
19	RO	0x0	reserved
			RXOIC
18	WO	0x0	RX overrun interrupt clear
			Write 1 to clear RX overrun interrupt.
			RXOIE
17	RW	0×0	RX overrun interrupt enable
1/	RVV		0:disable
			1:enable
			RXFIE
16	RW	0×0	RX full interrupt enable
10			0:disable
			1:enable
15:9	RO	0x0	reserved
			TFT
		0×00	Transmit FIFO Threshold
			When the number of transmit FIFO (TXFIFO0 if
8:4	RW		CSR=00; TXFIFO1 if CSR=01, TXFIFO2 if CSR=10,
			TXFIFO3 if CSR=11) entries is less than or equal to
			this threshold, the transmit FIFO empty interrupt is triggered.

Bit	Attr	Reset Value	Description	
3	RO	0x0	reserved	
	TXUIC		TXUIC	
2	WO	0x0	TX underrun interrupt clear	
			Write 1 to clear TX underrun interrupt.	
		0x0	TXUIE	
1			TX underrun interrupt enable	
1	RW		0:disable	
			1:enable	
			TXEIE	
0		0×0	TX empty interrupt enable	
0	RW		0:disable	
			1:enable	

I2S_INTSR

Address: Operational Base + offset (0x0018) interrupt status register

Bit	Attr	Reset Value	Description	
31:18	RO	0x0	reserved	
			RXOI	
17	RO	0x0	RX overrun interrupt	
17	KU	0.00	0:inactive	
			1:active	
			RXFI	
16	RO	0x0	RX full interrupt	
10	κυ		0:inactive	
			1:active	
15:2	RO	0x0	reserved	
			TXUI	
1	RO	O 0x0	TX underrun interrupt	
1	KU		0:inactive	
			1:active	
		0×0	TXEI	
0	RO		TX empty interrupt	
			0:inactive	
			1:active	

I2S_XFER

Address: Operational Base + offset (0x001c) Transfer Start Register

Bit	Attr	Reset Value	Description	
31:2	RO	0x0	reserved	
	RW	0×0	RXS	
1			RX Transfer start bit	
L			0:stop RX transfer.	
			1:start RX transfer	

Bit	Attr	Reset Value	Description	
	RW	0×0	TXS	
			TX Transfer start bit	
0			0:stop TX transfer.	
			1:start TX transfer	

I2S_CLR

Address: Operational Base + offset (0x0020) SCLK domain logic clear Register

Bit	Attr	Reset Value	Description		
31:2	RO	0x0	reserved		
			RXC		
1		0x0	RX logic clear		
L	RW		This is a self cleard bit. Write 1 to clear all receive		
			logic.		
		0x0	TXC		
0	RW		TX logic clear		
0	RW		This is a self cleard bit. Write 1 to clear all transmit		
			logic.		

I2S_TXDR

Address: Operational Base + offset (0x0400~0x7FC)

Transimt FIFO Data Register

Bit	Attr	Reset Value	Description	
	wo	0x0000000	TXDR	
31:0			Transimt FIFO Data Register	
51:0			When it is written to, data are moved into the	
			transmit FIFO.	

I2S_RXDR

Address: Operational Base + offset (0x0800~0xBFC) Receive FIFO Data Register

Bit	Attr	Reset Value	Description	
	RO	0×00000000	RXDR	
31:0			Receive FIFO Data Register	
51:0			When the register is read, data in the receive FIFO is	
			accessed.	

19.5 Interface description

Module Pin	Direction	Pad Name	IOMUX Setting
i2s_sdi	I	IO_I2Ssdi_AUDI Ogpio6a3	GRF_GPIO6A_IOMUX[6]=1
i2s_clk	0	IO_I2Sclk_AUDI Ogpio6b0	GRF_GPIO6B_IOMUX[0]=1
i2s_sclk	I/O	IO_I2Ssclk_AUD IOgpio6a0	GRF_GPIO6A_IOMUX[0]=1

i2s_lrck_rx	I/O	IO_I2Slrckrx_A UDIOgpio6a1	GRF_GPIO6A_IOMUX[2]=1
i2s_lrck_tx	I/O	IO_I2SIrcktx_A UDIOgpio6a2	GRF_GPIO6A_IOMUX[4]=1
i2s_sdo0	0	IO_I2Ssdo0_AU DIOgpio6a4	GRF_GPIO6A_IOMUX[8]=1
i2s_sdo1	0	IO_I2Ssdo1_AU DIOgpio6a5	GRF_GPIO6A_IOMUX[10]=1
i2s_sdo2	0	IO_I2Ssdo2_AU DIOgpio6a6	GRF_GPIO6A_IOMUX[12]=1
i2s_sdo3	0	IO_I2Ssdo3_AU DIOgpio6a7	GRF_GPIO6A_IOMUX[14]=1

19.6 Application Notes

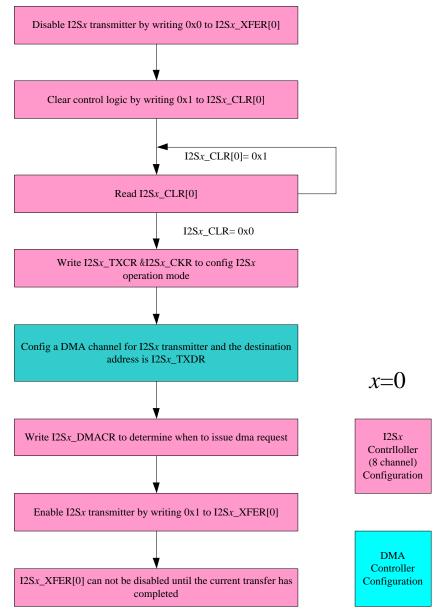


Fig. 19-11 I2S/PCM controller (8 channel) transmit operation flow chart

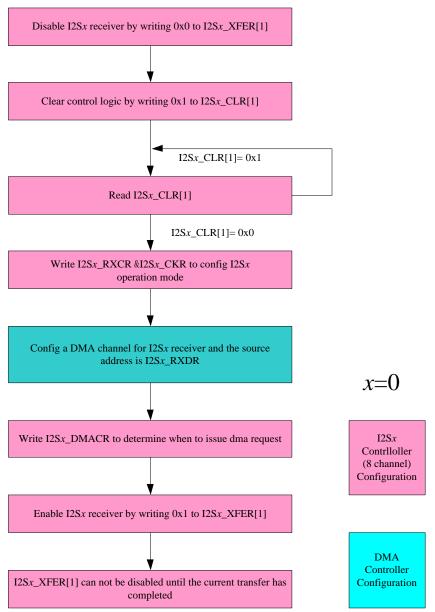


Fig. 19-12 I2S/PCM controller (8 channel) receive operation flow chart

Chapter 20 Serial Peripheral Interface (SPI)

20.1 Overview

The serial peripheral interface is an APB slave device. A four wire full duplex serial protocol from Motorola. There are four possible combinations for the serial clock phase and polarity. The clock phase (SCPH) determines whether the serial transfer begins with the falling edge of slave select signals or the first edge of the serial clock. The slave select line is held high when the SPI is idle or disabled. This SPI controller can work as either master or slave mode.

SPI Controller supports the following features:

- Support Motorola SPI, TI Synchronous Serial Protocol and National Semiconductor Microwire interface
- Support 32-bit APB bus
- Support two internal 16-bit wide and 32-location deep FIFOs, one for transmitting and the other for receiving serial data
- Support two chip select signals in master mode
- Support 4, 8, 16 bit serial data transfer
- Support configurable interrupt polarity
- Support asynchronous APB bus and SPI clock
- Support master and slave mode
- Support DMA handshake interface and configurable DMA water level
- Support transmit FIFO empty, underflow, receive FIFO full, overflow, interrupt and all interrupts can be masked
- Support configurable water level of transmit FIFO empty and receive FIFO full interrupt
- Support combine interrupt output
- Support up to half of SPI clock frequency transfer in master mode and one sixth of SPI clock frequency transfer in slave mode
- Support full and half duplex mode transfer
- Stop transmitting SCLK if transmit FIFO is empty or receive FIFO is full in master mode
- Support configurable delay from chip select active to SCLK active in master mode
- Support configurable period of chip select inactive between two parallel data in master mode
- Support big and little endian, MSB and LSB first transfer
- Support two 8-bit audio data store together in one 16-bit wide location
- Support sample RXD 0~3 SPI clock cycles later
- Support configurable SCLK polarity and phase
- Support fix and incremental address access to transmit and receive FIFO

20.2 Block Diagram

The SPI Controller comprises with:

- AMBA APB interface and DMA Controller Interface
- Transmit and receive FIFO controllers and an FSM controller
- Register block
- Shift control and interrupt

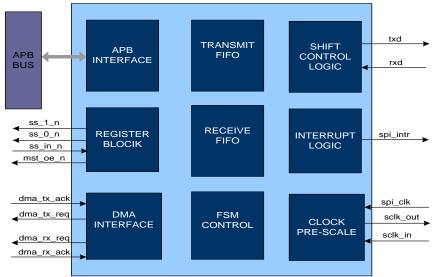


Fig. 20-1 SPI Controller Block diagram

APB INTERFACE

The host processor accesses data, control, and status information on the SPI through the APB interface. The SPI supports APB data bus widths of 8, 16, and 32 bits.

DMA INTERFACE

This block has a handshaking interface to a DMA Controller to request and control transfers. The APB bus is used to perform the data transfer to or from the DMA Controller.

FIFO LOGIC

For transmit and receive transfers, data transmitted from the SPI to the external serial device is written into the transmit FIFO. Data received from the external serialdevice into the SPI is pushed into the receive FIFO. Both fifos are 32x16bits.

FSM CONTROL

Control the state's transformation of the design.

REGISTER BLOCK

All registers in the SPI are addressed at 32-bit boundaries to remain consistent with the AHB bus. Where the physical size of any register is less than 32-bits wide, the upper unused bits of the 32-bit boundary are reserved. Writing to these bits has no effect; reading from these bits returns 0.

SHIFT CONTROL

Shift control logic shift the data from the transmit fifo or to the receive fifo. This logic automatically right-justifies receive data in the receive FIFO buffer.

INTERRUPT CONTROL

The SPI supports combined and individual interrupt requests, each of which can be masked. The combined interrupt request is the ORed result of all other SPI interrupts after masking.

20.3 Function description

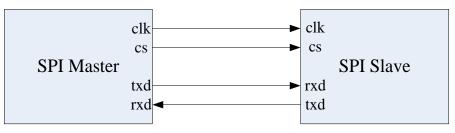


Fig. 20-2 SPI Master and Slave Interconnection

The SPI controller support dynamic switching between master and slave in a system. The diagram show how the SPI controller connects with other SPI devices.

Operation Modes

The SPI can be configured in the following two fundamental modes of operation: Master Mode when SPI_CTRLR0 [20] is 1'b0, Slave Mode when SPI_CTRLR0 [20] is 1'b1.

Transfer Modes

The SPI operates in the following three modes when transferring data on the serial bus. **1. Transmit and Receive**

When SPI_CTRLR0 [19:18] == 2'b00, both transmit and receive logic are valid.

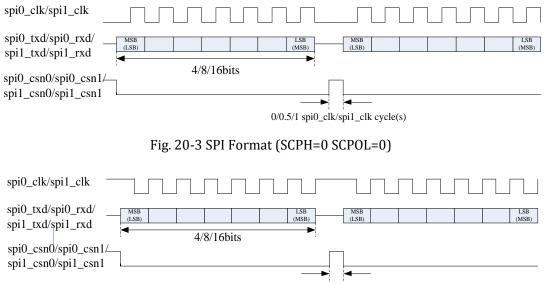
2. Transmit Only

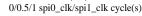
When SPI_CTRLR0 [19:18] == 2'b01, the receive data are invalid and should not be stored in the receive FIFO.

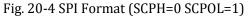
3. Receive Only

When SPI_CTRLR0 [19:18] == 2'b10, the transmit data are invalid.

Clock Ratios


A summary of the frequency ratio restrictions between the bit-rate clock (sclk_out / sclk_in) and the SPI peripheral clock (spi_clk) are described as,


When SPI Controller works as master, the $F_{spi_clk} \ge 2 \times (maximum F_{sclk_out})$


When SPI Controller works as slave, the $F_{spi_clk} >= 6 \times (maximum F_{sclk_in})$

With the SPI, the clock polarity (SCPOL) configuration parameter determines whether the inactive state of the serial clock is high or low. To transmit data, both SPI peripherals must have identical serial clock phase (SCPH) and clock polarity (SCPOL) values. The data frame can be 4/8/16 bits in length.

When the configuration parameter SCPH = 0, data transmission begins on the falling edge of the slave select signal. The first data bit is captured by the master and slave peripherals on the first edge of the serial clock; therefore, valid data must be present on the txd and rxd lines prior to the first serial clock edge. The following two figures show a timing diagram for a single SPI data transfer with SCPH = 0. The serial clock is shown for configuration parameters SCPOL = 0 and SCPOL = 1.

When the configuration parameter SCPH = 1, both master and slave peripherals begin transmitting data on the first serial clock edge after the slave select line is activated. The first data bit is captured on the second (trailing) serial clock edge. Data are propagated by the master and slave peripherals on the leading edge of the serial clock. During continuous data frame transfers, the slave select line may be held active-low until the last bit of the last frame has been captured. The following two figures show the timing diagram for the SPI format when the configuration parameter SCPH = 1.

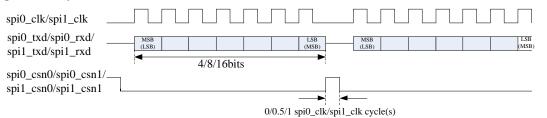


Fig. 20-5 SPI Format (SCPH=1 SCPOL=0)

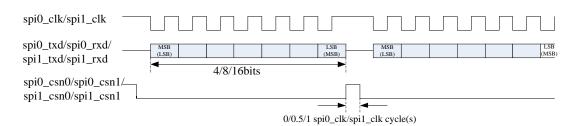


Fig. 20-6 SPI Format (SCPH=1 SCPOL=1)

20.4 Register Description

This section describes the control/status registers of the design. Pay attention that there are two SPI controllers in the chip: spi0 & spi1, so the base address in the following register descriptions can be either spi0 or spi1 base address.

20.4.1 Registers Summary

Name	Offset	Size	Reset Value	Description
SPI_CTRLR0	0x0000	W	0x0000002	Control Register 0
SPI_CTRLR1	0x0004	W	0x0000000	Control Register 1
SPI_ENR	0x0008	W	0x0000000	SPI Enable
SPI_SER	0x000c	W	0x0000000	Slave Enable Register
SPI_BAUDR	0x0010	W	0x00000000	Baud Rate Select
SPI_TXFTLR	0x0014	W	0x0000000	Transmit FIFO Threshold Level
SPI_RXFTLR	0x0018	W	0x0000000	Receive FIFO Threshold Level
SPI_TXFLR	0x001c	W	0x00000000	Transmit FIFO Level
SPI_RXFLR	0x0020	W	0x0000000	Receive FIFO Level
SPI_SR	0x0024	W	0x000000c	SPI Status
SPI_IPR	0x0028	W	0x0000000	Interrupt Polarity
SPI_IMR	0x002c	W	0x0000000	Interrupt Mask
SPI_ISR	0x0030	W	0x0000000	Interrupt Status
SPI_RISR	0x0034	W	0x0000001	Raw Interrupt Status
SPI_ICR	0x0038	W	0x0000000	Interrupt Clear
SPI_DMACR	0x003c	W	0x0000000	DMA Control
SPI_DMATDLR	0x0040	W	0x0000000	DMA Transmit Data Level
SPI_DMARDLR	0x0044	W	0x0000000	DMA Receive Data Level
	0x0400~	w		
SPI_TXDR	0x07fc	vv	0x0000000	Transmit FIFO Data
SPI_RXDR	0x0800~	w	0x0000000	Receive FIFO Data
	0x0bfc	vv		

Notes: <u>Size</u> : **B** - Byte (8 bits) access, **HW** - Half WORD (16 bits) access, **W** -WORD (32 bits) access

20.4.2 Detail Register Description

SPI_CTRLR0

Address: Operational Base + offset (0x0000) Control Register 0

Bit	Attr	Reset Value	Description
31:22	RO	0x0	reserved
			МТМ
			Microwire Transfer Mode
			Valid when frame format is set to National
21	RW	0×0	Semiconductors Microwire.
			1'b0: non-sequential transfer
			1'b1: sequential transfer
			ОРМ
20		00	Operation Mode
20	RW	0x0	1'b0: Master Mode
			1'b1: Slave Mode
			XFM
			Transfer Mode
10.19	RW		2'b00 :Transmit & Receive
19:18	RW	0x0	2'b01 : Transmit Only
			2'b10 : Receive Only
			2'b11 :reserved
			FRF
			Frame Format
17:16	RW	0×0	2'b00: Motorola SPI
17.10	K VV		2'b01: Texas Instruments SSP
			2'b10: National Semiconductors Microwire
			2'b11 : Reserved
			RSD
			Rxd Sample Delay
			When SPI is configured as a master, if the rxd
			data cannot be sampled by the sclk_out edge
			at the right time, this register should be
			configured to define the number of the spi_clk
15:14	RW	0x0	cycles after the active sclk_out edge to
			sample rxd data later when SPI works at high
			frequency.
			2'b00:do not delay
			2'b01:1 cycle delay
			2'b10:2 cycles delay
			2'b11:3 cycles delay
			ВНТ
			Byte and Halfword Transform
13	RW	0x0	Valid when data frame size is 8bit.
			1'b0: apb 16bit write/read, spi 8bit write/read
			1'b1: apb 8bit write/read, spi 8bit write/read
			FBM
12	RW	0×0	First Bit Mode
			1'b0: first bit is MSB
			1'b1: first bit is LSB

Bit	Attr	Reset Value	Description
11	RW	0×0	EM Endian Mode Serial endian mode can be configured by this bit. Apb endian mode is always little endian. 1'b0: little endian 1'b1: big endian
10	RW	0×0	SSD ss_n to sclk_out delay Valid when the frame format is set to Motorola SPI and SPI used as a master. 1'b0: the period between ss_n active and sclk_out active is half sclk_out cycles. 1'b1: the period between ss_n active and sclk_out active is one sclk_out cycle.
9:8	RW	0x0	CSM Chip Select Mode Valid when the frame format is set to Motorola SPI and SPI used as a master. 2'b00: ss_n keep low after every frame data is transferred. 2'b01: ss_n be high for half sclk_out cycles after every frame data is transferred. 2'b10: ss_n be high for one sclk_out cycle after every frame data is transferred. 2'b11: reserved
7	RW	0x0	SCPOL Serial Clock Polarity Valid when the frame format is set to Motorola SPI. 1'b0: Inactive state of serial clock is low 1'b1: Inactive state of serial clock is high
6	RW	0x0	SCPH Serial Clock Phase Valid when the frame format is set to Motorola SPI. 1'b0: Serial clock toggles in middle of first data bit 1'b1: Serial clock toggles at start of first data bit

Bit	Attr	Reset Value	Description
			CFS
			Control Frame Size
			Selects the length of the control word for the
			Microwire frame format.
			4'b0000~4'b0010: reserved
			4'b0011: 4-bit serial data transfer
			4'b0100: 5-bit serial data transfer
			4'b0101: 6-bit serial data transfer
5:2	RW	0x0	4'b0110: 7-bit serial data transfer
5.2	K VV	UXU	4'b0111: 8-bit serial data transfer
			4'b1000: 9-bit serial data transfer
			4'b1001: 10-bit serial data transfer
			4'b1010: 11-bit serial data transfer
			4'b1011: 12-bit serial data transfer
			4'b1100: 13-bit serial data transfer
			4'b1101: 14-bit serial data transfer
			4'b1110: 15-bit serial data transfer
			4'b1111: 16-bit serial data transfer
		W 0x2	DFS
			Data Frame Size
			Selects the data frame length.
1:0	RW		2'b00: 4bit data
			2'b01: 8bit data
			2'b10: 16bit data
			2'b11: reserved

SPI_CTRLR1

Address: Operational Base + offset (0x0004) Control Register 1

Bit	Attr	Reset Value	Description
31:16	RO	0x0	reserved
			NDM
			Number of Data Frames
			When Transfer Mode is receive only, this
			register field sets the number of data frames
15:0	RW	0x0000	to be continuously received by the SPI. The
13.0		0,0000	SPI continues to receive serial data until the
			number of data frames received is equal to
			this register value plus 1, which enables you
			to receive up to 64 KB of data in a continuous
			transfer.

Bit	Attr	Reset Value	Description
31:1	RO	0x0	reserved
			ENR
			SPI Enable
0	RW	0x0	Enables and disables all SPI operations.
			Transmit and receive FIFO buffers are cleared
			when the device is disabled.

SPI_SER

Address: Operational Base + offset (0x000c) Slave Enable Register

Bit	Attr	Reset Value	Description
31:2	RO	0x0	reserved
1.0			SER
	0.40	Slave Select Enable	
1:0	1:0 RW	0x0	This register is valid only when SPI is
		configured as a master device.	

SPI_BAUDR

Address: Operational Base + offset (0x0010) Baud Rate Select

Bit	Attr	Reset Value	Description
31:16	RO	0x0	reserved
			•
			for Fspi_clk = 3.6864MHz and SCKDV =2 Fsclk_out = 3.6864/2= 1.8432MHz

SPI_TXFTLR

Address: Operational Base + offset (0x0014) Transmit FIFO Threshold Level

Bit Attr Reset Value	Description
----------------------	-------------

Bit	Attr	Reset Value	Description
31:5	RO	0x0	reserved
			TXFTLR
			Transmit FIFO Threshold Level
4:0	RW	0x00	When the number of transmit FIFO entries is
			less than or equal to this value, the transmit
			FIFO empty interrupt is triggered.

SPI_RXFTLR

Address: Operational Base + offset (0x0018) Receive FIFO Threshold Level

Bit	Attr	Reset Value	Description
31:5	RO	0x0	reserved
			RXFTLR
			Receive FIFO Threshold Level
4:0	RW	0x00	When the number of receive FIFO entries is
			greater than or equal to this value + 1, the
			receive FIFO full interrupt is triggered.

SPI_TXFLR

Address: Operational Base + offset (0x001c) Transmit FIFO Level

Bit	Attr	Reset Value	Description
31:6	RO	0x0	reserved
			TXFLR
F.0	5:0 RO		Transmit FIFO Level
5:0			Contains the number of valid data entries in
			the transmit FIFO.

SPI_RXFLR

Address: Operational Base + offset (0x0020) Receive FIFO Level

Bit	Attr	Reset Value	Description
31:6	RO	0x0	reserved
5:0	RO	0x00	RXFLR
			Receive FIFO Level
			Contains the number of valid data entries in
			the receive FIFO.

SPI_SR

Address: Operational Base + offset (0x0024) SPI Status

BitAttrReset ValueDescription31:5RO0x0reserved

Bit	Attr	Reset Value	Description
4	1	0×0	RFF
	RO		Receive FIFO Full
4	RU	0.00	1'b0: Receive FIFO is not full
			1'b1: Receive FIFO is full
		0×1	RFE
3	RO		Receive FIFO Empty
5	RU		1'b0: Receive FIFO is not empty
			1'b1: Receive FIFO is empty
		0×1	TFE
2	RO		Transmit FIFO Empty
2	NO		1'b0: Transmit FIFO is not empty
			1'b1: Transmit FIFO is empty
	RO	0×0	TFF
1			Transmit FIFO Full
1			1'b0: Transmit FIFO is not full
			1'b1: Transmit FIFO is full
	RO	0x0	BSF
			SPI Busy Flag
			When set, indicates that a serial transfer is in
0			progress; when cleared indicates that the SPI
			is idle or disabled.
			1'b0: SPI is idle or disabled
			1'b1: SPI is actively transferring data

SPI_IPR

Address: Operational Base + offset (0x0028) Interrupt Polarity

Bit	Attr	Reset Value	Description
31:1	RO	0x0	reserved
			IPR
			Interrupt Polarity
0	RW	0x0	Interrupt Polarity Register
			1'b0: Active Interrupt Polarity Level is HIGH
			1'b1: Active Interrupt Polarity Level is LOW

SPI_IMR Address: Operational Base + offset (0x002c) Interrupt Mask

Bit	Attr	Reset Value	Description
31:5	RO	0x0	reserved
4	RW	0×0	RFFIM
			Receive FIFO Full Interrupt Mask
			1'b0: spi_rxf_intr interrupt is masked
			1'b1: spi_rxf_intr interrupt is not masked

Bit	Attr	Reset Value	Description
2	RW	0x0	RFOIM
			Receive FIFO Overflow Interrupt Mask
3			1'b0: spi_rxo_intr interrupt is masked
			1'b1: spi_rxo_intr interrupt is not masked
		0×0	RFUIM
2	RW		Receive FIFO Underflow Interrupt Mask
2	KVV		1'b0: spi_rxu_intr interrupt is masked
			1'b1: spi_rxu_intr interrupt is not masked
	RW	0×0	ТГОІМ
1			Transmit FIFO Overflow Interrupt Mask
T			1'b0: spi_txo_intr interrupt is masked
			1'b1: spi_txo_intr interrupt is not masked
0	RW	0×0	TFEIM
			Transmit FIFO Empty Interrupt Mask
			1'b0: spi_txe_intr interrupt is masked
			1'b1: spi_txe_intr interrupt is not masked

SPI_ISR Address: Operational Base + offset (0x0030) Interrupt Status

Bit	Attr	Reset Value	Description
31:5	RO	0x0	reserved
		0x0	RFFIS
			Receive FIFO Full Interrupt Status
4	RO		1'b0: spi_rxf_intr interrupt is not active after
4	κυ		masking
			1'b1: spi_rxf_intr interrupt is full after
			masking
			RFOIS
		0x0	Receive FIFO Overflow Interrupt Status
3	RO		1'b0: spi_rxo_intr interrupt is not active after
5	κυ		masking
			1'b1: spi_rxo_intr interrupt is active after
			masking
	RO	0×0	RFUIS
2			Receive FIFO Underflow Interrupt Status
			1'b0: spi_rxu_intr interrupt is not active after
			masking
			1'b1: spi_rxu_intr interrupt is active after
			masking

Bit	Attr	Reset Value	Description
			TFOIS
			Transmit FIFO Overflow Interrupt Status
1	RO	0×0	1'b0: spi_txo_intr interrupt is not active after
±	RU		masking
			1'b1: spi_txo_intr interrupt is active after
			masking
			TFEIS
		0×0	Transmit FIFO Empty Interrupt Status
0	RO		1'b0: spi_txe_intr interrupt is not active after
U	KU		masking
			1'b1: spi_txe_intr interrupt is active after
			masking

SPI_RISR

Address: Operational Base + offset (0x0034) Raw Interrupt Status

Bit	Attr	Reset Value	Description
31:5	RO	0x0	reserved
			RFFRIS
			Receive FIFO Full Raw Interrupt Status
4	RO	0x0	1'b0: spi_rxf_intr interrupt is not active prior
4	ĸŪ	0.00	to masking
			1'b1: spi_rxf_intr interrupt is full prior to
			masking
			RFORIS
			Receive FIFO Overflow Raw Interrupt Status
3	RO	0x0	1'b0: spi_rxo_intr interrupt is not active prior
5	κυ		to masking
			1'b1: spi_rxo_intr interrupt is active prior to
			masking
			RFURIS
		0x0	Receive FIFO Underflow Raw Interrupt Status
2	RO		1'b0: spi_rxu_intr interrupt is not active prior
2			to masking
			1'b1: spi_rxu_intr interrupt is active prior to
			masking
			TFORIS
		0×0	Transmit FIFO Overflow Raw Interrupt Status
1	RO		1'b0: spi_txo_intr interrupt is not active prior
1			to masking
			1'b1: spi_txo_intr interrupt is active prior to
			masking

Bit	Attr	Reset Value	Description	
		0x1	TFERIS	
			Transmit FIFO Empty Raw Interrupt Status	
0	RO		1'b0: spi_txe_intr interrupt is not active prior	
U	RU		to masking	
			1'b1: spi_txe_intr interrupt is active prior to	
			masking	

SPI_ICR

Address: Operational Base + offset (0x0038) Interrupt Clear

Bit	Attr	Reset Value	Description
31:4	RO	0x0	reserved
			CTFOI
3	wo	0x0	Clear Transmit FIFO Overflow Interrupt
5	000	0.00	Write 1 to Clear Transmit FIFO Overflow
			Interrupt
		0x0	CRFOI
2	wo		Clear Receive FIFO Overflow Interrupt
2	000		Write 1 to Clear Receive FIFO Overflow
			Interrupt
			CRFUI
1	wo	0×0	Clear Receive FIFO Underflow Interrupt
1	000		Write 1 to Clear Receive FIFO Underflow
			Interrupt
		D 0x0	CCI
0	WO		Clear Combined Interrupt
			Write 1 to Clear Combined Interrupt

SPI_DMACR

Address: Operational Base + offset (0x003c) DMA Control

Bit	Attr	Reset Value	Description	
31:2	RO	0x0	reserved	
			TDE	
1	RW	0×0	Transmit DMA Enable	
T	RW		1'b0: Transmit DMA disabled	
			1'b1: Transmit DMA enabled	
			RDE	
0	RW	0x0	Receive DMA Enable	
0			1'b0: Receive DMA disabled	
			1'b1: Receive DMA enabled	

SPI_DMATDLR

Address: Operational Base + offset (0x0040) DMA Transmit Data Level

Bit	Attr	Reset Value	Description
31:5	RO	0x0	reserved
			TDL
			Transmit Data Level
			This bit field controls the level at which a DMA
			request is made by the transmit logic. It is
4:0	RW	0x00	equal to the watermark level; that is, the
			dma_tx_req signal is generated when the
			number of valid data entries in the transmit
			FIFO is equal to or below this field value, and
			Transmit DMA Enable $(DMACR[1]) = 1$.

SPI_DMARDLR

Address: Operational Base + offset (0x0044) DMA Receive Data Level

Bit	Attr	Reset Value	Description
31:5	RO	0x0	reserved
			RDL
			Receive Data Level
			This bit field controls the level at which a DMA
			request is made by the receive logic. The
4:0	0 RW 0x00		watermark level = DMARDL+1; that is,
			dma_rx_req is generated when the number of
			valid data entries in the receive FIFO is equal
			to or above this field value $+ 1$, and Receive
			DMA Enable(DMACR[0])=1.

SPI_TXDR

Address: Operational Base + offset (0x0400~0x07fc) Transmit FIFO Data

Bit	Attr	Reset Value	Description	
31:16	RO	0x0	reserved	
15.0		0×0000	TXDR	
	WO		Transimt FIFO Data Register.	
15:0			When it is written to, data are moved into the	
			transmit FIFO.	

SPI_RXDR

Address: Operational Base + offset (0x0800~0x0bfc) Receive FIFO Data

Bit	Attr	Reset Value	Description	
31:16	RO	0x0	reserved	
		0×0000	RXDR	
15.0	RW		Receive FIFO Data Register.	
15:0			When the register is read, data in the receive	
			FIFO is accessed.	

20.5 Interface description

	Pad Name	IOMUX Setting
on		
I/O	IO_SPI0clk_TS0data4_UART4EXPctsn_BB	GRF_GPIO5B_IOMUX[9:8]
	gpio5b4	=01
I/O	IO_SPI0csn0_TS0data5_UART4EXPrtsn_B	GRF_GPIO5B_IOMUX[11:1
	Bgpio5b5	0]=01
0	IO SPI0txd TS0data6 UART4EXPsout BB	GRF_GPIO5B_IOMUX[13:1
	 gpio5b6	2]=01
Ι	IO_SPI0rxd_TS0data7_UART4EXPsin_BBg	GRF_GPIO5B_IOMUX[15:1
	pio5b7	4]=01
0	IO_SPI0csn1_TS0sync_BBgpio5c0	GRF_GPIO5C_IOMUX[1:0]
- / -		=01
I/O	IO_ISPshutteren_SPI1clk_GPI030gpio7b4	GRF_GPIO7B_IOMUX[9:8]
1/0	IO ICDE abbierent CDI CDIO20-mia	
1/0		GRF_GPIO7B_IOMUX[11:1
0		0]=10 GRF_GPIO7B_IOMUX[13:1
0		2]=10
I		GRF GPIO7B IOMUX[15:1
-	7	4]=10
I/O	IO_SPI2clk_SCio_GPIO1830gpio8a6	GRF_GPIO8A_IOMUX[13:1
	0	2]=01
I/O	IO_SPI2csn0_SCdetect_GPIO1830gpio8a7	GRF_GPIO8A_IOMUX[15:1
		4]=01
Ι	IO_SPI2rxd_SCrst_GPI01830gpio8b0	GRF_GPIO8B_IOMUX[1:0]
_		=01
0	IO_SPI2txd_SCclk_GPIO1830gpio8b1	GRF_GPIO8B_IOMUX[3:2]
U	IU_SPI2csn1_SCiot1_GPI01830gpio8a3	GRF_GPIO8A_IOMUX[7:6] =01
	I/O O I O I/O I/O I/O I/O I/O	gpio5b4I/OIO_SPI0csn0_TS0data5_UART4EXPrtsn_B Bgpio5b5OIO_SPI0txd_TS0data6_UART4EXPsout_BB gpio5b6IIO_SPI0rxd_TS0data7_UART4EXPsin_BBg pio5b7OIO_SPI0csn1_TS0sync_BBgpio5c0I/OIO_ISPshutteren_SPI1clk_GPIO30gpio7b4I/OIO_ISPflashtrigout_SPI1csn0_GPIO30gpio 7b5OIO_ISPflashtrigout_SPI1rxd_GPIO30gpio7b6IIO_ISPprelighttrig_SPI1rxd_GPIO30gpio7b6IIO_SPI2clk_SCio_GPIO1830gpio8a6I/OIO_SPI2csn0_SCdetect_GPIO1830gpio8a7IIO_SPI2rxd_SCrst_GPIO1830gpio8b0OIO_SPI2txd_SCclk_GPIO1830gpio8b1

Note: spi0_csn1, spi1_csn1,spi2_csn1 can only be used in master mode

20.6 Application Notes

Clock Ratios

A summary of the frequency ratio restrictions between the bit-rate clock (sclk_out/sclk_in) and the SPI peripheral clock (spi_clk) are described as,

When SPI Controller works as master, the $F_{spi_clk} \ge 2 \times (maximum F_{sclk_out})$

When SPI Controller works as slave, the $F_{spi_clk} \ge 6 \times (maximum F_{sclk_in})$

Master Transfer Flow

When configured as a serial-master device, the SPI initiates and controls all serial transfers. The serial bit-rate clock, generated and controlled by the SPI, is driven out on the sclk_out line. When the SPI is disabled (SPI_ENR = 0), no serial transfers can occur and sclk_out is held in "inactive" state, as defined by the serial protocol under which it operates.

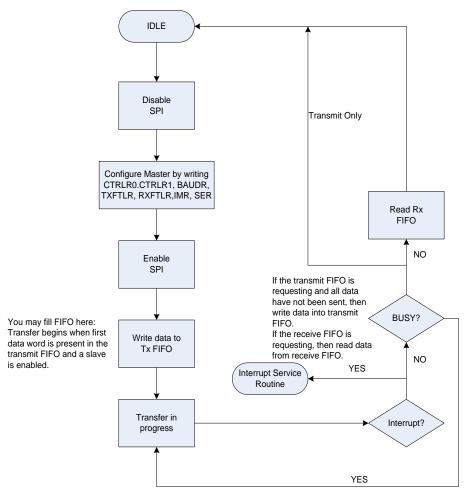


Fig. 20-7 SPI Master transfer flow diagram

Slave Transfer Flow

When the SPI is configured as a slave device, all serial transfers are initiated and controlled by the serial bus master.

When the SPI serial slave is selected during configuration, it enables its txd data onto the serial bus. All data transfers to and from the serial slave are regulated on the serial clock line (sclk_in), driven from the serial-master device. Data are propagated from the serial slave on one edge of the serial clock line and sampled on the opposite edge.

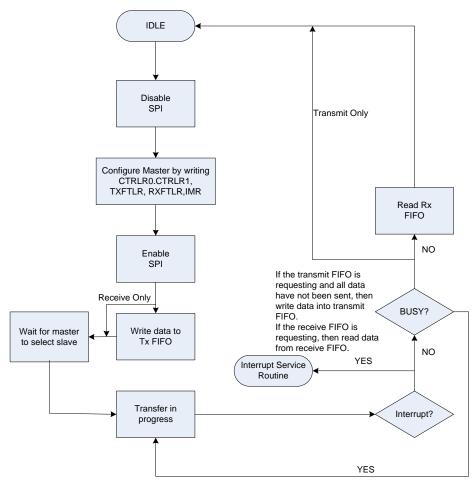


Fig. 20-8 SPI Slave transfer flow diagram

Chapter 21 SPDIF Transmitter

21.1 Overview

The SPDIF transmitter is a self-clocking, serial, unidirectional interface for the interconnection of digital audio equipment for consumer and professional applications, using linear PCM coded audio samples.

It provides the basic structure of the interface. Separate documents define items specific to particular applications.

When used in a professional application, the interface is primarily intended to carry

monophonic or stereophonic programmes, at a 48 kHz sampling frequency and with a

resolution of up to 24bits per sample; it may alternatively be used to carry signals sampled at 32 kHz or 44.1 kHz.

When used in a consumer application, the interface is primarily intended to carry stereophonic programmes, with a resolution of up to 20 bits per sample, an extension to 24 bits per sample being possible.

When used for other purposes, the interface is primarily intended to carry audio data coded other than as linear PCM coded audio samples. Provision is also made to allow the interface to carry data related to computer software or signals coded using non-linear PCM. The format specification for these applications is not part of this standard.

In all cases, the clock references and auxiliary information are transmitted along with the programme.

Supports one internal 32-bit wide and 32-location deep sample data buffer

Supports two 16-bit audio data store together in one 32-bit wide location Supports AHB bus interface

Supports biphase format stereo audio data output

Supports DMA handshake interface and configurable DMA water level

Supports sample data buffer empty, block terminate and user data interrupt

Supports combine interrupt output

Supports 16 to 31 bit audio data left or right justified in 32-bit wide sample data buffer Support 16, 20, 24 bits audio data transfer in linear PCM mode

Support non-linear PCM transfer

Support to carry signals sample at max 192khz

21.2 Block Diagram

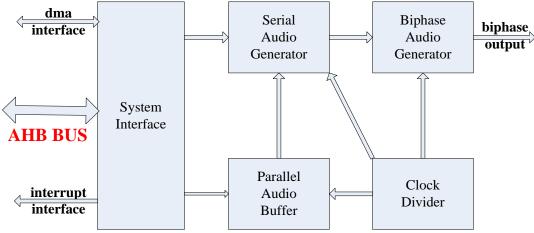


Fig. 21-1 SPDIF transmitter Block Diagram

System Interface

The system interface implements the AHB slave operation. It contains not only control registers of transmitters and receiver inside but also interrupt and DMA handshake interface.

Clock Divider

The Clock Divider implements clock generation function. The input source clock to the module is MCLK, and by the divider of the module, the clock divider generates work clock for digital

audio data transformation.

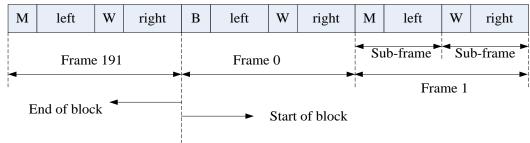
Parallel Audio Buffer

The Parallel Audio Buffer is the buffer to store transmitted audio data. The size of the FIFO is 32bits x 32.

Serial Audio Converter

The Serial Audio Converter reads parallel audio data from the Parallel Audio Buffer and converts it to serial audio data.

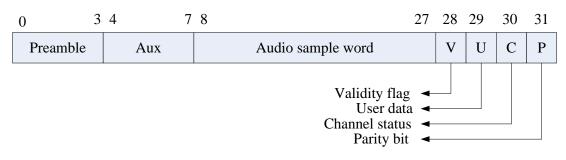
Biphase Audio Generator


The Biphase Audio Generator reads serial audio data from the Serial Audio Converter and generates biphase audio data based on IEC-60958 standard.

21.3 Function description

21.3.1 Frame Format

A frame is uniquely composed of two sub-frames. For linear coded audio applications, the rate of transmission of frames corresponds exactly to the source sampling frequency.


In the 2-channel operation mode, the samples taken from both channels are transmitted by time multiplexing in consecutive sub-frames. The first sub-frame(left channel in stereophonic operation and primary channel in monophonic operation) normally use preamble M. However, the preamble is changed to preamble B once every 192 frame to identify the start of the block structure used to organize the channel status information. The second sub-frame (right in stereophonic operation and secondary channel in monophonic operation) always use preamble W.

In the single channel operation mode in a professional application, the frame format is the same as in the 2-channel mode. Data is carried only in the first sub-frame and may be duplicated in the second sub-frame. If the second sub-frame is not carrying duplicate data, then time slot 28 (validity flag) shall be set to logical '1' (not valid).

21.3.2 Sub-frame Format

Fig. 21-3 SPDIF Sub-frame Format

Each sub-frame is divided into 32 time slots, numbered from 0 to 31. Time slot 0 to 3 carries one of the three permitted preambles. Time slot 4 to 27 carry the audio sample word in linear 2's complement representation. The MSB is carried by time slot 27. When a 24-bit coding range is used, the LSB is in time slot 4. When a 20-bit coding range is used, time slot 8 to 27 carry the audio sample word with the LSB in time slot 8. Time slot 4 to 7 may be used for other application. Under these circumstances, the bits in the time slot 4 to 7 are designated auxiliary sample bits.

If the source provides fewer bits than the interface allows (either 24 or 20), the unused LSBs are set to a logical '0'. For a non-linear PCM audio application or a data application the main

data field may carry any other information. Time slot 28 carries the validity flag associated with the main data field. Time slot 29 carries 1 bit of the user data associated with the audio channel transmitted in the same sub-frame. Time slot 30 carries one bit of the channel status words associated with the main data field channel transmitted in the same sub-frame. Time slot 31 carries a parity bit such that time slots 4 to 31 inclusive carries an even number of ones and an even number of zeros.

21.3.3 Channel Coding

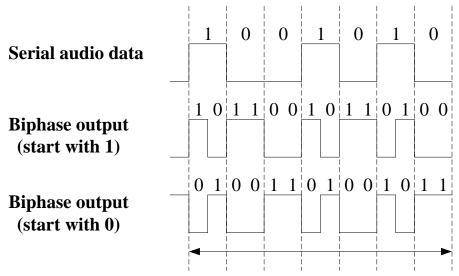


Fig. 21-4 SPDIF Channel Coding

To minimize the direct current component on the transmission line, to facilitate clock recovery from the data stream and to make the interface insensitive to the polarity of connections, time slots 4 to 31 are encoded in biphase-mark.

Each bit to be transmitted is represented by a symbol comprising two consecutive binary states. The first state of a symbol is always different from the second state of the previous symbol. The second state of the symbol is identical to the first if the bit to be transmitted is logical '0'. However, it is different from the first if the bit is logical '1'.

21.3.4 Preamble

Preambles are specific patterns providing synchronization and identification of the sub-frames and blocks.

To achieve synchronization within one sampling period and to make this process completely reliable, these patterns violate the biphase-mark code rules, thereby avoiding the possibility of data imitating the preambles.

A set of three preambles is used. These preambles are transmitted in the time allocated to four time slots (time slots 0 to 3) and are represented by eight successive states. The first state of the preamble is always different from the second state of the previous symbol.

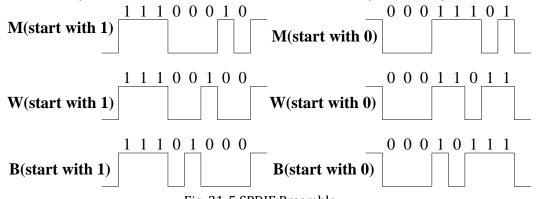


Fig. 21-5 SPDIF Preamble

Like biphase code, these preambles are dc free and provide clock recovery. They differ in at least two states from any valid biphase sequence.

21.3.5 NON-LINEAR PCM ENCODED SOURCE(IEC 61937)

The non-linear PCM encoded audio bitstream is transferred using the basic 16-bit data area of the IEC 60958subframes, i.e. in time slots 12 to 27. Each IEC 60958 frame transfers 32-bit of the non-PCM data in consumer application mode.

If the SPDIF bitstream conveys linear PCM audio, the symbol frequency is 64 times the PCM sampling frequency (32 time slots per PCM sample times two channels). If a non-linear PCM encoded audio bitstream is conveyed by the interface, the symbol frequency is 64 times the sampling rate of the encoded audio within that bitstream. But in the case where a non-linear PCM encoded audio bitstream is conveyed by the interface containing audio with low sampling frequency, the symbol frequency is 128 times the sampling rate of the encoded audio within that bitstream.

Each data burst contains a burst-preamble consisting of four 16-bit words (Pa, Pb, Pc, Pd), followed by the burstpayload which contains data of an encoded audio frame.

The burst-preamble consists of four mandatory fields. Pa and Pb represent a synchronization word; Pc gives information about the type of data and some information/control for the receiver; Pd gives the length of the burstpayload, the number of bits or number of bytes according to data-type.

The four preamble words are contained in two sequential SPDIF frames. The frame beginning the data-burst contains preamble word Pa in subframe 0 and Pb in subframe 1. The next frame contains Pc in subframe 0 and Pd in subframe 1. When placed into a SPDIF subframe, the MSB of a 16-bit burst-preamble is placed into time slot 27 and the LSB is placed into time slot 12.

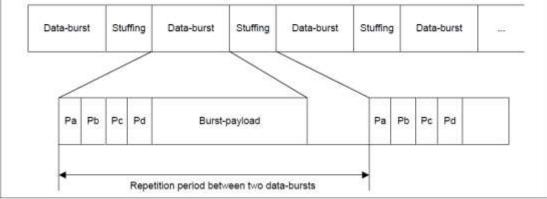


Fig. 21-6 Format of Data-burst

21.4 Register description

21.4.1 Register Summary

Name	Offset	Size	Reset Value	Description
SPDIF_CFGR	0x0000	W	0x0000000	Transfer Configuration Register
SPDIF_SDBLR	0x0004	W	0x0000000	Sample Date Buffer Level Register
SPDIF_DMACR	0x0008	W	0x0000000	DMA Control Register
SPDIF_INTCR	0x000c	W	0x0000000	Interrupt Control Register
SPDIF_INTSR	0x0010	W	0x0000000	Interrupt Status Register
SPDIF_XFER	0x0018	W	0x0000000	Transfer Start Register
SPDIF_SMPDR	0x0020	W	0x0000000	Sample Data Register
SPDIF_VLDFRn	0x0060	W	0x0000000	Validity Flag Register n
SPDIF_USRDRn	0x0090	W	0x0000000	User Data Register n
SPDIF_CHNSRn	0x00c0	W	0x0000000	Channel Status Register n
SPDIF_BURTSINFO	0x0100	W	0x0000000	Channel Burst Info Register

Name	Offset	Size	Reset Value	Description
SPDIF_REPETTION	0x0104	W	0x0000000	Channel Repetition Register
SPDIF BURTSINFO SHD	0.0100	W	10x00000000	Shadow Channel Burst Info
	0X0108			Register
SPDIF REPETTION SHD	0x010c	w	0x00000000	Shadow Channel Repetition
SPUIF_REPETTION_SHU	0X010C	vv	0x00000000	Register
SPDIF_USRDR_SHDn	0x0190	W	0x00000000	Shadow User Data Register n

Notes: <u>Size</u> : **B** - Byte (8 bits) access, **HW** - Half WORD (16 bits) access, **W** -WORD (32 bits) access

21.4.2 Detail Register Description

SPDIF_CFGR

Address: Operational Base + offset (0x0000) Transfer Configuration Register

Bit	Attr	Reset Value	Description
31:24	RO	0x0	reserved
			MCD
			mclk divider
23:16	RW	0x00	Fmclk/Fsdo
			This parameter can be caculated by Fmclk/(Fs*128).
			Fs=the sample frequency be wanted
15:10	RO	0x0	reserved
			PRE_CHANGE
			Preamble Change
9	RW	0x0	The bit only is valid when set to non-linear PCM mode;
5			0: the Preamble will change when block finish;
			1: the Preamble will change every 192 frames just like the linear
			PCM mode.
		0×0	PCMTYPE
8	RW		PCM type
°			0: linear PCM
			1: non-linear PCM
		0×0	CLR
7	WO		mclk domain logic clear
			Write 1 to clear mclk domain logic. Read return zero.
			CSE
			Channel status enable
6	RW	0x0	0: disable
°			1: enable
			The bit should be set to 1 when the channel conveys non-linear
			РСМ
			UDE
5	RW	0x0	User data enable
-			0: disable
			1: enable

Bit	Attr	Reset Value	Description
			VFE
4	RW	0x0	Validity flag enable
4	r vv	0.00	0: disable
			1: enable
			ADJ
2		0.40	audio data justified
3	RW	0x0	0: Right justified
			1: Left justified
			нмт
			Halfword word transform enable
2	RW	0x0	0: disable
			1: enable
			It is valid only when the valid data width is 16bit.
			VDW
			Valid data width
			00: 16bit
1:0	RW	0x0	01: 20bit
			10: 24bit
			11: reserved
			The valid data width is 16bit only for non-linear PCM

SPDIF_SDBLR

Address: Operational Base + offset (0x0004) Sample Date Buffer Level Register

Bit	Attr	Reset Value	Description
31:6	RO	0x0	reserved
5:0	RW	0x00	SDBLR Sample Date Buffer Level Register Contains the number of valid data entries in the sample data buffer.

SPDIF_DMACR

Address: Operational Base + offset (0x0008) DMA Control Register

Bit	Attr	Reset Value	Description
31:6	RO	0x0	reserved
5	RW	0x0	TDE Transmit DMA Enable 0: Transmit DMA disabled 1: Transmit DMA enabled

Bit	Attr	Reset Value	Description
4:0	RW	0×00	TDL Transmit Data Level This bit field controls the level at which a DMA request is made by the transmit logic. It is equal to the watermark level; that is, the dma_tx_req signal is generated when the number of valid data entries in the Sample Date Buffer is equal to or below this field value

SPDIF_INTCR

Address: Operational Base + offset (0x000c) Interrupt Control Register

Bit	Attr	Reset Value	Description
31:18	RO	0x0	reserved
			UDTIC
17	W1C	0x0	Ueser Data Interrupt Clear
			Write '1' to clear the user data interrupt.
			BTTIC
16	W1C	0x0	Block/Data burst transfer finish interrupt clear
			Write 1 to clear the interrupt.
15:10	RO	0x0	reserved
			SDBT
9:5	RW	0x00	Sample Date Buffer Threshold
			Sample Date Buffer Threshold for empty interrupt
			SDBEIE
4	RW	0x0	Sample Date Buffer empty interrupt enable
			0: disable
			1: enable
			BTTIE
			Block transfer/repetition period end interrupt enable
		V 0x0	When enabled, an interrupt will be asserted when the block
3	RW		transfer is finished if the channel conveys linear PCM or when the
			repetition period is reached if the channel conveys non-linear PCM.
			0: disable
			1: enable
			UDTIE
			User Data Interrupt
			0: disable
2	RW	0x0	1: enable
			If enabled, an interrupt will be asserted when the content of the
			user data register is fed into the corresponding shadow register
1:0	RO	0x0	reserved

SPDIF_INTSR

Address: Operational Base + offset (0x0010) Interrupt Status Register

Bit	Attr	Reset Value	Description
31:5	RO	0x0	reserved
4	RW	0x0	SDBEIS Sample Date Buffer empty interrupt status 0: inactive
			1: active BTTIS
3	RW	0x0	Block/Data burst transfer interrupt status 0: inactive 1: active
2	RW	0x0	UDTIS User Data Interrupt Status 0: inactive 1: active
1:0	RO	0x0	reserved

SPDIF_XFER

Address: Operational Base + offset (0x0018) Transfer Start Register

Bit	Attr	Reset Value	Description
31:1	RO	0x0	reserved
			XFER
0	RW	0x0	Transfer Start Register
			Transfer Start Register

SPDIF_SMPDR

Address: Operational Base + offset (0x0020) Sample Data Register

Bit	Attr	Reset Value	Description
31:0	RW	0×00000 000	SMPDR Sample Data Register Sample Data Register

SPDIF_VLDFRn

Address: Operational Base + offset (0x0060) Validity Flag Register n

Bit	Attr	Reset Value	Description
-----	------	----------------	-------------

Bit	Attr	Reset	Description
DIC	Atti	Value	
			VLDFR_SUB_1
31:16	RW	0x0000	Validity Flag Subframe 1
			Validity Flag Register 0
			VLDFR_SUB_0
15:0	RW	0x0000	Validity Flag Subframe 0
			Validity Flag for Subframe 0

SPDIF_USRDRn

Address: Operational Base + offset (0x0090) User Data Register n

Bit	Attr	Reset Value	Description
			USR_SUB_1
31:16	RW	0x0000	User Data Subframe 1
			User Data Bit for Subframe 1
			USR_SUB_0
15:0	RW	0x0000	User Data Subframe 0
			User Data Bit for Subframe 0

SPDIF_CHNSRn

Address: Operational Base + offset (0x00c0) Channel Status Register n

Bit	Attr	Reset	Description
DIL		Value	Description
			CHNSR_SUB_1
31:16	RW	0x0000	Channel Status Subframe 1
			Channel Status Bit for Subframe 1
		/ 0x0000	CHNSR_SUB_0
15:0	RW		Channel Status Subframe 0
			Channel Status Bit for Subframe 0

SPDIF_BURTSINFO

Address: Operational Base + offset (0x0100) Channel Burst Info Register

Bit	Attr	Reset	Description
Dit		Value	Description
		0x0000	PD
21.10			pd
31:16	RW		Preamble Pd for non-linear pcm, indicating the length of burst
			payload in unit of bytes or bits.
		0x0	BSNUM
15.12			Bitstream Number
15:13	RW		This field indicates the bitstream number. Usually the birstream
			number is 0.

Bit Attr Reset Value			Description
			DATAINFO
12:8	RW	0x00	Data-type-dependent info
			This field gives the data-type-dependent info
			ERRFLAG
7	RW	0x0	Error Flag
/	RVV	UXU	0: indicates a valid burst-payload
			1: indicates that the burst-payload may contain errors
			DATATYPE
			Data type
			0000000: null data
			0000001: AC-3 data
			0000011: Pause data
			0000100: MPEG-1 layer 1 data
			0000101: MPEG-1 layer 2 or 3 data or MPEG-2 without
			extension
			0000110: MPEG-2 data with extension
			0000111: MPEG-2 AAC
			0001000: MPEG-2, layer-1 low sampling frequency
			0001001: MPEG-2, layer-2 low sampling frequency
			0001010: MPEG-2, layer-3 low sampling frequency
0001100: DTS type			0001011: DTS type I
			0001100: DTS type II
			0001101: DTS type III
			0001110: ATRAC
6:0	RW	0x00	0001111: ATRAC 2/3
			0010000: ATRAC-X
			0010001: DTS type IV
			0010010: WMA professional type I
			0110010: WMA professional type II
			1010010: WMA professional type III
			1110010: WMA professional type IV
			0010011: MPEG-2 AAC low sampling frequency
			0110011: MPEG-2 AAC low sampling frequency
			1010011: MPEG-2 AAC low sampling frequency
			1110011: MPEG-2 AAC low sampling frequency
			0010100: MPEG-4 AAC
			0110100: MPEG-4 AAC
			1010100: MPEG-4 AAC
			1110100: MPEG-4 AAC
			0010101: Enhanced AC-3
			0010110: MAT
			others: reserved

SPDIF_REPETTION

Address: Operational Base + offset (0x0104) Channel Repetition Register

Bit	Attr	Reset Value	Description	
31:16	RO	0x0	reserved	
15:0	RW	0x0000	REPETTION Repetition This define the repetition period when the channel conveys non-linear PCM	

SPDIF_BURTSINFO_SHD

Address: Operational Base + offset (0x0108) Shadow Channel Burst Info Register

Bit	Attr	Reset Value	Description			
		value				
31:16	RO	0x0000	PD pd Preamble Pd for non-linear pcm, indicating the length of burst payload in unit of bytes or bits.			
15:13	RO	0×0	BSNUM Bitstream Number This field indicates the bitstream number. Usually the birstream number is 0.			
12:8	RO	0×00	DATAINFO Data-type-dependent info This field gives the data-type-dependent info			
7	RO	0x0	ERRFLAG Error Flag 0: indicates a valid burst-payload 1: indicates that the burst-payload may contain errors			

Bit	Attr	Reset Value	Description
			DATATYPE
			Data type
			000000: null data
			0000001: AC-3 data
			0000011: Pause data
			0000100: MPEG-1 layer 1 data
			0000101: MPEG-1 layer 2 or 3 data or MPEG-2 without
			extension
			0000110: MPEG-2 data with extension
			0000111: MPEG-2 AAC
			0001000: MPEG-2, layer-1 low sampling frequency
			0001001: MPEG-2, layer-2 low sampling frequency
			0001010: MPEG-2, layer-3 low sampling frequency
			0001011: DTS type I
			0001100: DTS type II
			0001101: DTS type III
	0		0001110: ATRAC
6:0	RO	0x00	0001111: ATRAC 2/3
			0010000: ATRAC-X
			0010001: DTS type IV
			0010010: WMA professional type I
			0110010: WMA professional type II
			1010010: WMA professional type III
			1110010: WMA professional type IV
			0010011: MPEG-2 AAC low sampling frequency
			0110011: MPEG-2 AAC low sampling frequency
			1010011: MPEG-2 AAC low sampling frequency
			1110011: MPEG-2 AAC low sampling frequency
			0010100: MPEG-4 AAC
			0110100: MPEG-4 AAC
			1010100: MPEG-4 AAC
			1110100: MPEG-4 AAC
			0010101: Enhanced AC-3
			0010110: MAT
			others: reserved

SPDIF_REPETTION_SHD

Address: Operational Base + offset (0x010c) Shadow Channel Repetition Register

Bit	Attr	Reset Value	Description
31:16	RO	0x0	reserved

Bit	Attr	Reset Value	Description
15:0	RO	0×0000	REPETTION Repetition This register provides the repetition of the bitstream when channel conveys non-linear PCM. In the design, it is define the length bwtween Pa of the two consecutive data-burst. For the same audio format, the definition is different. Please convert the actual repetition in order to comply with the design.

SPDIF_USRDR_SHDn

Address: Operational Base + offset (0x0190) Shadow User Data Register n

Bit	Attr	Reset Value	Description			
		USR_SUB_1				
31:16	User Data Subframe 1					
			User Data Bit for Subframe 1			
USR_SUB_0			USR_SUB_0			
15:0	RO	0x0000	User Data Subframe 0			
		User Data Bit for Subframe 0				

21.5 Interface description

Module Pin	ΙΟ	Pad Name	IOMUX Setting
spdif_tx	0	SPDIFtx_AUDIOgpio6b3	GPIO6B_IOMUX[7:6]= 2'b01

Notes: 1. O=output

21.6 Application Notes

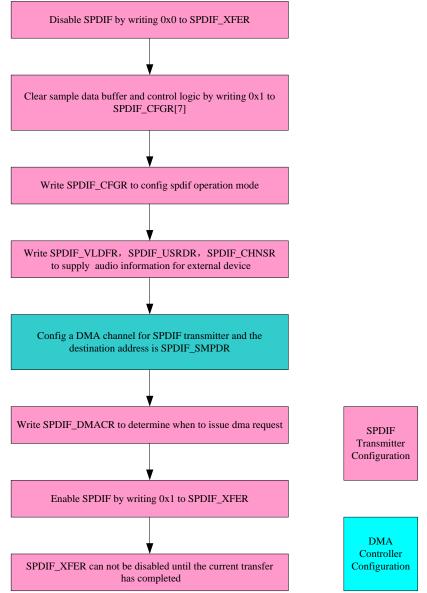


Fig. 21-7 SPDIF transmitter operation flow chart

21.6.1 Channel Status Bit and Validity Flag Bit

Normally the channel status bits and validity flag bits are not necessarily updated frequently. If it is desired to change the channel status bits or validity flag, please write to the corresponding register after a block terminate interrupt is asserted. The new value will take effect immediately.

21.6.2 User Data Bit

As the user data bits are updated frequently, the design takes use of the shadow register mechanism to store and convey the user data bit. When the SPDIF interface is disabled, the values of the shadow user data registers keeps the same with the corresponding user data registers. After the SPDIF starts, any change of the user data register will not go to the corresponding shadow user data registers until an user data interrupt is asserted.

Therefore before the SPDIF transfer starts, prepare the first 384 user data bits by writing them to the SPDIF_USRDR registers. After the SPDIF transfer starts, writing the second 384 user data bits to the SPDIF_USRDR registers. Then wait for the assertion of user data interrupt. The second 384 user data bits goes to the shadow registers, and then third 384 user bits are written

to SPDIF_USRDR.

21.6.3 Burst Info and Repetition

The shadow register mechanism is also applied to the data of burst info and repetition as the user data. The difference is that the update of shadow register will be taken after assertion of the block terminate interrupt.

It is important to note that the repetition defined in the design is a little different from the repetition defined in IEC-61957. The repetition is always defined as the length (measured in IEC-60958 frame) between Pa of two consecutive data-bursts. Therefore the user needs to calculation the new repetition value if the definition of the repetition is different for some audio formats such as AC-3.

Chapter 22 Transport Stream Processing(TSP)

22.1 Overview

The Transport Stream Processing Module(TSP) is designed for processing Transport Stream Packets, including receiving TS packets, PID filtering, TS descrambling, De-multiplexing and TS outputting. Processed data are transferred to memory buffer which are continued to be processing by software.

TPS supports the following features:

Supports two TS input channels and one TS output channel

Supports 4 TS Input Mode: sync/valid mode in the case of serial TS input; nosync/valid mode, sync/valid, sync/burst mode in the case of parallel TS input

Supports serial and parallel output mode with PCR adjustment, and lsb-msb or msb-lsb bit ordering can be chosen in the serial output mode

Supports 2 TS sources: demodulators and local memory

Supports 2 Built-in PTIs(Programmable Transport Interface) to process TS simultaneously Supports 1 PVR(Personal Video Recording) output channel

1 built-in multi-channel DMA Controller

DMAC supports:

Word alignment transfer

Fixed and incrementing addressing

Word size transfer

burst modes: Incr4, Incr8, Inc16; burst transfer will be done with INCR mode if the remaining data or address space is not capable to perform a complete burst transfer Hardware/software trigger mode

LLP(List Link Programming) Mode

DMA done and error interrupt for each PTI channel

Each PTI supports

64 PID filters

TS descrambling with 16 sets of Control Word under CSA v2.0 standard, up to 104Mbps 16 PES/ES filters with PTS/DTS extraction and ES start code detection

4/8 PCR extraction channels

64 Section filters with CRC check, and three interrupt mode: stop per unit, full-stop, recycle mode with version number check

PID done and error interrupts for each channel

PCR/DTS/PTS extraction interrupt for each channel

22.2 Block Diagram

The TSP comprises of following components:

AMBA AHB slave interface Register block PTI DMAC TS Out Interface

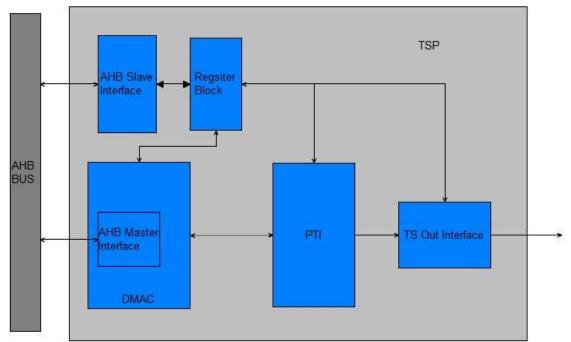


Fig. 22-1 TSP architecture

AHB Slave INTERFACE

The host processor can get access to the register block through AHB slave interface. The slave interface supports 32bit access.

Register block

All registers in the TSP are addressed at 32-bit boundaries to remain consistent with the AHB bus. Where the physical size of any register is less than 32-bits wide, the upper unused bits of the 32-bit boundary are reserved. Writing to these bits has no effect; reading from these bits returns 0.

PTI

Most of the TS processing are dealt with PTI. TS packets are re-synchronized, filtered, descrambled and demultiplexing, and the processed packets are transferred to memory buffer to be processed further by software. The embedded TS in interface can receive TS packets by connecting to a compliant TS demodulator. TS stream stored in the local memory is another source to fed into PTI through by using LLP DMA mode.

TS Out Interface

TS out interface can output either PID-filtered or non-PID-filtered TS packets from one PTI channel in a certain stream mode as configured. The TS receiver conforms to the stream mode to receive the TS packets.

DMAC

The DMAC performs all DMA transfers which get access to memory.

22.3 Function Description

22.3.1 TS Stream of TS_IN Interface

TS_IN interface supports 4 input TS stream mode: sync/valid serial mode, sync/valid parallel mode, sync/burst parallel mode, nosync/valid parallel mode.

A. Sync/Valid Serial Mode

In this mode, TS_IN interface takes use of TSI_SYNC and TSI_VALID clocked with TSI_CLK signal to sample input serial TS packet data.

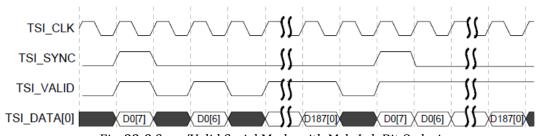


Fig. 22-2 Sync/Valid Serial Mode with Msb-Lsb Bit Ordering

TSI_SYNC must be active high together with TSI_VALID when indicating the first valid bit of a TS packet, and TSI_VALID indicates the 188*8 valid bits of a TS packet. TSI supports both msb-lsb and lsb-msb bit ordering.

B. Sync/Valid Parallel Mode

In this mode, TS_IN interface takes use of TSI_SYNC and TSI_VALID clocked with TSI_CLK signal to sample input parallel TS packet data.

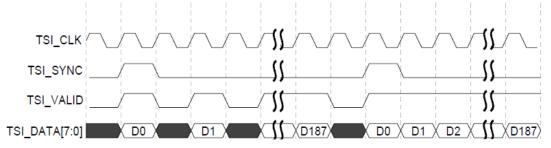


Fig. 22-3 Sync/valid Parallel Mode

TSI_SYNC must be active high together with TSI_VALID when indicating the first valid byte of a TS packet, and TSI_VALID indicates the 188 valid byte of a TS packet.

C. Sync/Burst Parallel Mode

In this mode, TSI only takes use of TSI_SYNC to sample input parallel TS packet data.

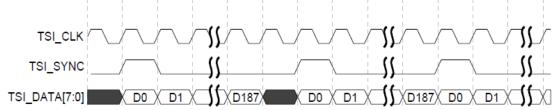


Fig. 22-4 Sync/Burst Parallel Mode

When active high, TSI_SYNC implies the first valid byte of a TS packet and remaining 187 valid bytes of a TS packet are upcoming within the following successive 187 clock cycles.

D. Nosync/Valid Parallel Mode

In this mode, TSI only takes uses of TSI_VALID to sample input parallel TS packet data.

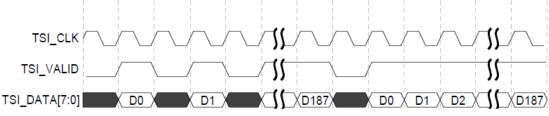


Fig. 22-5 Nosync/Valid Parallel Mode

When active high, TSI_VALID implies a valid byte of a TS packet.

22.3.2 TS output of TS Out Interface

TS out interface transmit the TS data in two mode: serial mode and parallel mode. In the serial mode, the bit order can be lsb-msb or msb-lsb.

The TS_SYNC will be active high when indicating the header of the TS packets, and it only lasts for one cycle. TS_VALID will be active high when the output TS data is valid. The output data is 188 byte TS packet data.

TS out interface also stamp the TS output stream with new PCR value, making PCR adjustment.

PCR is used to measure the transport rate.

$$PCR(i) = PCR_base(i) \times 300 + PCR_ext(i)$$

where:

$$PCR_base(i) = ((system_clock_frequency \times t(i)) DIV 300) \% 2^{33}$$

$$PCR_ext(i) = ((system_clock_frequency \times t(i)) DIV 1) \% 300$$

$$transport_rate(i) = \frac{((i' - i'') \times system_clock_frequency)}{PCR(i') - PCR(i'')}$$

Where

i' is the index of the byte containing the last bit of the immediately following program_clock_reference_base field applicable to the program being decoded.

i is the is the index of any byte in the Transport Stream for i'' < i < i'.

i'' is the index of the byte containing the last bit of the most recent

program_clock_reference_base field applicable to the program being decoded. System clock is 27Mhz.

22.3.3 Demux and descrambling

Each PTI has 64 PID channels to deal with demultiplexing and descrambling operation. The PTI can descramble the TS Packets which are scrambled with CSA v2.0 standard. The TS packets can be scrambled either in TS level or PES level.

The demux module can do the section filtering, pes filtering and es filtering, or directly output TS packets.

22.4 Register Description

22.4.1 Register Summary

Name	Offset	Size	Reset Value	Description
TSP_GCFG	0x0000	W	0x0000000	Global Configuration Register
TSP_PVR_CTRL	0x0004	W	0x0000000	PVR Control Register
TSP_PVR_LEN	0x0008	W	0x0000000	PVR DMA Transaction Length
TSP_PVR_ADDR	0x000c	w	0x00000000	PVR DMA transaction starting
ISP_PVK_ADDK	00000	vv	0x00000000	address
TSP_PVR_INT_STS	0x0010	W	0x00000000	PVR DMA Interrupt Status Register
TSP_PVR_INT_ENA	0x0014	W	0x0000000	DMA Interrupt Enable Register
TSP_TSOUT_CTRL	0x0018	W	0x0000000	TS Out Control Register
TSP_PTIx_CTRL	0x0100	W	0x0000000	PTI Channel Control Register
TSP_PTIx_LLP_CFG	0x0104	W	0x0000000	LLP DMA Control Register
TSP_PTIx_LLP_BASE	0x0108	W	0x0000000	LLP Descriptor BASE Address
	0x010c	w	0x00000000	LLP DMA Writing Software
TSP_PTIx_LLP_WRITE	0X010C	vv	0x00000000	Descriptor Counter
	0x0110	w	0x00000000	LLP DMA Reading Hardware
TSP_PTIx_LLP_READ	0X0110	vv	0x00000000	Descriptor Counter
TSP_PTIx_PID_STS0	0x0114	W	0x0000000	PTI PID Channel Status 0 Register
TSP_PTIx_PID_STS1	0x0118	W	0x0000000	PTI PID Channel Status 1 Register
TSP_PTIx_PID_STS2	0x011c	W	0x00000000	PTI PID Channel Status 2 Register

Name	Offset	Size	Reset Value	Description
TSP_PTIx_PID_STS3	0x0120	W	0x00000000	PTI PID Channel Status 3 Register
TSP_PTIX_PID_INT_ENA0	0x0124	W	0x00000000	PID Interrupt Enable Register 0
TSP PTIX PID INT ENA1	1	W	0x00000000	PID Interrupt Enable Register 1
TSP_PTIX_PID_INT_ENA2		W	0x00000000	PID Interrupt Enable Register 2
TSP_PTIX_PID_INT_ENA3		W	0x00000000	PID Interrupt Enable Register 3
TSP_PTIX_PCR_INT_STS	0x0134	W	0x00000000	PTI PCR Interrupt Status Register
TSP_PTIX_PCR_INT_ENA	0x0138	W	0x00000000	PTI PCR Interrupt Enable Register
TSP_PTIx_PCRn_CTRL	0x013c	W	0x00000000	PID PCR Control Register
TSP_PTIx_PCRn_H	0x015c	W	0x00000000	High Order PCR value
TSP_PTIx_PCRn_L	0x0160	W	0x00000000	Low Order PCR value
TSP_PTIx_DMA_STS	0x019c	W	0x00000000	LLP DMA Interrupt Status Register
TSP_PTIx_DMA_ENA	0x01a0	W	0x00000000	DMA Interrupt Enable Register
TSP_PTIX_DATA_FLAG0	0x01a4	W	0x00000000	PTI_PID_WRITE Flag 0
TSP_PTIx_DATA_FLAG1	0x01a8	W	0x00000000	PTI_PID_WRITE Flag 1
TSP_PTIx_LIST_FLAG	0x01ac	W	0x00000000	PTIX_LIST_WRITE Flag
TSP_PTIx_DST_STS0	0x01b0	W	0x00000000	PTI Destination Status Register
TSP_PTIx_DST_STS1	0x01b4	W	0x00000000	PTI Destination Status Register
TSP_PTIx_DST_ENA0	0x01b8	w	0x00000000	PTI Destination Interrupt Enable
				Register
TSP_PTIx_DST_ENA1	0x01bc	W	0x00000000	PTI Destination Interrupt Enable Register
TSP_PTIx_ECWn_H	0x0200	W	0x0000000	The Even Control Word High Order
TSP_PTIx_ECWn_L	0x0204	W	0x0000000	The Even Control Word Low Order
TSP_PTIx_OCWn_H	0x0208	W	0x0000000	The Odd Control Word High Order
TSP_PTIx_OCWn_L	0x020c	W	0x0000000	The Odd Control Word Low Order
TSP_PTIx_PIDn_CTRL	0x0300	W	0x0000000	PID Channel Control Register
TSP_PTIx_PIDn_BASE	0x0400	w	0x00000000	PTI Data Memory Buffer Base Address
				PTI Data Memory Buffer Top
TSP_PTIx_PIDn_TOP	0x0404	W	0×00000000	Address
TSP_PTIx_PIDn_WRITE	0x0408	w	0x00000000	PTI Data Memory Buffer Hardware
	070400	vv	0,00000000	Writing Address
TSP_PTIx_PIDn_READ	0x040c	w	0x00000000	PTI Data Memory Buffer Software
				Reading Address
TSP_PTIx_LISTn_BASE	0x0800	W	0x00000000	PTI List Memory Buffer Base
				Address
TSP_PTIx_LISTn_TOP	0x0804	W	0x0000000	PTI List Memory Buffer Top Address
TSP_PTIx_LISTn_WRITE	0x0808	W	0x00000000	PTI List Memory Buffer Hardware Writing Address
	0,000 -	\	0.00000000	PTI List Memory Buffer Software
TSP_PTIx_LISTn_READ	0x080c	W	0x00000000	Reading Address
TSP_PTIx_PIDn_CFG	0x0900	W	0x0000008	PID Demux Configure Register
TSP_PTIx_PIDn_FILT_0	0x0904	W	0x0000000	Fliter Word 0
TSP_PTIx_PIDn_FILT_1	0x0908	W	0x0000000	Fliter Word 1

Name	Offset	Size	Reset Value	Description
TSP_PTIx_PIDn_FILT_2	0x090c	W	0x0000000	Fliter Word 2
TSP_PTIx_PIDn_FILT_3	0x0910	W	0x0000000	Fliter Word 3
Notes: <u>Size</u> : B - Byte (8 b	its) access	5, НИ	/ - Half WORD (1	6 bits) access, W -WORD (32 bits)

access

22.4.2 Detail Register Description

TSP_GCFG

Address: Operational Base + offset (0x0000) Global Configuration Register

Bit	Attr	Reset Value	Description
31:7	RO	0x0	reserved
6:4	RW	0×0	arbit_cnt DMA channel arbiter counter This field is used to adjust the priority of DMA channels to prevent one channel holds the highest priority for a long time. The 3-bit field sets the largest times for a DMA channel to hold the highest priority to send the bus request. After requested times reach this limit, the highest priority is passed to next DMA channel in order.
3	RW	0x0	tsout_on TS Output Module Switch 1: TS output module switched on 0: TS output module switched off
2	RW	0×0	pvr_on PVR Module Switch 1: PVR function turned on ; 0: PVR function turned off ;
1	RW	0x0	pti1_on PTIO channel switch 1: PTI1 channel switched on 0: PTI1 channel switched off
0	RW	0×0	pti0_on PTI0 channel switch 1: PTI0 channel switched on 0: PTI1 channel switched off

TSP_PVR_CTRL

Address: Operational Base + offset (0x0004) PVR Control Register

Bit	Attr	Reset Value	Description
31:7	RO	0x0	reserved

Bit	Attr	Reset Value	Description
			fixaddr_en
c	RW	00	Fix Address Mode Select
6	K VV	0x0	1: fixed address mode;
			0: incrementing address mode;
			burst_mode
			PVR burst mode
			PVR DMA burst mode
5:4	RW	0x0	2'b00: INCR4
			2'b01: INCR8
			2'b10: INCR16
			2'b11: Reserverd
			source
			PVR Source Select
			TS source for PVR output.
3:2	RW	0x0	00: non-PID-filtered TS packets in PTI0;
			01: PID filtered TS packets in PTI0;
			10: non-PID-filtered TS packets in PTI1;
			11: PID-filtered TS packets in PTI1;
			stop
			PVR stop
			Write 1 to stop DMA channel. DMA will
1	R/WSC	0x0	complete current burst transfer and then stop.
			It may takes several cycles.
			1: PVR Stop ;
			0: no effect ;
			start
			PVR start
			Write 1 to start PVR. This bit will be cleared if
0	R/WSC	C 0x0	PVR is stopped or PVR transaction is
			completed.
			1: start PVR
			0: no effect.

TSP_PVR_LEN

Address: Operational Base + offset (0x0008) PVR DMA Transaction Length

Bit	Attr	Reset Value	Description
			len
31:0	RW	0x00000000	Transaction Length
			Transaction Length

TSP_PVR_ADDR

Address: Operational Base + offset (0x000c) PVR DMA transaction starting address

Bit	Attr	Reset Value	Description		

Bit	Attr	Reset Value	Description
			addr
31:0	RW	0x0000000	PVR DMA transaction starting address
			PVR DMA transaction starting address

TSP_PVR_INT_STS

Address: Operational Base + offset (0x0010) PVR DMA Interrupt Status Register

Bit	Attr	Reset Value	Description
31:2	RO	0x0	reserved
			pvr_error
			PVR DMA transaction error
1	W1C	0x0	1: error response during PVR DMA
1	VV IC		transaction;
			0: no error response during PVR DMA
			transaction;
		IC 0x0	pvr_done
0	0 W1C		PVR DMA transaction done
0			1: PVR DMA transaction completed;
			0: PVR DMA transaction not completed;

TSP_PVR_INT_ENA

Address: Operational Base + offset (0x0014) DMA Interrupt Enable Register

Bit	Attr	Reset Value	Description
31:2	RO	0x0	reserved
			pvr_error_ena
1	RW	0x0	PVR DMA Transcation Error Interrupt Enable
	KW		1: Error Interrupt Enabled
			0: Error Interrupt Disabled
		00	pvr_done_ena
0			PVR DMA Transaction Done Interrupt Enable
0 RW	0×0	1: Done Interrupt Enabled	
			0: Done Interrupt Disabled

TSP_TSOUT_CTRL

Address: Operational Base + offset (0x0018) TS Out Control Register

Bit	Attr	Reset Value	Description
31:7	RO	0x0	reserved
		tso_sdo_sel	
G	5 RW	()X()	TS serial data output
6			1: bit[0] use as serial data output ;
		0: bit[7] use as serial data output ;	

Bit	Attr	Reset Value	Description
			tso_clk_phase
5	RW	0x0	TS output clock phase
5	L AN	0.00	0: ts output clock;
			1: inverse of ts output clock.
			mode
			TS Output mode Selection
4	RW	0x0	Output mode select:
			0: Serial Mode
			1: Parallel Mode
		V 0×0	bit_order
			ts output serial data byte order
3	RW		Indicates that the output serial data byte
5	K VV		order, ignored in the parallel:
			0: MSB to LSB
			1: LSB to MSB
			source
		0×0	TS Output Source Select
			TS source for TS out.
2:1	RW		00: non-PID-filtered TS packets in PTI0;
			01: PID filtered TS packets in PTI0;
			10: non-PID-filtered TS packets in PTI1;
			11: PID-filtered TS packets in PTI1;
			start
0	DW/	0×0	TS out start
	RW	/ 0x0	1: to start TS out function ;
			0: to stop TS out function;

TSP_PTIx_CTRL Address: Operational Base + offset (0x0100) PTI Channel Control Register

Bit	Attr	Reset Value	Description
31:22	RO	0x0	reserved
			tsi_sdi_sel
21	RW	0x0	TS Serial Data Input Select
21	RVV	0.00	1: bit[0] use as serial input data
			0: bit[7] use as serial input data
	RW	0×0	tsi_error_handle
			TS ERROR Handle
20:19			00: don't output
			01: set the error indicator to 1
			10: don't care
		0x0	clk_phase_sel
18	RW		ts input clock phase select
10			1'b0: ts input clock
			1'b1: inverse of ts input clock

Bit	Attr	Reset Value	Description
			demux_burst_mode
			Demux DMA Burst Mode
			Demux DMA Mode
17:16	RW	0x0	2'b00: INCR4
			2'b01: INCR8
			2'b10: INCR16
			2'b11: Reserved
			sync_bypass
			Bypass mode Selection
			1'b1: Bypass mode, indicating that input TS
1 5		0.20	packets will not be resynchronized and
15	RW	0x0	directly fed into the following modules;
			1'b0: Synchronous mode, default, indicating
			that input TS packets will be resynchronized;
			cw_byteorder
			Control Word format Configuration
14	RW	0x0	0: Default: first byte of the word is the highest
			byte
			1: first byte of the word is the lowest byte
			cm_on
			CSA Conformance Mechanism Configuration
13	RW	0x0	CSA Conformance Mechanism
			0: CM turned off
			1: CM turned on
			tsi_mode
			TSI Input Mode Selection
			Input mode selection:
12:11	RW	0x0	00: Serial Sync/valid Mode
			01: Parallel Sync/valid Mode
			10: Parallel Sync/burst Mode
			11: Parallel Nosync/valid Mode
			tsi_bit_order
			input serial data order
10	RW	0x0	Indicates that the input serial data byte order,
10			ignored in the parallel mode:
			0: MSB to LSB
			1: LSB to MSB
			tsi_sel
			TS Input Source Select
9	RW	0x0	Select input TS source
			1'b1: HSADC ;
			1'b0: internel memory ;

Bit	Attr	Reset Value	Description
			out_byteswap
			Output byteswap function
8	RW	0x0	When enabled, the word to be transferred to
			memory buffer "B4B3B2B1" is performed
			byteswapping to "B1B2B3B4".
			in_byteswap
7	RW	0x0	Input TS Word Byteswap
,		0,0	When enabled, the input TS word "B4B3B2B1"
			is perfomed byteswapping to "B1B2B3B4".
			unsync_times
			TS Header Unsynchronized Times
6:4	RW	0×0	If synchronous mode is selected. This field
011			sets the successive times of TS packet header
			error to re-lock TS header when TS is in locked
			status;
			sync_times
			TS Header Synchronized Times
3:1	RW	0x0	If synchronous mode is selected. This field
_			sets the successive times of finding TS packet
			header to lock the TS header when TS is in
			unlocked status;
			clear
			Software clear signal
0	DUNCO	C 0×0	It will reset the core register . It will table
	K/WSC		several cycles. After reset done, soft_reset
			will be low.
			1. reset;
			0. no effect.

TSP_PTIx_LLP_CFG Address: Operational Base + offset (0x0104) LLP DMA Control Register

Bit	Attr	Reset Value	Description
31:10	RO	0x0	reserved
			threshold
			LLP Transfer Threshold
9:8 R	RW	0×0	The depth for LLP descriptors is 64. An
			interrupt will be asserted when transfer
			reaches the threshold set if DMA transfer
			interrupt is enabled.
			00: 1/1 depth
			01: 1/2 depth
			10: 1/4 depth
			11: 1/8 depth

Bit	Attr	Reset Value	Description
			burst_mode
			LLP DMA Burst Mode
			LLP DMA Burst Mode
7:6	RW	0x0	2'b00: INCR4
			2'b01: INCR8
			2'b10: INCR16
			2'b11: Reserverd
			hw_trigger
F		0.40	Hardware Trigger Select
5	RW	0x0	1. hardware trigger;
			0. software trigger;
			fix_addr_en
		00	Fix Address Mode Select
4	RW	0x0	1: fixed address mode;
			0: incrementing address mode;
			cfg_done
			LLP DMA Configuration Done
3	W1C	0×0	When all descriptors of LLP are configured,
			write 1 to to this bit. The core will clear this bit
			when llp transction is finished ;
			pause
			LLP DMA Pause
			Write 1 to Pause DMA channel . DMA will
			complete current burst transfer and then
2	RW	0x0	pause. All register stay unchange. If
			software write 0 later , It will continue to work.
			It may take several cycles to pause.
			1: pause;
			0: continue to work ;
			stop
			LLP DMA Stop
		0×0	Write 1 to stop DMA channel. DMA will
1	W1C		complete current burst transter and then stop.
			It may takes several cycles.
			1: stop ;
			0: no effect ;
0			start
			LLP DMA start
	W1C	0×0	Write 1 to start DMA Channel , self clear after
0			1 cycle.
			1: start ;
			0: no effect

TSP_PTIx_LLP_BASE

Address: Operational Base + offset (0x0108)

LLP Descriptor BASE Address

Bit	Attr	Reset Value	Description
			addr
31:0	RW	0x00000000	LLP Descriptor BASE Address
			LLP Descriptor BASE address

TSP_PTIx_LLP_WRITE

Address: Operational Base + offset (0x010c) LLP DMA Writing Software Descriptor Counter

Bit	Attr	Reset Value	Description
31:8	RO	0x0	reserved
			counter
7:0	RW	0x00	LLP DMA Writing Software Descriptor Counter
			LLP DMA Writing Software Descriptor Counter

TSP_PTIx_LLP_READ

Address: Operational Base + offset (0x0110) LLP DMA Reading Hardware Descriptor Counter

Bit	Attr	Reset Value	Description
31:8	RO	0x0	reserved
			counter
			LLP DMA Reading Hardware Descriptor
7:0	RO	0x00	Counter
			LLP DMA Reading Hardware Descriptor
			Counter

TSP_PTIx_PID_STS0

Address: Operational Base + offset (0x0114) PTI PID Channel Status 0 Register

Bit	Attr	Reset Value	Description
			pid31_done
31	RW	0x0	PID31 Channel Status
			1 means done
			pid30_done
30	W1C	0x0	PID30 Channel Status
			1 means done
			pid29_done
29	W1C	0x0	PID29 Channel Status
			1 means done
			pid28_done
28	W1C	0x0	PID28 Channel Status
			1 means done
			pid27_done
27	W1C	0x0	PID27 Channel Status
			1 means done

Bit	Attr	Reset Value	Description
			pid26_done
26	W1C	0x0	PID26 Channel Status
			1 means done
			pid25_done
25	W1C	0x0	PID25 Channel Status
20		0,10	1 means done
			pid24_done
24	W1C	0x0	PID24 Channel Status
27	WIC	0.00	1 means done
			pid23_done
23	W1C	0x0	PID23 Channel Status
23	WIC	0.00	1 means done
22	W1C	0.40	pid22_done
22	W1C	0x0	PID22 Channel Status
	_		1 means done
24			pid21_done
21	W1C	0x0	PID21 Channel Status
			1 means done
			pid20_done
20	W1C	0x0	PID20 Channel Status
			1 means done
			pid19_done
19	W1C	0x0	PID19 Channel Status
			1 means done
			pid18_done
18	W1C	0x0	PID18 Channel Status
			1 means done
			pid17_done
17	W1C	0x0	PID17 Channel Status
			1 means done
			pid16_done
16	W1C	0x0	PID16 Channel Status
			1 means done
			pid15_done
15	W1C	0x0	PID15 Channel Status
			1 means done
			pid14_done
14	W1C	0x0	PID14 Channel Status
			1 means done
			pid13_done
13	W1C	0x0	PID13 Channel Status
			1 means done
			pid12_done
12	W1C	0x0	PID12 Channel Status
			1 means done

Bit	Attr	Reset Value	Description
			pid11_done
11	W1C	0x0	PID11 Channel Status
			1 means done
			pid10_done
10	W1C	0x0	PID10 Channel Status
			1 means done
			pid9_done
9	W1C	0x0	PID9 Channel Status
			1 means done
			pid8_done
8	W1C	0x0	PID8 Channel Status
			1 means done
			pid7_done
7	W1C	0x0	PID7 Channel Status
			1 means done
			pid6_done
6	W1C	0x0	PID6 Channel Status
			1 means done
			pid5_done
5	W1C	0x0	PID5 Channel Status
			1 means done
			pid4_done
4	W1C	0x0	PID4 Channel Status
			1 means done
			pid3_done
3	W1C	0x0	PID3 Channel Status
			1 means done
			pid2_done
2	RW	0x0	PID2 Channel Status
			1 means done
			pid1_done
1	W1C	0x0	PID1 Channel Status
			1 means done
			pid0_done
0	W1C	0x0	PID0 Channel Status
			1 means done

TSP_PTIx_PID_STS1

Address: Operational Base + offset (0x0118) PTI PID Channel Status 1 Register

Bit	Attr	Reset Value	Description
			pid63_done
31	W1C	0x0	PID63 Channel Status
			1 means done

Bit	Attr	Reset Value	Description
			pid62_done
30	W1C	0x0	PID62 Channel Status
			1 means done
			pid61_done
29	W1C	0x0	PID61 Channel Status
		0,10	1 means done
			pid60_done
28	W1C	0x0	PID60 Channel Status
20	WIC	0.0	1 means done
27	W1C	0.40	pid59_done
27	W1C	0x0	PID59 Channel Status
			1 means done
			pid58_done
26	W1C	0x0	PID58 Channel Status
			1 means done
			pid57_done
25	W1C	0x0	PID57 Channel Status
			1 means done
			pid56_done
24	W1C	0x0	PID56 Channel Status
			1 means done
			pid55_done
23	W1C	0x0	PID55 Channel Status
			1 means done
			pid54_done
22	W1C	0x0	PID54 Channel Status
			1 means done
			pid53_done
21	W1C	0x0	PID53 Channel Status
		0,00	1 means done
			pid52_done
20	W1C	0x0	PID52 Channel Status
20	WIC	0.0	1 means done
10	W1C	0.40	pid51_done
19	W1C	0x0	PID51 Channel Status
			1 means done
			pid50_done
18	W1C	0x0	PID51 Channel Status
			1 means done
			pid49_done
17	W1C	0x0	PID49 Channel Status
			1 means done
			pid48_done
16	W1C	0x0	PID48 Channel Status
			1 means done

Bit	Attr	Reset Value	Description
			pid47_done
15	W1C	0x0	PID47 Channel Status
			1 means done
			pid46_done
14	W1C	0x0	PID46 Channel Status
1	WIC	0.00	1 means done
10	W1C	0.20	pid45_done
13	WIC	0x0	PID45 Channel Status
			1 means done
			pid44_done
12	W1C	0x0	PID44 Channel Status
			1 means done
			pid43_done
11	W1C	0x0	PID43 Channel Status
			1 means done
			pid42_done
10	W1C	0x0	PID42 Channel Status
			1 means done
			pid41_done
9	W1C	0x0	PID41 Channel Status
		UNU	1 means done
			pid40_done
8	W1C	0x0	PID40 Channel Status
U U		0,0	1 means done
			pid39_done
7	W1C	0x0	PID39 Channel Status
/	WIC	0.00	1 means done
6			pid38_done
6	W1C	0×0	PID38 Channel Status
			1 means done
			pid37_done
5	W1C	0x0	PID37 Channel Status
			1 means done
			pid36_done
4	W1C	0x0	PID36 Channel Status
			1 means done
			pid35_done
3	RW	0x0	PID35 Channel Status
			1 means done
			pid34_done
2	W1C	0x0	PID34 Channel Status
	_		1 means done
			pid33_done
1	W1C	0x0	PID33 Channel Status
<u> </u>			1 means done

Bit	Attr	Reset Value	Description
			pid32_done
0	RW	0x0	PID32 Channel Status
			1 means done

TSP_PTIx_PID_STS2

Address: Operational Base + offset (0x011c) PTI PID Channel Status 2 Register

Bit	Attr	Reset Value	Description
			pid31_error
31	RW	0x0	PID31 Error Interrupt Status
			1 means error detected
			pid30_error
30	W1C	0x0	PID30 Error Interrupt Status
			1 means error detected
			pid29_error
29	W1C	0x0	PID29 Error Interrupt Status
			1 means error detected
			pid28_error
28	W1C	0x0	PID28 Error Interrupt Status
			1 means error detected
			pid27_error
27	W1C	0x0	PID27 Error Interrupt Status
			1 means error detected
			pid26_error
26	W1C	0x0	PID26 Error Interrupt Status
			1 means error detected
			pid25_error
25	W1C	0x0	PID25 Error Interrupt Status
			1 means error detected
			pid24_error
24	W1C	0x0	PID24 Error Interrupt Status
			1 means error detected
			pid23_error
23	W1C	0x0	PID23 Error Interrupt Status
			1 means error detected
			pid22_error
22	W1C	0x0	PID22 Error Interrupt Status
			1 means error detected
			pid21_error
21	W1C	0x0	PID21 Error Interrupt Status
			1 means error detected
			pid20_error
20	W1C	0x0	PID20 Error Interrupt Status
			1 means error detected

Bit	Attr	Reset Value	Description
			pid19_error
19	W1C	0x0	PID19 Error Interrupt Status
			1 means error detected
			pid18_error
18	W1C	0x0	PID18 Error Interrupt Status
10		0,00	1 means error detected
			pid17_error
17	W1C	0x0	PID17 Error Interrupt Status
17	WIC	0.00	1 means error detected
10	W1C	00	pid16_error
16	W1C	0x0	PID16 Error Interrupt Status
			1 means error detected
			pid15_error
15	W1C	0x0	PID15 Error Interrupt Status
			1 means error detected
			pid14_error
14	W1C	0x0	PID14 Error Interrupt Status
			1 means error detected
			pid13_error
13	W1C	0x0	PID13 Error Interrupt Status
			1 means error detected
			pid12_error
12	W1C	0x0	PID12 Error Interrupt Status
			1 means error detected
			pid11_error
11	W1C	0x0	PID11 Error Interrupt Status
			1 means error detected
			pid10_error
10	W1C	0x0	PID10 Error Interrupt Status
10		UNU UNU	1 means error detected
			pid9_error
9	W1C	0x0	PID9 Error Interrupt Status
5		0,0	1 means error detected
0	W1C	0x0	pid8_error
8	WIC	UXU	PID8 Error Interrupt Status
			1 means error detected
_			pid7_error
7	W1C	0×0	PID7 Error Interrupt Status
			1 means error detected
			pid6_error
6	W1C	0x0	PID6 Error Interrupt Status
			1 means error detected
			pid5_error
5	W1C	0x0	PID5 Error Interrupt Status
			1 means error detected

Bit	Attr	Reset Value	Description
			pid4_error
4	W1C	0x0	PID4 Error Interrupt Status
			1 means error detected
			pid3_error
3	W1C	0x0	PID3 Error Interrupt Status
			1 means error detected
			pid2_error
2	W1C	0x0	PID2 Error Interrupt Status
			1 means error detected
			pid1_error
1	W1C	0x0	PID1 Error Interrupt Status
			1 means error detected
			pid0_error
0	W1C	0x0	PID0 Error Interrupt Status
			1 means error detected

TSP_PTIx_PID_STS3

Address: Operational Base + offset (0x0120) PTI PID Channel Status 3 Register

Bit	Attr	Reset Value	Description
31	W1C	0x0	pid63_error
21	WIC	0.00	PID63 Error Interrupt Status
30	W1C	0x0	pid62_error
50	WIC	0.00	PID62 Error Interrupt Status
29	W1C	0x0	pid61_error
29	WIC	0.00	PID61 Error Interrupt Status
28	W1C	0x0	pid60_error
20	WIC	0.00	PID60 Error Interrupt Status
27	W1C	0x0	pid59_error
27	WIC	0.00	PID59 Error Interrupt Status
26	W1C	0×0	pid58_error
20	WIC		PID58 Error Interrupt Status
25	W1C	W1C 0x0	pid57_error
23			PID57 Error Interrupt Status
24	W1C	0x0	pid56_error
21		0,0	PID56 Error Interrupt Status
23	W1C	1C 0x0	pid55_error
25			PID55 Error Interrupt Status
22	W1C	0×0	pid54_error
~~	WIC		PID54 Error Interrupt Status
21	W1C	0×0	pid53_error
<u> </u>	***		PID53 Error Interrupt Status
20	W1C	VIC 10X0 I	pid52_error
20	***		PID52 Error Interrupt Status

Bit	Attr	Reset Value	Description
10			pid51_error
19	W1C	0x0	PID51 Error Interrupt Status
10	W/1C	0.40	pid50_error
18	W1C	0x0	PID50 Error Interrupt Status
17	W/1C	0.40	pid49_error
17	W1C	0x0	PID49 Error Interrupt Status
16	W1C	0x0	pid48_error
10	WIC	UXU	PID48 Error Interrupt Status
15	W1C	0x0	pid47_error
15	WIC	UXU	PID47 Error Interrupt Status
14	W1C	0x0	pid46_error
14	WIC	0.00	PID46 Error Interrupt Status
13	W1C	0x0	pid45_error
13	WIC	UXU	PID45 Error Interrupt Status
12	W1C	0x0	pid44_error
12	WIC	0.00	PID44 Error Interrupt Status
11	W1C	0×0	pid43_error
11	WIC	0.00	PID43 Error Interrupt Status
10	W1C	1C 0x0	pid42_error
10	WIC	0.00	PID42 Error Interrupt Status
9	W1C	0×0	pid41_error
9	WIC	0.00	PID41 Error Interrupt Status
8	W1C	0x0	pid40_error
0	WIC	0.00	PID40 Error Interrupt Status
7	W1C	0x0	pid39_error
/	WIC	0.00	PID39 Error Interrupt Status
6	W1C	/1C 0x0	pid38_error
0	WIC	0.00	PID38 Error Interrupt Status
5	W1C	0x0	pid37_error
5	WIC	0.00	PID37 Error Interrupt Status
4	W1C	0x0	pid36_error
-	WIC	0.00	PID36 Error Interrupt Status
3	W1C	0x0	pid35_error
5	WIC	0.00	PID35 Error Interrupt Status
2	W1C	0x0	pid34_error
	14 T C	0.00	PID34 Error Interrupt Status
1	W1C	0×0	pid33_error
<u> </u>	WIC .		PID33 Error Interrupt Status
0	W1C	W1C 0x0	pid32_error
<u> </u>		0.00	PID32 Error Interrupt Status

Address: Operational Base + offset (0x0124) PID Interrupt Enable Register 0

Bit	Attr	Reset Value	Description
			pid31_done_ena
31			PID31 Done Enable
	RW	0x0	1:enabled
			0:disabled
			pid30_done_ena
20		00	PID30 Done Enable
30	RW	0x0	1:enabled
			0:disabled
			pid29_done_ena
20		00	PID29 Done Enable
29	RW	0x0	1:enabled
			0:disabled
			pid28_done_ena
20	RW	0.40	PID28 Done Enable
28	RW	0x0	1:enabled
			0:disabled
			pid27_done_ena
22	DW		PID27 Done Enable
27	RW	0x0	1:enabled
			0:disabled
			pid26_done_ena
26	RW	0.20	PID26 Done Enable
20	RW	0×0	1:enabled
			0:disabled
			pid25_done_ena
25	RW	0x0	PID25 Done Enable
23		0.00	1:enabled
			0:disabled
			pid24_done_ena
24	RW	0×0	PID24 Done Enable
27		0x0	1:enabled
			0:disabled
			pid23_done_ena
23	RW	0x0	PID23 Done Enable
25			1:enabled
			0:disabled
			pid22_done_ena
22	RW	0x0	PID22 Done Enable
~~			1:enabled
			0:disabled
			pid21_done_ena
21	RW	0×0	PID21 Done Enable
~ 1			1:enabled
			0:disabled

Bit	Attr	Reset Value	Description
			pid20_done_ena
20			PID20 Done Enable
	RW	0x0	1:enabled
			0:disabled
			pid19_done_ena
10	DIA		PID19 Done Enable
19	RW	0x0	1:enabled
			0:disabled
			pid18_done_ena
1.0		00	PID18 Done Enable
18	RW	0x0	1:enabled
			0:disabled
			pid17_done_ena
17	RW	0x0	PID17 Done Enable
			pid16_done_ena
1.0		0×0	PID16 Done Enable
16	RW		1:enabled
			0:disabled
			pid15_done_ena
1 -		00	PID15 Done Enable
15	RW	0x0	1:enabled
			0:disabled
			pid14_done_ena
14	RW	0.40	PID14 Done Enable
14	RVV	0x0	1:enabled
			0:disabled
			pid13_done_ena
13		.W 0×0	PID13 Done Enable
13	RVV		1:enabled
			0:disabled
			pid12_done_ena
12	RW	0x0	PID12 Done Enable
12		0.00	1:enabled
			0:disabled
			pid11_done_ena
11	RW	0x0	PID11 Done Enable
* *	KVV		1:enabled
			0:disabled
			pid10_done_ena
10	RW	0×0	PID10 Done Enable
10			1:enabled
			0:disabled

Bit	Attr	Reset Value	Description
			pid9_done_ena
		0.40	PID9 Done Enable
9	RW	0×0	1:enabled
			0:disabled
			pid8_done_ena
0		0.40	PID8 Done Enable
8	RW	0×0	1:enabled
			0:disabled
			pid7_done_ena
7		0.40	PID7 Done Enable
7	RW	0x0	1:enabled
			0:disabled
			pid6_done_ena
c	RW	0.40	PID6 Done Enable
6	RVV	0×0	1:enabled
			0:disabled
			pid5_done_ena
5	RW	0×0	PID5 Done Enable
5	RVV		1:enabled
			0:disabled
			pid4_done_ena
4	RW	0x0	PID4 Done Enable
4		0.00	1:enabled
			0:disabled
			pid3_done_ena
3	RW	0x0	PID3 Done Enable
5			1:enabled
			0:disabled
			pid2_done_ena
2	RW	0x0	PID2 Done Enable
2			1:enabled
			0:disabled
			pid1_done_ena
1	RW		PID1 Done Enable
1		0×0	1:enabled
			0:disabled
			pid0_done_ena
	D\\/	0×0	PID0 Done Enable
0	RW		1:enabled
			0:disabled

Address: Operational Base + offset (0x0128) PID Interrupt Enable Register 1

Bit	Attr	Reset Value	Description
			pid63_done
31			PID63 Done Enable
	RW	0x0	1:enabled
			0:disabled
			pid62_done
20		00	PID62 Done Enable
30	RW	0x0	1:enabled
			0:disabled
			pid61_done
20		00	PID61 Done Enable
29	RW	0x0	1:enabled
			0:disabled
			pid60_done
20		00	PID60 Done Enable
28	RW	0x0	1:enabled
			0:disabled
			pid59_done
27		00	PID59 Done Enable
27	RW	0x0	1:enabled
			0:disabled
		0x0	pid58_done
26			PID58 Done Enable
20	RW		1:enabled
			0:disabled
			pid57_done
25	RW	0x0	PID57 Done Enable
23		0.00	1:enabled
			0:disabled
			pid56_done
24	RW	0x0	PID56 Done Enable
27	ĸvv	UXU	1:enabled
			0:disabled
			pid55_done
23	RW	0×0	PID55 Done Enable
25	RW		1:enabled
			0:disabled
			pid54_done
22	RW	0×0	PID54 Done Enable
			1:enabled
			0:disabled
		0x0	pid53_done
21	RW		PID53 Done Enable
~ 1			1:enabled
			0:disabled

Bit	Attr	Reset Value	Description
			pid52_done
20			PID52 Done Enable
	RW	0×0	1:enabled
			0:disabled
			pid51_done
10	D 144		PID51 Done Enable
19	RW	0×0	1:enabled
			0:disabled
			pid50_done
			PID50 Done Enable
18	RW	0×0	1:enabled
			0:disabled
			pid49_done
	D 144		PID49 Done Enable
17	RW	0×0	1:enabled
			0:disabled
			pid48_done
1.5	D 144		PID48 Done Enable
16	RW	0×0	1:enabled
			0:disabled
			pid47_done
	D 144		PID47 Done Enable
15	RW	0×0	1:enabled
			0:disabled
			pid46_done
	DW		PID46 Done Enable
14	RW	0x0	1:enabled
			0:disabled
		0x0	pid45_done
10			PID45 Done Enable
13	RW		1:enabled
			0:disabled
			pid44_done
10			PID44 Done Enable
12	RW	0x0	1:enabled
			0:disabled
			pid43_done
	RW	00	PID43 Done Enable
11		0x0	1:enabled
			0:disabled
		0×0	pid42_done
10	RW		PID42 Done Enable
10			1:enabled
			0:disabled

Bit	Attr	Reset Value	Description
			pid41_done
		0.40	PID41 Done Enable
9	RW	0x0	1:enabled
			0:disabled
			pid40_done
0		0.40	PID40 Done Enable
8	RW	0x0	1:enabled
			0:disabled
			pid39_done
7		0.40	PID39 Done Enable
7	RW	0x0	1:enabled
			0:disabled
			pid38_done
6	RW	0.40	PID38 Done Enable
0	RW	0x0	1:enabled
			0:disabled
			pid37_done
5	RW	0x0	PID37 Done Enable
5	RW	UXU	1:enabled
			0:disabled
			pid36_done
4	RW	0x0	PID36 Done Enable
4		0.00	1:enabled
			0:disabled
			pid35_done
3	D\\/	RW 0x0	PID35 Done Enable
5			1:enabled
			0:disabled
			pid34_done
2	RW	0×0	PID34 Done Enable
2			1:enabled
			0:disabled
			pid33_done
1	RW	0x0	PID33 Done Enable
т			1:enabled
			0:disabled
		0×0	pid32_done
0	RW		PID32 Done Enable
			1:enabled
			0:disabled

Address: Operational Base + offset (0x012c) PID Interrupt Enable Register 2

Bit Attr Reset Value D	escription
------------------------	------------

Bit	Attr	Reset Value	Description
			pid31_error
31	D 144		PID31 Error Interrupt Enable
	RW	0x0	1:enabled
			0:disabled
			pid30_error
20		00	PID30 Error Interrupt Enable
30	RW	0x0	1:enabled
			0:disabled
			pid29_error
20		0.40	PID29 Error Interrupt Enable
29	RW	0x0	1:enabled
			0:disabled
			pid28_error
28	RW	0x0	PID28 Error Interrupt Enable
20	K VV	0.00	1:enabled
			0:disabled
			pid27_error
27	RW	0x0	PID27 Error Interrupt Enable
27		0.00	1:enabled
			0:disabled
			pid26_error
26	RW	0×0	PID26 Error Interrupt Enable
20		0×0	1:enabled
			0:disabled
			pid25_error
25	RW	0x0	PID25 Error Interrupt Enable
25		0x0	1:enabled
			0:disabled
		0×0	pid24_error
24	RW		PID24 Error Interrupt Enable
<u> </u>			1:enabled
			0:disabled
			pid23_error
23	RW	0x0	PID23 Error Interrupt Enable
			1:enabled
			0:disabled
22			pid22_error
	RW	0x0	PID22 Error Interrupt Enable
			1:enabled
			0:disabled
		0×0	pid21_error
21	RW		PID21 Error Interrupt Enable
			1:enabled
			0:disabled

Bit	Attr	Reset Value	Description
			pid20_error
20		00	PID20 Error Interrupt Enable
	RW	0×0	1:enabled
			0:disabled
			pid19_error
10		00	PID19 Error Interrupt Enable
19	RW	0x0	1:enabled
			0:disabled
			pid18_error
10	DW		PID18 Error Interrupt Enable
18	RW	0×0	1:enabled
			0:disabled
			pid17_error
	D 14/		PID17 Error Interrupt Enable
17	RW	0×0	1:enabled
			0:disabled
			pid16_error
			PID16 Error Interrupt Enable
16	RW	0×0	1:enabled
			0:disabled
			pid15_error
4 -	D 14/		PID15 Error Interrupt Enable
15	RW	0x0	1:enabled
			0:disabled
			pid14_error
	DW		PID14 Error Interrupt Enable
14	RW	0x0	1:enabled
			0:disabled
			pid13_error
10		00	PID13 Error Interrupt Enable
13	RW	0x0	1:enabled
			0:disabled
		0x0	pid12_error
10	RW		PID12 Error Interrupt Enable
12	RVV		1:enabled
			0:disabled
			pid11_error
11	RW	0.40	PID11 Error Interrupt Enable
		0×0	1:enabled
			0:disabled
	RW	0×0	pid10_error
10			PID10 Error Interrupt Enable
10			1:enabled
			0:disabled

Bit	Attr	Reset Value	Description
			pid9_error
0		00	PID9 Error Interrupt Enable
9	RW	0x0	1:enabled
			0:disabled
			pid8_error
0	RW	0×0	PID8 Error Interrupt Enable
8	RVV	UXU	1:enabled
			0:disabled
			pid7_error
7	RW	0.40	PID7 Error Interrupt Enable
7	RVV	0×0	1:enabled
			0:disabled
			pid6_error
6	RW	0.20	PID6 Error Interrupt Enable
0	K VV	0x0	1:enabled
			0:disabled
			pid5_error
5	RW	0×0	PID5 Error Interrupt Enable
5	K VV		1:enabled
			0:disabled
			pid4_error
4	RW	0x0	PID4 Error Interrupt Enable
4		0.00	1:enabled
			0:disabled
		0×0	pid3_error
3	RW		PID3 Error Interrupt Enable
5			1:enabled
			0:disabled
			pid2_error
2	RW	0x0	PID2 Error Interrupt Enable
2			1:enabled
			0:disabled
			pid1_error
1	RW	0×0	PID1 Error Interrupt Enable
1			1:enabled
			0:disabled
		0×0	pid0_error
0	RW		PID0 Error Interrupt Enable
0			1:enabled
			0:disabled

Address: Operational Base + offset (0x0130) PID Interrupt Enable Register 3

Bit	Attr	Reset Value	Description
			pid63_error
31	D 14/		PID63 Error Interrupt Enable
	RW	0×0	1:enabled
			0:disabled
			pid62_error
20		00	PID62 Error Interrupt Enable
30	RW	0x0	1:enabled
			0:disabled
			pid61_error
20		0.40	PID61 Error Interrupt Enable
29	RW	0×0	1:enabled
			0:disabled
			pid60_error
28	RW	0x0	PID60 Error Interrupt Enable
20	K VV	0.00	1:enabled
			0:disabled
			pid59_error
27	RW	0x0	PID59 Error Interrupt Enable
27		0.00	1:enabled
			0:disabled
			pid58_error
26	RW	0×0	PID58 Error Interrupt Enable
20	r v v	0×0	1:enabled
			0:disabled
			pid57_error
25	RW	0x0	PID57 Error Interrupt Enable
25		0x0	1:enabled
			0:disabled
		0x0	pid56_error
24	RW		PID56 Error Interrupt Enable
			1:enabled
			0:disabled
			pid55_error
23	RW	0x0	PID55 Error Interrupt Enable
-			1:enabled
			0:disabled
22			pid54_error
	RW	0×0	PID54 Error Interrupt Enable
			1:enabled
			0:disabled
	RW	0×0	pid53_error
21			PID53 Error Interrupt Enable
			1:enabled
			0:disabled

Bit	Attr	Reset Value	Description
			pid52_error
20	D 144		PID52 Error Interrupt Enable
	RW	0x0	1:enabled
			0:disabled
			pid51_error
10		00	PID51 Error Interrupt Enable
19	RW	0x0	1:enabled
			0:disabled
			pid50_error
10		0.40	PID50 Error Interrupt Enable
18	RW	0x0	1:enabled
			0:disabled
			pid49_error
17	RW	0x0	PID49 Error Interrupt Enable
17	RVV	UXU	1:enabled
			0:disabled
			pid48_error
16	RW	0x0	PID48 Error Interrupt Enable
10	RVV	UXU	1:enabled
			0:disabled
			pid47_error
15	RW	0.20	PID47 Error Interrupt Enable
12	RVV	0×0	1:enabled
			0:disabled
			pid46_error
14	RW	0x0	PID46 Error Interrupt Enable
14	RW	UXU	1:enabled
			0:disabled
			pid45_error
13	RW	0×0	PID45 Error Interrupt Enable
15		0x0	1:enabled
			0:disabled
			pid44_error
12	RW	0x0	PID44 Error Interrupt Enable
12		0,00	1:enabled
			0:disabled
11			pid43_error
	RW	0×0	PID43 Error Interrupt Enable
			1:enabled
			0:disabled
		0×0	pid42_error
10	RW		PID42 Error Interrupt Enable
			1:enabled
			0:disabled

Bit	Attr	Reset Value	Description
			pid41_error
9		0.40	PID41 Error Interrupt Enable
	RW	0×0	1:enabled
			0:disabled
			pid40_error
0	RW	0x0	PID40 Error Interrupt Enable
8	RW	UXU	1:enabled
			0:disabled
			pid39_error
7	RW	0.40	PID39 Error Interrupt Enable
7	RW	0×0	1:enabled
			0:disabled
			pid38_error
c	RW	0×0	PID38 Error Interrupt Enable
6	RW	UXU	1:enabled
			0:disabled
			pid37_error
E	RW	00	PID37 Error Interrupt Enable
5	RVV	0x0	1:enabled
			0:disabled
			pid36_error
4	RW	0x0	PID36 Error Interrupt Enable
4	RW	UXU	1:enabled
			0:disabled
			pid35_error
3	RW	0×0	PID35 Error Interrupt Enable
5	K VV		1:enabled
			0:disabled
			pid34_error
2	RW	0x0	PID34 Error Interrupt Enable
2	K VV		1:enabled
			0:disabled
			pid33_error
1		0x0	PID33 Error Interrupt Enable
	RW		1:enabled
			0:disabled
		0x0	pid32_error
0			PID32 Error Interrupt Enable
0	RW		1:enabled
			0:disabled

TSP_PTIx_PCR_INT_STS

Address: Operational Base + offset (0x0134) PTI PCR Interrupt Status Register

Bit	Attr	Reset Value	Description
31:8	RO	0x0	reserved
			pcr7_done
7	W1C	0×0	PCR7 Status
/	WIC	UXU	1: done;
			0: not done;
			pcr6_done
6	W1C	0×0	PCR6 Status
0	WIC	0.00	1: done;
			0: not done;
			pcr5_done
5	W1C	0x0	PCR5 Status
5	WIC	0.00	1: done;
			0: not done;
		C 0x0	pcr4_done
4	W1C		PCR4 Status
4	WIC		1: done;
			0: not done;
			pcr3_done
3	W1C	0x0	PCR3 Status
5		VIC UXU	1: done;
			0: not done;
			pcr2_done
2	W1C	0x0	PCR2 Status
2	WIC		1: done;
			0: not done;
			pcr1_done
1	W1C	0×0	PCR1 Status
1	WIC	0,0	1: done;
			0: not done;
			pcr0_done
0	W1C	C 0x0	PCR0 Status
			1: done;
			0: not done;

TSP_PTIx_PCR_INT_ENA Address: Operational Base + offset (0x0138) PTI PCR Interrupt Enable Register

Bit	Attr	Reset Value	Description
31:8	RO	0x0	reserved
		0×0	pcr7_done_ena
7			pcr7 done interrupt enable
/	RW		1: enabled;
			0: disabled;

Bit	Attr	Reset Value	Description
			pcr6_done_ena
c	RW	0x0	pcr6 done interrupt enable
6	R VV	0.00	1: enabled;
			0: disabled;
			pcr5_done_ena
5	RW	0x0	pcr5 done interrupt enable
5	RW	UXU	1: enabled;
			0: disabled;
			pcr4_done_ena
4	RW	0.40	pcr4 done interrupt enable
4	RW	0x0	1: enabled;
			0: disabled;
		0x0	pcr3_done_ena
3	RW		pcr3 done interrupt enable
5	R VV	0.00	1: enabled;
			0: disabled;
			pcr2_done_ena
2		RW 0×0	pcr2 done interrupt enable
2	RW		1: enabled;
			0: disabled;
			pcr1_done_ena
1	RW	0×0	pcr1 done interrupt enable
1	RW		1: enabled;
			0: disabled;
			pcr0_done_ena
		.W 0x0	pcr0 done interrupt enable
0	RW		1: enabled;
			0: disabled;

TSP_PTIx_PCRn_CTRL

Address: Operational Base + offset (0x013c) PID PCR Control Register

Bit	Attr	Reset Value	Description
31:14	RO	0x0	reserved
		0x0000	pid
13:1			PCR Extraction PID number
	RW		This 13-bit field sets the PID number that
			needs PCR extraction.
0		0×0	on
	RW		PCR Extraction Switch
	KVV		1'b1: PCR extraction switched on ;
			1'b0: PCR extraction switched off ;

TSP_PTIx_PCRn_H

Address: Operational Base + offset (0x015c)

High Order PCR value

Bit	Attr	Reset Value	Description
31:1	RO	0x0	reserved
0	RO	0x0	pcr
0	KU	0.00	PCR[32] pcr[32]

TSP_PTIx_PCRn_L

Address: Operational Base + offset (0x0160) Low Order PCR value

Bit	Attr	Reset Value	Description
31:0	RO	0x00000000	pcr pcr[31:0]
			pcr[31:0]

TSP_PTIx_DMA_STS

Address: Operational Base + offset (0x019c) LLP DMA Interrupt Status Register

Bit	Attr	Reset Value	Description
31:2	RO	0x0	reserved
		0×0	llp_error
1	W1C		LLP DMA Error Status
	WIC		1: error response during DMA transaction;
			0: no error response during DMA transaction;
0	W1C	0x0	llp_done
			LLP DMA Done Status
			1: DMA transaction completed;
			0: DMA transaction not completed;

TSP_PTIx_DMA_ENA

Address: Operational Base + offset (0x01a0) DMA Interrupt Enable Register

Bit	Attr	Reset Value	Description
31:2	RO	0x0	reserved
			llp_error_ena
1	RW	0x0	LLP DMA Error Interrupt Enable
1	ĸw		1: enabled
			0: disabled
	RW		llp_done_ena
0			LLP DMA Done Interrupt Enable
			1: enabled
			0: disabled

TSP_PTIx_DATA_FLAG0

Address: Operational Base + offset (0x01a4) PTI_PID_WRITE Flag 0

Bit	Attr	Reset Value	Description
31:0	RW	0x00000000	data_write_flag_0 From PID0 TO PID31

TSP_PTIx_DATA_FLAG1

Address: Operational Base + offset (0x01a8)

PTI_PID_WRITE Flag 1

Bit	Attr	Reset Value	Description
31:0	RW	0x00000000	data_write_flag_1
51.0		000000000	From PID32 TO PID63

TSP_PTIx_LIST_FLAG

Address: Operational Base + offset (0x01ac) PTIx_LIST_WRITE Flag

Bit	Attr	Reset Value	Description
31:16	RO	0x0	reserved
15.0		00000	list_write_flag
15:0	RW	0×0000	From PID0 TO PID15

TSP_PTIx_DST_STS0

Address: Operational Base + offset (0x01b0) PTI Destination Status Register

Bit	Attr	Reset Value	Description
31:0	W1C	0x00000000	demux_dma_status_0
51.0	W1C	0.0000000000000000000000000000000000000	From 0 to 31 channel

TSP_PTIx_DST_STS1

Address: Operational Base + offset (0x01b4) PTI Destination Status Register

Bit	Attr	Reset Value	Description
31:0	0 W1C 0x0000000	0x00000000	demux_dma_status_0
51.0	WIC	0,000000000	From 32 to 63 channel

TSP_PTIx_DST_ENA0

Address: Operational Base + offset (0x01b8) PTI Destination Interrupt Enable Register

Bit	Attr	Reset Value	Description
31:0	31:0 RW 0x0000000	demux_dma_enable_0	
51.0		0,00000000	From 0 to 31 channel

TSP_PTIx_DST_ENA1

Address: Operational Base + offset (0x01bc)

PTI Destination Interrupt Enable Register

Bit Attr Reset Value Description

Bit	Attr	Reset Value	Description
31:0	RW	0x00000000	demux_dma_enable_1
51.0		0,00000000	From 32 to 63 channel

TSP_PTIx_ECWn_H

Address: Operational Base + offset (0x0200) The Even Control Word High Order

Bit	Attr	Reset Value	Description
			ecw_h
31:0	RW	0x00000000	The Even Control Word High Order
			ECW[63:32]

TSP_PTIx_ECWn_L

Address: Operational Base + offset (0x0204) The Even Control Word Low Order

Bit	Attr	Reset Value	Description
			ecw_l
31:0	RW	0x00000000	The Even Control Word Low Order
			ECW[31:0]

TSP_PTIx_OCWn_H

Address: Operational Base + offset (0x0208) The Odd Control Word High Order

Bit	Attr	Reset Value	Description
			ocw_h
31:0	RW	0x00000000	The Odd Control Word High order
			OCW[63:32]

TSP_PTIx_OCWn_L

Address: Operational Base + offset (0x020c) The Odd Control Word Low Order

Bit	Attr	Reset Value	Description
31:0	RW	0x00000000	ocw_l The Odd Control Word Low Order OCW[31:0]

TSP_PTIx_PIDn_CTRL

Address: Operational Base + offset (0x0300) PID Channel Control Register

Bit	Attr	Reset Value	Description
31:20	RO	0x0	reserved

Bit	Attr	Reset Value	Description
			cw_num
			Control Word Order Number
19:16	RW	0x0	This fields indicates the corresponding order
			number of control word to be used to
			descramble TS packets.
			pid
			PID number
15:3	RW	0x0000	This 13-bit sets the desired PID number to be
			processed by PTI channel.
			csa_on
2	RW	0x0	Descrambling Switch
2	K V V	UXU	1'b1: Descrambling function turned on;
			1'b0: Descrambling function turned off;
	R/WSC	0×0	clear
1			PID Channel Clear
			Write 1 to clear PID channel. This bit will be
			set to 0 if the channel is clear.
			en
			PID Channel Enable
0	R/WSC	0x0	Write 1 to enable channel. Write 0 to this bit
			will not take any effect. This bit will be 0 when
			channel is cleared.

TSP_PTIx_PIDn_BASE

Address: Operational Base + offset (0x0400) PTI Data Memory Buffer Base Address

Bit	Attr	Reset Value	Description
			address
31:0	RW	0x0000000	PTI Data Memory Buffer Base Address
			PTI Data Memory Buffer Base Address

TSP_PTIx_PIDn_TOP

Address: Operational Base + offset (0x0404) PTI Data Memory Buffer Top Address

Bit	Attr	Reset Value	Description
			address
31:0	RW	0x00000000	PTI Data Memory Buffer Top Address
			PTI Data Memory Buffer Top Address

TSP_PTIx_PIDn_WRITE

Address: Operational Base + offset (0x0408)

PTI Data	Memory	' Buffer	Hardware	Writing	Address

Bit Attr Reset Value	Description
----------------------	-------------

Bit	Attr	Reset Value	Description
			address
			PTI Data Memory Buffer Hardware Writing
31:0	RO	0x00000000	Address
			PTI Data Memory Buffer Hardware Writing
			Address

TSP_PTIx_PIDn_READ

Address: Operational Base + offset (0x040c) PTI Data Memory Buffer Software Reading Address

Bit	Attr	Reset Value	Description
			address
			PTI Data Memory Buffer Software Reading
31:0	RW	0x00000000	Address
			PTI Data Memory Buffer Software Reading
			Address

TSP_PTIx_LISTn_BASE

Address: Operational Base + offset (0x0800) PTI List Memory Buffer Base Address

Bit	Attr	Reset Value	Description
			address
			PTI Data Memory Buffer Software Reading
31:0	RW	0x00000000	Address
			PTI Data Memory Buffer Software Reading
			Address

TSP_PTIx_LISTn_TOP

Address: Operational Base + offset (0x0804) PTI List Memory Buffer Top Address

Bit	Attr	Reset Value	Description
			address
31:0	RW	0x00000000	PTI List Memory Buffer Top Address
			PTI List Memory Buffer Top Address

TSP_PTIx_LISTn_WRITE

Address: Operational Base + offset (0x0808) PTI List Memory Buffer Hardware Writing Address

Bit	Attr	Reset Value	Description
31:0	RW	0×00000000	address PTI List Memory Buffer Hardware Writing Address PTI List Memory Buffer Hardware Writing Address

TSP_PTIx_LISTn_READ

Address: Operational Base + offset (0x080c) PTI List Memory Buffer Software Reading Address

Bit	Attr	Reset Value	Description
			address
			PTI List Memory Buffer Software Reading
31:0	RW	0x00000000	Address
			PTI List Memory Buffer Software Reading
			Address

TSP_PTIx_PIDn_CFG

Address: Operational Base + offset (0x0900) PID Demux Configure Register

Bit	Attr	Reset Value	Description
			filter_en Filter Byte Enable
31:16	RW	0×0000	The proper position of filter byte Enable. For Section filter. the 1st,4th,5th,18th byte of section header are used to be filtered; For PES filter, the 4th,7th,8th21th byte of pes header are used to be filtered.
15:12	RO	0x0	reserved
11	RW	0x0	scd_en Start Code Detection Switch Start code detection 1: enabled; 0: disabled; This bit is only valid when n < 16.
10	RW	0×0	<pre>cni_on Current Next Indicator Abort when current_next_indicator == 1'b1, 1'b1: abort ; 1'b0: do nothing ;</pre>
9:8	RW	0×0	filt_mode Section Filter Mode Filter Mode when the filter mode is configured as section filter. 2'b00: stop per unit; 2'b01: full stop; 2'b10: recycle, update when version number change 2'b11: reserverd

Bit	Attr	Reset Value	Description
			video_type
			Video filtering Type
7:6	RW	0x0	2'b00: MPEG2
7.0		0.00	2'b01: H264
			2'b10: VC-1
			2'b11: Reserved
			filt_type
			Filter Type
			2'b00: section filtering;
5:4	RW	0x0	2'b01: pes filtering;
5.4	RVV	0.00	2'b10: es filtering;
			2'b11: ts filtering;
			if n>=16, it is reserved as only section
			filtering, other values are invalid.
		W 0x1	cc_abort
			Continue Counter Error Abort
3	RW		when continuity counter error happens:
			1: abort;
			0: do nothing;
			tei_abort
			Ts_error_indicator Abort
2	RW	0×0	when ts_error_indicator == 1:
			1'b1: abort ;
			1'b0: do nothing;
			crc_abort
			CRC Error Abort
1	RW	0×0	This bit is valid only when $crc_on == 1'b1$.
1		0×0	When crc error happens,
			1'b1: abort ;
			1'b0: do nothing.
			crc_on
0	R\\/	RW 0x0	CRC Check
0	RVV		1'b1: CRC check function turned on
			1'b0: CRC check function turned off

TSP_PTIx_PIDn_FILT_0 Address: Operational Base + offset (0x0904) Fliter Word 0

Bit	Attr	Reset Value	Description
		0x00	filt_byte_3
21.24	31:24 RW		Fliter Byte 2
51:24			This byte refers to 6th byte of section header
			or 9th byte of pes header

Bit	Attr	Reset Value	Description
			filt_byte_2
23:16	RW	0×00	Fliter Byte 2
23.10		0,000	This byte refers to 5th byte of section header
			or 8th byte of pes header
		0x00	filt_byte_1
15:8	RW		Fliter Byte 1
13.0			This byte refers to 4th byte of section header
			or 7th byte of pes header
			filt_byte_0
7:0			Fliter Byte 0
7.0	K VV		This byte refers to 1st byte of section header
			or 4th byte of pes header

TSP_PTIx_PIDn_FILT_1

Address: Operational Base + offset (0x0908) Fliter Word 1

Bit	Attr	Reset Value	Description
		0×00	filt_byte_3
31:24	RW		Fliter Byte 2
51.24	RVV		This byte refers to 10th byte of section header
			or 13rd byte of pes header
		0×00	filt_byte_2
23:16	RW		Fliter Byte 2
23.10	RW		This byte refers to 9th byte of section header
			or 12nd byte of pes header
		0×00	filt_byte_1
15:8	RW		Fliter Byte 1
15.0			This byte refers to 8th byte of section header
			or 11st byte of pes header
	RW	0x00	filt_byte_0
7:0			Fliter Byte 0
/.0			This byte refers to 7th byte of section header
			or 10th byte of pes header

TSP_PTIx_PIDn_FILT_2

Address: Operational Base + offset (0x090c) Fliter Word 2

Bit	Attr	Reset Value	Description
	RW	0x00	filt_byte_3
21.24			Fliter Byte 2
31:24			This byte refers to 14th byte of section header
			or 17th byte of pes header

Bit	Attr	Reset Value	Description
		0×00	filt_byte_2
23:16	RW		Fliter Byte 2
23.10	ĸvv		This byte refers to 13rd byte of section header
			or 16th byte of pes header
	RW	0×00	filt_byte_1
15:8			Fliter Byte 1
13.0			This byte refers to 12nd byte of section header
			or 15th byte of pes header
	RW	0x00	filt_byte_0
7.0			Fliter Byte 0
7:0			This byte refers to 11st byte of section header
			or 14th byte of pes header

TSP_PTIx_PIDn_FILT_3

Address: Operational Base + offset (0x0910) Fliter Word 3

Bit	Attr	Reset Value	Description
		0×00	filt_byte_3
31:24	RW		Fliter Byte 2
51.24	K VV		This byte refers to 18th byte of section header
			or 21st byte of pes header
		0x00	filt_byte_2
23:16	RW		Fliter Byte 2
23.10	RVV		This byte refers to 17th byte of section header
			or 20th byte of pes header
		0x00	filt_byte_1
15:8	RW		Fliter Byte 1
13.0			This byte refers to 16th byte of section header
			or 19th byte of pes header
	RW	0x00	filt_byte_0
7:0			Fliter Byte 0
/.0			This byte refers to 15th byte of section header
			or 18th byte of pes header

22.5 Interface Description

Module Pin	IO	Pad Name	IOMUX Setting
ts_data0	I/ O	IO_UART1BBsin_TS0data0_BBgpio5b0	GPIO5B_IOMUX[1:0]= 2'b10
ts_data1	I/ O	IO_UART1BBsout_TS0data1_BBgpio5b1	GPIO5B_IOMUX[3:2]= 2'b10
ts_data2	I/ O	IO_UART1BBctsn_TS0data2_BBgpio5b2	GPIO5B_IOMUX[5:4]= 2'b10
ts_data3	I/ O	IO_UART1BBrtsn_TS0data3_BBgpio5b3	GPIO5B_IOMUX[7:6]= 2'b10
ts_data4	I/ O	IO_SPI0clk_TS0data4_UART4EXPctsn_BBgpio5b4	GPIO5B_IOMUX[9:8]= 2'b10

Module Pin	IO	Pad Name	IOMUX Setting
ts_data5	I/ O	IO_SPI0csn0_TS0data5_UART4EXPrtsn_BBgpio5b5	GPIO5C_IOMUX[11:10]= 2'b10
ts_data6	I/ O	IO_SPI0txd_TS0data6_UART4EXPsout_BBgpio5b6	GPIO5B_IOMUX[13:12]= 2'b10
ts_data7	I/ O	IO_SPI0rxd_TS0data7_UART4EXPsin_BBgpio5b7	GPIO5B_IOMUX[15:14]= 2'b10
ts_valid	I/ O	IO_TS0valid_BBgpio5c1	GPIO5C_IOMUX[2]= 1'b1
ts_sync	I/ O	IO_SPI0csn1_TS0sync_BBgpio5c0	GPIO5C_IOMUX[1:0]= 2'b10
ts_err	I/ O	IO_TS0err_BBgpio5c3	GPIO5C_IOMUX[6]= 1'b1
ts_clk	I/ O	IO_TS0clk_BBgpio5c2	GPIO5C_IOMUX[4]= 1'b1
hsadc_data 0	Ι	IO_CIFdata2_HOSTdin0_HSADCdata0_DVPgpio2a0	GPIO2A_IOMUX[1:0]= 2'b11
hsadc_data 1	Ι	IO_CIFdata3_HOSTdin1_HSADCdata1_DVPgpio2a1	GPIO2A_IOMUX[3:2]= 2'b11
hsadc_data 2	Ι	IO_CIFdata4_HOSTdin2_HSADCdata2_DVPgpio2a2	GPIO2A_IOMUX[5:4]= 2'b11
hsadc_data 3	I	IO_CIFdata5_HOSTdin3_HSADCdata3_DVPgpio2a3	GPIO2A_IOMUX[7:6]= 2'b11
hsadc_data 4	I	IO_CIFdata6_HOSTckinp_HSADCdata4_DVPgpio2a4	GPIO2A_IOMUX[9:8]= 2'b11
hsadc_data 5	Ι	IO_CIFdata7_HOSTckinn_HSADCdata5_DVPgpio2a5	GPIO2A_IOMUX[11:10]= 2'b11
hsadc_data 6	I	IO_CIFdata8_HOSTdin4_HSADCdata6_DVPgpio2a6	GPIO2A_IOMUX[13:12]= 2'b11
hsadc_data 7	Ι	IO_CIFdata9_HOSTdin5_HSADCdata7_DVPgpio2a7	GPIO2A_IOMUX[15:14]= 2'b11
hsadc_valid	Ι	IO_CIFhref_HOSTdin7_HSADCTSvalid_DVPgpio2b1	GPIO2B_IOMUX[3:2]= 2'b11
hsadc_sync	Ι	IO_CIFvsync_HOSTdin6_HSADCTSsync_DVPgpio2b0	GPIO2B_IOMUX[1:0]= 2'b11
hsadc_err	Ι	IO_CIFclkout_HOSTwkreq_HSADCTSfail_DVPgpio2b3	GPIO2B_IOMUX[7:6]= 2'b01
gps_clk	Ι	IO_CIFclkin_HOSTwkack_GPSclk_HSADCclkout_DVPgpio2b 2	GPIO2B_IOMUX[5:4]= 2'b11
gpst1_clk	Ι	IO_UART3GPSctsn_GPSrfclk_GPST1clk_GPIO30gpio7b1	GPIO7B_IOMUX[3:2]= 2'b11

Notes: I=input, O=output, I/O=input/output, bidirectional

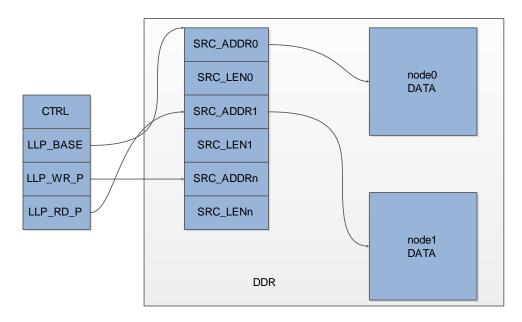
22.6 Application Notes

22.6.1 Overall Operation Sequence

- Enable desired modules to work by writing correspond bit with '1' in TSP_GCFG. Note: it is important to do this step at first, otherwise writing the corresponding registers will not take effect.
- Set up TS configuration by writing corresponding registers.
- Wait for the interrupts to pick up the desired TS packets following the rules detailed in the following section.
- Note: PTI1 addr = PTI0 addr + 0x1000;

22.6.2 TS Source

TS source can be chosen by writing the bit 9 of TSP_PTIx_CTRL(x=0,1), '1' for demodulator, '0' for local memory.


1.TS_IN Interface

Writing bit 10 of TSP_PTIx_CTRL to choose bit ordering, and writing bit [12:11] to choose input TS mode.

TS_IN interface supports 4 input TS stream mode: sync/valid serial mode, sync/valid parallel mode, sync/burst parallel mode, nosync/valid parallel mode.

2.Local Memory

PTI also can process the TS data read from local memory by using LLP DMA mode.

- (1) Write PTIx_LLP_BASE with the list base address;
- (2) Starting from the list base address, write the list nodes. One list node comprised of two words. The first word describes the TS data base address, the second one describes the length of TS data in unit of word.
- (3) Write the PTIx_LLP_WRITE with the number of words that you have written in list memory. Note it is not the number of LLP nodes, so that the number you are writing should be an even one.
- (4) Write PTIx_LLP_CFG with the configuration you want. Write the bit 0 with 1 to start LLP DMA. If all the list nodes are written, don't forget to write 1 to bit 3 to tell DMAC that the configuration is finished.

Note:

- The MSB(bit7) of the 8-bit pointer in the PTIx_LLP_Write and PTIx_LLP_Read is used as the flag bit, and remaining 7 bits are used for addressing. Therefore the the pointer is referred to 7-bit space, not 8-bit space, and remember write the pointer with the correct flag bit. For example, if you have configured 63 LLP nodes and then you have to write the 64th LLP node starting from the list base address,
- *PTIx_LLP_READ informs that how many words has been processed by LLP DMA. An interrupt may be generated when number of the processed words has reach to the threshold set in the PTIx_LLP_CFG.*
- If you write the PTIx_LLP_Write several times in a complete DMA transaction, it is important to notice the flag bit of PTIx_LLP_Write, and never make the writing pointer catch up with the reading pointer.

22.6.3 TS Synchronous Operation

Synchronous mode and Bypass mode can be switched by writing bit 15 of TSP_PTIx_CTRL. In the synchronous mode, 188/192/204 byte TS packets are supported and self-adjusted. Set up locked times in TSP_PTIx_CTRL to inform the successive times of TS packet header detection needs to lock the header of TS packets when in the unlocked mode, and set up unlocked times to informs the successive times of TS packet header error needs to re-lock header of TS packets in the locked mode. It is recommended to use 2-3 as the locked times to quickly and correctly locked the header, and 2-3 as unlocked times to avoid unnecessarily entering into unlocked searching mode.

In the bypass mode, the input TS data will not be re-synchronized and directly fed into the PTI channel.

22.6.4 Descrambling Operation

Descrambler can achieve PES or TS level descrambling which conforms to the CSA v2.0.

- Enable the channel you want by writing 1 to bit 0 of TSP_PTIx_PIDn_CTRL (x=0~1, n= 0~64);
- Set the desired PID number
- Turn on descrambling function by setting 1 to bit 2. If the corresponding CW is available or TS is required to be left undescrambled, CSA_ON bit is set to 0;

■ Choose corresponding Control Word by setting bit[19:16], and 16 set Control Word are available to be chosen. Don't forget Control Word should be preprared before the descrambling function is enabled.

Note: If the enabled channel is needed to be disabled, write the CLEAR bit to disabled the channel rather than write '0' to EN bit.

22.6.5 Demux Operation

Refer to TSP_PTIx_PIDn_CFG for Demux operation. The software users should be familiar with the demux knowledge.

Users should create a separate memory buffer to receive the processed data for each desired PID channel, and write the base and top address information of the memory buffer into TSP_PTIx_PIDn_BASE and TSP_PTIx_PIDn respectively. Also initial writing address and reading address, normally the same as base address, are also needed to be written into TSP_PTIx_PIDn_WRITE and TSP_PTIx_PIDn_READ respectively. For ES/PES filter, another separate memory needs to be created to store list data, which is used to assist obtaining PES/ES data. List base address, top address, initial writing address and reading address are also needed to write into corresponding registers.

Note:

- 1. For channel whose PID channel number larger than 15, the channels can only be used section filter. For others, there is no such limit. They can be configured as section filter, pes filter, es filter or ts filter.
- 2. Data memory address boundary should be aligned with word-size, and list memory address boundary should be aligned with word size. If the memory buffer is not larger to store processed data so that writing address reaches the top address, TSP will return to the base address to write data. So fetch the data in time, don't make the writing address catches up with reading address. The list memory buffer has the same issue.

1.Demux data obtain

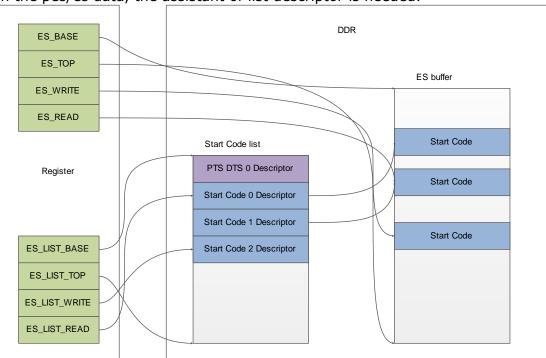
• TS filter

To obtain TS data and section data, when an desired PID done interrupt is generated, read TSP_PTIx_PIDn_READ firstly to know the address that last reading stops, and then read TSP_PTIx_PIDn_WRITE to know the address that hardware has reached. For ts data, start from the TSP_PTIx_PIDn_READ address to get the TS packet data, and stop at the address you want. However, the ending address should not catch up with writing address. It is recommended to obtain the TS data in the unit of TS packet which is 47-word size. At last, don't forget to write the ending address into TSP_PTIx_PIDn_READ to leave a hint where current reading stops.

B. Section filter

Section filter can run three mode to meet different needs: stop-per-unit; full stop; recycle , update when version number change. The PID done interrupt will be generated after each part of a complete section is processed in the first mode, and the PID done will be generated only after the whole section is completed in the last two modes. In the frist two mode, the PID channel will be disabled after the whole section is completed. In the recycle mode, the channel will remain active and start a new section processing when the version number changes. Section filter also supports 16-byte filtering function, which can assign 1^{st} , 4^{th} to 18^{th} byte to be filtered.

The process to obtain section data is similar to the process for TS data. After a PID done interrupt done is generated, refer to the corresponding PID error status register to check if the section data is correct. Read the frist word of the section start address to know the total length of the section according to the format of section data.


Section Length = {First Word[11:8], First Word[23:16]};

Total Length = Section Length;

Then start to fetch section data according to the total length. Again don't forget to write the stopped address.

C. PES/ES filter

PES filter supports 16-byte filtering function, which can assign 4th, 7th to 21st byte to be filtered. ES filter supports start code detection, including MPEG2 start code 0x000001b3, 0x00000100, VC-1 start code 0x0000010d, 0x000010f, H264 start code 0x00001.

To obtain the pes/es data, the assistant of list descriptor is needed.

List memory buffer contains descriptors which contains information to obtain es/pes data which are stored in data memory buffer.

The descriptor stored in list memory buffer can be separated into two groups: PTS_DTS Descriptor and Start Code Descriptor. The descriptor is composed by 4 word content, word_0, word_1, word_2 and word_3. The word_x (x means the sequence number in a descriptor, and they are stored in the memory in sequence order). The format of the 4 words are listed as follows:

(1) start code descriptor

Word_0:

Word_0[29:28] indicates the attributes of the bytes of the pointed word. 2'b00 means the whole word belongs to the new ES/PES packet; 2'b01 means that word[7:0] belongs to the previous packet, and the remaining bytes belong to the new packet; 2'b10 means means that word[15:0] belongs to the previous packet, and the remaining bytes belong to the new packet; 2'b11 means 'b10 means means that word[23:0] belongs to the previous packet, and the remaining bytes belong to the new packet; and the remaining bytes belong to the new packet, and the remaining bytes belong to the new packet. This pointed word is the word where start code starts, word_2 describes the location of start code.

Word_0[27:24] is equal to 0x0 in the start code descriptor. Users can used to tell two kinds of descriptor.

If the video type is H.264, word_0[23:8] means first_mb_in slice, and word_0 means nal_nuit_type.

Word_1:

the start code of stream.

Word_2:

DDR offset address in the DDR of the word where the start code is located.

Word_3:

0x0

(2) PTS_DTS Descriptor

Word_0:

Word_0[29:28]: the same as start code descriptor Word_0[27:24]: 0x1 in PTS_DTS descriptor. Word_0[3] : PTS[32]; Word_0[2] : DTS[32]; Word_0[1:0] : pts_dts_flag;

Word_1:

DDR offset address of the word that valid data starts.

Word_2: PTS[31:0]

Word_3

DTS[31:0]

To obtain PES data or ES data when start code detection is disabled, use PTS_DTS descriptor. To obtain ES data when start code detection is enabled, use start code descriptor. When a PID done interrupt is generated, make sure there is no corresponding PID error generated. Read the TSP_PTIx_LISTn_READ to know the list reading address in the last time. Start from here, read the 4-word descriptor one by one to know the offset of the packets. Refer to the offset in the DDR where in the data memory buffer to obtain data. Finally write TSP_PTIx_LISTn_READ and TSP_PTIx_PIDn_READ with corresponding reading address.

22.6.6 TS Out Interface

All the configuration is done by writing TSP_TSOUT_CTRL. Before programming this register, make sure that you have enabled the TS OUT interface. If you want to disable TS out interface, write '0' to the START bit(bit 0) of TSP_TSOUT_CTRL, and then disable it in the TSP_GFCG. Each PTI channel can provide TS out interface with PID-filtering TS Packets or non-PID-filtering TS packets, and therefore there are totally 4 sources can be chosen for TS out interface. **22.6.7 PVR**

PVR module provide you with the function to record the programs you want. The 4 sources can be assigned with PVR, and they are the same as TS out interface.

Assign the PVR length and PVR address, and then configure TSP_PVR_CTRL to start PVR module. If you want to stop PVR function during recording, write '1' to STOP bit (bit 0) to to TSP_PVR_CTRL to stop it. Remember to take care of the status of PVR_ON bit of TSP_GFCG when programming the PVR-related registers.

22.6.8 PCR extraction

PCR extraction can be enabled by configure PTIx_PCRn_CTRL. Then if the PID-matched TS data contain PCR field, the 33-bit PCR_base field will be written corresponding PTIx_PCRn_H and PTIx_PCRn_L registers. An interrupt will be asserted if PCR interrupt is enabled.

Chapter 23 High-Speed ADC Interface (HSADC)

23.1 Overview

HS-ADC Interface Unit is an interface unit for connecting the TS interface and GPS ADC interface to AMBA AHB bus. It fetches the bus data received by the TS interface and GPS ADC interface and stores them to internal asynchronous FIFO after the ADC clock is active. The HS-ADC Interface Unit generates the DMA request signal when data length of the asynchronous FIFO over the almost full level or almost empty level.

HS-ADC supports the following features:

Support Transport-Stream(TS) Interface with 8bits data bus

Support GPS interface with 2bits or 4bits data bus

Support combined interrupt output, source including: full interrupt, empty interrupt Support DMA transfer mode through generating DMA request from the event of almost full or almost empty, etc.

Support two channel mode: single channel and dual channel

Support the most significant bit negation or not

Support sign bit extension

Support two storage mode: input data are stored to high 8bit or 10bit and stored to low 8bit or 10bit of 16bit when pushed into FIFO.

Support an asynchronous build-in FIFO with 128x64 size

23.2 Block Diagram

The HS-ADC diagram is as follows.

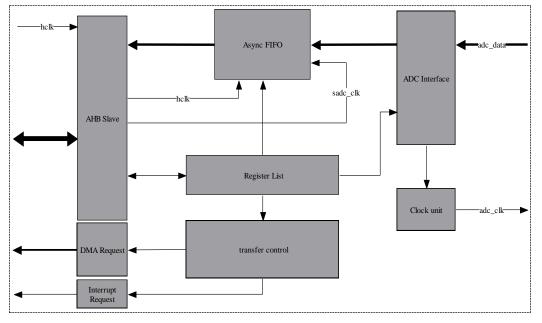


Fig. 23-1 HS-ADC Architecture

23.3 Function Description

This module can be configured for two interfaces: GPS interface, TS interface. **23.3.1 GPS interface**

When this module is used as GPS interface, user should configure GRF register to select 2bits or 4bitsGPS data input and gps_clk as GPS clock input from pad.

Also, user should configure CRU_CLKSEL22_CON[5:4] to select gps_clk as HS-ADC controller working clock source.

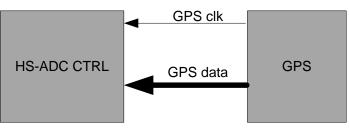


Fig. 23-2 GPS Application Diagram

23.3.2 TS interface

When this module is used as TS interface, user should configure GRF register to select 8bit TS data, ts_sync, ts_valid and ts_fail input and gps_clk input as TS clock input from pad. Also, user should configure CRU_CLKSEL22_CON[5:4] to select gps_clk from pad as TS clock input.

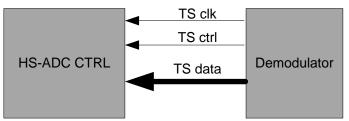


Fig. 23-3 TS Application Diagram

23.4 Register Description

23.4.1 Registers Summary

Name	Offset	Size	Reset Value	Description
HSADC_CTRL	0x0000	W	0x0000000	Control register
HSADC_IER	0x0004	W	0x0000000	Interrupt control register
HSADC_ISR	0x0008	W	0x0000000	Interrupt status register
HSADC_TS_FAIL	0x000c	W	0x0000000	ts fail register
HSADC_CGCTL	0x0010	W	0x0000000	HSADC clock gating control
HSADC_DATA	0x0020	W	0x0000000	The data register of hsadc controller

Notes: <u>Size</u>: **B**- Byte (8 bits) access, **HW**- Half WORD (16 bits) access, **W**-WORD (32 bits) access

23.4.2 Detail Register Description

HSADC_CTRL

Address: Operational Base + offset (0x0000) Control register

Bit	Attr	Reset Value	Description
31:28	RO	0x0	reserved
			almost_full_level
			Define almost full trigger level
27:24	RW	0×0	0x0~"0xf" - configure valid range (Notes: 1
27.24			level indicate 4 entries data in the async FIFO.
			and this configure range mapping to 64 - 124
			entries data in the async FIFO.)
23:20	RO	0x0	reserved

Bit	Attr	Reset Value	Description
			almost_empty_level
			Define almost empty trigger level
	.6 RW 0x0 almost_empty_level .6 RW 0x0 Define almost empty trigge 0x0~"0xf" - configure val level indicate 4 entries data and this configure range m entries data in the async F RW 0x0 GPS interface auto clock gating 1'b1: not auto clock gating 1'b1: b1: b1: b1: b1: b1: b1: b1: b1: b1:		
19:16		level indicate 4 entries data in the async FIFO.	
15	RW	0x0	1'b1: auto clock gating
	514		TS interface auto clock gating enable
14	RW	0x0	
			almost_empty_level Define almost empty trigger level 0x0~"0xf" - configure valid range (Notest level indicate 4 entries data in the async F and this configure range mapping to 0 - 6 entries data in the async FIFO.) gps_auto_gate_en GPS interface auto clock gating enable 1'b1: auto clock gating 1'b0: not auto clock gating 1'b1: auto clock gating reserved gpsw GPS interface data width select 1'b1: 4bit data mode 1'b1: 4bit data mode 1'b1: 4bit data mode ts_sync_en TS sync interface enable Field0000 Description ts_sync_en TS valid interface "ts_valid" signal as da valid indicator 1'b0: disable 1'b1: enable ts_gps_sel MPEG-TS and GPS input select 1'b1: MPEG-TS is selected
13:12	RO	0x0	
			gpsw
11	RW	0x0	1'b0: 2bit data mode
			1'b1: 4bit data mode
			ts sync en
10	RW	0x0	
			Enable ts interface "ts_valid" signal as data
9	RW	0x0	_
			1'b0: disable
			ts_gps_sel
0		0.40	MPEG-TS and GPS input select
19:16RWOXOleve and and ent15RW $0x0$ $\begin{bmatrix} gps \\ GPs \\ 1'b1 $	1'b0: GPS is selected		
			Define almost empty trigger level 0x0~"0xf" - configure valid range (Notes: level indicate 4 entries data in the async FIF and this configure range mapping to 0 - 60 entries data in the async FIFO.) gps_auto_gate_en GPS interface auto clock gating enable 1'b1: auto clock gating 1'b0: not auto clock gating enable 1'b1: auto clock gating 1'b0: not auto clock gating 1'b0: not auto clock gating 1'b0: not auto clock gating reserved gpsw GPS interface data width select 1'b1: 4bit data mode 1'b1: 4bit data mode 1'b1: 4bit data mode 1'b1: 4bit data mode ts_sync_en TS sync interface enable Field0000 Description ts_valid interface "ts_valid" signal as data valid indicator 1'b0: disable 1'b1: enable ts_gps_sel MPEG-TS and GPS input select 1'b0: GPS is selected 1'b1: MPEG-TS is selected 1'b1: MPEG-TS is selected 1'b1: almost full generate DMA request sig (Notes: this mode generate DMA request signal from almost full condition and cancer DMA request signal from almost empty condition. so you need configure two level almost full level and almost empty level) 1'b0: almost empty generate DMA request signal (Notes: this mode generate DMA request signal (Notes
7:6	RO	0x0	reserved
			dma_req_mode
			DMA request mode select
			1'b1: almost full generate DMA request signal
			(Notes: this mode generate DMA request
			signal from almost full condition and cancel
			DMA request signal from almost empty
5	IK VV		condition. so you need configure two level by
			almost full level and almost empty level)
			1'b0: almost empty generate DMA request
			signal (Notes: this mode generate DMA
			request signal from almost empty condition
			and that only once DMA request.)

Bit	Attr	Reset Value	Description			
4:1	RO	0x0	reserved			
			adc_en			
			HS-ADC Interface Unit Enable Bit			
0	RW	0x0	1'b1: enable (Notes: will return 1 when the			
0			hardware started transfer)			
			1'b0: disable (Notes: other bit can be modify			
			only the hardware return 0)			

HSADC_IER

Address: Operational Base + offset (0x0004) Interrupt control register

Bit	Attr	Reset Value	Description				
31:2	RO	0x0	reserved				
			int_empty_en				
			Interrupt en/disable bit for the empty				
1	RW	0x0	interrupt flag of async FIFO				
			1'b1: enable				
			1'b0: disable				
			int_full_en				
			Interrupt en/disable bit for the full interrupt				
0	RW	0x0	flag of async FIFO				
			1'b1: enable				
			1'b0: disable				

HSADC_ISR

Address: Operational Base + offset (0x0008) Interrupt status register

Bit	Attr	Reset Value	Description			
31:2	RO	0x0	reserved			
			int_empty_stat_ind			
			Async FIFO empty interrupt flag			
			1'b1(R): This bit will be set to "1" when Async			
1	RW	N 0x0 FIFO empty status and that only to re				
			operation.			
			1'b0(W): Write "0" to bit for clear the interrupt			
			flag and that only to wrtie operation.			
			int_full_stat_ind			
			Async FIFO full interrupt flag			
			1'b1(R): This bit will be set to "1" when Async			
0	RW	0x0	FIFO full status and that only to read			
			operation.			
			1'b0(W): Write "0" to bit for clear the interrupt			
			flag and that only to wrtie operation.			

HSADC_TS_FAIL

Address: Operational Base + offset (0x000c) ts fail register

Bit	Attr	Reset Value	Description		
31:1	RO	0x0	reserved		
			ts_fail_ahb		
			TS stream fail indicator		
0	RW	0x0	this signal only valid when select TS stream		
0		0.00	input(mpts=1)		
			1'b0: TS stream decode successfully		
			1'b1: TS stream decode fail		

HSADC_CGCTL

Address: Operational Base + offset (0x0010) HSADC Clock Gating control

Bit	Attr	Reset Value	Description
			cycle_cfg
			clock gated cycles configuration
31:1	RW		when configure cg_enable to 1 and cycle_cfg
			to non-zero value,HSADC clock will be gated
			for cycle_cfg cycles ,then clock recover.
			cg_enable
0	RW	0x0	clock gating enable control
0	ĸvv		1'b0: clock gating disable
			1'b1: clock gating enable

HSADC_DATA

Address: Operational Base + offset (0x0020) Data register

Bit	Attr	Reset Value	Description
31:0	RO	0x0000000	DATA

23.5 Interface Description

23.5.1 TS mode

Module Pin	IO	Pad Name	IOMUX Setting
hsadc_data0	Ι	IO_CIFdata2_HOSTdin0_HSADCdata0_DVPgpio2a0	GPIO2A_IOMUX[1:0]= 2'b11
hsadc_data1	I	IO_CIFdata3_HOSTdin1_HSADCdata1_DVPgpio2a1	GPIO2A_IOMUX[3:2]= 2'b11
hsadc_data2	I	IO_CIFdata4_HOSTdin2_HSADCdata2_DVPgpio2a2	GPIO2A_IOMUX[5:4]= 2'b11

Table 23-1 IOMUX configuration in TS mode

RK3288 TRM-Part1

Module Pin	IO	Pad Name	IOMUX Setting
hsadc_data3	I	IO_CIFdata5_HOSTdin3_HSADCdata3_DVPgpio2a3	GPIO2A_IOMUX[7:6]= 2'b11
hsadc_data4	I	IO_CIFdata6_HOSTckinp_HSADCdata4_DVPgpio2a4	GPIO2A_IOMUX[9:8]= 2'b11
hsadc_data5	I	IO_CIFdata7_HOSTckinn_HSADCdata5_DVPgpio2a5	GPIO2A_IOMUX[11:10]= 2'b11
hsadc_data6	I	IO_CIFdata8_HOSTdin4_HSADCdata6_DVPgpio2a6	GPIO2A_IOMUX[13:12]= 2'b11
hsadc_data7	I	IO_CIFdata9_HOSTdin5_HSADCdata7_DVPgpio2a7	GPIO2A_IOMUX[15:14]= 2'b11
hsadc_valid	I	IO_CIFhref_HOSTdin7_HSADCTSvalid_DVPgpio2b1	GPIO2B_IOMUX[3:2]= 2'b11
hsadc_sync	I	IO_CIFvsync_HOSTdin6_HSADCTSsync_DVPgpio2b0	GPIO2B_IOMUX[1:0]= 2'b11
hsadc_err	I	IO_CIFclkout_HOSTwkreq_HSADCTSfail_DVPgpio2b3	GPIO2B_IOMUX[7:6]= 2'b01
gps_clk	I	IO_CIFclkin_HOSTwkack_GPSclk_HSADCclkout_DVPgpio2b2	GPIO2B_IOMUX[5:4]= 2'b11
gpst1_clk	I	IO_UART3GPSctsn_GPSrfclk_GPST1clk_GPIO30gpio7b1	GPIO7B_IOMUX[3:2]= 2'b11

23.5.2 GPS mode

Module Pin	IOMUX Setting		
gps_clk	I	IO_CIFclkin_HOSTwkack_GPSclk_HSADCclkout_DVPgpio2b2	GPIO2B_IOMUX[5:4]= 2'b11
gpst1_clk	I	IO_UART3GPSctsn_GPSrfclk_GPST1clk_GPIO30gpio7b1	GPIO7B_IOMUX[3:2]= 2'b11
hsadc_data0	I	IO_CIFdata2_HOSTdin0_HSADCdata0_DVPgpio2a0	GPIO2A_IOMUX[1:0]= 2'b11
hsadc_data1	I	IO_CIFdata3_HOSTdin1_HSADCdata1_DVPgpio2a1	GPIO2A_IOMUX[3:2]= 2'b11
hsadc_data2	I	IO_CIFdata4_HOSTdin2_HSADCdata2_DVPgpio2a2	GPIO2A_IOMUX[5:4]= 2'b11
hsadc_data3	I	IO_CIFdata5_HOSTdin3_HSADCdata3_DVPgpio2a3	GPIO2A_IOMUX[7:6]= 2'b11

23.6 Application Notes

The following sections will describe the operation of DMA requests and DMA transfers.

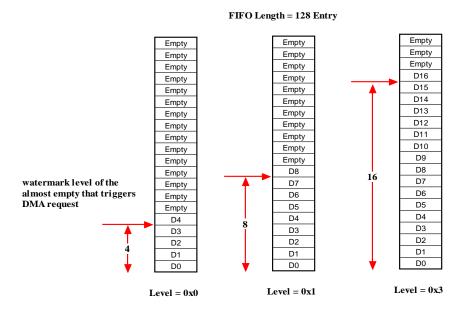
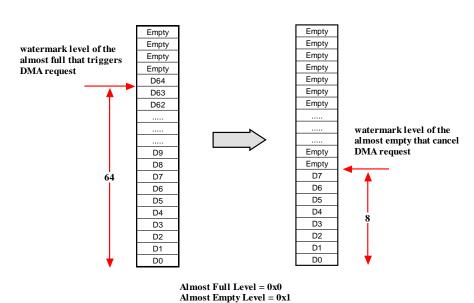



Fig. 23-4 Almost empty triggers a DMA request by DMA request mode

The DMA request signal will be generated from a watermark level trigger when data stored to FIFO over the watermark level of almost empty, where the watermark level can be configured through HSADC_CTRL[19:16] by software. This DMA request mode doesn't care the watermark level of almost full. The sample for watermark level configuration is shown in figure above.

FIFO Length = 128 Entry

Fig. 23-5 Almost full triggers a DMA request by DMA request mode

The DMA request signal will be generated from a watermark level trigger when data stored to FIFO over the watermark level of almost full. It continues to generate request signal when the number of data in FIFO greater than watermark level of almost empty. This DMA request mode needs configure two watermark levels: watermark level of almost empty at the HSADC_CTRL[19:16] and watermark level of almost full at the HSADC_CTRL[27:24]. The sample for watermark level configuration is shown in figure above. When controller works in TS mode, the interface signal ts sync should always be used.

Chapter 24 GMAC Ethernet Interface

24.1 Overview

The GMAC Ethernet Controller provides a complete Ethernet interface from processor to a Reduced Media Independent Interface (RMII) and Reduced Gigabit Media Independent Interface (RGMII) compliant Ethernet PHY.

The GMAC includes a DMA controller. The DMA controller efficiently moves packet data from microprocessor's RAM, formats the data for an IEEE 802.3-2002 compliant packet and transmits the data to an Ethernet Physical Interface (PHY). It also efficiently moves packet data from RXFIFO to microprocessor's RAM.

24.1.1 Features

Supports 10/100/1000-Mbps data transfer rates with the RGMII interfaces Supports 10/100-Mbps data transfer rates with the RMII interfaces Supports both full-duplex and half-duplex operation Supports CSMA/CD Protocol for half-duplex operation Supports packet bursting and frame extension in 1000 Mbps half-duplex operation Supports IEEE 802.3x flow control for full-duplex operation Optional forwarding of received pause control frames to the user application in full-duplex operation Back-pressure support for half-duplex operation Automatic transmission of zero-quanta pause frame on deassertion of flow control input in full-duplex operation Preamble and start-of-frame data (SFD) insertion in Transmit, and deletion in Receive paths Automatic CRC and pad generation controllable on a per-frame basis Options for Automatic Pad/CRC Stripping on receive frames Programmable frame length to support Standard Ethernet frames Programmable InterFrameGap (40-96 bit times in steps of 8) Supports a variety of flexible address filtering modes: 64-bit Hash filter (optional) for multicast and uni-cast (DA) addresses Option to pass all multicast addressed frames Promiscuous mode support to pass all frames without any filtering for network monitoring Passes all incoming packets (as per filter) with a status report Separate 32-bit status returned for transmission and reception packets Supports IEEE 802.1Q VLAN tag detection for reception frames MDIO Master interface for PHY device configuration and management Support detection of LAN wake-up frames and AMD Magic Packet frames Support checksum off-load for received IPv4 and TCP packets encapsulated by the Ethernet frame Support checking IPv4 header checksum and TCP, UDP, or ICMP checksum encapsulated in IPv4 or IPv6 datagrams Comprehensive status reporting for normal operation and transfers with errors Support per-frame Transmit/Receive complete interrupt control Supports 4-KB receive FIFO depths on reception. Supports 2-KB FIFO depth on transmission Automatic generation of PAUSE frame control or backpressure signal to the GMAC core based on Receive FIFO-fill (threshold configurable) level Handles automatic retransmission of Collision frames for transmission Discards frames on late collision, excessive collisions, excessive deferral and underrun conditions AXI interface to any CPU or memory Software can select the type of AXI burst (fixed and variable length burst) in the AXI Master interface Supports internal loopback on the RGMII/RMII for debugging

Debug status register that gives status of FSMs in Transmit and Receive data-paths and FIFO fill-levels.

24.2 Block Diagram

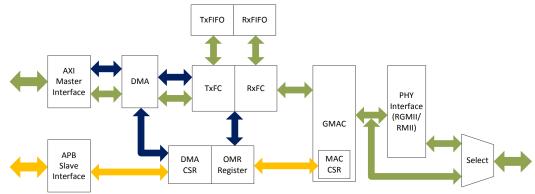


Fig. 24-1 GMAC architecture

The GMAC is broken up into multiple separate functional units. These blocks are interconnected in the MAC module. The block diagram shows the general flow of data and control signals between these blocks.

The GMAC transfers data to system memory through the AXI master interface. The host CPU uses the APB Slave interface to access the GMAC subsystem's control and status registers (CSRs).

The GMAC supports the PHY interfaces of reduced GMII (RGMII) and reduced MII (RMII). The Transmit FIFO (Tx FIFO) buffers data read from system memory by the DMA before transmission by the GMAC Core. Similarly, the Receive FIFO (Rx FIFO) stores the Ethernet frames received from the line until they are transferred to system memory by the DMA. These are asynchronous FIFOs, as they also transfer the data between the application clock and the GMAC line clocks.

24.3 Function Description

24.3.1 Frame Structure

Data frames transmitted shall have the frame format shown in Fig 32-2.

<inter-frame>>preamble>>sfd>>data>>efd>

Fig. 24-2 MAC Frame structure

The preamble <preamble> begins a frame transmission. The bit value of the preamble field consists of 7 octets with the following bit values:

10101010 10101010 10101010 10101010 10101010 10101010 10101010

The SFD (start frame delimiter) <sfd> indicates the start of a frame and follows the preamble. The bit value is 10101011.

The data in a well formed frame shall consist of N octets data.

24.3.2 RMII Interface timing diagram

The Reduced Media Independent Interface (RMII) specification reduces the pin count between Ethernet PHYs and Switch ASICs (only in 10/100 mode). According to the IEEE 802.3u standard, an MII contains 16 pins for data and control. In devices incorporating multiple MAC or PHY interfaces (such as switches), the number of pins adds significant cost with increase in port count. The RMII specification addresses this problem by reducing the pin count to 7 for each port - a 62.5% decrease in pin count. The RMII module is instantiated between the GMAC and the PHY. This helps translation of the MAC's MII into the RMII. The RMII block has the following characteristics:

• Supports 10-Mbps and 100-Mbps operating rates. It does not support 1000-Mbps operation.

Two clock references are sourced externally or CRU, providing independent, 2-bit wide transmit and receive paths.

Transmit Bit Ordering

Each nibble from the MII must be transmitted on the RMII a di-bit at a time with the order of di-bit transmission shown in Fig.1-3. The lower order bits (D1 and D0) are transmitted first followed by higher order bits (D2 and D3).

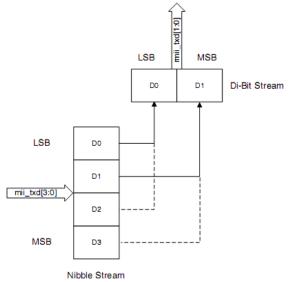


Fig. 24-3 RMII transmission bit ordering

RMII Transmit Timing Diagrams

Fig.1-4 through 1-7 show MII-to-RMII transaction timing. The clk_rmii_i (REF_CLK) frequency is 50MHz in RMII interface. In 10Mb/s mode, as the REF_CLK frequency is 10 times as the data rate, the value on rmii_txd_o[1:0] (TXD[1:0]) shall be valid such that TXD[1:0] may be sampled every 10th cycle, regard-less of the starting cycle within the gRup and yield the correct frame data.

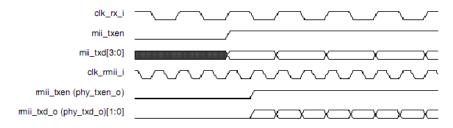


Fig. 24-4 Start of MII and RMII transmission in 100-Mbps mode

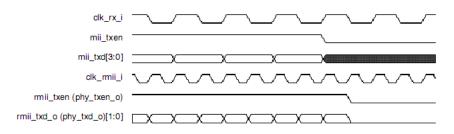
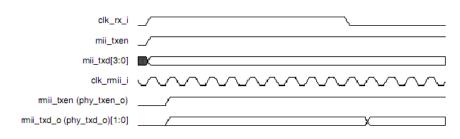


Fig. 24-5 End of MII and RMII Transmission in 100-Mbps Mode



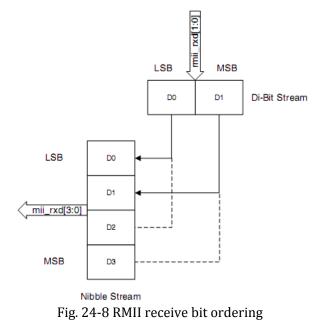

Fig. 24-6 Start of MII and RMII Transmission in 10-Mbps Mode

Fig. 24-7 End of MII and RMII Transmission in 10-Mbps Mode

Receive Bit Ordering

Each nibble is transmitted to the MII from the di-bit received from the RMII in the nibble transmission order shown in Fig.1-8. The lower order bits (D0 and D1) are received first, followed by the higher order bits (D2 and D3).

24.3.3 RGMII interface

The Reduced Gigabit Media Independent Interface (RGMII) specification reduces the pin count of the interconnection between the GMAC 10/100/1000 controller and the PHY for GMII and MII interfaces. To achieve this, the data path and control signals are reduced and multiplexed together with both the edges of the transmit and receive clocks. For gigabit operation the clocks operate at 125 MHz; for 10/100 operation, the clock rates are 2.5 MHz/25 MHz. In the GMAC 10/100/1000 controller, the RGMII module is instantiated between the GMAC core's GMII and the PHY to translate the control and data signals between the GMII and RGMII protocols.

The RGMII block has the following characteristics:

Supports 10-Mbps, 100-Mbps, and 1000-Mbps operation rates.

For the RGMII block, no extra clock is required because both the edges of the incoming

clocks are used.

The RGMII block extracts the in-band (link speed, duplex mode and link status) status signals from the PHY and provides them to the GMAC core logic for link detection.

24.3.4 Management Interface

The MAC management interface provides a simple, two-wire, serial interface to connect the GMAC and a managed PHY, for the purposes of controlling the PHY and gathering status from the PHY. The management interface consists of a pair of signals that transport the management information across the MII bus: MDIO and MDC.

The GMAC initiates the management write/read operation. The clock gmii_mdc_o(MDC) is a divided clock from application clock pclk_gmac. The divide factor depends on the clock range setting in the GMII address register. Clock range is set as follows:

Selection	pclk_gmac	MDC Clock
0000	60-100 MHz	pclk_gmac/42
0001	100-150 MHz	pclk_gmac/62
0010	20-35 MHz	pclk_gmac/16
0011	35-60 MHz	pclk_gmac/26
0100	150-250 MHz	pclk_gmac/102
0101	250-300 MHz	pclk_gmac/124
0110, 0111	Reserved	

The MDC is the derivative of the application clock pclk_gmac. The management operation is performed through the gmii_mdi_i, gmii_mdo_o and gmii_mdo_o_e signals. A three-state buffer is implemented in the PAD.

The frame structure on the MDIO line is shown below.

IDLE	PREAMBLE	START	OPCODE	PHY ADDR	REG ADDR	ТА	DATA	IDLE
------	----------	-------	--------	-------------	-------------	----	------	------

Fig. 24-9 MDIO frame structure

IDLE:	The mdio line is three-state; there is no clock on gmii_mdc_o
PREAMBLE:	32 continuous bits of value 1
START:	Start-of-frame is 2í01
OPCODE:	2'b10 for read and 2'b01 for write
PHY ADDR:	5-bit address select for one of 32 PHYs
REG ADDR:	Register address in the selected PHY
TA:	Turnaround is 2'bZ0 for read and 2'b10 for Write
DATA:	Any 16-bit value. In a write operation, the GMAC drives mdio; in a read operation,
	PHY drives it.

24.3.5 Power Management Block

Power management(PMT) supports the reception of network (remote) wake-up frames and Magic Packet frames. PMT does not perform the clock gate function, but generates interrupts for wake-up frames and Magic Packets received by the GMAC. The PMT block sits on the receiver path of the GMAC and is enabled with remote wake-up frame enable and Magic Packet enable. These enables are in the PMT control and status register and are programmed by the application.

When the power down mode is enabled in the PMT, then all received frames are dropped by the core and they are not forwarded to the application. The core comes out of the power down mode only when either a Magic Packet or a Remote Wake-up frame is received and the corresponding detection is enabled.

Remote Wake-Up Frame Detection

When the GMAC is in sleep mode and the remote wake-up bit is enabled in register GMAC_PMT_CTRL_STA (0x002C), normal operation is resumed after receiving a remote wake-up frame. The application writes all eight wake-up filter registers, by performing a sequential write to address (0028). The application enables remote wake-up by writing a 1 to bit 2 of the register GMAC_PMT_CTRL_STA.

PMT supports four programmable filters that allow support of different receive frame patterns. If the incoming frame passes the address filtering of Filter Command, and if Filter CRC-16 matches the incoming examined pattern, then the wake-up frame is received.

Filter_offset (minimum value 12, which refers to the 13th byte of the frame) determines the offset from which the frame is to be examined. Filter Byte Mask determines which bytes of the frame must be examined. The thirty-first bit of Byte Mask must be set to zero.

The remote wake-up CRC block determines the CRC value that is compared with Filter CRC-16. The wake-up frame is checked only for length error, FCS error, dribble bit error, GMII error, collision, and to ensure that it is not a runt frame. Even if the wake-up frame is more than 512 bytes long, if the frame has a valid CRC value, it is considered valid. Wake-up frame detection is updated in the register GMAC_PMT_CTRL_STA for every remote Wake-up frame received. A PMT interrupt to the application triggers a read to the GMAC_PMT_CTRL_STA register to determine reception of a wake-up frame.

Magic Packet Detection

The Magic Packet frame is based on a method that uses Advanced Micro Device's Magic Packet technology to power up the sleeping device on the network. The GMAC receives a specific packet of information, called a Magic Packet, addressed to the node on the network. Only Magic Packets that are addressed to the device or a broadcast address will be checked to determine whether they meet the wake-up requirements. Magic Packets that pass the address filtering (unicast or broadcast) will be checked to determine whether they meet the remote Wake-on-LAN data format of 6 bytes of all ones followed by a GMAC Address appearing 16 times.

The application enables Magic Packet wake-up by writing a 1 to Bit 1 of the register GMAC_PMT_CTRL_STA. The PMT block constantly monitors each frame addressed to the node for a specific Magic Packet pattern. Each frame received is checked for a

48'hFF_FF_FF_FF_FF_FF_FF pattern following the destination and source address field. The PMT block then checks the frame for 16 repetitions of the GMAC address without any breaks or interruptions. In case of a break in the 16 repetitions of the address, the

48'hFF_FF_FF_FF_FF_FF pattern is scanned for again in the incoming frame. The 16 repetitions can be anywhere in the frame, but must be preceded by the synchronization stream (48'hFF_FF_FF_FF_FF_FF). The device will also accept a multicast frame, as long as the 16 duplications of the GMAC address are detected.

If the MAC address of a node is 48'h00_11_22_33_44_55, then the GMAC scans for the data sequence:

Destination Address Source Address FF FF FF FF FF FF FF FF 00 11 22 33 44 55 00 11 20 10 10 10

Magic Packet detection is updated in the PMT Control and Status register for Magic Packet received. A PMT interrupt to the Application triggers a read to the PMT CSR to determine whether a Magic Packet frame has been received.

24.3.6 MAC Management Counters

The counters in the MAC Management Counters (MMC) module can be viewed as an extension of the register address space of the CSR module. The MMC module maintains a set of registers for gathering statistics on the received and transmitted frames. These include a control register for controlling the behavior of the registers, two 32-bit registers containing interrupts generated (receive and transmit), and two 32-bit registers containing masks for the Interrupt register (receive and transmit). These registers are accessible from the Application through the MAC Control Interface (MCI). Non-32-bit accesses are allowed as long as the address is word-aligned.

The organization of these registers is shown in Register Description. The MMCs are accessed using transactions, in the same way the CSR address space is accessed. The Register Description in this chapter describe the various counters and list the address for each of the statistics counters. This address will be used for Read/Write accesses to the desired transmit/receive counter.

The MMC module gathers statistics on encapsulated IPv4, IPv6, TCP, UDP, or ICMP payloads in received Ethernet frames.

24.4 Register description

24.4.1 Register Summary

Name	Offset	Size	Reset Value	Description
GMAC_MAC_CONF	0x0000	W	0x00000000	MAC Configuration Register
GMAC_MAC_FRM_FILT	0x0000	W	0x00000000	MAC Frame Filter
GMAC_HASH_TAB_HI	0x0008	W	0x00000000	Hash Table High Register
GMAC_HASH_TAB_LO	0x000c	W	0x00000000	Hash Table Low Register
GMAC_GMII_ADDR	0x0010	W	0x00000000	GMII Address Register
GMAC_GMII_DATA	0x0014	W	0x00000000	GMII Data Register
GMAC_FLOW_CTRL	0x0018	W	0x00000000	Flow Control Register
GMAC_VLAN_TAG	0x001c	W	0x00000000	VLAN Tag Register
 GMAC_DEBUG	0x0024	W	0x0000000	Debug register
 GMAC_PMT_CTRL_STA	0x002c	W	0x0000000	PMT Control and Status Register
 GMAC_INT_STATUS	0x0038	W	0x0000000	Interrupt Status Register
GMAC_INT_MASK	0x003c	W	0x0000000	Interrupt Mask Register
GMAC_MAC_ADDR0_HI	0x0040	W	0x0000ffff	MAC Address0 High Register
GMAC_MAC_ADDR0_LO	0x0044	W	0×ffffffff	MAC Address0 Low Register
GMAC_AN_CTRL	0x00c0	W	0x0000000	AN Control Register
GMAC_AN_STATUS	0x00c4	W	0x0000008	AN Status Register
GMAC_AN_ADV	0x00c8	w	0x000001e0	Auto_Negotiation Advertisement Register
GMAC_AN_LINK_PART_AB	0x00cc	w	0x00000000	Auto_Negotiation Link Partner Ability Register
GMAC_AN_EXP	0x00d0	w	0x00000000	Auto_Negotiation Expansion Register
GMAC_INTF_MODE_STA	0x00d8	W	0x0000000	RGMII Status Register
GMAC_MMC_CTRL	0x0100	W	0x0000000	MMC Control Register
GMAC_MMC_RX_INTR	0x0104	W	0x0000000	MMC Receive Interrupt Register
GMAC_MMC_TX_INTR	0x0108	W	0x0000000	MMC Transmit Interrupt Register
GMAC_MMC_RX_INT_MSK	0x010c	w	0x00000000	MMC Receive Interrupt Mask Register
GMAC_MMC_TX_INT_MSK	0x0110	w	0x00000000	MMC Transmit Interrupt Mask Register
GMAC_MMC_TXOCTETCNT _GB	0x0114	w	0x00000000	MMC TX OCTET Good and Bad Counter
	0×0118	w	0×00000000	MMC TX Frame Good and Bad Counter
GMAC_MMC_TXUNDFLWER R	0x0148	w	0×00000000	MMC TX Underflow Error
GMAC_MMC_TXCARERR	0x0160	W	0×00000000	MMC TX Carrier Error
 GMAC_MMC_TXOCTETCNT _G	0x0164	w	0×00000000	MMC TX OCTET Good Counter
	0x0168	W	0×00000000	MMC TX Frame Good Counter

Name	Offset	Size	Reset Value	Description
GMAC_MMC_RXFRMCNT_G	0.0100			MMC RX Frame Good and Bad
В	0x0180	W	0x00000000	Counter
GMAC_MMC_RXOCTETCNT	0,0194	\\/	0,000,000,000	MMC RX OCTET Good and Bad
_GB	0x0184	W	0x00000000	Counter
GMAC_MMC_RXOCTETCNT	0x0188	w	0x00000000	MMC RX OCTET Good Counter
_G	0X0100	vv	0x00000000	
GMAC_MMC_RXMCFRMCNT	0x0190	w	0x00000000	MMC RX Mulitcast Frame Good
_G	0.0190	vv	0,00000000	Counter
GMAC_MMC_RXCRCERR	0x0194	W	0x0000000	MMC RX Carrier
GMAC_MMC_RXLENERR	0x01c8	W	0x0000000	MMC RX Length Error
GMAC_MMC_RXFIFOOVRFL	0x01d4	w	0x00000000	MMC RX FIFO Overflow
W				
GMAC_MMC_IPC_INT_MSK	0x0200	W	0x0000000	MMC Receive Checksum Offload
				Interrupt Mask Register
GMAC_MMC_IPC_INTR	0x0208	W	0x0000000	MMC Receive Checksum Offload
	0x0210	W	0x00000000	Interrupt Register MMC RX IPV4 Good Frame
GMAC_MMC_RXIPV4GFRM	0x0210	VV	0x00000000	MMC RX IPV4 GOOD Frame
GMAC_MMC_RXIPV4HDERR	0x0214	W	0x0000000	MMC RX IPV4 Head Error Frame
GMAC_MMC_RXIPV6GFRM	0x0224	w	0x00000000	MMC RX IPV6 Good Frame
GMAC_MMC_RXIPV6HDERR	0X0224	vv	0x00000000	
FRM	0x0228	W	0x0000000	MMC RX IPV6 Head Error Frame
GMAC_MMC_RXUDPERRFR				
M	0x0234	W	0×00000000	MMC RX UDP Error Frame
GMAC MMC RXTCPERRFR				
M	0x023c	W	0×00000000	MMC RX TCP Error Frame
GMAC_MMC_RXICMPERRFR	00244	14/	00000000	
Μ	0x0244	W	0x00000000	MMC RX ICMP Error Frame
GMAC_MMC_RXIPV4HDERR	0x0254	w	0x00000000	MMC RX OCTET IPV4 Head Error
ОСТ	0X0254	vv	0x00000000	MMC RX OCTET IPV4 Head EITO
GMAC_MMC_RXIPV6HDERR	0x0268	w	0x00000000	MMC RX OCTET IPV6 Head Error
ОСТ	0.0200	~~	0,00000000	
GMAC_MMC_RXUDPERROC	0x0274	w	0x00000000	MMC RX OCTET UDP Error
Т	0/1027 1			
GMAC_MMC_RXTCPERROC	0x027c	w	0x0000000	MMC RX OCTET TCP Error
T				
GMAC_MMC_RXICMPERRO	0x0284	W	0x0000000	MMC RX OCTET ICMP Error
CT	0.1000	14/	000000101	Due Made De 11
GMAC_BUS_MODE	0x1000	W	0x00020101	Bus Mode Register
GMAC_TX_POLL_DEMAND	0x1004	W	0x00000000	Transmit Poll Demand Register
GMAC_RX_POLL_DEMAND	0x1008	W	0x00000000	Receive Poll Demand Register
GMAC_RX_DESC_LIST_AD	0x100c	W	0x0000000	Receive Descriptor List Address
DR				Register

Name	Offset	Size	Reset Value	Description
GMAC_TX_DESC_LIST_AD	0x1010	W 0.0000000		Transmit Descriptor List Address
DR	01010	W	0x00000000	Register
GMAC_STATUS	0x1014	W	0x00000000	Status Register
GMAC_OP_MODE	0x1018	W	0x0000000	Operation Mode Register
GMAC_INT_ENA	0x101c	W	0x0000000	Interrupt Enable Register
GMAC_OVERFLOW_CNT	0x1020	w	0x00000000	Missed Frame and Buffer Overflow
	0X1020	vv	0x00000000	Counter Register
GMAC_REC_INT_WDT_TIM	0x1024	w	0x00000000	Receive Interrupt Watchdog Timer
ER	0X1024	vv	0,00000000	Register
GMAC_AXI_BUS_MODE	0x1028	W	0x00110001	AXI Bus Mode Register
GMAC_AXI_STATUS	0x102c	W	0x0000000	AXI Status Register
GMAC_CUR_HOST_TX_DES	0.1040	w	000000000	Current Host Transmit Descriptor
С	0x1048 W		0x00000000	Register
GMAC_CUR_HOST_RX_DES	0x104c W	w	V 0x0000000	Current Host Receive Descriptor
С	0X104C	vv	0x00000000	Register
GMAC_CUR_HOST_TX_Buf		\A/	000000000	Current Host Transmit Buffer
_ADDR	0x1050 W		0x00000000	Address Register
GMAC_CUR_HOST_RX_BUF	0x1054	w	0x00000000	Current Host Receive Buffer
_ADDR	0X1054	vv	0.0000000000000000000000000000000000000	Adderss Register
	0x1058	W	0x000d0f17	The presence of the optional
GMAC_HW_FEA_REG	0X1028	vv		features/functions of the core

Notes: <u>Size</u> : **B** - Byte (8 bits) access, **HW** - Half WORD (16 bits) access, **W** -WORD (32 bits) access

24.4.2 Detail Register Description

GMAC_MAC_CONF

Address: Operational Base + offset (0x0000) MAC Configuration Register

Bit	Attr	Reset Value	Description
31:25	RO	0x0	reserved
			тс
			Transmit Configuration in RGMII/SGMII/SMII
			When set, this bit enables the transmission of
24	RW	0x0	duplex mode, link speed, and link up/down
			information to the PHY in the RGMII ports.
			When this bit is reset, no such information is
			driven to the PHY.

Bit	Attr	Reset Value	Description
23	RW	0×0	WD Watchdog Disable When this bit is set, the GMAC disables the watchdog timer on the receiver, and can receive frames of up to 16,384 bytes. When this bit is reset, the GMAC allows no more than 2,048 bytes (10,240 if JE is set high) of the frame being received and cuts off any bytes received after that.
22	RW	0×0	JD Jabber Disable When this bit is set, the GMAC disables the jabber timer on the transmitter, and can transfer frames of up to 16,384 bytes. When this bit is reset, the GMAC cuts off the transmitter if the application sends out more than 2,048 bytes of data (10,240 if JE is set high) during transmission.
21	RW	0x0	BE Frame Burst Enable When this bit is set, the GMAC allows frame bursting during transmission in GMII Half-Duplex mode.
20	RO	0x0	reserved
19:17	RW	0×0	IFG Inter-Frame Gap These bits control the minimum IFG between frames during transmission. 3'b000: 96 bit times 3'b001: 88 bit times 3'b010: 80 bit times 3'b111: 40 bit times
16	RW	0×0	DCRS Disable Carrier Sense During Transmission When set high, this bit makes the MAC transmitter ignore the (G)MII CRS signal during frame transmission in Half-Duplex mode. This request results in no errors generated due to Loss of Carrier or No Carrier during such transmission. When this bit is low, the MAC transmitter generates such errors due to Carrier Sense and will even abort the transmissions.

Bit	Attr	Reset Value	Description
			PS
			Port Select
15	RW	0x0	Selects between GMII and MII:
			1'b0: GMII (1000 Mbps)
			1'b1: MII (10/100 Mbps)
			FES
			Speed
14	RW	0x0	Indicates the speed in Fast Ethernet (MII)
14		0.00	mode:
			1'b0: 10 Mbps
			1'b1: 100 Mbps
			DO
		0×0	Disable Receive Own
			When this bit is set, the GMAC disables the
13	RW		reception of frames when the gmii_txen_o is
10			asserted in Half-Duplex mode.
			When this bit is reset, the GMAC receives all
			packets that are given by the PHY while
			transmitting.
			LM
		.W 0x0	Loopback Mode
			When this bit is set, the GMAC operates in
12	RW		loopback mode at GMII/MII. The (G)MII
			Receive clock input (clk_rx_i) is required for
			the loopback to work properly, as the
			Transmit clock is not looped-back internally.
			DM Duraless Made
			Duplex Mode
1.1		0×0	When this bit is set, the GMAC operates in a
11	RW		Full-Duplex mode where it can transmit and
			receive simultaneously. This bit is RO with
			default value of 1'b1 in Full-Duplex-only
			configuration.

Bit	Attr	Reset Value	Description
10	RW	0×0	IPC Checksum Offload When this bit is set, the GMAC calculates the 16-bit one's complement of the one's complement sum of all received Ethernet frame payloads. It also checks whether the IPv4 Header checksum (assumed to be bytes 25-26 or 29-30 (VLAN-tagged) of the received Ethernet frame) is correct for the received frame and gives the status in the receive status word. The GMAC core also appends the 16-bit checksum calculated for the IP header datagram payload (bytes after the IPv4 header) and appends it to the Ethernet frame transferred to the application (when Type 2 COE is deselected). When this bit is reset, this function is disabled. When Type 2 COE is selected, this bit, when set, enables IPv4 checksum checking for received frame payloads TCP/UDP/ICMP headers. When this bit is reset, the COE function in the receiver is disabled and the corresponding PCE and IP HCE status bits are always cleared.
9	RW	0×0	DR Disable Retry When this bit is set, the GMAC will attempt only 1 transmission. When a collision occurs on the GMII/MII, the GMAC will ignore the current frame transmission and report a Frame Abort with excessive collision error in the transmit frame status. When this bit is reset, the GMAC will attempt retries based on the settings of BL.
8	RW	0x0	LUD Link Up/Down Indicates whether the link is up or down during the transmission of configuration in RGMII interface: 1'b0: Link Down 1'b1: Link Up

Bit	Attr	Reset Value	Description
7	RW	0×0	ACS Automatic Pad/CRC Stripping When this bit is set, the GMAC strips the Pad/FCS field on incoming frames only if the length's field value is less than or equal to 1,500 bytes. All received frames with length field greater than or equal to 1,501 bytes are passed to the application without stripping the Pad/FCS field. When this bit is reset, the GMAC will pass all incoming frames to the Host unmodified.
6:5	RW	0×0	BL Back-Off Limit The Back-Off limit determines the random integer number (r) of slot time delays (4,096 bit times for 1000 Mbps and 512 bit times for 10/100 Mbps) the GMAC waits before rescheduling a transmission attempt during retries after a collision. This bit is applicable only to Half-Duplex mode and is reserved (RO) in Full-Duplex-only configuration. 2'b00: k = min (n, 10) 2'b01: k = min (n, 8) 2'b10: k = min (n, 4) 2'b11: k = min (n, 1), where n = retransmission attempt. The random integer r takes the value in the range 0 = r < 2^k

4	RW	0×0	DC Deferral Check When this bit is set, the deferral check function is enabled in the GMAC. The GMAC will issue a Frame Abort status, along with the excessive deferral error bit set in the transmit frame status when the transmit state machine is deferred for more than 24,288 bit times in 10/100-Mbps mode. If the Core is configured for 1000 Mbps operation, the threshold for deferral is 155,680 bits times. Deferral begins when the transmitter is ready to transmit, but is prevented because of an active CRS (carrier sense) signal on the GMII/MII. Defer time is not cumulative. If the transmitter defers for 10,000 bit times, then transmits, collides, backs off, and then has to defer again after completion of back-off, the deferral timer resets to 0 and restarts. When this bit is reset, the deferral check function is disabled and the GMAC defers until the CRS signal goes inactive.
3	RW	0×0	TE Transmitter Enable When this bit is set, the transmit state machine of the GMAC is enabled for transmission on the GMII/MII. When this bit is reset, the GMAC transmit state machine is disabled after the completion of the transmission of the current frame, and will not transmit any further frames.
2 1:0	RW RO	0x0 0x0	RE Receiver Enable When this bit is set, the receiver state machine of the GMAC is enabled for receiving frames from the GMII/MII. When this bit is reset, the GMAC receive state machine is disabled after the completion of the reception of the current frame, and will not receive any further frames from the GMII/MII. reserved

GMAC_MAC_FRM_FILT

Address: Operational Base + offset (0x0004) MAC Frame Filter

Bit	Attr	Reset Value	Description
31	RW	0×0	RA Receive All When this bit is set, the GMAC Receiver module passes to the Application all frames received irrespective of whether they pass the address filter. The result of the SA/DA filtering is updated (pass or fail) in the corresponding bits in the Receive Status Word. When this bit is reset, the Receiver module passes to the Application only those frames that pass the SA/DA address filter.
30:11	RO	0x0	reserved
10	RW	0×0	HPF Hash or Perfect Filter When set, this bit configures the address filter to pass a frame if it matches either the perfect filtering or the hash filtering as set by HMC or HUC bits. When low and if the HUC/HMC bit is set, the frame is passed only if it matches the Hash filter.
9	RW	0×0	SAF Source Address Filter Enable The GMAC core compares the SA field of the received frames with the values programmed in the enabled SA registers. If the comparison matches, then the SAMatch bit of RxStatus Word is set high. When this bit is set high and the SA filter fails, the GMAC drops the frame. When this bit is reset, then the GMAC Core forwards the received frame to the application and with the updated SA Match bit of the RxStatus depending on the SA address comparison.
8	RW	0x0	SAIF SA Inverse Filtering When this bit is set, the Address Check block operates in inverse filtering mode for the SA address comparison. The frames whose SA matches the SA registers will be marked as failing the SA Address filter. When this bit is reset, frames whose SA does not match the SA registers will be marked as failing the SA Address filter.

Bit	Attr	Reset Value	Description
			PCF
			Pass Control Frames
			These bits control the forwarding of all control
			frames (including unicast and multicast
			PAUSE frames). Note that the processing of
			PAUSE control frames depends only on RFE of
			Register GMAC_FLOW_CTRL[2].
7:6	RW	0x0	2'b00: GMAC filters all control frames from
7.0		0.00	reaching the application.
			2'b01: GMAC forwards all control frames
			except PAUSE control frames to application
			even if they fail the Address filter.
			2'b10: GMAC forwards all control frames to
			application even if they fail the Address Filter.
			2'b11: GMAC forwards control frames that
			pass the Address Filter.
		W 0×0	DBF
			Disable Broadcast Frames
5	RW		When this bit is set, the AFM module filters all
			incoming broadcast frames.
			When this bit is reset, the AFM module passes
			all received broadcast frames.
		W 0x0	PM
			Pass All Multicast
			When set, this bit indicates that all received frames with a multicast destination address
4	RW		(first bit in the destination address field is '1')
			are passed.
			When reset, filtering of multicast frame
			depends on HMC bit.
			DAIF
			DA Inverse Filtering
			When this bit is set, the Address Check block
3		00	operates in inverse filtering mode for the DA
	3 RW	0x0	address comparison for both unicast and
			multicast frames.
			When reset, normal filtering of frames is
			performed.

Bit	Attr	Reset Value	Description
			НМС
			Hash Multicast
			When set, MAC performs destination address
			filtering of received multicast frames
2	RW	0x0	according to the hash table.
			When reset, the MAC performs a perfect
			destination address filtering for multicast
			frames, that is, it compares the DA field with
			the values programmed in DA registers.
			HUC
		0×0	Hash Unicast
			When set, MAC performs destination address
			filtering of unicast frames according to the
1	RW		hash table.
			When reset, the MAC performs a perfect
			destination address filtering for unicast
			frames, that is, it compares the DA field with
			the values programmed in DA registers.
			PR
		0×0	Promiscuous Mode
			When this bit is set, the Address Filter module
0	RW		passes all incoming frames regardless of its
			destination or source address. The SA/DA
			Filter Fails status bits of the Receive Status
			Word will always be cleared when PR is set.

GMAC_HASH_TAB_HI

Address: Operational Base + offset (0x0008) Hash Table High Register

Bit	Attr	Reset Value	Description
31:0	RW	0×0000000	HTH Hash Table High This field contains the upper 32 bits of Hash table

GMAC_HASH_TAB_LO

Address: Operational Base + offset (0x000c) Hash Table Low Register

Bit	Attr	Reset Value	Description
31:0	RW	0x00000000	HTL Hash Table Low This field contains the lower 32 bits of Hash table

GMAC_GMII_ADDR

Address: Operational Base + offset (0x0010) GMII Address Register

Bit	Attr	Reset Value	Description
31:16	RO	0x0	reserved
		0x00	PA
15.11			Physical Layer Address
15:11	RW		This field tells which of the 32 possible PHY
			devices are being accessed
			GR
10:6	RW	0x00	GMII Register
10:0			These bits select the desired GMII register in
			the selected PHY device

Bit	Attr	Reset Value	Description
	1		CR
			APB Clock Range
			The APB Clock Range selection determines the
			frequency of the MDC clock as per the
			pclk_gmac frequency used in your design. The
			suggested range of pclk_gmac frequency
			applicable for each value below (when Bit[5]
			= 0) ensures that the MDC clock is
			approximately between the frequency range
			1.0 MHz - 2.5 MHz.
			Selection pclk_gmac MDC Clock
			0000 60-100 MHz
			pclk_gmac/42
			0001 100-150 MHz
			pclk_gmac/62
			0010 20-35 MHz
			pclk_gmac/16
			0011 35-60 MHz
			pclk_gmac/26
			0100 150-250 MHz
			pclk_gmac/102 0101 250-300 MHz
5:2	RW	0x0	pclk_gmac/124
			0110, 0111 Reserved
			When bit 5 is set, you can achieve MDC clock
			of frequency higher than the IEEE
			802.3 specified frequency limit of 2.5 MHz and
			program a clock divider of lower
			value. For example, when pclk_gmac is of
			frequency 100 Mhz and you program these
			bits as "1010", then the resultant MDC clock
			will be of 12.5 Mhz which is outside the limit of
			IEEE 802.3 specified range. Please program
			the values given below only if the interfacing
			chips supports faster MDC clocks.
			Selection MDC Clock
			1000 pclk_gmac/4
			1001 pclk_gmac/6
			1010 pclk_gmac/8
			1011 pclk_gmac/10
			1100 pclk_gmac/12
			1101 pclk_gmac/14
			1110 pclk_gmac/16
			1111 pclk_gmac/18

Bit	Attr	Reset Value	Description
1	RW	0×0	GW GMII Write When set, this bit tells the PHY that this will be a Write operation using register GMAC_GMII_DATA. If this bit is not set, this will be a Read operation, placing the data in register GMAC_GMII_DATA.
0	W1C	0×0	GB GMII Busy This bit should read a logic 0 before writing to Register GMII_ADDR and Register GMII_DATA. This bit must also be set to 0 during a Write to Register GMII_ADDR. During a PHY register access, this bit will be set to 1'b1 by the Application to indicate that a Read or Write access is in progress. Register GMII_DATA (GMII Data) should be kept valid until this bit is cleared by the GMAC during a PHY Write operation. The Register GMII_DATA is invalid until this bit is cleared by the GMAC during a PHY Read operation. The Register GMII_ADDR (GMII Address) should not be written to until this bit is cleared.

GMAC_GMII_DATA

Address: Operational Base + offset (0x0014) GMII Data Register

Bit	Attr	Reset Value	Description
31:16	RO	0x0	reserved
			GD
			GMII Data
			This contains the 16-bit data value read from
15:0	RW	0x0000	the PHY after a Management Read
			operation or the 16-bit data value to be
			written to the PHY before a Management Write
			operation.

GMAC_FLOW_CTRL

Address: Operational Base + offset (0x0018) Flow Control Register

Bit	Attr	Reset Value	Description
			PT
31:16	RW	0×0000	Pause Time This field holds the value to be used in the Pause Time field in the transmit control frame. If the Pause Time bits is configured to be double-synchronized to the (G)MII clock domain, then consecutive writes to this register should be performed only after at least 4 clock cycles in the destination clock domain.
15:8	RO	0x0	reserved
7	RW	0×0	DZPQ Disable Zero-Quanta Pause When set, this bit disables the automatic generation of Zero-Quanta Pause Control frames on the deassertion of the flow-control signal from the FIFO layer (MTL or external sideband flow control signal sbd_flowctrl_i/mti_flowctrl_i). When this bit is reset, normal operation with automatic Zero-Quanta Pause Control frame generation is enabled.
6	RO	0x0	reserved
5:4	RW	0×0	PLT Pause Low Threshold This field configures the threshold of the PAUSE timer at which the input flow control signal mti_flowctrl_i (or sbd_flowctrl_i) is checked for automatic retransmission of PAUSE Frame. The threshold values should be always less than the Pause Time configured in Bits[31:16]. For example, if PT = 100H (256 slot-times), and PLT = 01, then a second PAUSE frame is automatically transmitted if the mti_flowctrl_i signal is asserted at 228 (256-28) slot-times after the first PAUSE frame is transmitted. Selection Threshold 00 Pause time minus 4 slot times 10 Pause time minus 28 slot times 11 Pause time minus 26 slot times 11 Pause time minus 256 slot times Slot time is defined as time taken to transmit 512 bits (64 bytes) on the GMII/MII interface.

Bit	Attr	Reset Value	Description
3	RW	0×0	UP Unicast Pause Frame Detect When this bit is set, the GMAC will detect the Pause frames with the station's unicast address specified in MAC Address0 High Register and MAC Address0 Low Register, in addition to the detecting Pause frames with the unique multicast address. When this bit is reset, the GMAC will detect only a Pause frame with the unique multicast address specified in the 802.3x standard.
2	RW	0x0	RFE Receive Flow Control Enable When this bit is set, the GMAC will decode the received Pause frame and disable its transmitter for a specified (Pause Time) time. When this bit is reset, the decode function of the Pause frame is disabled.
1	RW	0×0	TFE Transmit Flow Control Enable In Full-Duplex mode, when this bit is set, the GMAC enables the flow control operation to transmit Pause frames. When this bit is reset, the flow control operation in the GMAC is disabled, and the GMAC will not transmit any Pause frames. In Half-Duplex mode, when this bit is set, the GMAC enables the back-pressure operation. When this bit is reset, the backpressure feature is disabled.

Bit	Attr	Reset Value	Description
			FCB_BPA
			Flow Control Busy/Backpressure Activate
			This bit initiates a Pause Control frame in
			Full-Duplex mode and activates the
			backpressure function in Half-Duplex mode if
			TFE bit is set.
			In Full-Duplex mode, this bit should be read as
			1'b0 before writing to the register
			GMAC_FLOW_CTRL. To initiate a pause
			control frame, the application must set this bit
			to 1'b1. During a transfer of the control frame,
			this bit will continue to be set to signify that a
0	RW	0x0	frame transmission is in progress. After the
			completion of Pause control frame
			transmission, the GMAC will reset this bit to
			1'b0. The register GMAC_FLOW_CTRL should
			not be written to until this bit is cleared.
			In Half-Duplex mode, when this bit is set (and
			TFE is set), then backpressure is asserted by
			the GMAC Core. During backpressure, when
			the GMAC receives a new frame, the
			transmitter starts sending a JAM pattern
			resulting in a collision. This control register bit
			is logically OR'ed with the mti_flowctrl_i input
			signal for the backpressure function.

GMAC_VLAN_TAG

Address: Operational Base + offset (0x001c) VLAN Tag Register

Bit	Attr	Reset Value	Description
31:17	RO	0x0	reserved
			ETV
			Enable 12-Bit VLAN Tag Comparison
			When this bit is set, a 12-bit VLAN identifier,
			rather than the complete 16-bit VLAN tag, is
			used for comparison and filtering. Bits[11:0]
16	RW	0x0	of the VLAN tag are compared with the
			corresponding field in the received
			VLAN-tagged frame.
			When this bit is reset, all 16 bits of the
			received VLAN frame's fifteenth and sixteenth
			bytes are used for comparison.

Bit	Attr	Reset Value	Description
15:0	RW	0×0000	VL VLAN Tag Identifier for Receive Frames This contains the 802.1Q VLAN tag to identify VLAN frames, and is compared to the fifteenth and sixteenth bytes of the frames being received for VLAN frames. Bits[15:13] are the User Priority, Bit[12] is the Canonical Format Indicator (CFI) and bits[11:0] are the VLAN tag's VLAN Identifier (VID) field. When the ETV bit is set, only the VID (Bits[11:0]) is used for comparison. If VL (VL[11:0] if ETV is set) is all zeros, the GMAC does not check the fifteenth and sixteenth bytes for VLAN tag comparison, and declares all frames with a Type field value of 0x8100 to be VLAN frames.

GMAC_DEBUG

Address: Operational Base + offset (0x0024) Debug register

Attr	Reset Value	Description
RO	0x0	reserved
		TFIFO3
DW/	0×0	When high, it indicates that the MTL TxStatus
	0.00	FIFO is full and hence the MTL will not be
		accepting any more frames for transmission.
		TFIFO2
RW	0x0	When high, it indicates that the MTL TxFIFO is
	UNU	not empty and has some data left for
		transmission.
RO	0x0	reserved
	0×0	TFIF01
RW		When high, it indicates that the MTL TxFIFO
		Write Controller is active and transferring data
		to the TxFIFO.
		TFIFOSTA
		This indicates the state of the TxFIFO read
		Controller:
	0×0	2'b00: IDLE state
RW		2'b01: READ state (transferring data to MAC transmitter)
		2'b10: Waiting for TxStatus from MAC
		transmitter
		2'b11: Writing the received TxStatus or
		flushing the TxFIFO
	RO RW RW RO RW	RO 0x0 RW 0x0 RW 0x0 RW 0x0 RO 0x0 RW 0x0

Bit	Attr	Reset Value	Description
			PAUSE
			When high, it indicates that the MAC
19	RW	0x0	transmitter is in PAUSE condition (in
			full-duplex only) and hence will not schedule
			any frame for transmission
			TSAT
			This indicates the state of the MAC Transmit
			Frame Controller module:
			2'b00: IDLE
18:17	RW	0x0	2'b01: Waiting for Status of previous frame or
10.17		0.0	IFG/backoff period to be over
			2'b10: Generating and transmitting a PAUSE
			control frame (in full duplex mode)
			2'b11: Transferring input frame for
			transmission
			ТАСТ
16	RW	0x0	When high, it indicates that the MAC GMII/MII
			transmit protocol engine is actively
			transmitting data and not in IDLE state.
15:10	RO	0x0	reserved
			RFIFO
			This gives the status of the RxFIFO Fill-level:
			2'b00: RxFIFO Empty
9:8	RW	0x0	2'b01: RxFIFO fill-level below flow-control
			de-activate threshold
			2'b10: RxFIFO fill-level above flow-control
			activate threshold
_	D O		2'b11: RxFIFO Full
7	RO	0x0	reserved
			RFIFORD
			It gives the state of the RxFIFO read
C.F		0.20	Controller:
6:5	RW	0x0	2'b00: IDLE state
			2'b01: Reading frame data
			2'b10: Reading frame status (or time-stamp)
			2'b11: Flushing the frame data and Status
			RFIFOWR
4	RW	0×0	When high, it indicates that the MTL RxFIFO
			Write Controller is active and transferring a
2			received frame to the FIFO.
3	RO	0x0	reserved

Bit	Attr	Reset Value	Description
			ACT
			When high, it indicates the active state of the
2:1	RW	0x0	small FIFO Read and Write controllers
			respectively of the MAC receive Frame
			Controller module
			RDB
0	RW	0×0	When high, it indicates that the MAC GMII/MII
			receive protocol engine is actively
			receiving data and not in IDLE state.

GMAC_PMT_CTRL_STA

Address: Operational Base + offset (0x002c) PMT Control and Status Register

Bit	Attr	Reset Value	Description
31	W1C	0x0	WFFRPR Wake-Up Frame Filter Register Pointer Reset When set, resets the Remote Wake-up Frame Filter register pointer to 3'b000. It is automatically cleared after 1 clock cycle.
30:10	RO	0x0	reserved
9	RW	0x0	GU Global Unicast When set, enables any unicast packet filtered by the GMAC (DAF) address recognition to be a wake-up frame.
8:7	RO	0x0	reserved
6	RC	0×0	WFR Wake-Up Frame Received When set, this bit indicates the power management event was generated due to reception of a wake-up frame. This bit is cleared by a read into this register.
5	RC	0x0	MPR Magic Packet Received When set, this bit indicates the power management event was generated by the reception of a Magic Packet. This bit is cleared by a read into this register.
4:3	RO	0x0	reserved
2	RW	0×0	WFE Wake-Up Frame Enable When set, enables generation of a power management event due to wake-up frame reception.

Bit	Attr	Reset Value	Description
			MPE
			Magic Packet Enable
1	RW	0x0	When set, enables generation of a power
			management event due to Magic Packet
			reception.
		0×0	PD
			Power Down
			When set, all received frames will be dropped.
	R/WSC		This bit is cleared automatically when a magic
0			packet or Wake-Up frame is received, and
0			Power-Down mode is disabled. Frames
			received after this bit is cleared are forwarded
			to the application.This bit must only be set
			when either the Magic Packet Enable or
			Wake-Up Frame Enable bit is set high.

GMAC_INT_STATUS Address: Operational Base + offset (0x0038) Interrupt Status Register

Bit	Attr	Reset Value	Description
31:8	RO	0x0	reserved
			MRCOIS
			MMC Receive Checksum Offload Interrupt
			Status
7	RO	0x0	This bit is set high whenever an interrupt is
/	KU	0.00	generated in the MMC Receive Checksum
			Offload Interrupt Register. This bit is cleared
			when all the bits in this interrupt register are
			cleared.
			MTIS
		0x0	MMC Transmit Interrupt Status
			This bit is set high whenever an interrupt is
6	RO		generated in the MMC Transmit Interrupt
0	NO		Register. This bit is cleared when all the bits in
			this interrupt register are cleared. This bit is
			only valid when the optional MMC module is
			selected during configuration.
		0×0	MRIS
			MMC Receive Interrupt Status
			This bit is set high whenever an interrupt is
5	RO		generated in the MMC Receive Interrupt
5	NO		Register. This bit is cleared when all the bits in
			this interrupt register are cleared. This bit is
			only valid when the optional MMC module is
			selected during configuration.

Bit	Attr	Reset Value	Description
			MIS
			MMC Interrupt Status
4	RO	0×0	This bit is set high whenever any of bits 7:5 is
-	i co	0.00	set high and cleared only when all of these bits
			are low. This bit is valid only when the optional
			MMC module is selected during configuration.
			PIS
			PMT Interrupt Status
		0x0	This bit is set whenever a Magic packet or
3	RO		Wake-on-LAN frame is received in
5			Power-Down mode). This bit is cleared when
			both bits[6:5] are cleared due to a read
			operation to the register
			GMAC_PMT_CTRL_STA.
2:1	RO	0x0	reserved
		0×0	RIS
			RGMII Interrupt Status
0	RO		This bit is set due to any change in value of the
0	RO		Link Status of RGMIIinterface. This bit is
			cleared when the user makes a read operation
			the RGMII Status register.

GMAC_INT_MASK

Address: Operational Base + offset (0x003c) Interrupt Mask Register

Bit	Attr	Reset Value	Description
31:4	RO	0x0	reserved
			PIM
			PMT Interrupt Mask
3	RW	0.20	This bit when set, will disable the assertion of
5	R VV	0×0	the interrupt signal due to the setting of PMT
			Interrupt Status bit in Register
			GMAC_INT_STATUS.
2:1	RO	0x0	reserved
		0×0	RIM
			RGMII Interrupt Mask
0	RW		This bit when set, will disable the assertion of
0			the interrupt signal due to the setting of
			RGMII Interrupt Status bit in Register
			GMAC_INT_STATUS.

GMAC_MAC_ADDR0_HI

Address: Operational Base + offset (0x0040) MAC Address0 High Register

Bit	Attr	Reset Value	Description	

Bit	Attr	Reset Value	Description
31:16	RO	0x0	reserved
			A47_A32
			MAC Address0 [47:32]
			This field contains the upper 16 bits (47:32) of
15:0	RW	0xffff	the 6-byte first MAC address. This is used by
			the MAC for filtering for received frames and
			for inserting the MAC address in the Transmit
			Flow Control (PAUSE) Frames.

GMAC_MAC_ADDR0_LO

Address: Operational Base + offset (0x0044) MAC Address0 Low Register

Bit	Attr	Reset Value	Description
			A31_A0
			MAC Address0 [31:0]
			This field contains the lower 32 bits of the
31:0	RW	0xfffffff	6-byte first MAC address. This is used by the
			MAC for filtering for received frames and for
			inserting the MAC address in the Transmit
			Flow Control (PAUSE) Frames.

GMAC_AN_CTRL

Address: Operational Base + offset (0x00c0) AN Control Register

Bit	Attr	Reset Value	Description
31:13	RO	0x0	reserved
12	RW	0×0	ANE
			Auto-Negotiation Enable
			When set, will enable the GMAC to perform
			auto-negotiation with the link partner.
			Clearing this bit will disable auto-negotiation.
11:10	RO	0x0	reserved
9	R/WSC	0×0	RAN
			Restart Auto-Negotiation
			When set, will cause auto-negotiation to
			restart if the ANE is set. This bit is self-clearing
			after auto-negotiation starts. This bit should
			be cleared for normal operation.
8:0	RO	0x0	reserved

GMAC_AN_STATUS

Address: Operational Base + offset (0x00c4)

AN Status Register

Bit Attr Reset Value	Description
----------------------	-------------

Bit	Attr	Reset Value	Description
31:6	RO	0x0	reserved
		0x0	ANC
	RO		Auto-Negotiation Complete
5			When set, this bit indicates that the
5			auto-negotiation process is completed.
			This bit is cleared when auto-negotiation is
			reinitiated.
4	RO	0x0	reserved
	RO	0×1	ANA
3			Auto-Negotiation Ability
5			This bit is always high, because the GMAC
			supports auto-negotiation.
	R/WSC	0×0	LS
2			Link Status
			When set, this bit indicates that the link is up.
			When cleared, this bit indicates that the link is
			down.
1:0	RO	0x0	reserved

GMAC_AN_ADV

Address: Operational Base + offset (0x00c8) Auto_Negotiation Advertisement Register

Bit	Attr	Reset Value	Description
31:16	RO	0x0	reserved
15	RO	0x0	NP
			Next Page Support
			This bit is tied to low, because the GMAC does
			not support the next page.
14	RO	0x0	reserved
	RW	0×0	RFE
13:12			Remote Fault Encoding
			These 2 bits provide a remote fault encoding,
			indicating to a link partner that a fault or error
			condition has occurred.
11:9	RO	0x0	reserved
	RW	0x3	PSE
			Pause Encoding
8:7			These 2 bits provide an encoding for the
			PAUSE bits, indicating that the GMAC is
			capable of configuring the PAUSE function as
			defined in IEEE 802.3x.

Bit	Attr	Reset Value	Description
6	RW	0x1	HD
			Half-Duplex
			This bit, when set high, indicates that the
			GMAC supports Half-Duplex. This bit is tied to
			low (and RO) when the GMAC is configured for
			Full-Duplex-only operation.
5	RW	0×1	FD
			Full-Duplex
			This bit, when set high, indicates that the
			GMAC supports Full-Duplex.
4:0	RO	0x0	reserved

GMAC_AN_LINK_PART_AB

Address: Operational Base + offset (0x00cc) Auto_Negotiation Link Partner Ability Register

Bit	Attr	Reset Value	Description
31:16	RO	0x0	reserved
15			NP
		0x0	Next Page Support
	RO		When set, this bit indicates that more next
	κυ		page information is available.
			When cleared, this bit indicates that next page
			exchange is not desired.
			ACK
			Acknowledge
			When set, this bit is used by the
14	RO	0x0	auto-negotiation function to indicate that the
	KU		link partner has successfully received the
			GMAC's base page. When cleared, it indicates
			that a successful receipt of the base page has
			not been achieved.
		0×0	RFE
	RO		Remote Fault Encoding
13:12			These 2 bits provide a remote fault encoding,
			indicating a fault or error condition of the link
			partner.
11:9	RO	0x0	reserved
	RO	0×0	PSE
8:7			Pause Encoding
			These 2 bits provide an encoding for the
			PAUSE bits, indicating that the link partner's
			capability of configuring the PAUSE function
			as defined in IEEE 802.3x.

Bit	Attr	Reset Value	Description
			HD Half-Duplex
6	RO	0x0	When set, this bit indicates that the link partner has the ability to operate in
			Half-Duplex mode. When cleared, the link
			partner does not have the ability to operate in
			Half-Duplex mode.
			FD
			Full-Duplex
			When set, this bit indicates that the link
5	RO	0x0	partner has the ability to operate in
			Full-Duplex mode. When cleared, the link
			partner does not have the ability to operate in
			Full-Duplex mode.
4:0	RO	0x0	reserved

GMAC_AN_EXP

Address: Operational Base + offset (0x00d0) Auto_Negotiation Expansion Register

Bit	Attr	Reset Value	Description
31:3	RO	0x0	reserved
			NPA
2	PO	0.20	Next Page Ability
Z	2 RO	0x0	This bit is tied to low, because the GMAC does
			not support next page function.
			NPR
			New Page Received
1	RO	0x0	When set, this bit indicates that a new page
			has been received by the GMAC. This bit will
			be cleared when read.
0	RO	0x0	reserved

GMAC_INTF_MODE_STA

Address: Operational Base + offset (0x00d8) RGMII Status Register

Bit	Attr	Reset Value	Description
31:4	RO	0x0	reserved
3		0x0	LST
	RO		Link Status
	ĸŬ		Indicates whether the link is up (1'b1) or down
			(1'b0)

Bit	Attr	Reset Value	Description
			LSD
			Link Speed
2:1	RO	0x0	Indicates the current speed of the link:
2.1	ĸu	0.00	2'b00: 2.5 MHz
			2'b01: 25 MHz
			2'b10: 125 MHz
	RW	0×0	LM
			Link Mode
0			Indicates the current mode of operation of the
0			link:
			1'b0: Half-Duplex mode
			1'b1: Full-Duplex mode

GMAC_MMC_CTRL

Address: Operational Base + offset (0x0100) MMC Control Register

Bit	Attr	Reset Value	Description
31:6	RO	0x0	reserved
5	RW	0×0	FHP Full-Half preset When low and bit4 is set, all MMC counters get preset to almost-half value. All octet counters get preset to 0x7FFF_F800 (half - 2KBytes) and all frame-counters gets preset to 0x7FFF_FFF0 (half - 16) When high and bit4 is set, all MMC counters get preset to almost-full value. All octet counters get preset to 0xFFFF_F800 (full - 2KBytes) and all frame-counters gets preset to 0xFFFF_FF0 (full - 16)
4	R/WSC	0×0	CP Counters Preset When set, all counters will be initialized or preset to almost full or almost half as per Bit5 above. This bit will be cleared automatically after 1 clock cycle. This bit along with bit5 is useful for debugging and testing the assertion of interrupts due to MMC counter becoming half-full or full.

Bit	Attr	Reset Value	Description
			MCF
			MMC Counter Freeze
			When set, this bit freezes all the MMC
			counters to their current value. (None of the
3	RW	0x0	MMC counters are updated due to any
			transmitted or received frame until this bit is
			reset to 0. If any MMC counter is read with the
			Reset on Read bit set, then that counter is also
			cleared in this mode.)
		0×0	ROR
			Reset on Read
			When set, the MMC counters will be reset to
2	RW		zero after Read (self-clearing after
			reset). The counters are cleared when the
			least significant byte lane (bits[7:0]) is
			read.
			CSR
1	RW	0×0	Counter Stop Rollover
			When set, counter after reaching maximum
			value will not roll over to zero
			CR
	R/WSC		Counters Reset
0		0x0	When set, all counters will be reset. This bit
			will be cleared automatically after 1
			clock cycle

GMAC_MMC_RX_INTR

Address: Operational Base + offset (0x0104) MMC Receive Interrupt Register

Bit	Attr	Reset Value	Description
31:22	RO	0x0	reserved
			INT21
21	RW	0x0	The bit is set when the rxfifooverflow counter
	L AN	0.00	reaches half the maximum value, and also
			when it reaches the maximum value.
20:19	RO	0x0	reserved
			INT18
18	RC	0×0	The bit is set when the rxlengtherror counter
10			reaches half the maximum value, and also
			when it reaches the maximum value.
17:6	RO	0x0	reserved
			INT5
E		0x0	The bit is set when the rxcrcerror counter
5	RW		reaches half the maximum value, and also
			when it reaches the maximum value.

Bit	Attr	Reset Value	Description
4	RC	0×0	INT4 The bit is set when the rxmulticastframes_g counter reaches half the maximum value, and also when it reaches the maximum value.
3	RO	0x0	reserved
2	RC	0×0	INT2 The bit is set when the rxoctetcount_g counter reaches half the maximum value, and also when it reaches the maximum value.
1	RC	0×0	INT1 The bit is set when the rxoctetcount_gb counter reaches half the maximum value, and also when it reaches the maximum value.
0	RC	0x0	INT0 The bit is set when the rxframecount_gb counter reaches half the maximum value, and also when it reaches the maximum value.

GMAC_MMC_TX_INTR Address: Operational Base + offset (0x0108) MMC Transmit Interrupt Register

Bit	Attr	Reset Value	Description
31:22	RO	0x0	reserved
			INT21
21	RC	0x0	The bit is set when the txframecount_g
21	RC .	0.00	counter reaches half the maximum value, and
			also when it reaches the maximum value.
			INT20
20	RC	0x0	The bit is set when the txoctetcount_g counter
20	i c	0.00	reaches half the maximum value, and also
			when it reaches the maximum value.
		0×0	INT19
19	RC		The bit is set when the txcarriererror counter
19	KC		reaches half the maximum value, and also
			when it reaches the maximum value.
18:14	RO	0x0	reserved
			INT13
13	RC	0×0	The bit is set when the txunderflowerror
15	KC		counter reaches half the maximum value, and
			also when it reaches the maximum value.
12:2	RO	0x0	reserved
			INT1
1	RC	0×0	The bit is set when the txframecount_gb
1	RC		counter reaches half the maximum value, and
			also when it reaches the maximum value.

Bit	Attr	Reset Value	Description
			INTO
0	RC	0×0	The bit is set when the txoctetcount_gb counter reaches half the maximum value, and also when it reaches the maximum value.

GMAC_MMC_RX_INT_MSK

Address: Operational Base + offset (0x010c) MMC Receive Interrupt Mask Register

Bit	Attr	Reset Value	Description
31:22	RO	0x0	reserved
			INT21
			Setting this bit masks the interrupt when the
21	RW	0x0	rxfifooverflow counter reaches half the
			maximum value, and also when it reaches the
			maximum value.
20:19	RO	0x0	reserved
			INT18
			Setting this bit masks the interrupt when the
18	RW	0x0	rxlengtherror counter reaches half the
			maximum value, and also when it reaches the
			maximum value.
17:6	RO	0x0	reserved
			INT5
			Setting this bit masks the interrupt when the
5	RW	0x0	rxcrcerror counter reaches half the maximum
			value, and also when it reaches the maximum
			value.
			INT4
			Setting this bit masks the interrupt when the
4	RW	0x0	rxmulticastframes_g counter reaches half the
			maximum value, and also when it reaches the
-			maximum value.
3	RO	0x0	reserved
			INT2
-	5.47		Setting this bit masks the interrupt when the
2	RW	0×0	rxoctetcount_g counter reaches half the
			maximum value, and also when it reaches the
			maximum value.
			INT1
1		0.40	Setting this bit masks the interrupt when the
1	RW	0x0	rxoctetcount_gb counter reaches half the
			maximum value, and also when it reaches the
			maximum value.

Bit	Attr	Reset Value	Description
			INTO
			Setting this bit masks the interrupt when the
0	RW	0x0	rxframecount_gb counter reaches half the
			maximum value, and also when it reaches the
			maximum value.

GMAC_MMC_TX_INT_MSK

Address: Operational Base + offset (0x0110) MMC Transmit Interrupt Mask Register

Bit	Attr	t Mask Register Reset Value	Description
31:22	RO	0x0	reserved
51.22		0,0	INT21
21	RW	0x0	Setting this bit masks the interrupt when the txframecount_g counter reaches half the
			maximum value, and also when it reaches the maximum value.
20	RW	0x0	INT20 Setting this bit masks the interrupt when the txoctetcount_g counter reaches half the maximum value, and also when it reaches the maximum value.
19	RW	0×0	INT19 Setting this bit masks the interrupt when the txcarriererror counter reaches half the maximum value, and also when it reaches the maximum value.
18:14	RO	0x0	reserved
13	RW	0×0	INT13 Setting this bit masks the interrupt when the txunderflowerror counter reaches half the maximum value, and also when it reaches the maximum value.
12:2	RO	0x0	reserved
1	RW	0×0	INT1 Setting this bit masks the interrupt when the txframecount_gb counter reaches half the maximum value, and also when it reaches the maximum value.
0	RW	0x0	INT0 Setting this bit masks the interrupt when the txoctetcount_gb counter reaches half the maximum value, and also when it reaches the maximum value.

GMAC_MMC_TXOCTETCNT_GB

Address: Operational Base + offset (0x0114) MMC TX OCTET Good and Bad Counter

Bit	Attr	Reset Value	Description
31:0	RW	0×00000000	txoctetcount_gb Number of bytes transmitted, exclusive of preamble and retried bytes, in good and bad frames.

GMAC_MMC_TXFRMCNT_GB

Address: Operational Base + offset (0x0118) MMC TX Frame Good and Bad Counter

Bit	Attr	Reset Value	Description
31:0	RW		txframecount_gb Number of good and bad frames transmitted, exclusive of retried frames.

GMAC_MMC_TXUNDFLWERR

Address: Operational Base + offset (0x0148)

MMC TX Underflow Error

Bit	Attr	Reset Value	Description
			txunderflowerror
31:0	RW	0x0000000	Number of frames aborted due to frame
			underflow error.

GMAC_MMC_TXCARERR

Address: Operational Base + offset (0x0160) MMC TX Carrier Error

Bit	Attr	Reset Value	Description
			txcarriererror
31:0	RW	0x00000000	Number of frames aborted due to carrier
			sense error (no carrier or loss of carrier).

GMAC_MMC_TXOCTETCNT_G

Address: Operational Base + offset (0x0164) MMC TX OCTET Good Counter

Bit	Attr	Reset Value	Description
31:0	RW	0x00000000	txoctetcount_g Number of bytes transmitted, exclusive of preamble, in good frames only.

GMAC_MMC_TXFRMCNT_G

Address: Operational Base + offset (0x0168)

MMC TX Frame Good Counter

Bit Attr Reset Value	Description
----------------------	-------------

Bit	Attr	Reset Value	Description
31:0	RW	0x00000000	txframecount_g Number of good frames transmitted.

GMAC_MMC_RXFRMCNT_GB

Address: Operational Base + offset (0x0180)

MMC RX Frame Good and Bad Counter

Bit	Attr	Reset Value	Description
31.0	31:0 RW 02	0x00000000	rxframecount_gb
51.0			Number of good and bad frames received.

GMAC_MMC_RXOCTETCNT_GB

Address: Operational Base + offset (0x0184) MMC RX OCTET Good and Bad Counter

Bit	Attr	Reset Value	Description
			rxoctetcount_gb
31:0	RW	0x0000000	Number of bytes received, exclusive of
			preamble, in good and bad frames.

GMAC_MMC_RXOCTETCNT_G

Address: Operational Base + offset (0x0188) MMC RX OCTET Good Counter

Bit	Attr	Reset Value	Description
			rxoctetcount_g
31:0	RW	0x00000000	Number of bytes received, exclusive of
			preamble, only in good frames.

GMAC_MMC_RXMCFRMCNT_G

Address: Operational Base + offset (0x0190) MMC RX Mulitcast Frame Good Counter

	Bit	Attr	Reset Value	Description
3	81:0	RW	$0 \times 0 0 0 0 0 0 0 0 0$	rxmulticastframes_g Number of good multicast frames received.

GMAC_MMC_RXCRCERR

Address: Operational Base + offset (0x0194) MMC RX Carrier

Bit	Attr	Reset Value	Description
31:0	RW	0x00000000	rxcrcerror
51.0		0x00000000	Number of frames received with CRC error.

GMAC_MMC_RXLENERR

Address: Operational Base + offset (0x01c8)

MMC RX Length Error

Bit	Attr	Reset Value	Description
31:0	RW	0~0000000	rxlengtherror Number of frames received with length error (Length type field ≠frame size), for all frames with valid length field.

GMAC_MMC_RXFIFOOVRFLW

Address: Operational Base + offset (0x01d4) MMC RX FIFO Overflow

Bit	Attr	Reset Value	Description
31:0	RW	0x00000000	rxfifooverflow Number of missed received frames due to FIFO overflow.

GMAC_MMC_IPC_INT_MSK

Address: Operational Base + offset (0x0200) MMC Receive Checksum Offload Interrupt Mask Register

Bit	Attr	Reset Value	Description
31:30	RO	0x0	reserved
			INT29
			Setting this bit masks the interrupt when the
29	RW	0x0	rxicmp_err_octets counter reaches half the
			maximum value, and also when it reaches the
			maximum value.
28	RO	0x0	reserved
			INT27
			Setting this bit masks the interrupt when the
27	RW	0x0	rxtcp_err_octets counter reaches half the
			maximum value, and also when it reaches the
			maximum value.
26	RO	0x0	reserved
			INT25
			Setting this bit masks the interrupt when the
25	RW	0x0	rxudp_err_octets counter reaches half the
			maximum value, and also when it reaches the
			maximum value.
24:23	RO	0x0	reserved
			INT22
			Setting this bit masks the interrupt when the
22	RW	0x0	rxipv6_hdrerr_octets counter reaches half the
			maximum value, and also when it reaches the
			maximum value.
21:18	RO	0x0	reserved

Bit	Attr	Reset Value	Description
-			INT17
			Setting this bit masks the interrupt when the
17	RW	0x0	rxipv4_hdrerr_octets counter reaches half the
			maximum value, and also when it reaches the
			maximum value.
16:14	RO	0x0	reserved
			INT13
			Setting this bit masks the interrupt when the
13	RW	0x0	rxicmp_err_frms counter reaches half the
			maximum value, and also when it reaches the
			maximum value.
12	RO	0x0	reserved
			INT11
			Setting this bit masks the interrupt when the
11	RW	0x0	rxtcp_err_frms counter reaches half the
			maximum value, and also when it reaches the
			maximum value.
10	RO	0x0	reserved
			INT9
			Setting this bit masks the interrupt when the
9	RW	0x0	rxudp_err_frms counter reaches half the
			maximum value, and also when it reaches the
			maximum value.
8:7	RO	0x0	reserved
			INT6
			Setting this bit masks the interrupt when the
6	RW	0x0	rxipv6_hdrerr_frms counter reaches half the
			maximum value, and also when it reaches the
			maximum value.
			INT5
			Setting this bit masks the interrupt when the
5	RW	0x0	rxipv6_gd_frms counter reaches half the
			maximum value, and also when it reaches the
			maximum value.
4:2	RO	0x0	reserved
			INT1
			Setting this bit masks the interrupt when the
1	RW	0x0	rxipv4_hdrerr_frms counter reaches half the
			maximum value, and also when it reaches the
			maximum value.
			INTO
			Setting this bit masks the interrupt when the
0	RW	0x0	rxipv4_gd_frms counter reaches half the
			maximum value, and also when it reaches the
1		1	maximum value.

GMAC_MMC_IPC_INTR

Address: Operational Base + offset (0x0208) MMC Receive Checksum Offload Interrupt Register

Bit	Attr	Reset Value	Description
31:30	RO	0x0	reserved
			INT29
~~			The bit is set when the rxicmp_err_octets
29	RC	0x0	counter reaches half the maximum value, and
			also when it reaches the maximum value.
28	RO	0x0	reserved
			INT27
27			The bit is set when the rxtcp_err_octets
27	RC	0x0	counter reaches half the maximum value, and
			also when it reaches the maximum value.
26	RO	0x0	reserved
			INT25
25		0.40	The bit is set when the rxudp_err_octets
25	RC	0x0	counter reaches half the maximum value, and
			also when it reaches the maximum value.
24:23	RO	0x0	reserved
			INT22
22		0×0	The bit is set when the rxipv6_hdrerr_octets
22	RC		counter reaches half the maximum value, and
			also when it reaches the maximum value.
21:18	RO	0x0	reserved
			INT17
17	RC	0x0	The bit is set when the rxipv4_hdrerr_octets
17	RC	UXU	counter reaches half the maximum value, and
			also when it reaches the maximum value.
16:14	RO	0x0	reserved
			INT13
13	RC	0x0	The bit is set when the rxicmp_err_frms
13	RC.	0.00	counter reaches half the maximum value, and
			also when it reaches the maximum value.
12	RO	0x0	reserved
			INT11
11	RC	0x0	The bit is set when the rxtcp_err_frms counter
**	inc.	0.00	reaches half the maximum value, and also
			when it reaches the maximum value.
10	RO	0x0	reserved
			INT9
9	RC	0x0	The bit is set when the rxudp_err_frms
			counter reaches half the maximum value, and
			also when it reaches the maximum value.
8:7	RO	0x0	reserved

Bit	Attr	Reset Value	Description
			INT6
6	RC	0×0	The bit is set when the rxipv6_hdrerr_frms
0	RC	UXU	counter reaches half the maximum value, and
			also when it reaches the maximum value.
			INT5
5	RC	0×0	The bit is set when the rxipv6_gd_frms
5	RC	0.00	counter reaches half the maximum value, and
			also when it reaches the maximum value.
4:2	RO	0x0	reserved
		0×0	INT1
1	RC		The bit is set when the rxipv4_hdrerr_frms
1	RC		counter reaches half the maximum value, and
			also when it reaches the maximum value.
		0×0	INTO
0	RC		The bit is set when the rxipv4_gd_frms
U			counter reaches half the maximum value, and
			also when it reaches the maximum value.

GMAC_MMC_RXIPV4GFRM

Address: Operational Base + offset (0x0210) MMC RX IPV4 Good Frame

Bit	Attr	Reset Value	Description
31:0	RW	0×00000000	rxipv4_gd_frms Number of good IPv4 datagrams received with the TCP, UDP, or ICMP payload

GMAC_MMC_RXIPV4HDERRFRM

Address: Operational Base + offset (0x0214) MMC RX IPV4 Head Error Frame

Bit	Attr	Reset Value	Description
	RW	0×00000000	rxipv4_hdrerr_frms
31:0			Number of IPv4 datagrams received with
51.0			header (checksum, length, or version
			mismatch) errors

GMAC_MMC_RXIPV6GFRM

Address: Operational Base + offset (0x0224) MMC RX IPV6 Good Frame

Bit	Attr	Reset Value	Description
31:0	RW		rxipv6_gd_frms Number of good IPv6 datagrams received with
			TCP, UDP, or ICMP payloads.

GMAC_MMC_RXIPV6HDERRFRM

Address: Operational Base + offset (0x0228) MMC RX IPV6 Head Error Frame

Bit	t Attr	Reset Value	Description
			rxipv6_hdrerr_frms
31:0	RW	0x00000000	Number of IPv6 datagrams received with
			header errors (length or version mismatch).

GMAC_MMC_RXUDPERRFRM

Address: Operational Base + offset (0x0234)

MMC RX UDP Error Frame

Bit	Attr	Reset Value	Description
31:0	RW	0×00000000	rxudp_err_frms Number of good IP datagrams whose UDP payload has a checksum error.

GMAC_MMC_RXTCPERRFRM

Address: Operational Base + offset (0x023c) MMC RX TCP Error Frame

Bit	Attr	Reset Value	Description
31:0	RW	0×00000000	rxtcp_err_frms Number of good IP datagrams whose TCP payload has a checksum error.

GMAC_MMC_RXICMPERRFRM

Address: Operational Base + offset (0x0244) MMC RX ICMP Error Frame

Bit	Attr	Reset Value	Description
31:0	RW		rxicmp_err_frms Number of good IP datagrams whose ICMP
			payload has a checksum error.

GMAC_MMC_RXIPV4HDERROCT

Address: Operational Base + offset (0x0254)

MMC RX OCTET IPV4 Head Error

Bit	Attr	Reset Value	Description
			rxipv4_hdrerr_octets
			Number of bytes received in IPv4 datagrams
31:0	RW	0x00000000	with header errors (checksum, length, version
			mismatch). The value in the Length field of
			IPv4 header is used to update this counter.

GMAC_MMC_RXIPV6HDERROCT

Address: Operational Base + offset (0x0268)

MMC RX OCTET IPV6 Head Error

Bit Attr Reset Value Description

Bit	Attr	Reset Value	Description
			rxipv6_hdrerr_octets
			Number of bytes received in IPv6 datagrams
31:0	RW	0x00000000	with header errors (length, version
			mismatch). The value in the IPv6 header's
			Length field is used to update this counter.

GMAC_MMC_RXUDPERROCT

Address: Operational Base + offset (0x0274) MMC RX OCTET UDP Error

Bit	Attr	Reset Value	Description
31:0	RW	0x00000000	rxudp_err_octets Number of bytes received in a UDP segment that had checksum errors.

GMAC_MMC_RXTCPERROCT

Address: Operational Base + offset (0x027c) MMC RX OCTET TCP Error

Bit	Attr Reset Value		Description
31:0	RW		rxtcp_err_octets Number of bytes received in a TCP segment with checksum errors.

GMAC_MMC_RXICMPERROCT

Address: Operational Base + offset (0x0284)

MMC RX OCTET ICMP Error

Bit	Attr	Reset Value	Description
31:0	RW		rxicmp_err_octets Number of bytes received in an ICMP segment with checksum errors.

GMAC_BUS_MODE

Address: Operational Base + offset (0x1000) Bus Mode Register

Bit	Attr	Reset Value	Description
31:26	RO	0x0	reserved
			AAL
			Address-Aligned Beats
			When this bit is set high and the FB bit equals 1, the AXI
25	RW	0x0	interface generates all bursts aligned to the start address
			LS bits. If the FB bit equals 0, the first burst (accessing
			the data buffer's start address) is not aligned, but
			subsequent bursts are aligned to the address.

		Reset Value	Description
24	RW	0×0	PBL_Mode 8xPBL Mode When set high, this bit multiplies the PBL value programmed (bits [22:17] and bits [13:8]) eight times. Thus the DMA will transfer data in to a maximum of 8, 16, 32, 64, 128, and 256 beats depending on the PBL value.
23	RW	0×0	USP Use Separate PBL When set high, it configures the RxDMA to use the value configured in bits [22:17] as PBL while the PBL value in bits [13:8] is applicable to TxDMA operations only. When reset to low, the PBL value in bits [13:8] is applicable for both DMA engines.
22:17	RW	0×01	RPBL RxDMA PBL These bits indicate the maximum number of beats to be transferred in one RxDMA transaction. This will be the maximum value that is used in a single block Read/Write. The RxDMA will always attempt to burst as specified in RPBL each time it starts a Burst transfer on the host bus. RPBL can be programmed with permissible values of 1, 2, 4, 8, 16, and 32. Any other value will result in undefined behavior.These bits are valid and applicable only when USP is set high.
16 15:14	RW	0x0 0x0	FB Fixed Burst This bit controls whether the AXI Master interface performs fixed burst transfers or not. When set, the AHB will use only SINGLE, INCR4, INCR8 or INCR16 during start of normal burst transfers. When reset, the AXI will use SINGLE and INCR burst transfer operations. reserved

Bit	Attr	Reset Value	Description
віс 13:8	RW	0x01	 PBL Programmable Burst Length These bits indicate the maximum number of beats to be transferred in one DMA transaction. This will be the maximum value that is used in a single block Read/Write. The DMA will always attempt to burst as specified in PBL each time it starts a Burst transfer on the host bus. PBL can be programmed with permissible values of 1, 2, 4, 8, 16, and 32. Any other value will result in undefined behavior. When USP is set high,this PBL value is applicable for TxDMA transactions only. The PBL values have the following limitations. The maximum number of beats (PBL) possible is limited by the size of the Tx FIFO and Rx FIFO in the MTL layer and the data bus width on the DMA. The FIFO has a constraint that the maximum beat supported is half the depth of the FIFO, except when specified (as given below). For different data bus widths and FIFO sizes, the valid PBL range (including x8 mode) is provided in the following table. If the PBL is common for both transmit and receive DMA, the minimum Rx FIFO and Tx FIFO depths must be considered. Do not program out-of-range PBL values, because the system may not behave properly. For TxFIFO, valid PBL range in full duplex mode and duplex mode is 128 or less.
7	RO	0x0	For RxFIFO, valid PBL range in full duplex mode is all. reserved
6:2	RW	0×00	DSL Descriptor Skip Length This bit specifies the number of Dword to skip between two unchained descriptors. The address skipping starts from the end of current descriptor to the start of next descriptor. When DSL value equals zero, then the descriptor table is taken as contiguous by the DMA, in Ring mode.

Bit	Attr	Reset Value	Description
0	R/WSC	0x1	SWR Software Reset When this bit is set, the MAC DMA Controller resets all GMAC Subsystem internal registers and logic. It is cleared automatically after the reset operation has completed in all of the core clock domains. Read a 0 value in this bit before re-programming any register of the core. Note: The reset operation is completed only when all the resets in all the active clock domains are de-asserted. Hence it is essential that all the PHY inputs clocks (applicable for the selected PHY interface) are present for software reset completion.

GMAC_TX_POLL_DEMAND

Address: Operational Base + offset (0x1004) Transmit Poll Demand Register

Bit	Attr	Reset Value	Description
31:0	RO	0×00000000	TPD Transmit Poll Demand When these bits are written with any value, the DMA reads the current descriptor pointed to by Register GMAC_CUR_HOST_TX_DESC. If that descriptor is not available (owned by Host), transmission returns to the Suspend state and DMA Register GMAC_STATUS[2] is asserted. If the descriptor is available, transmission resumes.

GMAC_RX_POLL_DEMAND

Address: Operational Base + offset (0x1008) Receive Poll Demand Register

Bit	Attr	Reset Value	Description
Bit 31:0	Attr RO	Reset Value 0×00000000	RPD Receive Poll Demand When these bits are written with any value, the DMA reads the current descriptor pointed to by Register GMAC_CUR_HOST_RX_DESC. If that descriptor is not available (owned by Host), reception returns to the Suspended state and Register GMAC_STATUS[7] is not
			asserted. If the descriptor is available, the Receive DMA returns to active state.

GMAC_RX_DESC_LIST_ADDR

Address: Operational Base + offset (0x100c) Receive Descriptor List Address Register

Bit	Attr	Reset Value	Description
31:0	RW	0×00000000	SRL Start of Receive List This field contains the base address of the First Descriptor in the Receive Descriptor list. The LSB bits [1/2/3:0] for 32/64/128-bit bus width) will be ignored and taken as all-zero by
			the DMA internally. Hence these LSB bits are Read Only.

GMAC_TX_DESC_LIST_ADDR

Address: Operational Base + offset (0x1010) Transmit Descriptor List Address Register

Bit	Attr	Reset Value	Description
31:0	RW	0×00000000	STL Start of Transmit List This field contains the base address of the First Descriptor in the Transmit Descriptor list. The LSB bits [1/2/3:0] for 32/64/128-bit bus width) will be ignored and taken as all-zero by the DMA internally. Hence these LSB bits are Read Only.

GMAC_STATUS

Address: Operational Base + offset (0x1014) Status Register

Bit	Attr	Reset Value	Description
31:29	RO	0x0	reserved
			GPI
			GMAC PMT Interrupt
			This bit indicates an interrupt event in the
			GMAC core's PMT module. The software must
28	RO	0x0	read the corresponding registers in the GMAC
			core to get the exact cause of interrupt and
			clear its source to reset this bit to 1'b0. The
			interrupt signal from the GMAC subsystem
			(sbd_intr_o) is high when this bit is high.

Bit	Attr	Reset Value	Description
27	RO	0×0	GMI GMAC MMC Interrupt This bit reflects an interrupt event in the MMC module of the GMAC core. The software must read the corresponding registers in the GMAC core to get the exact cause of interrupt and clear the source of interrupt to make this bit as 1'b0. The interrupt signal from the GMAC subsystem (sbd_intr_o) is high when this bit is high.
26	RO	0×0	GLI GMAC Line interface Interrupt This bit reflects an interrupt event in the GMAC Core's PCS or RGMII interface block. The software must read the corresponding registers in the GMAC core to get the exact cause of interrupt and clear the source of interrupt to make this bit as 1'b0. The interrupt signal from the GMAC subsystem (sbd_intr_o) is high when this bit is high.
25:23	RO	0×0	EB Error Bits These bits indicate the type of error that caused a Bus Error (e.g., error response on the AXI interface). Valid only with Fatal Bus Error bit (Register GMAC_STATUS[13]) set. This field does not generate an interrupt. Bit 23: 1'b1 Error during data transfer by TxDMA 1'b0 Error during data transfer by RxDMA Bit 24: 1'b1 Error during read transfer 1'b0 Error during write transfer Bit 25: 1'b1 Error during descriptor access 1'b0 Error during data buffer access

Bit	Attr	Reset Value	Description
			TS
22:20	RO	0×0	Transmit Process State These bits indicate the Transmit DMA FSM state. This field does not generate an interrupt. 3'b000: Stopped; Reset or Stop Transmit Command issued. 3'b001: Running; Fetching Transmit Transfer Descriptor. 3'b010: Running; Waiting for status. 3'b010: Running; Reading Data from host memory buffer and queuing it to transmit buffer (Tx FIFO). 3'b100: TIME_STAMP write state. 3'b101: Reserved for future use. 3'b110: Suspended; Transmit Descriptor Unavailable or Transmit Buffer Underflow. 3'b111: Running; Closing Transmit
19:17	RO	0×0	Descriptor. RS Receive Process State These bits indicate the Receive DMA FSM state. This field does not generate an interrupt. 3'b000: Stopped: Reset or Stop Receive Command issued. 3'b001: Running: Fetching Receive Transfer Descriptor. 3'b010: Reserved for future use. 3'b010: Reserved for future use. 3'b011: Running: Waiting for receive packet. 3'b100: Suspended: Receive Descriptor Unavailable. 3'b101: Running: Closing Receive Descriptor. 3'b110: TIME_STAMP write state. 3'b111: Running: Transferring the receive packet data from receive buffer to host memory.

Bit	Attr	Reset Value	Description
16	W1C	0x0	NIS Normal Interrupt Summary Normal Interrupt Summary bit value is the logical OR of the following when the corresponding interrupt bits are enabled in Register OP_MODE: Register GMAC_STATUS[0]: Transmit Interrupt Register GMAC_STATUS[2]: Transmit Buffer Unavailable Register GMAC_STATUS[6]: Receive Interrupt Register GMAC_STATUS[6]: Receive Interrupt Only unmasked bits affect the Normal Interrupt Only unmasked bits affect the Normal Interrupt Summary bit. This is a sticky bit and must be cleared (by writing a 1 to this bit) each time a corresponding bit that causes NIS to be set is cleared.

Bit	Attr	Reset Value	Description
15	W1C	0×0	AIS Abnormal Interrupt Summary Abnormal Interrupt Summary bit value is the logical OR of the following when the corresponding interrupt bits are enabled in Register OP_MODE: Register GMAC_STATUS[1]: Transmit Process Stopped Register GMAC_STATUS[3]: Transmit Jabber Timeout Register GMAC_STATUS[3]: Transmit Jabber Timeout Register GMAC_STATUS[4]: Receive FIFO Overflow Register GMAC_STATUS[5]: Transmit Underflow Register GMAC_STATUS[5]: Transmit Underflow Register GMAC_STATUS[7]: Receive Buffer Unavailable Register GMAC_STATUS[8]: Receive Process Stopped Register GMAC_STATUS[9]: Receive Watchdog Timeout Register GMAC_STATUS[10]: Early Transmit Interrupt Register GMAC_STATUS[13]: Fatal Bus Error Only unmasked bits affect the Abnormal Interrupt Summary bit. This is a sticky bit and must be cleared each time a corresponding bit that causes AIS to be set is cleared.
14	W1C	0x0	ERI Early Receive Interrupt This bit indicates that the DMA had filled the first data buffer of the packet. Receive Interrupt Register GMAC_STATUS[6] automatically clears this bit.
13	W1C	0x0	FBI Fatal Bus Error Interrupt This bit indicates that a bus error occurred, as detailed in [25:23]. When this bit is set, the corresponding DMA engine disables all its bus accesses.
12:11	RO	0x0	reserved

Bit	Attr	Reset Value	Description
-			ETI
			Early Transmit Interrupt
10	W1C	0x0	This bit indicates that the frame to be
			transmitted was fully transferred to the MTL
			Transmit FIFO.
			RWT
			Receive Watchdog Timeout
9	W1C	0x0	This bit is asserted when a frame with a length
			greater than 2,048 bytes is received.
			RPS
	W/1 C	00	Receive Process Stopped
8	W1C	0x0	This bit is asserted when the Receive Process
			enters the Stopped state.
			RU
			Receive Buffer Unavailable
			This bit indicates that the Next Descriptor in
			the Receive List is owned by the host and
			cannot be acquired by the DMA. Receive
			Process is suspended. To resume processing
_			Receive descriptors, the host should change
7	W1C	0x0	the ownership of the descriptor and issue a
			Receive Poll Demand command. If no Receive
			Poll Demand is issued, Receive Process
			resumes when the next recognized incoming
			frame is received. Register GMAC_STATUS[7]
			is set only when the previous Receive
			Descriptor was owned by the DMA.
			RI
		0×0	Receive Interrupt
c	W1C		This bit indicates the completion of frame
6	VV IC	0.00	reception. Specific frame status information
			has been posted in the descriptor. Reception
			remains in the Running state.
			UNF
			Transmit Underflow
5	W1C	0x0	This bit indicates that the Transmit Buffer had
5	VVIC	0.00	an Underflow during frame transmission.
			Transmission is suspended and an Underflow
			Error TDES0[1] is set.
			OVF
	W1C	0x0	Receive Overflow
4			This bit indicates that the Receive Buffer had
-			an Overflow during frame reception. If the
			partial frame is transferred to application, the
			overflow status is set in RDES0[11].

Bit	Attr	Reset Value	Description
3	W1C	0×0	TJT Transmit Jabber Timeout This bit indicates that the Transmit Jabber Timer expired, meaning that the transmitter had been excessively active. The transmission process is aborted and placed in the Stopped state. This causes the Transmit Jabber Timeout TDES0[14] flag to assert.
2	W1C	0x0	TU Transmit Buffer Unavailable This bit indicates that the Next Descriptor in the Transmit List is owned by the host and cannot be acquired by the DMA. Transmission is suspended. Bits[22:20] explain the Transmit Process state transitions. To resume processing transmit descriptors, the host should change the ownership of the bit of the descriptor and then issue a Transmit Poll Demand command.
1	W1C	0x0	TPS Transmit Process Stopped This bit is set when the transmission is stopped.
0	W1C	0×0	TI Transmit Interrupt This bit indicates that frame transmission is finished and TDES1[31] is set in the First Descriptor.

GMAC_OP_MODE Address: Operational Base + offset (0x1018) Operation Mode Register

Bit	Attr	Reset Value	Description
31:27	RO	0x0	reserved
			DT
			Disable Dropping of TCP/IP Checksum Error
			Frames
			When this bit is set, the core does not drop
			frames that only have errors detected by the
26	RW	0x0	Receive Checksum Offload engine. Such
			frames do not have any errors (including FCS
			error) in the Ethernet frame received by the
			MAC but have errors in the encapsulated
			payload only. When this bit is reset, all error
			frames are dropped if the FEF bit is reset.

Bit	Attr	Reset Value	Description
25	RW	0×0	RSF Receive Store and Forward When this bit is set, the MTL only reads a frame from the Rx FIFO after the complete frame has been written to it, ignoring RTC bits. When this bit is reset, the Rx FIFO operates in Cut-Through mode, subject to the threshold specified by the RTC bits.
24	RW	0×0	DFF Disable Flushing of Received Frames When this bit is set, the RxDMA does not flush any frames due to the unavailability of receive descriptors/buffers as it does normally when this bit is reset.
23:22	RO	0x0	reserved
21	RW	0×0	TSF Transmit Store and Forward When this bit is set, transmission starts when a full frame resides in the MTL Transmit FIFO. When this bit is set, the TTC values specified in Register GMAC_OP_MODE[16:14] are ignored. This bit should be changed only when transmission is stopped.
20	W1C	0×0	FTF Flush Transmit FIFO When this bit is set, the transmit FIFO controller logic is reset to its default values and thus all data in the Tx FIFO is lost/flushed. This bit is cleared internally when the flushing operation is completed fully. The Operation Mode register should not be written to until this bit is cleared. The data which is already accepted by the MAC transmitter will not be flushed. It will be scheduled for transmission and will result in underflow and runt frame transmission. Note: The flush operation completes only after emptying the TxFIFO of its contents and all the pending Transmit Status of the transmitted frames are accepted by the host. In order to complete this flush operation, the PHY transmit clock (clk_tx_i) is required to be active.
19:17	RO	0x0	reserved

Bit	Attr	Reset Value	Description
16:14	RW	0x0	TTC Transmit Threshold Control These three bits control the threshold level of the MTL Transmit FIFO. Transmission starts when the frame size within the MTL Transmit FIFO is larger than the threshold. In addition, full frames with a length less than the threshold are also transmitted. These bits are used only when the TSF bit (Bit 21) is reset. 3'b000: 64 3'b001: 128 3'b010: 192 3'b101: 256 3'b100: 40 3'b101: 32 3'b111: 16

Bit	Attr	Reset Value	Description
13	RW	0×0	ST Start/Stop Transmission Command When this bit is set, transmission is placed in the Running state, and the DMA checks the Transmit List at the current position for a frame to be transmitted. Descriptor acquisition is attempted either from the current position in the list, which is the Transmit List Base Address set by Register GMAC_TX_DESC_LIST_ADDR, or from the position retained when transmission was stopped previously. If the current descriptor is not owned by the DMA, transmission enters the Suspended state and Transmit Buffer Unavailable (Register GMAC_STATUS[2]) is set. The Start Transmission command is effective only when transmission is stopped. If the command is issued before setting DMA Register TX_DESC_LIST_ADDR, then the DMA behavior is unpredictable. When this bit is reset, the transmission process is placed in the Stopped state after completing the transmission of the current frame. The Next Descriptor position in the Transmit List is saved, and becomes the current position when transmission is restarted. The stop transmission of the current frame is complete or when the transmission is
12:11	RW	0x0	in the Suspended state. RFD Threshold for deactivating flow control (in both HD and FD) These bits control the threshold (Fill-level of Rx FIFO) at which the flow-control is deasserted after activation. 2'b00: Full minus 1 KB 2'b01: Full minus 2 KB 2'b10: Full minus 3 KB 2'b11: Full minus 4 KB Note that the deassertion is effective only after flow control is asserted.

Bit	Attr	Reset Value	Description
			RFA
			Threshold for activating flow control (in both
			HD and FD)
			These bits control the threshold (Fill level of
			Rx FIFO) at which flow control is activated.
10:9	RW	0x0	2'b00: Full minus 1 KB
			2'b01: Full minus 2 KB
			2'b10: Full minus 3 KB
			2'b11: Full minus 4 KB
			Note that the above only applies to Rx FIFOs
			of 4 KB or more when the EFC bit is set high.
			EFC
			Enable HW flow control
0		0.40	When this bit is set, the flow control signal
8	RW	0×0	operation based on fill-level of Rx FIFO is
			enabled. When reset, the flow control
			operation is disabled.
			FEF
			Forward Error Frames
			When this bit is reset, the Rx FIFO drops
			frames with error status (CRC error, collision
			error, GMII_ER, giant frame, watchdog
			timeout, overflow). However, if the frame's
			start byte (write) pointer is already
7	RW	0x0	transferred to the read controller side (in
			Threshold mode), then the frames are not
			dropped.
			When FEF is set, all frames except runt error
			frames are forwarded to the DMA. But when
			RxFIFO overflows when a partial frame is
			wriiten, then such frames are dropped even
			when FEF is set.
			FUF
			Forward Undersized Good Frames
			When set, the Rx FIFO will forward Undersized
			frames (frames with no Error and length less
6	RW	0x0	than 64 bytes) including pad-bytes and CRC).
			When reset, the Rx FIFO will drop all frames of
			less than 64 bytes, unless it is already
			transferred due to lower value of Receive
			Threshold (e.g., $RTC = 01$).
5	RO	0x0	reserved

Bit	Attr	Reset Value	Description
4:3	RW	0×0	RTC Receive Threshold Control These two bits control the threshold level of the MTL Receive FIFO. Transfer (request) to DMA starts when the frame size within the MTL Receive FIFO is larger than the threshold. In addition, full frames with a length less than the threshold are transferred automatically. Note that value of 11 is not applicable if the configured Receive FIFO size is 128 bytes. These bits are valid only when the RSF bit is zero, and are ignored when the RSF bit is set to 1. 2'b00: 64 2'b1: 32 2'b10: 96 2'b11: 128
2	RW	0×0	OSF Operate on Second Frame When this bit is set, this bit instructs the DMA to process a second frame of Transmit data even before status for first frame is obtained.

Bit	Attr	Reset Value	Description
Bit	RW	Reset Value	DescriptionSRStart/Stop ReceiveWhen this bit is set, the Receive process isplaced in the Running state. The DMAattempts to acquire the descriptor from theReceive list and processes incoming frames.Descriptor acquisition is attempted from thecurrent position in the list, which is theaddress set by registerGMAC_RX_DESC_LIST_ADDR or the positionretained when the Receive process waspreviously stopped. If no descriptor is ownedby the DMA, reception is suspended andReceive Buffer Unavailable (RegisterGMAC_STATUS[7]) is set. The Start Receivecommand is effective only when reception hasstopped. If the command was issued beforesetting registerGMAC_RX_DESC_LIST_ADDR, DMA behavioris unpredictable.When this bit is cleared, RxDMA operation isstopped after the transfer of the currentframe. The next descriptor position in theReceive list is saved and becomes the currentposition after the Receive process is restarted.The Stop Receive command is effective onlywhen the Receive process is in either the
0			Running (waiting for receive packet) or in the Suspended state.
0	RO	0x0	reserved

GMAC_INT_ENA

Address: Operational Base + offset (0x101c) Interrupt Enable Register

Bit	Attr	Reset Value	Description
31:17	RO	0x0	reserved

Bit	Attr	Reset Value	Description
16	RW	0×0	NIE Normal Interrupt Summary Enable When this bit is set, a normal interrupt is enabled. When this bit is reset, a normal interrupt is disabled. This bit enables the following bits: Register GMAC_STATUS[0]: Transmit Interrupt Register GMAC_STATUS[2]: Transmit Buffer Unavailable Register GMAC_STATUS[6]: Receive Interrupt Register GMAC_STATUS[14]: Early Receive Interrupt
15	RW	0×0	AIE Abnormal Interrupt Summary Enable When this bit is set, an Abnormal Interrupt is enabled. When this bit is reset, an Abnormal Interrupt is disabled. This bit enables the following bits Register GMAC_STATUS[1]: Transmit Process Stopped Register GMAC_STATUS[3]: Transmit Jabber Timeout Register GMAC_STATUS[3]: Transmit Jabber Timeout Register GMAC_STATUS[4]: Receive Overflow Register GMAC_STATUS[5]: Transmit Underflow Register GMAC_STATUS[7]: Receive Buffer Unavailable Register GMAC_STATUS[8]: Receive Process Stopped Register GMAC_STATUS[9]: Receive Watchdog Timeout Register GMAC_STATUS[10]: Early Transmit Interrupt Register GMAC_STATUS[13]: Fatal Bus Error
14	RW	0×0	ERE Early Receive Interrupt Enable When this bit is set with Normal Interrupt Summary Enable (BIT 16), Early Receive Interrupt is enabled. When this bit is reset, Early Receive Interrupt is disabled.

Bit	Attr	Reset Value	Description
			FBE
			Fatal Bus Error Enable
1.0	D 144		When this bit is set with Abnormal Interrupt
13	RW	0×0	Summary Enable (BIT 15), the Fatal Bus Error
			Interrupt is enabled. When this bit is reset,
			Fatal Bus Error Enable Interrupt is disabled.
12:11	RO	0x0	reserved
			ETE
			Early Transmit Interrupt Enable
			When this bit is set with an Abnormal
10	RW	0x0	Interrupt Summary Enable (BIT 15), Early
			Transmit Interrupt is enabled. When this bit is
			reset, Early Transmit Interrupt is disabled.
			RWE
			Receive Watchdog Timeout Enable
			When this bit is set with Abnormal Interrupt
9	RW	0x0	Summary Enable (BIT 15), the Receive
5		0/10	Watchdog Timeout Interrupt is enabled. When
			this bit is reset, Receive
			Watchdog Timeout Interrupt is disabled.
			RSE
			Receive Stopped Enable
			When this bit is set with Abnormal Interrupt
8	RW	0x0	Summary Enable (BIT 15), Receive Stopped
			Interrupt is enabled. When this bit is reset,
			Receive Stopped Interrupt is disabled.
			RUE
			Receive Buffer Unavailable Enable
			When this bit is set with Abnormal Interrupt
7	RW	0x0	Summary Enable (BIT 15), Receive Buffer
,		0,00	Unavailable Interrupt is enabled. When this bit
			is reset, the Receive Buffer Unavailable
			Interrupt is disabled
			RIE
			Receive Interrupt Enable
			When this bit is set with Normal Interrupt
6	RW	0x0	Summary Enable (BIT 16), Receive Interrupt
			is enabled. When this bit is reset, Receive
			Interrupt is disabled.
			UNE
			Underflow Interrupt Enable
	RW	0×0	When this bit is set with Abnormal Interrupt
5			Summary Enable (BIT 15), Transmit
			Underflow Interrupt is enabled. When this bit
			-
			is reset, Underflow Interrupt is disabled.

Bit	Attr	Reset Value	Description
4	RW	0×0	OVE Overflow Interrupt Enable When this bit is set with Abnormal Interrupt Summary Enable (BIT 15), Receive Overflow Interrupt is enabled. When this bit is reset, Overflow Interrupt is disabled
3	RW	0x0	TJE Transmit Jabber Timeout Enable When this bit is set with Abnormal Interrupt Summary Enable (BIT 15), Transmit Jabber Timeout Interrupt is enabled. When this bit is reset, Transmit Jabber Timeout Interrupt is disabled.
2	RW	0x0	TUE Transmit Buffer Unavailable Enable When this bit is set with Normal Interrupt Summary Enable (BIT 16), Transmit Buffer Unavailable Interrupt is enabled. When this bit is reset, Transmit Buffer Unavailable Interrupt is disabled.
1	RW	0x0	TSE Transmit Stopped Enable When this bit is set with Abnormal Interrupt Summary Enable (BIT 15), Transmission Stopped Interrupt is enabled. When this bit is reset, Transmission Stopped Interrupt is disabled.
0	RW	0x0	TIE Transmit Interrupt Enable When this bit is set with Normal Interrupt Summary Enable (BIT 16), Transmit Interrupt is enabled. When this bit is reset, Transmit Interrupt is disabled.

GMAC_OVERFLOW_CNT Address: Operational Base + offset (0x1020) Missed Frame and Buffer Overflow Counter Register

Bit	Attr	Reset Value	Description
31:29	RO	0x0	reserved
20 00		0.40	FIFO_overflow_bit
28	RC	0x0	Overflow bit for FIFO Overflow Counter

Bit	Attr	Reset Value	Description
	Frame_miss_number Indicates the number of frames mis application		Frame_miss_number
			Indicates the number of frames missed by the
		application	
27:17	RC	0x000	This counter is incremented each time the MT
		asserts the sideband signal mtl_rxoverflow_o.	
			The counter is cleared when this register is
			read with mci_be_i[2] at 1'b1.
16 F	RC	0x0	Miss_frame_overflow_bit
10	RC.		Overflow bit for Missed Frame Counter
			Frame_miss_number_2
	RC0x0000controller due to the Host Receive unavailable. This counter is incre		Indicates the number of frames missed by the
		controller due to the Host Receive Buffer being	
15:0		0x0000	unavailable. This counter is incremented each
			time the DMA discards an incoming frame.
			The counter is cleared when this register is
			read with mci_be_i[0] at 1'b1.

GMAC_REC_INT_WDT_TIMER

Address: Operational Base + offset (0x1024) Receive Interrupt Watchdog Timer Register

Bit	Attr	Reset Value	Description
31:8	RO	0x0	reserved
			RIWT
			RI Watchdog Timer count
			Indicates the number of system clock cycles
			multiplied by 256 for which the watchdog
			timer is set. The watchdog timer gets
			triggered with the programmed value after
			the RxDMA completes the transfer of a frame
7:0	RW	0x00	for which the RI status bit is not set due to
			the setting in the corresponding descriptor
			RDES1[31]. When
			the watch-dog timer runs out, the RI bit is set
			and the timer is stopped. The watchdog timer
			is reset when RI bit is set high due to
			automatic setting of RI as per RDES1[31] of
			any received frame.

GMAC_AXI_BUS_MODE

Address: Operational Base + offset (0x1028)

AXI Bus Mode Register

Bit Attr Reset Value	Description
----------------------	-------------

Bit	Attr	Reset Value	Description	
			EN_LPI	
			Enable LPI (Low Power Interface)	
			When set to 1, enable the LPI (Low Power	
			Interface) supported by the GMAC and	
31	RW	0x0	accepts the LPI request from the AXI System	
			Clock controller.	
			When set to 0, disables the Low Power Mode	
			and always denies the LPI request	
			from the AXI System Clock controller.	
			UNLCK_ON_MGK_RWK	
			Unlock on Magic Packet or Remote Wake Up	
			When set to 1, enables it to request coming	
20	DW		out of Low Power mode only when Magic	
30	RW	0x0	Packet or Remote Wake Up Packet is received.	
			When set to 0, enables it requests to come out	
			of Low Power mode when any frame is	
			received.	
29:22	RO	0x0	reserved	
			WR_OSR_LMT	
			AXI Maximum Write Out Standing Request	
			Limit	
21:20	RW	0x1	This value limits the maximum outstanding	
			request on the AXI write interface.	
			Maximum outstanding requests =	
			WR_OSR_LMT+1	
19:18	RO	0x0	reserved	
			RD_OSR_LMT	
			AXI Maximum Read Out Standing Request	
			Limit	
17:16	RW	0x1	This value limits the maximum outstanding	
			request on the AXI read interface.	
			Maximum outstanding requests =	
			RD_OSR_LMT+1	
15:13	RO	0x0	reserved	
			AXI_AAL	
			Address-Aligned Beats	
			This bit is read-only bit and reflects the AAL bit	
12	RO	0x0	Register0 (register GMAC_BUS_MODE[25]).	
			When this bit set to 1, it performs	
			address-aligned burst transfers on both read	
			and write channels.	
11:4	RO	0x0	reserved	

Bit	Attr	Reset Value	Description
			BLEN16
3	RW	0×0	AXI Burst Length 16
5	K VV	0x0	When this bit is set to 1, or when UNDEF is set
			to 1, it is allowed to select a burst length of 16.
			BLEN8
2	RW	0×0	AXI Burst Length 8
2		0x0	When this bit is set to 1, or when UNDEF is set
			to 1, it is allowed to select a burst length of 8.
		0×0	BLEN4
1	RW		AXI Burst Length 4
1	ĸw		When this bit is set to 1, or when UNDEF is set
			to 1, it is allowed to select a burst length of 4.
	RO	0×1	UNDEF
			AXI Undefined Burst Length
			This bit is read-only bit and indicates the
			complement (invert) value of FB bit in
			register GMAC_BUS_MODE[16].
			When this bit is set to 1, it is allowed to
0			perform any burst length equal to or below the
			maximum allowed burst length as
			programmed in bits[7:1];
			When this bit is set to 0, the it is allowed to
			perform only fixed burst lengths as indicated
			by BLEN256/128/64/32/16/8/4, or a burst
			length of 1.

GMAC_AXI_STATUS

Address: Operational Base + offset (0x102c) AXI Status Register

Bit	Attr	Reset Value	Description
31:2	RO	0x0	reserved
			RD_CH_STA
1	RO	0x0	When high, it indicates that AXI Master's read
			channel is active and transferring data.
			WR_CH_STA
0	RO	0x0	When high, it indicates that AXI Master's write
			channel is active and transferring data.

GMAC_CUR_HOST_TX_DESC

Address: Operational Base + offset (0x1048)

Current Host Tr	ansmit D	escriptor R	Registe	er

Bit Attr Reset Value Description

Bit	Attr	Reset Value	Description
			HTDAP
31:0		10×0000000000	Host Transmit Descriptor Address Pointer
51.0		Cleared on Reset. Pointer updated by DMA	
			during operation.

GMAC_CUR_HOST_RX_DESC

Address: Operational Base + offset (0x104c) Current Host Receive Descriptor Register

Bit	Attr	Reset Value	Description			
		0×00000000	HRDAP			
31:0	RO		Host Receive Descriptor Address Pointer			
51.0			Cleared on Reset. Pointer updated by DMA			
			during operation.			

GMAC_CUR_HOST_TX_Buf_ADDR

Address: Operational Base + offset (0x1050) Current Host Transmit Buffer Address Register

Bit	Attr	Reset Value	Description
		0×00000000	НТВАР
31:0	RO		Host Transmit Buffer Address Pointer
51.0	RU		Cleared on Reset. Pointer updated by DMA
			during operation.

GMAC_CUR_HOST_RX_BUF_ADDR

Address: Operational Base + offset (0x1054) Current Host Receive Buffer Adderss Register

Bit	Attr	Reset Value	Description
		0×00000000	HRBAP
31:0	RO		Host Receive Buffer Address Pointer
51.0	:0 KO U		Cleared on Reset. Pointer updated by DMA
			during operation.

GMAC_HW_FEA_REG

Address: Operational Base + offset (0x1058)The presence of the optional features/functions of the core Register

Bit	Attr	Reset Value	Description		
31:25	RO	0x0	Reserved		
24	RO	0x0	Alternate (Enhanced Descriptor)		
23:20	RO	0x0	Reserved		
19	RO	0x1	RxFIFO > 2048 Bytes		
18	RO	0x1	IP Checksum Offload (Type 2) in Rx		
17	RO	0x0	IP Checksum Offload (Type 1) in Rx		
16	RO	0x1	Checksum Offload in Tx		
15:14	RO	0x0	Reserved		
13	RO	0x0	IEEE 1588-2008 Advanced Time-Stamp		

Bit	Attr	Reset Value	Description			
12	RO	0x0	IEEE 1588-2002 Time-Stamp			
11	RO	0x1	RMON module			
10	RO	0x1	PMT Magic Packet			
9	RO	0x1	PMT Remote Wakeup			
8	RO	0x1	SMA (MDIO) Interface			
7	RO	0x0	Reserved			
6	RO	0x0	PCS registers (TBI/SGMII/RTBI PHY interface)			
5	RO	0x0	Multiple MAC Address Registers			
4	RO	0x1	HASH Filter			
3	RO	0x0	Reserved			
2	RO	0x1	Half-Duplex support			
1	RO	0x1	1000 Mbps support			
0	RO	0x1	10/100 Mbps support			

24.5 Interface Description

Table 24-1	RMII	Interface	Description
Table 24-1	NMIII	Internace	Description

Module pin name	Direction Pad name		ΙΟΜUΧ		
		RMII int	terface		
mac_clk	I/O	GPIO4_A[3]	GRF_GPIO4AL_IOMUX[14:12]=3'b011		
mac_txen	0	GPIO4_A[4]	GRF_GPIO4AH_IOMUX[2:0]=3'b011		
mac_txd1	0	GPIO3_D[5]	GRF_GPIO3DH_IOMUX[6:4]=3'b011		
mac_txd0	0	GPIO3_D[4]	GRF_GPIO3DH_IOMUX[2:0]=3'b011		
mac_rxdv	Ι	GPIO4_A[1]	GRF_GPIO4AL_IOMUX[6:4]=3'b011		
mac_rxer	Ι	GPIO4_A[2]	GRF_GPIO4AL_IOMUX[10:8]=3'b011		
mac_rxd1	Ι	GPIO3_D[7]	GRF_GPIO3DH_IOMUX[14:12]=3'b011		
mac_rxd0	Ι	GPIO3_D[6]	GRF_GPIO3DH_IOMUX[10:8]=3'b011		
		Management	t interface		
mac_mdio	I/O	GPIO4_A[5]	GRF_GPIO4AH_IOMUX[5:4]=2'b11		
mac_mdc	0	GPIO4_A[0]	GRF_GPIO4AL_IOMUX[1:0]=2'b11		

Table 24-2 RGMII Interface Description

Module pin name	Direction Pad name		ΙΟΜUΧ		
		RGMII/RMI	I interface		
mac_clk	I/O	GPIO4_A[3]	GRF_GPIO4AL_IOMUX[14:12]=3'b011		
mac_txclk	0	GPIO4_B[1]	GRF_GPIO4BL_IOMUX[6:4]=3'b011		
mac_txen	0	GPIO4_A[4]	GRF_GPIO4AH_IOMUX[2:0]=3'b011		
mac_txd3	0	GPIO3_D[1]	GRF_GPIO3DL_IOMUX[6:4]=3'b011		
mac_txd2	0	GPIO3_D[0]	GRF_GPIO3DL_IOMUX[2:0]=3'b011		
mac_txd1	0	GPIO3_D[5]	GRF_GPIO3DH_IOMUX[6:4]=3'b011		
mac_txd0	0	GPIO3_D[4]	GRF_GPIO3DH_IOMUX[2:0]=3'b011		
mac_rxclk	Ι	GPIO4_A[6]	GRF_GPIO4AH_IOMUX[10:8]=3'b011		
mac_rxdv	Ι	GPIO4_A[1]	GRF_GPIO4AL_IOMUX[6:4]=3'b011		
mac_rxd3	I	GPIO3_D[3]	GRF_GPIO3DL_IOMUX[14:12]=3'b011		
mac_rxd2	I	GPIO3_D[2]	GRF_GPIO3DL_IOMUX[10:8]=3'b011		
mac_rxd1	Ι	GPIO3_D[7]	GRF_GPIO3DH_IOMUX[14:12]=3'b011		
mac_rxd0	I	GPIO3_D[6]	GRF_GPIO3DH_IOMUX[10:8]=3'b011		

mac_crs	Ι	GPIO4_A[7]	GRF_GPIO4AH_IOMUX[14:12]=3'b011
mac_col	I	GPIO4_B[0]	GRF_GPIO4BL_IOMUX[2:0]=3'b011
		Management	t interface
mac_mdio	I/O	GPIO4_A[5]	GRF_GPIO4AH_IOMUX[5:4]=2'b11
mac_mdc	0	GPIO4_A[0]	GRF_GPIO4AL_IOMUX[1:0]=2'b11

24.6 Application Notes

24.6.1 Descriptors

The DMA in GMAC can communicate with Host driver through descriptor lists and data buffers. The DMA transfers data frames received by the core to the Receive Buffer in the Host memory, and Transmit data frames from the Transmit Buffer in the Host memory. Descriptors that reside in the Host memory act as pointers to these buffers.

There are two descriptor lists; one for reception, and one for transmission. The base address of each list is written into DMA Registers RX_DESC_LIST_ADDR and TX_DESC_LIST_ADDR, respectively. A descriptor list is forward linked (either implicitly or explicitly). The last descriptor may point back to the first entry to create a ring structure. Explicit chaining of descriptors is accomplished by setting the second address chained in both Receive and Transmit descriptors (RDES1[24] and TDES1[24]). The descriptor lists resides in the Host physical memory address space. Each descriptor can point to a maximum of two buffers. This enables two buffers to be used, physically addressed, rather than contiguous buffers in memory.

A data buffer resides in the Host physical memory space, and consists of an entire frame or part of a frame, but cannot exceed a single frame. Buffers contain only data, buffer status is maintained in the descriptor. Data chaining refers to frames that span multiple data buffers. However, a single descriptor cannot span multiple frames. The DMA will skip to the next frame buffer when end-of-frame is detected. Data chaining can be enabled or disabled The descriptor ring and chain structure is shown in following figure.

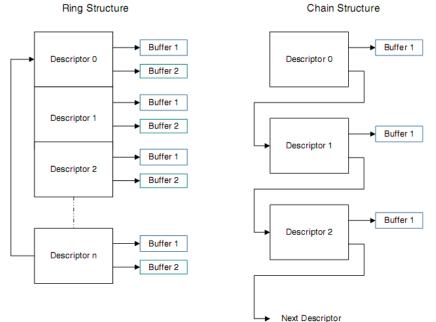


Fig. 24-10 Descriptor Ring and Chain Structure

Each descriptor contains two buffers, two byte-count buffers, and two address pointers, which enable the adapter port to be compatible with various types of memory management schemes. The descriptor addresses must be aligned to the bus width used (Word/Dword/Lword for 32/64/128-bit buses).

	63	55	47	39	31	23	15	7	0
DES1-DES0	Control B [9:0]	lits	Byte Count Buffer2 [10:0]	Byte Count Buffer1[10:0]	W N		Status [30:0]		
DES3-DES2	N		fer2 Address [31 escriptor Address			Buffe	r1 Address[31	1:0]	

Fig. 24-11 Rx/Tx Descriptors definition

24.6.2 Receive Descriptor

The GMAC Subsystem requires at least two descriptors when receiving a frame. The Receive state machine of the DMA always attempts to acquire an extra descriptor in anticipation of an incoming frame. (The size of the incoming frame is unknown). Before the RxDMA closes a descriptor, it will attempt to acquire the next descriptor even if no frames are received. In a single descriptor (receive) system, the subsystem will generate a descriptor error if the receive buffer is unable to accommodate the incoming frame and the next descriptor is not owned by the DMA. Thus, the Host is forced to increase either its descriptor pool or the buffer size. Otherwise, the subsystem starts dropping all incoming frames.

Receive Descriptor 0 (RDES0)

-

RDES0 contains the received frame status, the frame length, and the descriptor ownership information.

Table 24-3 Receive Descriptor 0

Bit	Description
31	OWN: Own Bit
	When set, this bit indicates that the descriptor is owned by the DMA of the GMAC
	Subsystem. When this bit is reset, this bit indicates that the descriptor is owned by the
	Host. The DMA clears this bit either when it completes the frame reception or when the
20	buffers that are associated with this descriptor are full.
30	AFM: Destination Address Filter Fail When eat, this hit indicates a frame that failed in the DA Filter in the CMAC Care
29:16	When set, this bit indicates a frame that failed in the DA Filter in the GMAC Core. FL: Frame Length
29:10	These bits indicate the byte length of the received frame that was transferred to host
	memory (including CRC). This field is valid when Last Descriptor (RDES0[8]) is set and
	either the Descriptor Error (RDES0[14]) or Overflow Error bits are are reset. The frame
	length also includes the two bytes appended to the Ethernet frame when IP checksum
	calculation (Type 1) is enabled and the received frame is not a MAC control frame.
	This field is valid when Last Descriptor (RDES0[8]) is set. When the Last Descriptor and
	Error Summary bits are not set, this field indicates the accumulated number of bytes
	that have been transferred for the current frame.
15	ES: Error Summary
	Indicates the logical OR of the following bits:
	RDES0[0]: Payload Checksum Error
	RDES0[1]: CRC Error
	RDES0[3]: Receive Error
	RDES0[4]: Watchdog Timeout
	 RDES0[6]: Late Collision RDES0[7]: IPC Checksum
	RDES0[7]: IPC Checksum RDES0[11]: Overflow Error
	RDES0[11]. Overnow Error RDES0[14]: Descriptor Error
	This field is valid only when the Last Descriptor (RDES0[8]) is set.
14	DE: Descriptor Error
14	When set, this bit indicates a frame truncation caused by a frame that does not fit
	within the current descriptor buffers, and that the DMA does not own the Next
	Descriptor. The frame is truncated. This field is valid only when the Last Descriptor
	(RDES0[8]) is set
13	SAF: Source Address Filter Fail
	When set, this bit indicates that the SA field of frame failed the SA Filter in the GMAC
	Core.

Bit	Description
12	LE: Length Error When set, this bit indicates that the actual length of the frame received and that the Length (Type field does not match. This bit is valid only when the Frame Type
11	Length/ Type field does not match. This bit is valid only when the Frame Type (RDES0[5]) bit is reset. Length error status is not valid when CRC error is present. OE: Overflow Error
11	When set, this bit indicates that the received frame was damaged due to buffer overflow.
10	VLAN: VLAN Tag When set, this bit indicates that the frame pointed to by this descriptor is a VLAN frame tagged by the GMACCore.
9	FS: First Descriptor When set, this bit indicates that this descriptor contains the first buffer of the frame. If the size of the first buffer is 0, the second buffer contains the beginning of the frame. If the size of the second buffer is also 0, the next Descriptor contains the beginning of the frame.
8	LS: Last Descriptor When set, this bit indicates that the buffers pointed to by this descriptor are the last buffers of the frame.
7	IPC Checksum Error/Giant Frame When IP Checksum Engine is enabled, this bit, when set, indicates that the 16-bit IPv4 Header checksum calculated by the core did not match the received checksum bytes. The Error Summary bit[15] is NOT set when this bit is set in this mode.
6	LC: Late Collision When set, this bit indicates that a late collision has occurred while receiving the frame in Half-Duplex mode.
5	FT: Frame Type When set, this bit indicates that the Receive Frame is an Ethernet-type frame (the LT field is greater than or equal to 16'h0600). When this bit is reset, it indicates that the received frame is an IEEE802.3 frame. This bit is not valid for Runt frames less than 14 bytes.
4	RWT: Receive Watchdog Timeout When set, this bit indicates that the Receive Watchdog Timer has expired while receiving the current frame and the current frame is truncated after the Watchdog Timeout.
3	RE: Receive Error When set, this bit indicates that the gmii_rxer_i signal is asserted while gmii_rxdv_i is asserted during frame reception. This error also includes carrier extension error in GMII and Half-duplex mode. Error can be of less/no extension, or error (rxd \neq 0f) during extension.
2	DE: Dribble Bit Error When set, this bit indicates that the received frame has a non-integer multiple of bytes (odd nibbles). This bit is valid only in MII Mode.
1	CE: CRC Error When set, this bit indicates that a Cyclic Redundancy Check (CRC) Error occurred on the received frame. This field is valid only when the Last Descriptor (RDES0[8]) is set.
0	Rx MAC Address/Payload Checksum Error When set, this bit indicates that the Rx MAC Address registers value (1 to 15) matched the frame's DA field. When reset, this bit indicates that the Rx MAC Address Register 0 value matched the DA field.
	If Full Checksum Offload Engine is enabled, this bit, when set, indicates the TCP, UDP, or ICMP checksum the core calculated does not match the received encapsulated TCP, UDP, or ICMP segment's Checksum field. This bit is also set when the received number of payload bytes does not match the value indicated in the Length field of the encapsulated IPv4 or IPv6 datagram in the received Ethernet frame.

Receive Descriptor 1 (RDES1)

RDES1 contains the buffer sizes and other bits that control the descriptor chain/ring.

Table 24-4 Receive Descriptor 1	

Bit	Description
31	Disable Interrupt on Completion When set, this bit will prevent the setting of the RI (CSR5[6]) bit of the GMAC_STATUS Register for the received frame that ends in the buffer pointed to by this descriptor. This, in turn, will disable the assertion of the interrupt to Host due to RI for that frame.
30:26	Reserved.
25	RER: Receive End of Ring When set, this bit indicates that the descriptor list reached its final descriptor. The DMA returns to the base address of the list, creating a Descriptor Ring.
24	RCH: Second Address Chained When set, this bit indicates that the second address in the descriptor is the Next Descriptor address rather than the second buffer address. When RDES1[24] is set, RBS2 (RDES1[21-11]) is a "don't care" value. RDES1[25] takes precedence over RDES1[24].
23:22	Reserved.
21:11	RBS2: Receive Buffer 2 Size These bits indicate the second data buffer size in bytes. The buffer size must be a multiple of 8 depending upon the bus widths (64), even if the value of RDES3 (buffer2 address pointer) is not aligned to bus width. In the case where the buffer size is not a multiple of 8, the resulting behavior is undefined. This field is not valid if RDES1[24] is set.
10:0	RBS1: Receive Buffer 1 Size Indicates the first data buffer size in bytes. The buffer size must be a multiple of 8 depending upon the bus widths (64), even if the value of RDES2 (buffer1 address pointer) is not aligned. In the case where the buffer size is not a multiple of 8, the resulting behavior is undefined. If this field is 0, the DMA ignores this buffer and uses Buffer 2 or next descriptor depending on the value of RCH (Bit 24).

Receive Descriptor 2 (RDES2)

RDES2 contains the address pointer to the first data buffer in the descriptor.

	Table 24-5 Receive Descriptor 2	
Bit	Description	
31:0	Buffer 1 Address Pointer These bits indicate the physical address of Buffer 1. There are no limitations on the buffer address alignment except for the following condition: The DMA uses the configured value for its address generation when the RDES2 value is used to store the start of frame. Note that the DMA performs a write operation with the RDES2[2:0] bits as 0 during the transfer of the start of frame but the frame data is shifted as per the actual Buffer address pointer. The DMA ignores RDES2[2:0] (corresponding to bus width of 64) if the address pointer is to a buffer where the middle or last part of the frame is stored.	

Receive Descriptor 3 (RDES3)

RDES3 contains the address pointer either to the second data buffer in the descriptor or to the next descriptor.

Table 24-6 Receive Descriptor 3

Bit	Description
31:0	 Buffer 2 Address Pointer (Next Descriptor Address) These bits indicate the physical address of Buffer 2 when a descriptor ring structure is used. If the Second Address Chained (RDES1[24]) bit is set, this address contains the pointer to the physical memory where the Next Descriptor is present. If RDES1[24] is set, the buffer (Next Descriptor) address pointer must be bus width-aligned (RDES3[2:0] = 0, corresponding to a bus width of 64. LSBs are ignored internally.) However, when RDES1[24] is reset, there are no limitations on the RDES3 value, except for the following condition: The DMA uses the configured value for its buffer address generation when the RDES3 value is used to store the start of frame. The DMA ignores RDES3[2:0] (corresponding to a bus width of 64) if the address pointer is to a buffer where the middle or last part of the frame is stored.

24.6.3 Transmit Descriptor

The descriptor addresses must be aligned to the bus width used (64). Each descriptor is provided with two buffers, two byte-count buffers, and two address pointers, which enable the adapter port to be compatible with various types of memory-management schemes.

Transmit Descriptor 0 (TDES0)

TDES0 contains the transmitted frame status and the descriptor ownership information.

Bit	Description
31	OWN: Own Bit When set, this bit indicates that the descriptor is owned by the DMA. When this bit is reset, this bit indicates that the descriptor is owned by the Host. The DMA clears this bit either when it completes the frame transmission or when the buffers allocated in the descriptor are empty. The ownership bit of the First Descriptor of the frame should be set after all subsequent descriptors belonging to the same frame have been set. This avoids a possible race condition between fetching a descriptor and the driver setting an ownership bit.
30:17	
16	IHE: IP Header Error When set, this bit indicates that the Checksum Offload engine detected an IP header error and consequently did not modify the transmitted frame for any checksum insertion.
15	ES: Error Summary Indicates the logical OR of the following bits: • TDES0[14]: Jabber Timeout • TDES0[13]: Frame Flush • TDES0[11]: Loss of Carrier • TDES0[10]: No Carrier • TDES0[9]: Late Collision • TDES0[9]: Late Collision • TDES0[8]: Excessive Collision • TDES0[2]: Excessive Deferral • TDES0[1]: Underflow Error
14	JT: Jabber Timeout When set, this bit indicates the GMAC transmitter has experienced a jabber time-out.

Table 24-7 Transmit Descriptor 0

13	FF: Frame Flushed
	When set, this bit indicates that the DMA/MTL flushed the frame due to a SW flush
	command given by the CPU.
12	PCE: Payload Checksum Error
	This bit, when set, indicates that the Checksum Offload engine had a failure and did not
	insert any checksum into the encapsulated TCP, UDP, or ICMP payload. This failure can
	be either due to insufficient bytes, as
	indicated by the IP Header's Payload Length field, or the MTL starting to forward the
	frame to the MAC transmitter in Store-and-Forward mode without the checksum
	having been calculated yet. This second error
	condition only occurs when the Transmit FIFO depth is less than the length of the
	Ethernet frame being transmitted: to avoid deadlock, the MTL starts forwarding the
	frame when the FIFO is full, even in Store-and-Forward mode.
11	LC: Loss of Carrier
	When set, this bit indicates that Loss of Carrier occurred during frame transmission.
	This is valid only for the frames transmitted without collision and when the GMAC
10	operates in Half-Duplex Mode.
10	NC: No Carrier
	When set, this bit indicates that the carrier sense signal form the PHY was not asserted during transmission.
9	LC: Late Collision
5	When set, this bit indicates that frame transmission was aborted due to a collision
	occurring after the collision window (64 byte times including Preamble in RMII Mode
	and 512 byte times including Preamble and Carrier Extension in RGMII Mode). Not
	valid if Underflow Error is set.
8	EC: Excessive Collision
-	When set, this bit indicates that the transmission was aborted after 16 successive
	collisions while attempting to transmit the current frame. If the DR (Disable Retry) bit
	in the GMAC Configuration Register is set, this bit is set after the first collision and the
	transmission of the frame is aborted.
7	VF: VLAN Frame
	When set, this bit indicates that the transmitted frame was a VLAN-type frame.
6:3	CC: Collision Count
	This 4-bit counter value indicates the number of collisions occurring before the frame
	was transmitted. The count is not valid when the Excessive Collisions bit (TDES0[8]) is
	set.
2	ED: Excessive Deferral
	When set, this bit indicates that the transmission has ended because of excessive
	deferral of over 24,288 bit times (155,680 bits times in 1000-Mbps mode) if the
1	Deferral Check (DC) bit is set high in the GMAC Control Register. UF: Underflow Error
1	When set, this bit indicates that the GMAC aborted the frame because data arrived late
	from the Host memory. Underflow Error indicates that the DMA encountered an empty
	Transmit Buffer while transmitting the
	frame. The transmission process enters the suspended state and sets both Transmit
	Underflow (Register GMAC_STATUS[5]) and Transmit Interrupt (Register
	GMAC_STATUS [0]).
0	DB: Deferred Bit
	When set, this bit indicates that the GMAC defers before transmission because of the
1	presence of carrier. This bit is valid only in Half-Duplex mode.

Transmit Descriptor 1 (TDES1)

TDES1 contains the buffer sizes and other bits which control the descriptor chain/ring and the frame being transferred.

	Table 24-8 Transmit Descriptor 1
Bit	Description
31	IC: Interrupt on Completion When set, this bit sets Transmit Interrupt (Register 5[0]) after the present frame has been transmitted.
30	LS: Last Segment When set, this bit indicates that the buffer contains the last segment of the frame.
29	FS: First Segment When set, this bit indicates that the buffer contains the first segment of a frame.
28:27	 CIC: Checksum Insertion Control These bits control the insertion of checksums in Ethernet frames that encapsulate TCP, UDP, or ICMP over IPv4 or IPv6 as described below. 2'b00: Do nothing. Checksum Engine is bypassed 2'b01: Insert IPv4 header checksum. Use this value to insert IPv4 header checksum when the frame encapsulates an IPv4 datagram. 2'b10: Insert TCP/UDP/ICMP checksum. The checksum is calculated over the TCP, UDP, or ICMP segment only and the TCP, UDP, or ICMP pseudo-header checksum is assumed to be present in the corresponding input frame's Checksum field. An IPv4
	 header checksum is also inserted if the encapsulated datagram conforms to IPv4. 2'b11: Insert a TCP/UDP/ICMP checksum that is fully calculated in this engine. In other words, the TCP, UDP, or ICMP pseudo-header is included in the checksum calculation, and the input frame's corresponding Checksum field has an all-zero value. An IPv4 Header checksum is also inserted if the encapsulated datagram conforms to IPv4. The Checksum engine detects whether the TCP, UDP, or ICMP segment is encapsulated in IPv4 or IPv6 and processes its data accordingly.
26	DC: Disable CRC When set, the GMAC does not append the Cyclic Redundancy Check (CRC) to the end of the transmitted frame. This is valid only when the first segment (TDES1[29]).
25	TER: Transmit End of Ring When set, this bit indicates that the descriptor list reached its final descriptor. The returns to the base address of the list, creating a descriptor ring.
24	TCH: Second Address Chained When set, this bit indicates that the second address in the descriptor is the Next Descriptor address rather than the second buffer address. When TDES1[24] is set, TBS2 (TDES1[21–11]) are "don't care" values. TDES1[25] takes precedence over TDES1[24].
23	DP: Disable Padding When set, the GMAC does not automatically add padding to a frame shorter than 64 bytes. When this bit is reset, the DMA automatically adds padding and CRC to a frame shorter than 64 bytes and the CRC field is added despite the state of the DC (TDES1[26]) bit. This is valid only when the first segment (TDES1[29]) is set.
22	Reserved.
21:11	TBS2: Transmit Buffer 2 Size These bits indicate the Second Data Buffer in bytes. This field is not valid if TDES1[24] is set.
10:0	TBS1: Transmit Buffer 1 Size These bits indicate the First Data Buffer byte size. If this field is 0, the DMA ignores this buffer and uses Buffer 2 or next descriptor depending on the value of TCH (Bit 24).

Transmit Descriptor 2 (TDES2)

TDES2 contains the address pointer to the first buffer of the descriptor.

Table 24-9	Transmit Descriptor 2
	11 anomic Descriptor 2

Bit	Description
31:0	Buffer 1 Address Pointer These bits indicate the physical address of Buffer 1. There is no limitation on the buffer address alignment.

Transmit Descriptor 3 (TDES3)

TDES3 contains the address pointer either to the second buffer of the descriptor or the next descriptor.

Table 24-10 Transmit Descriptor 3

Bit	Description
31:0	Buffer 2 Address Pointer (Next Descriptor Address) Indicates the physical address of Buffer 2 when a descriptor ring structure is used. If the Second Address Chained (TDES1[24]) bit is set, this address contains the pointer to the physical memory where the Next Descriptor is present. The buffer address pointer must be aligned to the bus width only when TDES1[24] is set. (LSBs are ignored internally.)

24.6.4 Programming Guide

DMA Initialization – Descriptors

The following operations must be performed to initialize the DMA.

1. Provide a software reset. This will reset all of the GMAC internal registers and logic. (GMAC_OP_MODE[0]).

2. Wait for the completion of the reset process (poll GMAC_OP_MODE[0], which is only cleared after the reset operation is completed).

3. Program the following fields to initialize the Bus Mode Register by setting values in register GMAC_BUS_MODE

- a. Mixed Burst and AAL
- b. Fixed burst or undefined burst
- c. Burst length values and burst mode values.
- d. Descriptor Length (only valid if Ring Mode is used)
- e. Tx and Rx DMA Arbitration scheme

4. Program the AXI Interface options in the register GMAC_BUS_MODE

a. If fixed burst-length is enabled, then select the maximum burst-length possible on the AXI bus (Bits[7:1])

5. A proper descriptor chain for transmit and receive must be created. It should also ensure that the receive descriptors are owned by DMA (bit 31 of descriptor should be set). When OSF mode is used, at least two descriptors are required.

6. Software should create three or more different transmit or receive descriptors in the chain before reusing any of the descriptors.

7. Initialize receive and transmit descriptor list address with the base address of transmit and receive descriptor (register GMAC_RX_DESC_LIST_ADDR and GMAC_TX_DESC_LIST_ADDR). 8. Program the following fields to initialize the mode of operation by setting values in register GMAC_OP_MODE

- a. Receive and Transmit Store And Forward
- b. Receive and Transmit Threshold Control (RTC and TTC)
- c. Hardware Flow Control enable

d. Flow Control Activation and De-activation thresholds for MTL Receive and Transmit FIFO (RFA and RFD)

e. Error Frame and undersized good frame forwarding enable

f. OSF Mode

9. Clear the interrupt requests, by writing to those bits of the status register (interrupt bits only)

which are set. For example, by writing 1 into bit 16 - normal interrupt summary will clear this bit (register GMAC_STATUS).

10. Enable the interrupts by programming the interrupt enable register GMAC_INT_ENA. 11. Start the Receive and Transmit DMA by setting SR (bit 1) and ST (bit 13) of the control register GMAC_OP_MODE.

MAC Initialization

The following MAC Initialization operations can be performed after the DMA initialization sequence. If the MAC Initialization is done before the DMA is set-up, then enable the MAC receiver (last step below) only after the DMA is active. Otherwise, received frames will fill the RxFIFO and overflow. Steps (1) and (2) are to be followed if the TBI/SGMII/RTBI PHY interface is enabled, otherwise follow steps (3) and (4).

1. Program the AN Control register GMAC_AN_CTRL to enable Auto-negotiation ANE (bit-12). Setting ELE (bit-14) of this register will enable the PHY to loop back the transmit data.

2. Check the AN Status Register GMAC_AN_STATUS for completion of the Auto-negotiation process. ANC (bit-5) should be set, and link status (bit-2), when set, indicates that the link is up.

3. Program the register GMAC_GMII_ADDR for controlling the management cycles for external PHY, for example, Physical Layer Address PA (bits 15-11). Also set bit 0 (GMII Busy) for writing into PHY and reading from PHY.

4. Read the 16-bit data of (GMAC_GMII_DATA) from the PHY for link up, speed of operation, and mode of operation, by specifying the appropriate address value in register GMAC_GMII_ADDR (bits 15-11).

5. Provide the MAC address registers (GMAC_MAC_ADDR0_HI and GMAC_MAC_ADDR0_LO). If more than one MAC address is enabled in your configuration (during configuration in coreConsultant), program them appropriately).

6. If Hash filtering is enabled in your configuration, program the Hash filter register (GMAC_HASH_TAB_HI and GMAC_HASH_TAB_LO).

7. Program the following fields to set the appropriate filters for the incoming frames in register GMAC_MAC_FRM_FILT

- a. Receive All
- b. Promiscuous mode
- c. Hash or Perfect Filter
- d. Unicast, Multicast, broad cast and control frames filter settings etc.
- 8. Program the following fields for proper flow control in register GMAC_FLOW_CTRL.
 - a. Pause time and other pause frame control bits
 - b. Receive and Transmit Flow control bits
 - c. Flow Control Busy/Backpressure Activate

9. Program the Interrupt Mask register bits, as required, and if applicable, for your configuration.

10. Program the appropriate fields in register GMAC_MAC_CONF for example, Inter-frame gap while transmission, jabber disable, etc. Based on the Auto-negotiation you can set the Duplex mode (bit 11), port select (bit 15), etc.

11. Set the bits Transmit enable (TE bit-3) and Receive Enable (RE bit-2) in register GMAC_MAC_CONF.

Normal Receive and Transmit Operation

For normal operation, the following steps can be followed.

For normal transmit and receive interrupts, read the interrupt status. Then poll the descriptors, reading the status of the descriptor owned by the Host (either transmit or receive).

On completion of the above step, set appropriate values for the descriptors, ensuring that transmit and receive descriptors are owned by the DMA to resume the transmission and reception of data.

If the descriptors were not owned by the DMA (or no descriptor is available), the DMA will go into SUSPEND state. The transmission or reception can be resumed by freeing the descriptors and issuing a poll demand by writing 0 into the Tx/Rx poll demand register

(GMAC_TX_POLL_DEMAND and GMAC_RX_POLL_DEMAND).

The values of the current host transmitter or receiver descriptor address pointer can be read for the debug process (GMAC_CUR_HOST_TX_DESC and GMAC_CUR_HOST_RX_DESC).

The values of the current host transmit buffer address pointer and receive buffer address pointer can be read for the debug process (GMAC_CUR_HOST_TX_Buf_ADDR and GMAC_CUR_HOST_RX_BUF_ADDR).

Stop and Start Operation

When the transmission is required to be paused for some time then the following steps can be followed.

1. Disable the Transmit DMA (if applicable), by clearing ST (bit 13) of the control register GMAC_OP_MODE.

2. Wait for any previous frame transmissions to complete. This can be checked by reading the appropriate bits of MAC Debug register.

3. Disable the MAC transmitter and MAC receiver by clearing the bits Transmit enable (TE bit-3) and Receive Enable (RE bit-2) in egister GMAC_MAC_CONF.

4. Disable the Receive DMA (if applicable), after making sure the data in the RX FIFO is transferred to the system memory (by reading the register GMAC_DEBUG).

5. Make sure both the TX FIFO and RX FIFO are empty.

6. To re-start the operation, start the DMAs first, before enabling the MAC Transmitter and Receiver.

24.6.5 Clock Architecture

In RMII mode, reference clock and TX/RX clock can be from CRU or external OSC as following figure.

The mux select rmii_speed is GRF_SOC_CON1[11].

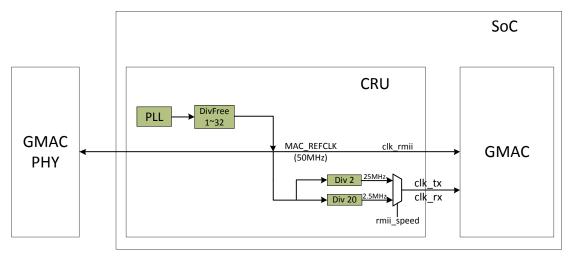


Fig. 24-12 RMII clock architecture when clock source from CRU

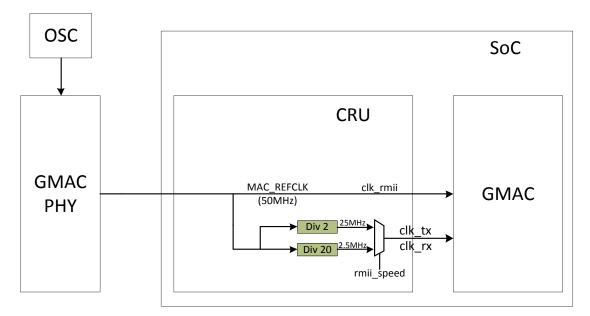


Fig. 24-13 RMII clock architecture when clock source from external OSC

In RGMII mode, clock architecture only supports that TX clock source is from CRU as following figure.

In order to dynamicly adjust the timing between TX/RX clock with data, deleyline is integrated in TX and RX clock path. Register GRF_SOC_CON3[15:14] can enable the deleylines, and GRF_SOC_CON3[13:0] is used to determine the delay length. There are 100 deley elements in each delayline.

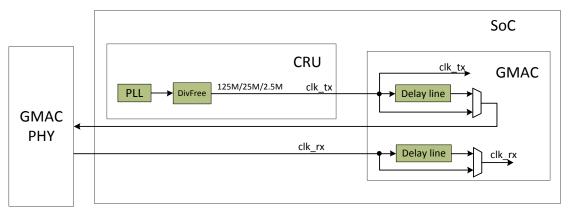


Fig. 24-14 RGMII clock architecture when clock source from CRU

24.6.6 Remote Wake-Up Frame Filter Register

The register wkupfmfilter_reg, address (028H), loads the Wake-up Frame Filter register. To load values in a Wake-up Frame Filter register, the entire register (wkupfmfilter_reg) must be written. The wkupfmfilter_reg register is loaded by sequentially loading the eight register values in address (028) for wkupfmfilter_reg0, wkupfmfilter_reg1, ... wkupfmfilter_reg7, respectively. wkupfmfilter_reg is read in the same way.

The internal counter to access the appropriate wkupfmfilter_reg is incremented when lane3 (or lane 0 in big-endian) is accessed by the CPU. This should be kept in mind if you are accessing these registers in byte or half-word mode.

wkupfmfilter_reg0	Filter 0 Byte Mask							
wkupfmfilter_reg1		Filter 1 Byte Mask						
wkupfmfilter_reg2		Filter 2 Byte Mask						
wkupfmfilter_reg3	Filter 3 Byte Mask							
wkupfmfilter_reg4	RSVD	Filter 3 Command	RSVD	Filter 2 Command	RSVD	Filter 1 Command	RSVD	Filter 0 Command
wkupfmfilter_reg5	Filter 3	Offset	Filter 2	Offset	Filter 1 Offset Filter 0 Offset			Offset
wkupfmfilter_reg6	Filter 1 CRC - 16					Filter 0 C	RC - 16	
wkupfmfilter_reg7		Filter 3 C	RC - 16			Filter 2 C	RC - 16	

Fig. 24-15 Wake-Up Frame Filter Register

Filter i Byte Mask

This register defines which bytes of the frame are examined by filter i (0, 1, 2, and 3) in order to determine whether or not the frame is a wake-up frame. The MSB (thirty-first bit) must be zero. Bit j [30:0] is the Byte Mask. If bit j (byte number) of the Byte Mask is set, then Filter i Offset + j of the incoming frame is processed by the CRC block; otherwise Filter i Offset + j is ignored.

Filter i Command

This 4-bit command controls the filter i operation. Bit 3 specifies the address type, defining the pattern's destination address type. When the bit is set, the pattern applies to only multicast frames; when the bit is reset, the pattern applies only to unicast frame. Bit 2 and Bit 1 are reserved. Bit 0 is the enable for filter i; if Bit 0 is not set, filter i is disabled.

Filter i Offset

This register defines the offset (within the frame) from which the frames are examined by filter i. This 8-bit pattern-offset is the offset for the filter i first byte to examined. The minimum allowed is 12, which refers to the 13th byte of the frame (offset value 0 refers to the first byte of the frame).

Filter i CRC-16

This register contains the CRC_16 value calculated from the pattern, as well as the byte mask programmed to the wake-up filter register block.

24.6.7 System Consideration During Power-Down

GMAC neither gates nor stops clocks when Power-Down mode is enabled. Power saving by clock gating must be done outside the core by the CRU. The receive data path must be clocked with clk_rx_i during Power-Down mode, because it is involved in magic packet/wake-on-LAN frame detection. However, the transmit path and the APB path clocks can be gated off during Power-Down mode.

The pmt interrupt is asserted when a valid wake-up frame is received. This interrupt is generated in the clk_rx domain.

The recommended power-down and wake-up sequence is as follows.

1. Disable the Transmit DMA (if applicable) and wait for any previous frame transmissions to complete. These transmissions can be detected when Transmit Interrupt (TI - Register GMAC_STATUS[0]) is received.

2. Disable the MAC transmitter and MAC receiver by clearing the appropriate bits in the MAC Configuration register.

3. Wait until the Receive DMA empties all the frames from the Rx FIFO (a software timer may be required).

4. Enable Power-Down mode by appropriately configuring the PMT registers.

5. Enable the MAC Receiver and enter Power-Down mode.

6. Gate the APB and transmit clock inputs to the core (and other relevant clocks in the system) to reduce power and enter Sleep mode.

7. On receiving a valid wake-up frame, the GMAC asserts the pmt interrupt signal and exits Power-Down mode.

8. On receiving the interrupt, the system must enable the APB and transmit clock inputs to the core.

9. Read the register GMAC_PMT_CTRL_STA to clear the interrupt, then enable the other modules in the system and resume normal operation.

24.6.8 GRF Register Summary

GRF Register	Register Description
	PHY interface select
GRF_SOC_CON1[8:6]	3'b001: RGMII
	3'b100: RMII
	All others: Reserved
	GMAC transmit flow control
	When set high, instructs the GMAC to transmit PAUSE Control
GRF_SOC_CON1[9]	frames in Full-duplex mode. In Half-duplex mode, the GMAC
	enables the Back-pressure function until this signal is made low
	again
	gmac_speed
GRF_SOC_CON1[10]	1'b1: 100-Mbps
	1'b0: 10-Mbps
	RMII clock selection
GRF_SOC_CON1[11]	1'b1: 25MHz
	1'b0: 2.5MHz
	RGMII clock selection
GRF_SOC_CON1[13:12]	2'b00: 125MHz
	2'b11: 25MHz
	2'b10: 2.5MHz
	RMII mode selection
GRF_SOC_CON1[14]	1'b1: RMII mode 1'b0: Reserved
GRF_SOC_CON3[6:0]	RGMII TX clock delayline value
GRF_SOC_CON3[13:7]	RGMII RX clock delayline value
	RGMII TX clock delayline enable 1'b1: enable
GRF_SOC_CON3[14]	1'b0: disable
GRF_SOC_CON3[15]	RGMII RX clock delayline enable 1'b1: enable
	1'b0: disable

Chapter 25 PS/2 Controller

25.1 Overview

The PS/2 is a bi-directional serial bus protocol that provides an efficient and simple method of information exchange between host and devices. This PS/2 controller supports master mode acting as a bridge between AMBA APB protocol and generic PS/2 bus system.

- PS/2 controller supports the following features:
- Support 32bits AMBA2.0 APB bus interface protocol
- Support PS/2 data communication protocol
- Support PS/2 master mode
- Software programmable timing requirement to support max PS/2 clock frequency to 33KHZ
- Support status to be queried for data communication error
- Support interrupt mode for data communication finish
- Support timeout mechnism for data communication
- Support interrupt mode for data communication timeout

25.2 Block Diagram

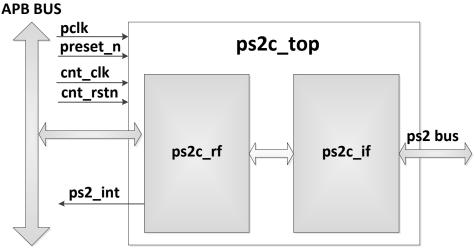


Fig. 25-1 PS/2 controller architecture

PS2C_RF

PS2C_RF module is used to control the PS/2 controller operation by the host with APB interface. It implements the register configuration and the interrupt functionality. It also collects the status signals to be queried by the host.

PS2C_IF

PS2C_IF module implements the PS/2 master operation for transmitting data to and receiving data from other PS/2 devices. The PS/2 master operation works at the pclk domain. PS2C_IF module also implements timing requirement counters and all the counters work at the cnt clk domain.

PS2C_TOP

PS2C_TOP module is the top module of the PS/2 controller.

25.3 Function description

This chapter provides a description about the functions and behavior of PS/2 controller. The PS/2 controller supports only Master function. The operations of PS/2 controller is divided to 3 parts and described separately: receiving mode, sending mode and inhibition mode.

25.3.1 PS/2 receiving mode

Configure the PS2C_CTRL[2:1] as 2'b00 and enable controller, the PS/2 controller will work at receiving mode. In receiving mode, the PS/2 controller can receive the data transmitted from the PS/2 device. The receiving timing is showed as fig,

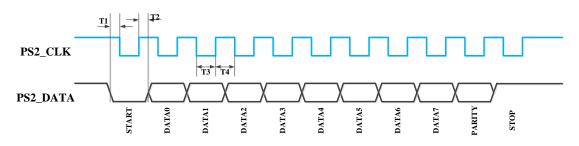
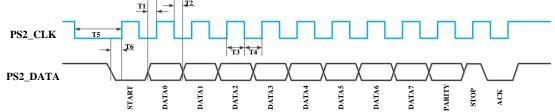
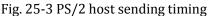


Fig. 25-2 PS/2 host receiving timing

In receiving mode, the PS/2 controller waits to receive data transmitted from PS/2 device. Every transmission includes 11 bits data (one "start" bit, eight "information" bits, one "parity" bit and one "stop" bit).


When negedge of ps2_clk is captured and ps2_data is low, the "start" bit is received. Then controller captures the following 10 bits data at the negedge of ps2_clk.


After finish receiving a data package, the controller will generate the receiving finish status and receiving finish interrupt (if receiving finish interrupt is enabled). The host can get the receiving data by reading the PS2C_RBR register. And if there is error in the data package, the controller will generate the error status.

In the controller, there is a receiving timeout dection circuit. This circuit is enabled by configuring the PS2C_CTRL[3] as 1'b1. The receiving timeout period is set by configuring the PS2C_RTR register. The unit of PS2C_RTR is cnt_clk cycle. If a data package receiving time exceeds the receiving timeout period after controller receives "start" bit, the controller will generate the receiving timeout status and receiving timeout interrupt (if receiving timeout interrupt is enabled).

25.3.2 PS/2 sending mode

Configure the PS2C_CTRL[2:1] as 2'b01 and enable controller, the PS/2 controller will work at sending mode. In sending mode, the PS/2 controller can send the data to the PS/2 device. The transmission timing is showed as fig,

In sending mode, the host sends data by writing PS2C_TBR register which includes 8 information bits. Every transmission includes 12 bits data (one "start" bit, eight "information" bits, one "parity" bit, one "stop" bit and one "ack" bit from PS/2 device). When there is data to be sent to PS/2 device, controller pulls low the ps2_clk for T5 time duration (at least 100 microseconds) to request the PS/2 device receiving data. During T5 time duration, controller needs to pull low the ps2_data to low for T6 time duration (at least 5 microseconds). After T5 time duration, the "start" bit will be sent.

After the "start" bit is sent, controller sends the following 10 bits data captured by PS/2 device at the posedge of ps2_clk. The controller changes the sending bit data at the low duration of ps2_clk, and T1 (at least 5 microseconds) and T2 (at least 5 microseconds) time duration must be met.

When finish sending the 11 bits data, controller will capture the "ack" bit at the next negedge of ps2_clk. If the "ack" bit is 1'b0, it represents data package sending success, otherwise represents sending error.

Host can configure the PS2C_TRR1, PS2C_TRR2 and PS2C_TRR3 registers respectively to meet the time of T5, T6 and T2. The unit of PS2C_TRR1, PS2C_TRR2 and PS2C_TRR3 is cnt_clk cycle.

After finish sending a data package, the controller will generate the sending finish status and sending finish interrupt (if sending finish interrupt is enabled). And if the "ack" bit is 1'b1, the controller will generate the error status.

In the controller, there is a sending timeout dection circuit. This circuit is enabled by configuring the PS2C_CTRL[4] as 1'b1. The sending timeout period is set by configuring the PS2C_WTR register. The unit of PS2C_WTR is cnt_clk cycle. If a data package sending time exceeds the sending timeout period after controller sends request to device, the controller will generate the sending timeout status and sending timeout interrupt (if sending timeout interrupt is enabled). **25.3.3 PS/2 inhibition mode**

Configure the PS2C_CTRL[2:1] as 2'b10 and enable controller, the PS/2 controller will work at inhibition mode. In inhibition mode, the PS/2 controller will pull ps2_clk low to inhibit the PS/2 device sending data. The controller will not release the inhibition until disable controller.

25.4 Register Description

This section describes the control/status registers of the design.

Name	Offset	Size	Reset Value	Description
PS2C_CTRL	0x0000	W	0x0000000	PS2C control register
PS2C_RBR	0x0004	W	0x0000000	PS2C receiving buffer register
PS2C_TBR	0x0008	W	0x0000000	PS2C sending buffer register
PS2C_STAT	0x000c	W	0x0000010	PS2C status register
PS2C_IER	0x0010	W	0x0000000	PS2C interrupt enable register
PS2C_ICR	0x0014	W	0x0000000	PS2C interrupt clear register
PS2C_ISR	0x0018	W	0x0000000	PS2C interrupt status register
PS2C_TRR1	0x001c	W	0x00000b39	PS2C time require register1
PS2C_TRR2	0x0020	W	0x000000ef	PS2C time require register2
PS2C_TRR3	0x0024	W	0x000000ef	PS2C time require register3
PS2C_RTR	0x0028	W	0x00000000	PS2C receiving timeout require
				register
PS2C_WTR	0x002c	W	0x0000000	PS2C sending timeout require
PS2C_FLT	0x0030	W	0x00000000	register PS2C filter width selection register

25.4.1 Registers Summary

Notes: <u>Size</u> : **B** - Byte (8 bits) access, **HW** - Half WORD (16 bits) access, **W** -WORD (32 bits) access

25.4.2 Detail Register Description

PS2C_CTRL

Address: Operational Base + offset (0x0000) PS2C control register

Bit	Attr	Reset Value	Description
31:21	RO	0x0	reserved

Bit	Attr	Reset Value	Description
			write_enable
			bit0~4 write enable
			When bit 16=1, bit 0 can be written by
			software.
			When bit 16=0, bit 0 cannot be written by
20:16	WO	0x00	software.
			When bit 20=1, bit 4 can be written by
			software.
			When bit $20=0$, bit 4 cannot be written by
			software.
15:5	RO	0x0	reserved
			ps2c_tm_timeout_en
			ps2c sending timeout enable
			This bit is used to enable the sending timeout
4	RW	0x0	circuit.
4		UXU	1'b0: ps2c sending timeout disable.
			1'b1: ps2c sending timeout enable.
			Only when this bit is set, the
			PS2C_STAT[6](ps2c_tm_timeouot) is access.
			ps2c_rv_timeout_en
			ps2c receiving timeout enable
			This bit is used to enable the receiving timeout
3	RW	0x0	circuit.
5		0.0	1'b0: ps2c receiving timeout disable.
			1'b1: ps2c receiving timeout enable.
			Only when this bit is set, the
			PS2C_STAT[2](ps2c_rv_timeouot) is access.
			ps2c_mode
			ps2c work mode selection
			2'b00: ps2c works as receiving mode.
2:1	RW	0x0	2'b01: ps2c works as sending mode.
			2'b10: ps2c works as inhibition mode, inhibits
			the ps2 device send data.
			2'b11: reserved.
			ps2c_enable
0	RW	0x0	ps2c enable signal
Ĭ			1'b0: ps2c disable.
			1'b1: ps2c enable.

PS2C_RBR

Address: Operational Base + offset (0x0004) PS2C receiving buffer register

Bit	Attr	Reset Value	Description
31:8	RO	0x0	reserved

Bit	Attr	Reset Value	Description
7:0	RO	0x00	ps2c_rbuf ps2c receiving buffer

PS2C_TBR

Address: Operational Base + offset (0x0008) PS2C sending buffer register

Bit	Attr	Reset Value	Description
31:8	RO	0x0	reserved
7:0	7.0		ps2c_tbuf
7.0	WO	0x00	ps2c sending buffer

PS2C_STAT

Address: Operational Base + offset (0x000c) PS2C status register

Bit	Attr	Reset Value	Description
31:23	RO	0x0	reserved
			write_enable2
			bit5~6 write enable
			When bit 21=1, bit 5 can be written by
			software.
22:21	wo	0x0	When bit 21=0, bit 5 cannot be written by
22121		0,00	software.
			When bit 22=1, bit 6 can be written by
			software.
			When bit 22=0, bit 6 cannot be written by
			software.
20:19	RO	0x0	reserved
			write_enable1
			bit1~2 write enable
			When bit 17=1, bit 1 can be written by
			software.
18:17	wo	0x0	When bit 17=0, bit 1 cannot be written by
_	_		software.
			When bit 18=1, bit 2 can be written by
			software.
			When bit 18=0, bit 2 cannot be written by
			software.
16:8	RO	0x0	reserved

Bit	Attr	Reset Value	Description
			ps2c_tm_busy
			ps2c sending busy
			This bit is set when write PS2C_TBR to start
		0.40	data sending to ps2 device, and is cleared
7	RO	0x0	when ps2c receives ack signal or happen
			sending timeout.
			1'b0: ps2c is in sending idle status.
			1'b1: ps2c is in sending busy status.
			ps2c_tm_timeout
			ps2c sending timeout
			When ps2c sending busy status exceeds the
			ps2c_tm_timeout_req cnt_clk cycles time,
6	RW	0x0	this bit is set.
			1'b0: ps2c is not sending timeout.
			1'b1: ps2c is sending timeout.
			This bit is cleared by writing 1'b0.
			ps2c_tm_err
			ps2c sending error
			When ps2c_tbe is 1'b1, this bit indicates
			whether the data sent to ps2 device is
5	RW	0x0	successfully received.
			1'b0: ps2 device ack 1'b0 to ps2c.
			1'b1: ps2 device ack 1'b1 to ps2c.
			This bit is cleared by writing 1'b0.
			ps2c_tbe
			ps2c sending buffer empty
4	RO	0x1	1'b0: ps2c sending buffer not empty.
			1'b1: ps2c sending buffer empty.
			This bit is cleared by writing the PS2C_TBR.
			ps2c_rv_busy
			ps2c receiving busy
			This bit is set when ps2c receives start signal,
3	RO	0x0	and is cleared when ps2c receives stop signal
			or happen receiving timeout.
			1'b0: ps2c is in receiving idle status.
			1'b1: ps2c is in receiving busy status.
			ps2c_rv_timeout
			ps2c receiving timeout
			When ps2c receiving busy status exceeds the
		0.20	ps2c_rv_timeout_req cnt_clk cycles time, this
2	RW	0x0	bit is set.
			1'b0: ps2c is not receiving timeout.
			1'b1: ps2c is receiving timeout.
			This bit is cleared by writing 1'b0.

Bit	Attr	Reset Value	Description
			ps2c_rv_err
			ps2c receiving error
			When ps2c_ibf is 1'b1, this bit indicates
1	RW	0x0	whether the receiving data is odd parity error.
			1'b0: odd parity sucess.
			1'b1: odd parity error.
			This bit is cleared by writing 1'b0.
			ps2c_rbf
			ps2c receiving buffer full
0	RO	0x0	1'b0: ps2c receiving buffer not full.
			1'b1: ps2c receiving buffer full.
			This bit is cleared by reading the PS2C_RBR.

PS2C_IER

Address: Operational Base + offset (0x0010) PS2C interrupt enable register

Bit	Attr	Reset Value	Description
31:20	RO	0x0	reserved
			write_enable
			bit0~3 write enable
			When bit 16=1, bit 0 can be written by
			software.
			When bit 16=0, bit 0 cannot be written by
19:16	WO	0x0	software.
			When bit 19=1, bit 3 can be written by
			software.
			When bit 19=0, bit 3 cannot be written by
			software.
15:4	RO	0x0	reserved
			ps2c_tm_timeout_inten
3	RW	0x0	enable ps2c sending timeout interrupt
5		0.00	1'b0: disable interrupt.
			1'b1: enable interrupt.
			ps2c_fsh_tm_inten
2	RW	W 0x0	enable ps2c finish sending one byte interrupt
2		0.00	1'b0: disable interrupt.
			1'b1: enable interrupt.
			ps2c_rv_timeout_inten
1	RW	0x0	enable ps2c receiving timeout interrupt
-			1'b0: disable interrupt.
			1'b1: enable interrupt.

Bit	Attr	Reset Value	Description
			ps2c_fsh_rv_inten
			enable ps2c finish receiving one bype
0	RW	0x0	interrupt
			1'b0: disable interrupt.
			1'b1: enable interrupt.

PS2C_ICR

Address: Operational Base + offset (0x0014) PS2C interrupt clear register

Bit	Attr	Reset Value	Description	
31:20	RO	0x0	reserved	
19:16	wo	0×0	<pre>write_enable bit0~3 write enable When bit 16=1, bit 0 can be written by software. When bit 16=0, bit 0 cannot be written by software. When bit 19=1, bit 3 can be written by software. When bit 19=0, bit 3 cannot be written by software.</pre>	
15:4	RO	0x0	reserved	
3	W1C	0×0	ps2c_tm_timeout_intclr clear ps2c sending timeout interrupt 1'b0: not clear interrupt. 1'b1: clear interrupt.	
2	W1C	0x0	ps2c_fsh_tm_intclr clear ps2c finish sending one byte interrupt 1'b0: not clear interrupt. 1'b1: clear interrupt.	
1	W1C	0x0	ps2c_rv_timeout_intclr clear ps2c receiving timeout interrupt 1'b0: not clear interrupt. 1'b1: clear interrupt.	
0	W1C	0x0	1'b1: clear interrupt. ps2c_fsh_rv_intclr clear ps2c finish receiving one bype interrupt 1'b0: not clear interrupt. 1'b1: clear interrupt.	

PS2C_ISR

Address: Operational Base + offset (0x0018) PS2C interrupt status register

Bit	Attr	Reset Value	Description
31:4	RO	0x0	reserved

Bit	Attr	Reset Value	Description
			ps2c_tm_timeout_intst
3	RO	0x0	ps2c sending timeout interrupt status
5	κυ	0.00	1'b0: interrupt is not valid.
			1'b1: interrupt is valid.
			ps2c_fsh_tm_intst
2	RO 0x0	ps2c finish sending one byte interrupt status	
Z	ĸu	0.00	1'b0: interrupt is not valid.
			1'b1: interrupt is valid.
	RO 0x0	ps2c_rv_timeout_intst	
1		0×0	ps2c receiving timeout interrupt status
1			1'b0: interrupt is not valid.
			1'b1: interrupt is valid.
			ps2c_fsh_rv_intst
0	RO	0.20	ps2c finish receiving one bype interrupt status
0	KU	0x0	1'b0: interrupt is not valid.
			1'b1: interrupt is valid.

PS2C_TRR1

Address: Operational Base + offset (0x001c) PS2C time require register1

Bit	Attr	Reset Value	Description
31:0	RW	0x00000b39	ps2c_time_req1 ps2c time require 1 When ps2c sends data to ps2 device, this value defines the width of the low ps2_clk_o to send transmission request to the ps2 device. The unit is one cnt_clk cycle.

PS2C_TRR2

Address: Operational Base + offset (0x0020) PS2C time require register2

Bit	Attr	Reset Value	Description
31:0	RW	0x000000ef	ps2c_time_req2 ps2c time require 2 When ps2c sends data to ps2 device, this value defines the width between first ps2_data_o falling edge and first ps2_clk_o rising edge. The unit is one cnt_clk cycle.

PS2C_TRR3

Address: Operational Base + offset (0x0024)

PS2C time require register3

Bit Attr Reset Value Description			Bit	Attr	Reset Value	Description
----------------------------------	--	--	-----	------	-------------	-------------

Bit	Attr	Reset Value	Description
31:0	RW	0x000000ef	ps2c_time_req3 ps2c time require 3 When ps2c sending data to ps2 device, this value defines data change time after ps2_clk_i falling edge. The unit is one cnt_clk cycle.

PS2C_RTR

Address: Operational Base + offset (0x0028) PS2C receiving timeout require register

Bit	Attr	Reset Value	Description
31:0	RW	0×00000000	ps2c_rv_timeout_req ps2c receiving timeout require time The unit is one cnt_clk cycle.

PS2C_WTR

Address: Operational Base + offset (0x002c) PS2C sending timeout require register

Bit	Attr	Reset Value	Description
31:0	RW	0×00000000	ps2c_tm_timeout_req ps2c sending timeout require time The unit is one cnt clk cycle.

PS2C_FLT

Address: Operational Base + offset (0x0030) PS2C filter width selection register

Bit	Attr	Reset Value	Description
31:6	RO	0x0	reserved
5:0	RW	0×00	ps2c_clk_flt_sel ps2c filter width selection for ps2_clk The unit is one cnt_clk cycle.

25.5 Interface description

Table 25-1 PS/2 controller Interface Description

Module pin Direction Pad name			ΙΟΜUΧ
PS/2 controller 0 Interface			
ps2_clk	I/O	GPIO8_A[0]	$GPIO8A_IOMUX[1:0] = 01$
ps2_data	I/O	GPIO8_A[1]	$GPIO8A_IOMUX[3:2] = 01$

25.6 Application Notes

The PS/2 controller operation flow charts below are to describe how the software configures and performs a PS/2 transmission through this PS/2 controller. Descriptions are divided into 3 sections: receiving data mode, sending data mode and inhibition mode.

Note: Before change the controller's working mode, software needs to disable the controller firstly.

• Receiving data mode

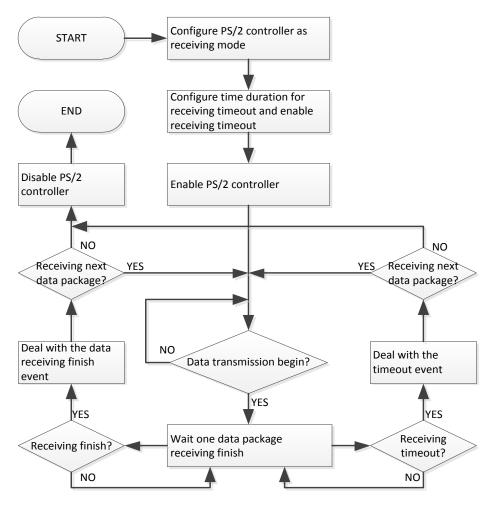


Fig. 25-4 Flow chat for PS/2 controller receiving data mode

• Sending data mode

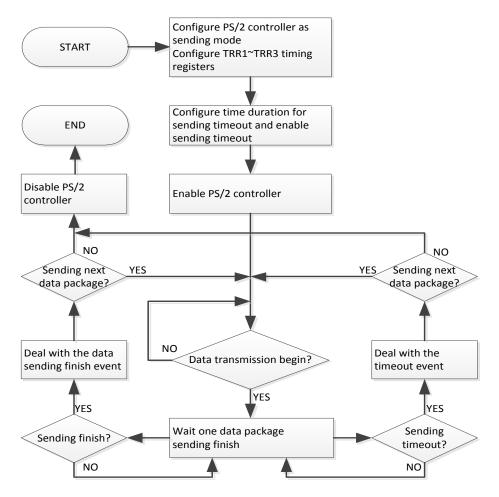


Fig. 25-5 Flow chat for PS/2 controller sending data mode

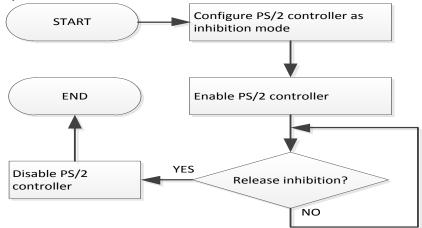


Fig. 25-6 Flow chat for PS/2 controller inhibition mode

Chapter 26 Smart Card Controller

26.1 Overview

The Smart Card Reader (SCR) is a communication controller that transmits data between the superior system and the Smart Card. The controller can perform a complete smart card session, including card activation, card deactivation, cold/warm reset, Answer to Reset (ATR) response reception, data transfers, etc.

SCR supports the following features:

Supports the ISO/IEC 7816-3:1997(E) and EMV2000 (4.0) specifications Performs functions needed for complete smart card sessions, including: Card activation and deactivation Cold/warm reset Answer to Reset (ATR) response reception Data transfers to and from the card Extensive interrupt support system Adjustable clock rate and bit (baud) rate Configurable automatic byte repetition Handles commonly used communication protocols: T=0 for asynchronous half-duplex character transmission T=1 for asynchronous half-duplex block transmission Automatic convention detection Configurable timing functions: Smart card activation time Smart card reset time Guard time **Timeout timers** Automatic operating voltage class selection Supports synchronous and any other non-ISO 7816 and non-EMV cards Advanced Peripheral Bus (APB) slave interface for easy integration with AMBA-based host

systems Block Diagram 26.2 Block Diagram

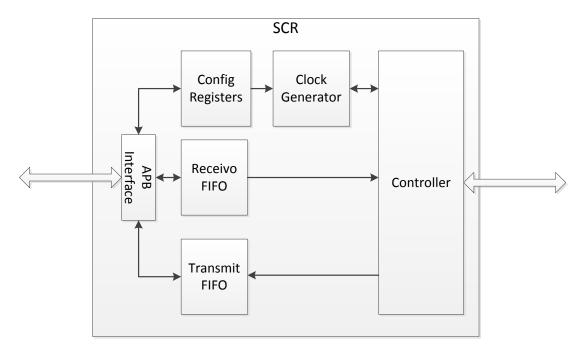


Fig. 26-1 SCR Block Diagram

The host processor gets access to PWM Register Block through the APB slave interface.

26.2.1 APB Interface

The host processor gets access to PWM Register Block through the APB slave interface. **26.2.2 Configuration Registers**

The Configuration Registers block provides control over all functions of the Smart Card Reader **26.2.3 Controller**

The Controller is the main block in the SCR core. This block controls receiving characters transmitted by the Smart Card, storing them in the RX FIFO, and transmitting them to the Smart Card. This block also performs card activation, deactivation, and cold and warm reset. After the card is reset, the Answer To Reset (ATR) sequence is received by the controller and stored in RX FIFO.

The parallel to serial conversion needed to transmit data from a Smart Card Reader to a Smart Card and the serial to parallel conversion needed to transmit data in the opposite direction is performed by the UART. The UART also performs the guard time, parity checking and character repeating functions.

26.2.4 Receive FIFO

The Receive FIFO is used to store the data received from the Smart Card until the data is read out by the superior system.

26.2.5 Transmit FIFO

The Transmit FIFO is used to store the data to be transmitted to the Smart Card.

26.2.6 Clock Generator

The Clock Generator generates the Smart Card Clock signal and the Baud Clock Impulse signal, used in timing the Smart Card Reader.)

26.3 Function Description

A Smart Card session consists of following stages:

- 1. Smart Card insertion
- 2. Activation of contacts and cold reset sequence
- 3. Answer To Reset sequence (ATR)
- 4. Execution of transaction
- 5. Deactivation of contacts
- 6. Smart Card removal

26.3.1 Smart Card Insertion

A Smart Card session starts with the insertion of the Smart Card. This event is signaled to the SCR using the SCDETECT input. The SCPRESENT bit is set and also the SCINS interrupt is asserted (if enabled).

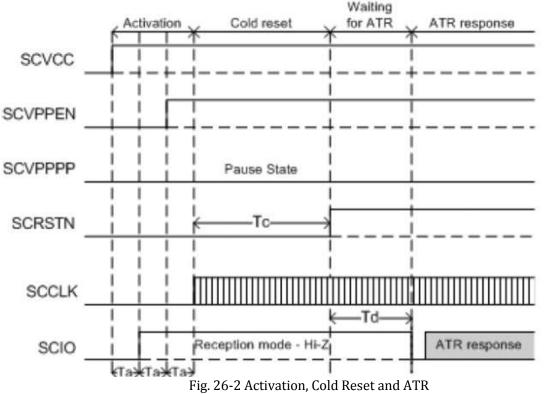
When the external card detect switch is not used, the input pin SCDETECT must be tied to inactive state.

26.3.2 Automatic operating voltage class selection

There are three operating classes (1.8V - class C, 3V - class B and 5V - class A) defined in ISO/IEC 7816-3(2006) specification. Only 1.8V and 3.3V are supported by the SCR.

Before the activation of contacts, operating classes have to be enabled via bits VCC18, VCC33 in CTRL2 register. In case that no operating class is enabled, the controller performs activation for all two voltage classes (1.8V, 3V) in sequence.

When Smart Card Reader performs activation of contacts the lowest enabled voltage class is automatically applied first. When the first character start bit of ATR sequence is received, the selected voltage class is correct (even if the ATR is then received with errors). When the ATR sequence reception does not start, ATRFAIL interrupt is not activated, deactivation is performed and next higher enabled voltage class is applied. If the ATR sequence reception does not start and no other higher class is enabled was already applied the ATRFAIL interrupt is activated and the last applied voltage class remains active.


After the automatic voltage class selection is finished the selected class can be read from bits

VCC18, VCC33 in CTRL2 register. If the automatic voltage class selection fails, these bits remain untouched.

There is a delay applied between deactivation of contacts with lower voltage class and activation of contacts with higher voltage class. This delay should be at least 10 ms according to the ISO/IEC 7816-3 specification.

26.3.3 Activation of Contacts and Cold Reset Sequence

When the Smart Card is properly inserted and the ACT bit in CTRL2 register is asserted, the activation of contacts can be started. The duration of each part of the activation is the time Ta, which is equal to the ADEATIME register value. If no Vpp is necessary, the activation and deactivation part of Vpp can be omitted by clearing the AUTOADEAVPP bit in SCPADS register. The Cold Reset sequence follows immediately after the activation. Time (Tc) is the duration of the Reset. The EMV specification recommends that this value should be between 40000 and 45000. The activation of contacts and cold reset sequence is shown in .

26.3.4 Execution of Transaction

All transfers between the Smart Card Reader and a Smart Card are under the control of the superior system. It controls the number of characters sent to the Smart Card and it knows the number of characters expected to be returned from the Smart Card.

26.3.5 Warm Reset

The Warm Reset sequence is initialized by setting the WRST bit in the CTRL2 register to '1'. Smart Card Reader drives the SCRSTN signal to '0' to perform the Warm Reset as shown in . After the SCRSTN assertion, the Warm Reset sequence then continues the same way as the Cold Reset sequence.

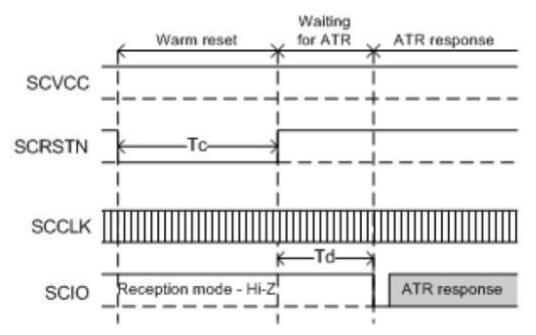
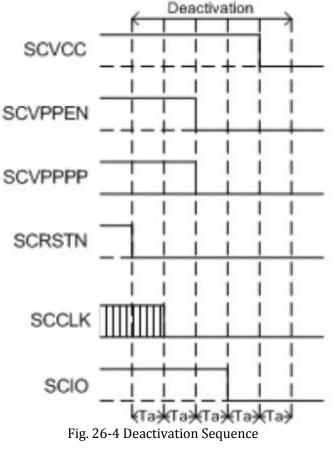



Fig. 26-3 Warm Reset and ATR

26.3.6 Deactivation of Contacts

After the smart card reader detects the removal of the smart card (SCREM interrupt) or the superior system initiates deactivation by setting the DEACT bit in the CTRL2 register to `1', the deactivation is performed immediately as shown in . The duration time (Ta), of each part of the deactivation sequence time is defined in the ADEATIME register.

26.4 Register description

26.4.1 Register Summary

Name Offset Size Reset Value	Description
------------------------------	-------------

Name	Offset	Size	Reset Value	Description
SCR_CTRL1	0x0000	HW	0x0000	Control Register 1
SCR_CTRL2	0x0004	HW	0x0000	Control Register 2
SCR_SCPADS	0x0008	HW	0x0000	Smart Card Pads Register
SCR_INTEN1	0x000c	HW	0x0000	Interrupt Enable Register 1
SCR_INTSTAT1	0x0010	HW	0x0000	Interrupt Status Register 1
SCR_FIFOCTRL	0x0014	HW	0x0000	FIFO Control Register
SCR_LEGTXFICNT	0x0018	В	0x00	Legacy TX FIFO Counter
SCR_LEGRXFICNT	0x0019	В	0x00	Legacy RX FIFO Counter
SCR_RXFITH	0x001c	HW	0x0000	RX FIFO Threshold
SCR_REP	0x0020	В	0x00	Repeat
SCR_SCCDDIV	0x0024	HW	0x0000	Smart Card Clock Divisor
SCR_BAUDDIV	0x0028	HW	0x0000	Baud Clock Divisor
SCR_SCGUTIME	0x002c	В	0x00	Smart Card Guardtime
SCR_ADEATIME	0x0030	HW	0x0000	Activation / Deactivation Time
SCR_LOWRSTTIME	0x0034	HW	0x0000	Reset Duration
SCR_ATRSTARTLIMIT	0x0038	HW	0x0000	ATR Start Limit
SCR_C2CLIM	0x003c	HW	0x0000	Two Characters Delay Limit
SCR_INTEN2	0x0040	HW	0x0000	Interrupt Enable Register 2
SCR_INTSTAT2	0x0044	HW	0x0000	Interrupt Status Register 2
SCR_TXFITH	0x0048	HW	0x0000	TX FIFO Threshold
SCR_TXFIFOCNT	0x004c	HW	0x0000	TX FIFO Counter
SCR_RXFIFOCNT	0x0050	HW	0x0000	RX FIFO Counter
SCR_BAUDTUNE	0x0054	В	0x00	Baud Tune Register
SCR_FIFO	0x0200	В	0x00	FIFO

Notes: <u>Size</u> : **B** - Byte (8 bits) access, **HW** - Half WORD (16 bits) access, **W** -WORD (32 bits) access

26.4.2 Detail Register Description

SCR_CTRL1

Address: Operational Base + offset (0x0000) Control Register 1

Bit	Attr	Reset Value	Description
	RW	0×0	GINTEN
15			Global Interrupt Enable
15		0.00	When high, INTERRUPT output assertion is
			enabled.
14	RO	0x0	reserved
		N 0×0	TCKEN
	RW		TCK enable
			When enabled all ATR bytes beginning from
13			T0 are being XOR-ed. The result must be
			equal to TCK byte (when present). If the TCK
			byte does not match the computed value the
			ATR is considered to be malformed.

Bit	Attr	Reset Value	Description
			ATRSTFLUSH
12	RW	0x0	ATR Start Flush FIFO
12	K VV	UXU	When enabled, both FIFOs are flushed before
			the ATR is started.
			ТОТ1
			T0/T1 Protocol
			Controls the using of $T=0$ or $T=1$ protocol. No
			character repeating is used when T=1
			protocol is selected.
			The Character Guardtime (minimum delay
11	RW	0x0	between the leading edges of two consecutive
			characters) is reduced to 11 ETU when T=1
			protocol is used and Guardtime value $N = 255$.
			The delay between the leading edge of the last
			received character and the leading edge of the
			first character transmitted is 16 ETU when
			T=0 protocol is used and 22 ETU when T=1
			protocol is used.
			TS2FIFO
			TS to FIFO Enables to store the first ATR character TS in
10	RW	0x0	
			RX FIFO. During ideal card session there is no necessity to store TS character, so it can be
			disabled
			RXEN
		0x0	Receiving enable
	RW		When enabled the characters sent by the
9			Smart Card are received by the UART and
			stored in RX FIFO. Receiving is internally
			disabled while a transmission is in progress.
	1	0×0	TXEN
			Transmission enable
8	RW		When enabled the characters are read from
			TX FIFO and transmitted through UART to the
			Smart Card
		0×0	CLKSTOPVAL
_	RW		Clock Stop Value
7			The value of the scclk output during the clock
			stop state.

Bit	Attr	Reset Value	Description
			CLKSTOP
			Clock Stop
			Clock Stop. When this bit is asserted and the
			smart card I/O line is in 'Z'state, the SCR core
			stops driving of the smart card clock signal
			after the CLKSTOPDELAY time expires. The
			smart card clock is restarted immediately
			after the CLKSTOP signal is deasserted. New
6	RW	0x0	character transmission can be started by
			superior system after the CLKSTARTDELAY
			time expires. The expiration of both times is
			signaled by the CLKSTOPRUN bit in the
			Interrupt registers. Reading '1' from this bit
			signals that the clock is stopped or
			CLKSTARTDELAY time not expired yet.
			Reading '0' from this bit signals that the clock
			is not stopped.
5:3	RO	0x0	reserved
	RW	0×0	PECH2FIFO
2			Character With Wrong Parity to FIFO
			Enables storage of the characters received
			with wrong parity in RX FIFO.
		0x0	INVORD
1	RW		Inverse Bit Ordering
			When High, iverse bit ordering
	RW	W 0×0	convention(MSB-LSB) is used. INVLEV
			Inverse Bit Level
0			When high, inverse level convention is
			used(A= '1', Z='0');
			useu(n-1, 2-0),

SCR_CTRL2

Address: Operational Base + offset (0x0004) Control Register 2

Bit	Attr	Reset Value	Description
			Reserved3
15:8	RO	0x00	Reserved
			Reserved bits are hard-wired to zero

Bit	Attr	Reset Value	Description
			VCC50
			Control 5V Smart Card Vcc
			Control 5V Smart Card Vcc. Setting of this bit
7		0.40	allows selection of 5V Vcc for Smart Card
7	RW	0x0	session (Class A). After the selection of
			operating class is completed, this bit is in `1'.if
			this class was selected. Default value after
			reset is `0'
			VCC33
			Control 3V Smart Card Vcc
			Setting of this bit allows selection of 3V Vcc for
6	RW	0x0	Smart Card session (Class B). After the
			selection of operating class is completed, this
			bit is in '1'.if this class was selected. Default
			value after reset is '0'.
			VCC18
			Control 1.8V Smart Card Vcc
			Control 1.8V Smart Card Vcc. Setting of this
5	RW	0x0	bit allows selection of 1.8V Vcc for Smart Card
5			session (Class C). After the selection of
			operating class is completed, this bit is in `1'.if
			this class was selected. Default value after
			reset is `0'
		/ 0×0	DEACT
			Deactivation
4	RW		Setting of this bit initializes the deactivation
			sequence. When the deactivation is finished,
			the DEACT bit is automatically cleared.
		0x0	ACT
			Activation
3	RW		Setting of this bit initializes the activation
			sequence. When the activation is finished, the
			ACT bit is automatically cleared.
			WARMRST
2	wo	0×0	Warm Reset Command
			Writing `1'.to this bit initializes Warm Reset of
			the Smart Card. This bit is always read as '0'
1:0	RO	0x0	reserved

SCR_SCPADS

Address: Operational Base + offset (0x0008) Smart Card Pads Register

Bit	Attr	Reset Value	Description
15:10	RO	0x0	reserved

Bit	Attr	Reset Value	Description
			SCPRESENT
			Smart Card presented
9	RO	0x0	This bit is set to `1'.when the SCDETECT input
			is active at least for SCDETECTTIME
			DSCFCB
8	RW	0x0	Direct Smart Card Function Code Bit
			It provides direct access to SCFCB output
			DSCVPPPP
7	RW	0x0	Direct Smart Card Vpp Pause/Prog
			It provides direct access to SCVPPPP output
			DSCVPPEN
6	RW	0x0	Direct Smart Card Vpp Enable
			It provides direct access to SCVPPEN output
			AUTOADEAVPP
			Automatic Vpp Handling.
5	RW	0x0	When high, it enables automatic handling of
			DSCVPPEN and DSCVPPPP signals during
			activation and deactivation sequence.
			DSCVCC
			Direct Smart Card Vcc
			Direct Smart Card Vcc. When DIRACCPADS =
4	RW	0x0	'1'., the DSCVCC bit provides direct access to
		UNU	SCVCCx outputs. The appropriate SCVCC18,
			SCVCC33 and SCVCC50 outputs are driven
			according to state of bits VCC18, VCC33 and
			VCC50 in CTRL2 register.
		0x0	DSCRST
3	RW		Direct Smart Card Reset
			When DIRACCPADS = $1'$., the DSCRST bit
			provides direct access to SCRST output
			DSCCLK
2	RW	0x0	Direct Smart Card Clock
			When DIRACCPADS = '1'., the DSCCLK bit
			provides direct access to SCCLK output
			DSCIO
1	RW RW	0×0 0×0	Direct Smart Card Input/Output
			When DIRACCPADS = $1'$, the DSCIO bit
			provides direct access to SCIO pad.
			DIRACCPADS
0			Direct Access To Smart Card Pads
0			When high, it disables a serial interface
			functionality and enables direct control of the
			smart card pads using following 4 bits.

SCR_INTEN1

Address: Operational Base + offset (0x000c) Interrupt Enable Register 1

Bit	Attr	Reset Value	Description
			SCDEACT
			Smart Card Deactivation Interrupt
15	RW	0x0	When enabled, this interrupt is asserted after
			the Smart Card deactivation sequence is
			complete.
			SCACT
			Smart Card Activation Interrupt.
14	RW	0x0	When enabled, this interrupt is asserted after
			the Smart Card activation sequence is
			complete.
			SCINS
13	RW	0x0	Smart Card Inserted Interrupt
13		0.00	When enabled, this interrupt is asserted after
			the smart card insertion
			SCREM
12	RW	0x0	Smart Card Removed Interrupt.
12		0.0	When enabled, this interrupt is asserted after
			the smart card removal.
	RW	0×0	ATRDONE
11			ATR Done Interrupt
**			When enabled, this interrupt is asserted after
			the ATR sequence is successfully completed.
			ATRFAIL
10	RW	0x0	ATR Fail Interrupt
			When enabled, this interrupt is asserted if the
		<u> </u>	ATR sequence fails.
			RXTHRESHOLD
			RX FIFO Threshold Interrupt
9	RW	0x0	When enabled, this interrupt is asserted if the
			number of bytes in RX FIFO is equal or
			exceeds the RX FIFO threshold.
			C2CFULL
			Two Consecutive Characters Limit Interrupt
			When enabled, this interrupt is asserted if the
			time between two consecutive characters,
			transmitted between the Smart Card and the
8	RW	0×0	Reader in both directions, is equal the Two
			Characters Delay Limit described below. The
			C2CFULL interrupt is internally enabled from
			the ATR start to the deactivation or ATR
			restart initialization. It is recommended to use
			this counter to detect unresponsive Smart
			Cards.

Bit	Attr	Reset Value	Description
			RXPERR
			Reception Parity Error Interrupt
			When enabled, this interrupt is asserted after
7	RW	0x0	the character with wrong parity was received
			when the number of repeated receptions
			exceeds RXREPEAT value or T=1 protocol is
			used
			TXPERR
			Transmission Parity Error Interrupt.
			When enabled, this interrupt is asserted if the
6	RW	0x0	Smart Card signals wrong character parity
			during the guardtime after the character
			transmission was repeated TXREPEAT-times
			RXDONE
			Reception Done Interrupt
5	RW	0x0	When enabled, this interrupt is asserted after
		UNU	a character was received from the Smart
			Card.
			TXDONE
			Transmission Done Interrupt
4	RW	0x0	When enabled, this interrupt is asserted after
		UXU	one character was transmitted to the Smart
			Card.
			CLKSTOPRUN
			Smart Card Clock Stop Interrupt
			When enabled, this interrupt is asserted in
			two cases:
3	RW	0x0	1. When the smart card clock is stopped (after
5		UNU	CLOCKSTOP assertion).
			2. When the new character transfer can be
			started (the smart card clock is fully running
			after CLOCKSTOP de-assertion).
			RXFIFULL
			RX FIFO Full Interrupt
2	RW	0x0	When enabled, this interrupt is asserted if the
			RX FIFO is filled up.
			TXFIEMPTY
			TX FIFO Empty Interrupt.
1	RW	0x0	When enabled, this interrupt is asserted if the
			TX FIFO is emptied out.
			TXFIDONE
			TX FIFO Done Interrupt
0	RW	0×0	When enabled, this interrupt is asserted after
5			all bytes from TX FIFO were transferred to the
			Smart Card

SCR_INTSTAT1

Address: Operational Base + offset (0x0010) Interrupt Status Register 1

Bit	Attr	Reset Value	Description
			SCDEACT
			Smart Card Deactivation Interrupt
15	RW	0x0	When enabled, this interrupt is asserted after
			the Smart Card deactivation sequence is
			complete.
			SCACT
			Smart Card Activation Interrupt.
14	RW	0x0	When enabled, this interrupt is asserted after
			the Smart Card activation sequence is
			complete.
			SCINS
13	RW	0x0	Smart Card Inserted Interrupt
13	RW	UXU	When enabled, this interrupt is asserted after
			the smart card insertion
	RW	0×0	SCREM
12			Smart Card Removed Interrupt.
			When enabled, this interrupt is asserted after
			the smart card removal.
		0x0	ATRDONE
11	RW		ATR Done Interrupt
11			When enabled, this interrupt is asserted after
			the ATR sequence is successfully completed.
			ATRFAIL
10	RW	0×0	ATR Fail Interrupt
10			When enabled, this interrupt is asserted if the
			ATR sequence fails.
			RXTHRESHOLD
			RX FIFO Threshold Interrupt
9	RW	0x0	When enabled, this interrupt is asserted if the
			number of bytes in RX FIFO is equal or
			exceeds the RX FIFO threshold.

Bit	Attr	Reset Value	Description
			C2CFULL
			Two Consecutive Characters Limit Interrupt
			When enabled, this interrupt is asserted if the
			time between two consecutive characters,
			transmitted between the Smart Card and the
	5.47		Reader in both directions, is equal the Two
8	RW	0x0	Characters Delay Limit described below. The
			C2CFULL interrupt is internally enabled from
			the ATR start to the deactivation or ATR
			restart initialization. It is recommended to use
			this counter to detect unresponsive Smart
			Cards.
			RXPERR
			Reception Parity Error Interrupt
			When enabled, this interrupt is asserted after
7	RW	0x0	the character with wrong parity was received
			when the number of repeated receptions
			exceeds RXREPEAT value or T=1 protocol is
			used
			TXPERR
			Transmission Parity Error Interrupt.
6	RW	0x0	When enabled, this interrupt is asserted if the
			Smart Card signals wrong character parity
			during the guardtime after the character transmission was repeated TXREPEAT-times
			RXDONE
			Reception Done Interrupt
5	RW	0x0	When enabled, this interrupt is asserted after
5		0,0	a character was received from the Smart
			Card.
			TXDONE
			Transmission Done Interrupt
4	RW	0x0	When enabled, this interrupt is asserted after
			one character was transmitted to the Smart
			Card.
			CLKSTOPRUN
			Smart Card Clock Stop Interrupt
	RW		When enabled, this interrupt is asserted in
			two cases:
3		0x0	1. When the smart card clock is stopped (after
			CLOCKSTOP assertion).
			2. When the new character transfer can be
			started (the smart card clock is fully running
			after CLOCKSTOP de-assertion).

Bit	Attr	Reset Value	Description
			RXFIFULL
2	RW	0x0	RX FIFO Full Interrupt
2	K V V	UXU	When enabled, this interrupt is asserted if the
			RX FIFO is filled up.
	RW	0×0	TXFIEMPTY
1			TX FIFO Empty Interrupt.
1			When enabled, this interrupt is asserted if the
			TX FIFO is emptied out.
			TXFIDONE
		V 0×0	TX FIFO Done Interrupt
0	RW		When enabled, this interrupt is asserted after
			all bytes from TX FIFO were transferred to the
			Smart Card

SCR_FIFOCTRL

Address: Operational Base + offset (0x0014) FIFO Control Register

Bit	Attr	Reset Value	Description
15:11	RO	0x0	reserved
			RXFIFLUSH
10	wo	0x0	Flush RX FIFO
10	000	0.00	RX FIFO is flushed, when '1'.is written to this
			bit.
			RXFIFULL
9	RO	0x0	RX FIFO Full
			RX FIFO Full
			RXFIEMPTY
8	RO	0x0	RX FIFO Empty
			Field0000 Description
7:3	RO	0x0	reserved
			TXFIFLUSH
2	wo	0x0	Flush TX FIFO.
2	000	0.00	TX FIFO is flushed, when `1'.is written to this
			bit.
			TXFIFULL
1	RO	0x0	TX FIFO Full
			TX FIFO Full
			TXFIEMPTY
0	RO	O 0x0	TX FIFO Empty.
			TX FIFO Empty.

SCR_LEGTXFICNT

Address: Operational Base + offset (0x0018)

Legacy	ТΧ	FIFO	Counter	-

Bit Attr Reset Value	Description
----------------------	-------------

Bit	Attr	Reset Value	Description
		O 0x00	LEGTXFICNT
	RO		Legacy TX FIFO Counter
7:0			It is equal to TX FIFO Counter up to value 255.
7.0			All values above 255 are read as 255. It is
			recommended to use the 16-bit TX FIFO
			Counter instead of this register.

SCR_LEGRXFICNT

Address: Operational Base + offset (0x0019) Legacy <u>RX FIFO Counter</u>

Bit	Attr	Reset Value	Description
	RO	0×00	LEGRXFICNT
			Legacy RX FIFO Counter
7:0			It is equal to RX FIFO Counter up to value 255.
7.0			All values above 255 are read as 255. It is
			recommended to use the 16-bit RX FIFO
			Counter instead of this register.

SCR_RXFITH

Address: Operational Base + offset (0x001c) RX FIFO Threshold

Bit	Attr	Reset Value	Description
			RXFITH
			RX FIFO Threshold
15:0	RW	0x0000	The interrupt is asserted when the number of
			bytes it receives is equal to, or exceeds the
			threshold

SCR_REP

Address: Operational Base + offset (0x0020) Repeat

Bit	Attr	Reset Value	Description
		0×0	RXREP
			RX Repeat
7:4	RW		This is a 4-bit, read/write register that
			specifies the number of attempts to request
			character re-transmission after wrong parity
			was detected. The re-transmission of the
			character is requested using the 1 ETU long
			error signal during the guardtime

Bit	Attr	Reset Value	Description
			TXREP
			TX Repeat
			This is a 4-bit, read/write register that
3:0	RW	0x0	specifies the number of attempts to
			re-transmit the character after the Smart
			Card signals the wrong parity during the
			guardtime.

SCR_SCCDDIV

Address: Operational Base + offset (0x0024) Smart Card Clock Divisor

Bit	Attr	Reset Value	Description
			SCCDDIV
			Smart Card Clock Divisor
15:0	RW	0x0000	This is a 16-bit, read/write register that
			defines the divisor value used to generate the
			Smart Card Clock from the system clock.

SCR_BAUDDIV

Address: Operational Base + offset (0x0028) Baud Clock Divisor

Bit	Attr	Reset Value	Description
			BAUDDIV
			Baud Clock Divisor
15:0	RW	0x0000	This is a 16-bit, read/write register that
			defines a divisor value used to generate the
			Baud Clock impulses from the system clock

SCR_SCGUTIME

Address: Operational Base + offset (0x002c) Smart Card Guardtime

Bit	Attr	Reset Value	Description
7:0	RW 0x00 This is an 8-bit delay at the en from the Smar Card. The valu (ETU). The par		SCGUTI
			Smart Card Guardtime
			This is an 8-bit, read/write register that sets a
			delay at the end of each character transmitted
			from the Smart Card Reader to the Smart
			Card. The value is in Elementary Time Units
		(ETU). The parity error is besides signaled	
			during the guardtime

SCR_ADEATIME

Address: Operational Base + offset (0x0030)

Activation / Deactivation Time

Bit Attr Reset Value	Description
----------------------	-------------

Bit	Attr	Reset Value	Description
			ADEATIME
			Activation / Deactivation Time
15:8	RW	0x00	Sets the duration of each part of the activation
			and deactivation sequence. The value is in
			Smart Card Clock Cycles.
			Reserved
7:0	RW	0x00	Reserved
			Reserved bits are hard-wired to zero.

SCR_LOWRSTTIME

Address: Operational Base + offset (0x0034) Reset Duration

Bit	Attr	Reset Value	Description
15:8		0×00	LOWRSTTIME
			Reset Duration
	RW		Sets the duration of the smart card reset
	KVV		sequence. This value is same for the cold and
			warm reset. The value is in terms of smart
			card clock cycles.
	RW	0x00	Reserved
7:0			Reserved
7:0			Bits (7:0) of this register are hard-wired to
			zero.

SCR_ATRSTARTLIMIT

Address: Operational Base + offset (0x0038) ATR Start Limit

Bit	Attr	Reset Value	Description
15:8		0×00	ATRSTARTLIMIT
			ATR Start Limit
	RW		Defines the maximum time between the rising
	KVV		edge of the SCRSTN signal and the start of
			ATR response. The value is in terms of smart
			card clock cycles
		0×00	Reserved
7:0	RW		Reserved
7.0			Bits (7:0) of this register are hard-wired to
			zero

SCR_C2CLIM

Address: Operational Base + offset (0x003c)

Two Characters Delay Limit

Bit Attr Reset Value Description	Bit	Attr	Reset Value	Description

Bit	Attr	Reset Value	Description
15:0 R ¹	DW	0×0000	C2CLIM
			Two Characters Delay Limit
			This is a 16-bit, read/write register that sets
	K VV		the maximum time between the leading edges
			of two, consecutive characters. The value is in
			16 ETUs.

SCR_INTEN2

Address: Operational Base + offset (0x0040) Interrupt Enable Register 2

Bit	Attr	Reset Value	Description
15:2	RO	0x0	reserved
		0×0	TCKERR
	RW		TCK Error Interrupt.
L .	RVV		When enabled, this interrupt is asserted if the
			TCK byte does not match computed value.
	RW	0x0	TXTHRESHOLD
			TX FIFO Threshold Interrupt
0			When enabled, this interrupt is asserted if the
			number of bytes in TX FIFO is equal or less
			than the TX FIFO threshold.

SCR_INTSTAT2

Address: Operational Base + offset (0x0044) Interrupt Status Register 2

Bit	Attr	Reset Value	Description
15:2	RO	0x0	reserved
		0x0	TCKERR
1	RW		TCK Error Interrupt
L .	I RVV		When enabled, this interrupt is asserted if the
			TCK byte does not match computed value.
		0×0	TXTHRESHOLD
			TX FIFO Threshold Interrupt
0	RW		When enabled, this interrupt is asserted if the
			number of bytes in TX FIFO is equal or less
			than the TX FIFO threshold.

SCR_TXFITH

Address: Operational Base + offset (0x0048) TX FIFO Threshold

Bit	Attr	Reset Value	Description
			TXFITH
			TX FIFO Threshold
15:0	RW	0x0000	The interrupt is asserted when the number of
			bytes in TX FIFO is equal or less than the
			threshold

SCR_TXFIFOCNT

Address: Operational Base + offset (0x004c) TX FIFO Counter

Bit	Attr	Reset Value	Description
			TXFIFOCNT
			TX FIFO Counter
15:0	RO	0x0000	This is a 16-bit, read-only register that
			provides the number of bytes stored in the RX
			FIFO

SCR_RXFIFOCNT

Address: Operational Base + offset (0x0050) RX FIFO Counter

Bit	Attr	Reset Value	Description
			RXFIFOCNT
			RX FIFO Counter
15:0	RO	0x0000	This is a 16-bit, read-only register that
			provides the number of bytes stored in the RX
			FIFO.

SCR_BAUDTUNE

Address: Operational Base + offset (0x0054) Baud Tune Register

Bit	Attr	Reset Value	Description
7:4	RO	0x0	reserved
			BAUDTUNE
			Baud Tune Register
3:0	RW	0x0	This is a 3-bit, read/write register that defines
			an additional value used to increase the
			accuracy of the Baud Clock impulses

SCR_FIFO

Address: Operational Base + offset (0x0200)

FIFO

Bit Attr Reset Value Description	
----------------------------------	--

Bit	Attr	Reset Value	Description
			FIFO
			FIFO
			This is an 8-bit, read/write register that
			provides access to the receive and transmit
7:0	RW	0x00	FIFO buffers. The TX FIFO is accessed during
			the APB write transfer. The RX FIFO is
			accessed during the APB read transfer. All
			read/write accesses at address range
			200h-3ffh are redirected to the FIFO.

26.5 Interface Description

Module Pin	IO	Pad Name	IOMUX Setting
scclk_0	0	I2C1SENSORscl_SCclk_GPIO1830gpio8a	GPIO8A_IOMUX[11:10]= 2'b10
scclk_1	0	SPI2txd_SCclk_GPIO1830gpio8b1	GPIO8B_IOMUX[3:2]= 2'b10
scrst_0	0	I2C1SENSORsda_SCrst_GPIO1830gpio8a4	GPIO8A_IOMUX[9:8]= 2'b10
scrst_1	0	SPI2rxd_SCrst_GPIO1830gpio8b0	GPIO8B_IOMUX[1:0]= 2'b10
scvcc18v	0	PS2clk_SCvcc18v_GPIO1830gpio8a0	GPIO8A_IOMUX[1:0]= 2'b10
scvcc33v	0	PS2data_SCvcc33v_GPIO1830gpio8a1	GPIO8A_IOMUX[3:2]= 2'b10
scdetect_0	Ι	SPI2csn0_SCdetect_GPIO1830gpio8a7	GPIO8A_IOMUX[15:14]= 2'b10
scdetect_1	Ι	SCdetectt1_GPIO1830gpio8a2	GPIO8A_IOMUX[5:4]= 2'b01
		SPI2clk_SCio_GPIO1830gpio8a6	GPIO8A_IOMUX[13:12]= 2'b10
sci0_1	I/O	SPI2csn1_SCiot1_GPIO1830gpio8a3	GPIO8A_IOMUX[7:6]= 2'b10

Notes: 1. I=input, O=output, I/O=input/output, bidirectional

2. Pull up scio pin when data transaction

26.6 Application Notes

26.6.1 SCR Clock

The Smart Card Clock signal is used as the main clock for the smart card. Its frequency can be adjusted using the Smart Card Clock Divisor (SCCDIV). This value is used to divide the system clock.

The SCCLK frequency is given by the following equation:

$$SCCLK_{freq} = \frac{CLK_freq}{2 * (SCCDIV + 1)}, \qquad SCCDIV \cong \frac{CLK_{freq}}{2 * SCCLK_{freq}} - 1$$

SCCLK_freq – Smart Card Clock Frequency

CLK_freq- System Clock Frequency

The Baud Clock Impulse signal is used to transmit and receive serial data between the Smart Card Reader and the Smart Card. The baud rate can be modified using the Baud Clock Divisor (BAUDDIV)which is used to divide the system clock. The BAUDDIV value must be >= 4. The BAUD rate is given by

the following equation:

$$BAUD_{rate} = \frac{CLK_freq}{2 * (BAUDDIV + 1)}$$

The duration of one bit, Elementary Time Unit (ETU) and parameters F and D are defined in the ISO/IEC 7816-3 specification.

$$\frac{1}{BAUD_rate} \cong ETU = \frac{F}{D} * \frac{1}{SCCLK_{freg}}, \frac{F}{D} \cong \frac{BAUDDIV + 1}{SCCDIV + 1}$$

BAUDDIV equation based on SCCDIV value and Smart Card parameters F and D is following:

BAUDDIV
$$\cong$$
 (SCCDIV + 1) $*\frac{F}{D}$ -

During the first answer to reset response after the cold reset, the initial ETU must be equal to 372 Smart Card Clock Cycles (given by parameters F=372 and D=1). In this case, the BAUDDIV should be:

BAUDDIV
$$\cong$$
 (SCCDIV + 1) $*\frac{372}{1} - 1$

After the ATR is completed, the BAUDDIV register value can be changed according to Smart Card parameters F and D.

Baud Tune Register (BAUDTUNE) 3-bit value that can be used to increase the accuracy of the Baud Clock impulses timing by using the BAUDTUNE Increment from Table listed below in combination with BAUDDIV register value.

-	
	Table 26-2 BAUDTUNE register
	Table 20-2 DAUD TUNE register

BAUDTUNE	000	001	010	011	100	101	110	111
BAUDTUNEINCR	+0	+0.125	0.25	+0.375	+0.5	+0.625	+0.75	+0.875
						F		

BAUDDIV + BAUDTUNE_{*INCR*} \cong (SCCDIV + 1) $*\frac{r}{D}$ - 1

The BAUDDIV register value (nearest integer) can be computed using following equation:

BAUDDIV \cong (SCCDIV + 1) $*\frac{F}{D} - 1 - BAUDTUNE_{INCR}$

Chapter 27 SARADC

27.1 Overview

The ADC is a 3-channel signal-ended 10-bit Successive Approximation Register (SAR) A/D Converter. It uses the supply and ground as it reference which avoid use of any external reference. It converts the analog input signal into 10-bit binary digital codes at maximum conversion rate of 100KSPS with 1MHz A/D converter clock.

27.2 Block Diagram

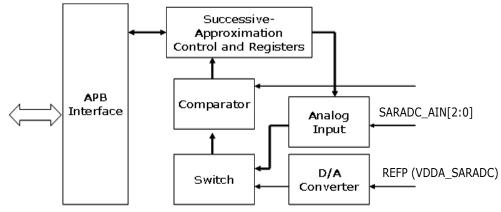


Fig. 27-1 RK3288 SAR-ADC block diagram

Successive-Approximate Register and Control Logic Block

This block is exploited to realize binary search algorithm, storing the intermediate result and generate control signal for analog block.

Comparator Block

This block compares the analog input SARADC_AIN[2:0] with the voltage generated from D/A Converter, and output the comparison result to SAR and Control Logic Block for binary search. Three level amplifiers are employed in this comparator to provide enough gain.

27.3 Function description

In RK3288, SAR-ADC works at single-sample operation mode.

This mode is useful to sample an analog input when there is a gap between two samples to be converted. In this mode START is asserted only on the rising edge of CLKIN where conversion is needed. At the end of every conversion EOC signal is made high and valid output data is available at the rising edge of EOC. The detailed timing diagram will be shown in the following.

27.4 Register Description

This section describes the control/status registers of the design.

Name	Offset	Size	Reset Value	Description
SARADC DATA	0x0000	w	0x00000000	This register contains the data after A/D
5/ ((0) E C_E/()/(0,0000	••		Conversion.
SARADC_STAS	0x0004	W	0x0000000	The status register of A/D Converter.
SARADC_CTRL	0x0008	W	0x0000000	The control register of A/D Converter.
SARADC DLY PU SOC	0,0000	\\/	0x00000000	delay between power up and start
SARADC_DLI_PU_SUC	020000	vv	0.0000000000000000000000000000000000000	command

27.4.1 Registers Summary

Notes: Size: B- Byte (8 bits) access, HW- Half WORD (16 bits) access, W- WORD (32 bits) access

27.4.2 Detail Register Description

SARADC_DATA

Address: Operational Base + offset (0x0000) This register contains the data after A/D Conversion.

Bit	Attr	Reset Value	Description
31:10	RO	0x0	reserved
0.0	DO	10x000	adc_data
9:0	RO		A/D value of the last conversion (DOUT[9:0]).

SARADC_STAS

Address: Operational Base + offset (0x0004) The status register of A/D Converter.

Bit	Attr	Reset Value	Description			
31:1	31:1 RO 0x0		reserved			
		0×0	adc_status			
			ADC status (EOC)			
0	RO		1'b0: ADC stop			
			1'b1: Conversion in progress			

SARADC_CTRL

Address: Operational Base + offset (0x0008) The control register of A/D Converter.

Bit	Attr	Reset Value	Description			
31:7	RO	0x0	reserved			
	RW	0×0	int_status			
6			Interrupt status.			
U			This bit will be set to 1 when end of conversion.			
			Set 0 to clear the interrupt.			
	RW	0×0	int_en			
5			Interrupt enable.			
5			1'b0: Disable			
			1'b1: Enable			
4	RO	0x0	reserved			
	RW	0x0	adc_power_ctrl			
			ADC power down control bit			
3			1'b0: ADC power down			
5			1'b1: ADC power up and reset			
			start signal will be asserted (DLY_PU_SOC+2) sclk			
			clock period later after power up			
	RW	0×0	adc_input_src_sel			
			ADC input source selection (CH_SEL[2:0]).			
2:0			3'b000: Input source 0 (SARADC_AIN[0])			
2.0			3'b001: Input source 1 (SARADC_AIN[1])			
			3'b010: Input source 2 (SARADC_AIN[2])			
			Others : Reserved			

SARADC_DLY_PU_SOC

Address: Operational Base + offset (0x000c) delay between power up and start command

	Bit	Bit Attr Reset Value		Description			
	31:6	RO	0x0	reserved			
5:0		RW	0x08	DLY_PU_SOC			
	E.0			delay between power up and start command			
	5:0			The start signal will be asserted (DLY_PU_SOC + 2)			
				sclk clock period later after power up			

27.5 Timing Diagram

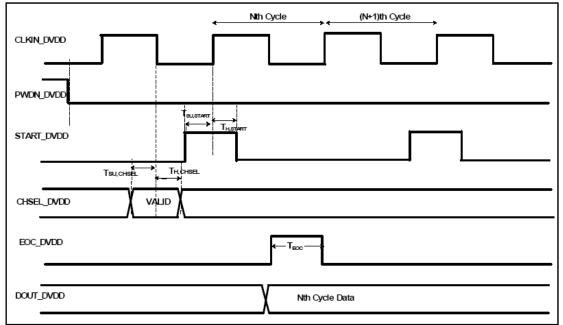


Fig. 27-2 SAR-ADC timing diagram in single-sample conversion mode

The following table has shows the detailed value for timing parameters in the above diagram.

Table 27-1 RK3288 SAR-ADC timing parameters list

Timing	Symbol	Value		Unit	Description	
		Min	Тур	Мах		
START_OF_CONV Setup time	TSU,START	5			ns	Set Up time for START_OF_CONV w.r.t CLKIN rising edge
START_OF_CONV Hold time	TH,START	5			ns	Hold time for START_OF_CONV w.r.t CLKIN rising edge
CHSEL setup time	TSU,CHSEL	5			ns	Set Up time for CHSEL w.r.t CLKIN falling edge
CHSEL Hold time	TH,CHSEL	5			ns	Hold time for CHSEL w.r.t CLKIN falling edge
Data Setup	TSU,DATA	400		900	ns	Set Up time for output data w.r.t either CLKIN rising edge or END_OF_CONV falling edge
Data Hold	TH,DATA	100		600	ns	Hold time for output data w.r.t either CLKIN rising edge or END_OF_CONV falling edge
Data access time	TDAC	100		600	ns	Valid data w.r.t CLKIN rising edge
Delay time	TDelay			5	ns	Delay between Valid data and EOC_DVDD rising edge
EOC Pulse Width (max frequency)	TEOC	400		900	ns	Pulse width of EOC
CLKIN Rise Time	TCR			2	ns	CLKIN Rise Time
CLKIN Fall Time	TCF			2	ns	CLKIN Fall Time
CLK Pulse Width(Duty Cycle)	TCPW	45		55	%	CLKIN High/Low Time Period
CLK Period	TCP	1			us	CLKIN Time Period

27.6 Application Notes

Steps of adc conversion:

- Write SARADC_CTRL[3] as 0 to power down adc converter.
- Write SARADC_CTRL[2:0] as n to select adc channel(n).
- Write SARADC_CTRL[5] as 1 to enable adc interrupt.
- Write SARADC_CTRL[3] as 1 to power up adc converter.
- Wait for adc interrupt or poll SARADC_STAS register to assert whether the coversion is completed
- Read the conversion result from SARADC_DATA[9:0]

Note: The A/D converter was designed to operate at maximum 1MHZ.

Chapter 28 GraphicsProcessing Unit (GPU)

28.1 Overview

With support for 2D graphics, 3D graphics, and GPGPU computing, the GPU of ARM Mali-T760MP4 provides a complete graphics acceleration platform based on open standards.

The GPU brings graphics power to a wide range of different products, from mobile user interfaces to tablets, HDTV, and mobile gaming. One single driver stack for all graphics configurations simplifies application porting, system integration, and maintenance.Scheduling and performance scaling are fully handled within the graphics system with no special considerations required from the application developer.

The GPU takes graphics instructions from software applications running on the application processor. It processes the graphics instructions and puts the results back into system memory. These results are sent to the framebuffer and on to the display device.

GPU supports the following features:

- Fully programmable architecture
- A rich API feature set with high-performance support for both shader-based and fixed-function graphics APIs.
- Anti-aliasing capabilities
- An effective core forGeneral Purpose computing on GPU(GPGPU) applications
- High memory bandwidth and low power consumption for 3D graphics content
- Scalability for products from smart phones to high-end mobile computing
- Performance leading 3D graphics
- Image quality using double-precision FP64, and anti-aliasing
- Standard bus interfaces
- An ACE-Lite interface to access external memory
- Easy integration
- Latency tolerance Configurable per-core power management for enabling the optimal power and performance combination for each application
- Coherency aware interconnects for system memory and resource sharing
- Frame buffer compression
- Supported API graphics industry standards
 - OpenGL ES 1.1 Specification at Khronos
 - OpenGL ES 2.0 Specification at Khronos
 - OpenGL ES 3.0 Specification at Khronos
 - OpenCL 1.0 Specification at Khronos, Full Profile specification
 - OpenCL 1.1 Specification at Khronos, Full Profile specification
 - DirectX 9 Specification
 - DirectX 11.1 Specification

28.2 Block Diagram

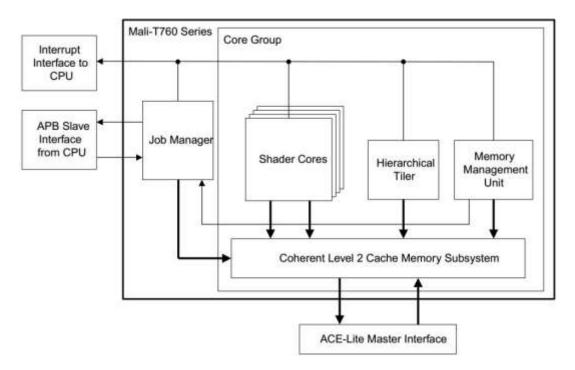


Fig. 28-1 GPU Block Diagram

28.3 Application Notes

28.3.1 Clock and Reset control

We can conifig CRU_CLKSEL34_CON[7:6] to select GPU AXI clock source among CPLL/GPLL/usbphy(480MHz)/NPLL, and then set CRU_CLKSEL34_CON[4:0] to divide clock source from 1:1 to 1:32.

We can config CRU_CLKGATE5_CON[7] to gate the gpu clock and config

CRU_CLKGATE11_CON[13] to gate the gpu AXI clock. We can reset gpu core by setting CRU_SOFTRST7_CON[8].

28.3.2 GPU interrupt

The GPU generates interrupts for job handling, memory management, and events not tied to a specific shader core. For these, the number of logical interrupts is individually controlled, but there is only a single physical interrupt line for each group.

The following top level interrupts are raised by the GPU:

The GPU_IRQGPU (GIC interrupt 40)

Exceptions that are not associated with specific jobs. These cannot be recovered. GPU_IRQJOB (GIC interrupt 38)

Signals the completion or failure of a job running on the GPU.

GPU_IRQMMU (GIC interrupt 39)

Exceptions caused by memory management. These are potentially recoverable. The application processor interprets the interrupts generated by the GPU . The software queries the states of the registers in the job manager to determine what must be done to handle the interrupt. The job manager is not required to wait for the result of the interrupt, it can be starting on the next set of jobs to be executed.