Rockchip PX30 Technical Reference Manual Part1

Revision 1.1 Sep. 2018

Revision History

Date	Revision	Description
2018-9-17	1.1	Cancel the superfluous description
2018-8-13	1.0	Initial Release

Table of Content

Table of Content	
Figure Index	
Table Index	
Chapter 1 System Overview	
1.1 Address Mapping	
1.2 System Boot	
1.3 System Interrupt connection	
1.4 System DMA hardware request connection	
Chapter 2 Clock & Reset Unit (CRU)	
2.1 Overview	
2.2 Block Diagram	
2.3 System Reset Solution	
2.4 Function Description	
2.5 PLL Introduction	
2.6 Register Description	
2.7 Timing Diagram	
2.8 Application Notes	
Chapter 3 General Register Files (GRF)	
3.1 Overview	
3.2 Function Description	
3.3 GRF Register Description	
3.4 PMUGRF Register Description	
3.5 COREGRF Register Description	
3.6 GPUGRF Register Description	
3.7 USB PHY GRF Register Description	
3.8 DDRGRF Register Description	
Chapter 4 Graphics Process Unit (GPU)	
4.1 Overview	
4.2 Block Diagram	
4.3 Register Description	
Chapter 5 Cortex-A35	
5.1 Overview	245
5.2 Block Diagram	245
5.3 Function Description	
Chapter 6 Embedded SRAM	246
6.1 Overview	246
6.2 Block Diagram	246
6.3 Function Description	
Chapter 7 Nand Flash Controller (NandC)	
7.1 Overview	
7.2 Block Diagram	
7.3 Function Description	
7.4 Register Description	249
7.5 Interface Description	298
7.6 Application Notes	
Chapter 8 Power Management Unit (PMU)	
8.1 Overview	305

8.2 Block Diagram	305
8.3 Function Description	306
8.4 Register Description	307
8.5 Timing Diagram	323
8.6 Application Note	324
Chapter 9 Pulse Width Modulation (PWM)	326
9.1 Overview	326
9.2 Block Diagram	326
9.3 Function Description	327
9.4 Register Description	328
9.5 Interface Description	349
9.6 Application Notes	
Chapter 10 Generic Interrupt Controller (GIC)	352
10.1 Overview	352
10.2 Block Diagram	352
10.3 Function Description	
Chapter 11 DMA Controller (DMAC)	
11.1 Overview	
11.2 Block Diagram	
11.3 Function Description	354
11.4 Register Description	355
11.5 Timing Diagram	
11.6 Interface Description	393
11.7 Application Notes	
Chapter 12 MAC Ethernet Interface	
12.1 Overview	
12.2 Block Diagram	
12.3 Function Description	401
12.4 Register Description	
12.5 Interface Description	460
12.6 Application Notes	
Chapter 13 Timer	
13.1 Overview	
13.2 Block Diagram	
13.3 Function Description	
13.4 Register Description	
13.5 Application Notes	
Chapter 14 System Debug	
14.1 Overview	
14.2 Block Diagram	
14.3 Function Description	
14.4 Register Description	
14.5 Interface Description	
Chapter 15 WatchDog	
15.1 Overview	
15.2 Block Diagram	
15.3 Function Description	
15.4 Register Description	480

15.5 Application Notes	482
Chapter 16 Serial Flash Controller (SFC)	484
16.1 Overview	484
16.2 Block Diagram	484
16.3 Function Description	484
16.4 Register Description	485
16.5 Interface Description	493
16.6 Application Notes	493
Chapter 17 Serial Peripheral Interface (SPI)	497
17.1 Overview	497
17.2 Block Diagram	497
17.3 Function Description	498
17.4 Register Description	500
17.5 Interface Description	509
17.6 Application Notes	510
Chapter 18 UART	
18.1 Overview	513
18.2 Block Diagram	513
18.3 Function Description	514
18.4 Register Description	
18.5 Interface Description	533
18.6 Application Notes	
Chapter 19 SAR-ADC	
19.1 Overview	539
19.2 Block Diagram	539
19.3 Function Description	539
19.4 Register description	
19.5 Timing Diagram	
19.6 Application Notes	
Chapter 20 Temperature-Sensor ADC(TS-ADC)	
20.1 Overview	
20.2 Block Diagram	543
20.3 Function Description	543
20.4 Register description	544
20.5 Application Notes	
Chapter 21 GPIO	
21.1 Overview	554
21.2 Block Diagram	554
21.3 Function Description	
21.4 Register Description	
21.5 Interface Description	
21.6 Application Notes	
Chapter 22 I2S/PCM Controller	
22.1 Overview	
22.2 Block Diagram	
22.3 Function description	
22.4 Register Description	
22.5 Interface Description	

PX30 TRM-Part1

22.6 Application Notes	573
Chapter 23 I2S 8-channel	575
23.1 Overview	575
23.2 Block Diagram	575
23.3 Function description	576
23.4 Register description	582
23.5 Interface Description	596
23.6 Application Notes	
Chapter 24 I2C Interface	
24.1 Overview	
24.2 Block Diagram	599
24.3 Function Description	599
24.4 Register Description	
24.5 Interface Description	
24.6 Application Notes	
Chapter 25 Audio Serial Port Controller (ASPC)	
25.1 Overview	615
25.2 Block Diagram	615
25.3 Function Description	616
25.4 Register Description	
25.5 Interface Description	
25.6 Application Notes	
Chapter 26 OTP	
26.1 Overview	627
26.2 Block Diagram	627
26.3 Function Description	
26.4 Register Description	
26.5 Application Notes	

Figure Index

	. 1-1 PX30 Address Mapping	
	. 1-2 PX30 remap function	
Fig.	. 1-3 PX30 boot procedure flow	14
Fig.	. 1-4 CRU Block Diagram	17
Fig.	. 1-5 Reset Architecture Diagram	18
Fig.	. 1-6PLLBlockDiagram	19
Fig.	. 1-7 Chip Power On Reset Timing Diagram	101
	. 4-1 GPU block diagram	
_	. 5-1 Block Diagram	
	. 6-1 Embedded SRAM block diagram	
_	. 7-1 NandC Block Diagram	
	. 7-2 NandC Address Assignment	
	. 7-3 NandC Data Format	
	. 7-4 NandC LLP Data Format	
	. 8-1 PX30 Power Domain Partition	
	. 8-2 PMU Bock Diagram	
	. 8-3 Each Domain Power Switch Timing	
_	. 9-1 PWM Block Diagram	
	. 9-2 PWM Capture Mode	
	. 9-3 PWM Continuous Left-aligned Output Mode	
_	. 9-4 PWM Continuous Center-aligned Output Mode	
	. 9-5 PWM One-shot Center-aligned Output Mode	
	. 10-1 Block Diagram	
Fig.	. 11-1 Block diagram of DMAC	354
	. 11-2 DMAC operation states	
	. 11-3 DMAC request and acknowledge timing	
	. 12-1 Wake-Up Frame Filter Register	
Fig.	. 13-1 Timer Block Diagram	473
_	13-2 Timor Usago Flow	171
	. 13-2 Timer Usage Flow	
	. 13-3 Timer Usage Flow	
Fig.		476
Fig. Fig.	. 13-3 Timing between timer_en and timer_clk	476 477
Fig. Fig. Fig.	. 13-3 Timing between timer_en and timer_clk	476 477 定义书签。
Fig. Fig. Fig. Fig.	. 13-3 Timing between timer_en and timer_clk	476 477 定义书签。 478
Fig. Fig. Fig. Fig. Fig.	. 13-3 Timing between timer_en and timer_clk	476 477 定义书签。 478 479
Fig. Fig. Fig. Fig. Fig. Fig.	. 13-3 Timing between timer_en and timer_clk	476 477 定义书签。 478 479
Fig. Fig. Fig. Fig. Fig. Fig.	. 13-3 Timing between timer_en and timer_clk	476 477 定义书签。 478 479 483
Fig. Fig. Fig. Fig. Fig. Fig. Fig.	. 13-3 Timing between timer_en and timer_clk	476 477 定义书签。 478 483 484
Fig. Fig. Fig. Fig. Fig. Fig. Fig. Fig.	. 13-3 Timing between timer_en and timer_clk	476 注定义书签。 478 479 483 485
Fig. Fig. Fig. Fig. Fig. Fig. Fig. Fig.	. 13-3 Timing between timer_en and timer_clk 14-1 Debug system structure 14-2 DAP SWJ interface	476 477 定义书签。 478 483 484 485 485
Fig. Fig. Fig. Fig. Fig. Fig. Fig. Fig.	. 13-3 Timing between timer_en and timer_clk 14-1 Debug system structure 14-2 DAP SWJ interface	476 477 定义书签。 478 483 484 485 494
Fig. Fig. Fig. Fig. Fig. Fig. Fig. Fig.	. 13-3 Timing between timer_en and timer_clk 14-1 Debug system structure 14-2 DAP SWJ interface	476 477 定义书签。 478 483 484 485 494 495
Fig. Fig. Fig. Fig. Fig. Fig. Fig. Fig.	. 13-3 Timing between timer_en and timer_clk 14-1 Debug system structure 14-2 DAP SWJ interface 错误!未 . 14-3SW-DP acknowledgement timing 15-1 WDT block diagram 15-2 WDT Operation Flow 16-1 SFC architecture 16-2 idle cycles 16-3 SPI mode 16-4 slave mode write 16-5 slave mode read 16-6 master mode flow	476 477 定义书签。 478 483 485 485 494 495 496
Fig. Fig. Fig. Fig. Fig. Fig. Fig. Fig.	. 13-3 Timing between timer_en and timer_clk 14-1 Debug system structure 14-2 DAP SWJ interface	476 477 定义书签。 479 483 485 485 494 496 498
Fig. Fig. Fig. Fig. Fig. Fig. Fig. Fig.	. 13-3 Timing between timer_en and timer_clk . 14-1 Debug system structure . 14-2 DAP SWJ interface	476 477 定义书签。 479 483 485 485 494 495 498
Fig. Fig. Fig. Fig. Fig. Fig. Fig. Fig.	. 13-3 Timing between timer_en and timer_clk 14-1 Debug system structure 14-2 DAP SWJ interface 错误抹 . 14-3SW-DP acknowledgement timing 15-1 WDT block diagram 15-2 WDT Operation Flow 16-1 SFC architecture 16-2 idle cycles 16-3 SPI mode 16-4 slave mode write 16-5 slave mode read 16-6 master mode flow 17-1 SPI Controller Block diagram 17-2 SPI Master and Slave Interconnection 17-3 SPI Format (SCPH=0 SCPOL=0) 17-5 SPI Format (SCPH=0 SCPOL=1) 17-5 SPI Format (SCPH=1 SCPOL=0)	476 477 定义书签。 478 483 484 485 494 495 496 498 498 499
Fig. Fig. Fig. Fig. Fig. Fig. Fig. Fig.	. 13-3 Timing between timer_en and timer_clk 14-1 Debug system structure 14-2 DAP SWJ interface 错误抹 . 14-3SW-DP acknowledgement timing 15-1 WDT block diagram 15-2 WDT Operation Flow 16-1 SFC architecture 16-2 idle cycles 16-3 SPI mode 16-4 slave mode write 16-5 slave mode read 16-6 master mode flow 17-1 SPI Controller Block diagram 17-2 SPI Master and Slave Interconnection 17-3 SPI Format (SCPH=0 SCPOL=0) 17-5 SPI Format (SCPH=0 SCPOL=1) 17-5 SPI Format (SCPH=1 SCPOL=0)	476 477 定义书签。 478 483 484 485 494 495 496 498 498 499
Fig. Fig. Fig. Fig. Fig. Fig. Fig. Fig.	. 13-3 Timing between timer_en and timer_clk . 14-1 Debug system structure 14-2 DAP SWJ interface	
Fig. Fig. Fig. Fig. Fig. Fig. Fig. Fig.	. 13-3 Timing between timer_en and timer_clk . 14-1 Debug system structure . 14-2 DAP SWJ interface #误!末 . 14-3SW-DP acknowledgement timing . 15-1 WDT block diagram . 15-2 WDT Operation Flow . 16-1 SFC architecture . 16-2 idle cycles . 16-3 SPI mode . 16-4 slave mode write . 16-5 slave mode read . 16-6 master mode flow . 17-1 SPI Controller Block diagram . 17-2 SPI Master and Slave Interconnection . 17-3 SPI Format (SCPH=0 SCPOL=0) . 17-4 SPI Format (SCPH=0 SCPOL=1) . 17-5 SPI Format (SCPH=1 SCPOL=0) . 17-6 SPI Format (SCPH=1 SCPOL=1)	
Fig. Fig. Fig. Fig. Fig. Fig. Fig. Fig.	. 13-3 Timing between timer_en and timer_clk . 14-1 Debug system structure 14-2 DAP SWJ interface # 错误!未 . 14-3SW-DP acknowledgement timing . 15-1 WDT block diagram . 15-2 WDT Operation Flow . 16-1 SFC architecture . 16-2 idle cycles . 16-3 SPI mode 16-4 slave mode write . 16-5 slave mode read . 16-6 master mode flow . 17-1 SPI Controller Block diagram . 17-2 SPI Master and Slave Interconnection . 17-3 SPI Format (SCPH=0 SCPOL=0) . 17-4 SPI Format (SCPH=0 SCPOL=1) . 17-5 SPI Format (SCPH=1 SCPOL=1) . 17-7 SPI Master transfer flow diagram . 17-8 SPI Slave transfer flow diagram . 17-8 SPI Slave transfer flow diagram . 17-9 UART Architecture	
Fig. Fig. Fig. Fig. Fig. Fig. Fig. Fig.	. 13-3 Timing between timer_en and timer_clk . 14-1 Debug system structure . 14-2 DAP SWJ interface 错误抹 . 14-3SW-DP acknowledgement timing . 15-1 WDT block diagram . 15-2 WDT Operation Flow . 16-1 SFC architecture . 16-2 idle cycles . 16-3 SPI mode . 16-4 slave mode write . 16-5 slave mode read . 16-6 master mode flow . 17-1 SPI Controller Block diagram . 17-2 SPI Master and Slave Interconnection . 17-3 SPI Format (SCPH=0 SCPOL=0) . 17-4 SPI Format (SCPH=0 SCPOL=1) . 17-5 SPI Format (SCPH=1 SCPOL=1) . 17-6 SPI Format (SCPH=1 SCPOL=1) . 17-7 SPI Master transfer flow diagram . 17-8 SPI Slave transfer flow diagram . 17-8 SPI Slave transfer flow diagram	
Fig. Fig. Fig. Fig. Fig. Fig. Fig. Fig.	. 13-3 Timing between timer_en and timer_clk 14-1 Debug system structure 14-2 DAP SWJ interface	
Fig. Fig. Fig. Fig. Fig. Fig. Fig. Fig.	. 13-3 Timing between timer_en and timer_clk . 14-1 Debug system structure . 14-2 DAP SWJ interface #读!未 . 14-3SW-DP acknowledgement timing . 15-1 WDT block diagram . 15-2 WDT Operation Flow . 16-1 SFC architecture . 16-2 idle cycles . 16-3 SPI mode . 16-4 slave mode write . 16-5 slave mode flow . 17-1 SPI Controller Block diagram . 17-2 SPI Master and Slave Interconnection . 17-3 SPI Format (SCPH=0 SCPOL=0) . 17-4 SPI Format (SCPH=0 SCPOL=1) . 17-5 SPI Format (SCPH=1 SCPOL=0) . 17-6 SPI Format (SCPH=1 SCPOL=1) . 17-7 SPI Master transfer flow diagram . 17-8 SPI Slave transfer flow diagram . 17-9 UART Architecture . 17-10 UART Serial protocol . 17-11 IrDA 1.0 . 17-12 UART baud rate.	476 477 定义书签。 478 483 485 485 495 496 498 498 499 510 511 511
Fig. Fig. Fig. Fig. Fig. Fig. Fig. Fig.	. 13-3 Timing between timer_en and timer_clk . 14-1 Debug system structure . 14-2 DAP SWJ interface	476 477 定义书签。 478 483 485 495 495 496 498 499 510 511 511
Fig. Fig. Fig. Fig. Fig. Fig. Fig. Fig.	. 13-3 Timing between timer_en and timer_clk . 14-1 Debug system structure . 14-2 DAP SWJ interface #读!未 . 14-3SW-DP acknowledgement timing . 15-1 WDT block diagram . 15-2 WDT Operation Flow . 16-1 SFC architecture . 16-2 idle cycles . 16-3 SPI mode . 16-4 slave mode write . 16-5 slave mode flow . 17-1 SPI Controller Block diagram . 17-2 SPI Master and Slave Interconnection . 17-3 SPI Format (SCPH=0 SCPOL=0) . 17-4 SPI Format (SCPH=0 SCPOL=1) . 17-5 SPI Format (SCPH=1 SCPOL=0) . 17-6 SPI Format (SCPH=1 SCPOL=1) . 17-7 SPI Master transfer flow diagram . 17-8 SPI Slave transfer flow diagram . 17-9 UART Architecture . 17-10 UART Serial protocol . 17-11 IrDA 1.0 . 17-12 UART baud rate.	

PX30 TRM-Part1

Fig. 17-16 UART none fifo mode 535 Fig. 17-17 UART fifo mode 536 Fig. 17-18 UART clock generation 536 Fig. 19-1 SAR-ADC block diagram 539 Fig. 19-2 SAR-ADC timing diagram in single-sample conversion mode 541 Fig. 20-1 TS-ADC Controller Block Diagram 543 Fig. 20-2 Sept on the start flow to enable the sensor and adc 551 Fig. 20-3 GPIO block diagram 554 Fig. 20-4 GPIO Interrupt RTL Block Diagram 555 Fig. 22-1 ZIS/PCM controller (2 channel) Block Diagram 551 Fig. 22-2 I2S transmitter-master & receiver-master condition 562 Fig. 22-3 I2S transmitter-slave& receiver-master condition 562 Fig. 22-5 I2S left justified mode timing format 563 Fig. 22-5 I2S left justified mode timing format 563 Fig. 22-7 PCM early mode timing format 563 Fig. 22-7 PCM early mode timing format 564 Fig. 22-1 PCM late2 mode timing format 574 Fig. 22-1 Sypc			
Fig. 17-18 UART clock generation 537 Fig. 19-1 SAR-ADC block diagram 539 Fig. 19-2 SAR-ADC timing diagram in single-sample conversion mode 541 Fig. 20-1 TS-ADC Controller Block Diagram 543 Fig. 20-1 Set start flow to enable the sensor and adc 551 Fig. 20-3 GPIO block diagram 555 Fig. 22-4 GPIO Interrupt RTL Block Diagram 555 Fig. 22-2 IZS transmitter-master & receiver-slave condition 561 Fig. 22-2 IZS transmitter-master & receiver-master condition 562 Fig. 22-2 IZS I sormal mode timing format 563 Fig. 22-5 IZS left justified mode timing format 563 Fig. 22-5 IZS left justified mode timing format 563 Fig. 22-7 PCM early mode timing format 563 Fig. 22-7 PCM early mode timing format 563 Fig. 22-8 PCM late1 mode timing format 564 Fig. 22-9 PCM late2 mode timing format 564 Fig. 22-1 IZS/PCM controller receive operation flow chart 574 Fig. 22-1 IZS/PCM controller receive operation flow chart 574 Fig. 23-1 IZS/PCM/TDM controller (8 channel) Block Diagram 576 Fig. 23-1 IZS/PCM/TDM controller receive operation			
Fig. 19-1 SAR-ADC block diagram. 539 Fig. 19-2 SAR-ADC timing diagram in single-sample conversion mode. 541 Fig. 20-1 TS-ADC Controller Block Diagram. 543 Fig. 20-3 GPIO block diagram 554 Fig. 20-3 GPIO block diagram 554 Fig. 20-4 GPIO Interrupt RTL Block Diagram 555 Fig. 22-1 IZS/PCM controller (2 channel) Block Diagram 561 Fig. 22-2 IZS transmitter-slave& receiver-slave condition 562 Fig. 22-2 IZS transmitter-slave& receiver-master condition 562 Fig. 22-3 IZS transmitter-slave& receiver-master condition 562 Fig. 22-4 IZS normal mode timing format 563 Fig. 22-5 IZS left justified mode timing format 563 Fig. 22-6 IZS right justified mode timing format 563 Fig. 22-7 PCM early mode timing format 564 Fig. 22-7 PCM late1 mode timing format 564 Fig. 22-9 PCM late2 mode timing format 564 Fig. 22-10 PCM late3 mode timing format 564 Fig. 22-10 PCM late3 mode timing format 564 Fig. 22-12 IZS/PCM Controller receive operation flow chart 574 Fig. 23-11 IZS/PCM/TDM controller receive dollock Diagram <			
Fig. 19-2 SAR-ADC timing diagram in single-sample conversion mode 541 Fig. 20-1 TS-ADC Controller Block Diagram 543 Fig. 20-2 the start flow to enable the sensor and adc 551 Fig. 20-3 GPIO block diagram 555 Fig. 20-4 GPIO Interrupt RTL Block Diagram 555 Fig. 22-1 IZS/PCM controller (2 channel) Block Diagram 561 Fig. 22-1 IZS transmitter-master & receiver-slave condition 562 Fig. 22-1 IZS transmitter-slave& receiver-master condition 562 Fig. 22-4 IZS normal mode timing format 563 Fig. 22-5 IZS left justified mode timing format 563 Fig. 22-7 PCM early mode timing format 563 Fig. 22-7 PCM early mode timing format 563 Fig. 22-8 PCM late1 mode timing format 564 Fig. 22-9 PCM late2 mode timing format 564 Fig. 22-1 IZS/PCM controller receive operation flow chart 573 Fig. 22-1 IZS/PCM controller receive operation flow chart 574 Fig. 23-3 IZS transmitter-master & receiver-master condition 577 Fig. 23-3 IZS transmitter-slave & receiver-master condition 577 Fig. 23-5 IZS left justified mode timing format 578 Fig. 23-6 IZS right justified mode timing format 578 <td>Fig.</td> <td>17-18 UART clock generation</td> <td>537</td>	Fig.	17-18 UART clock generation	537
Fig. 20-1 TS-ADC Controller Block Diagram			
Fig. 20-2 the start flow to enable the sensor and adc. 551 Fig. 20-3 GPIO Block diagram 555 Fig. 20-4 GPIO Interrupt RTL Block Diagram 555 Fig. 22-1 I2S/PCM controller (2 channel) Block Diagram 561 Fig. 22-2 I2S transmitter-master & receiver-slave condition 562 Fig. 22-3 I2S transmitter-master & receiver-master condition 562 Fig. 22-5 I2S left justified mode timing format 563 Fig. 22-5 I2S left justified mode timing format 563 Fig. 22-7 PCM early mode timing format 563 Fig. 22-7 PCM early mode timing format 563 Fig. 22-9 PCM late1 mode timing format 564 Fig. 22-9 PCM late2 mode timing format 564 Fig. 22-10 PCM late3 mode timing format 564 Fig. 22-11 I2S/PCM controller transmit operation flow chart 574 Fig. 22-12 I2S/PCM controller receive operation flow chart 574 Fig. 23-12 I2S transmitter-master & receiver-slave condition 577 Fig. 23-2 I2S transmitter-slave & receiver-master condition 577 Fig. 23-3 I2S left justified mode timing format 578 Fig. 23-5 I2S left justified mode timing format 578 Fig. 23-6 I2S right justified mode timing format 578			
Fig. 20-3 GPIO block diagram 554 Fig. 20-4 GPIO Interrupt RTL Block Diagram 555 Fig. 22-1 I2S/PCM controller (2 channel) Block Diagram 561 Fig. 22-2 I2S transmitter-master & receiver-slave condition 562 Fig. 22-3 I2S transmitter-slave& receiver-master condition 562 Fig. 22-4 I2S normal mode timing format 563 Fig. 22-5 I2S left justified mode timing format 563 Fig. 22-6 I2S right justified mode timing format 563 Fig. 22-7 PCM early mode timing format 563 Fig. 22-8 PCM late1 mode timing format 563 Fig. 22-9 PCM late2 mode timing format 564 Fig. 22-9 PCM late2 mode timing format 564 Fig. 22-9 PCM late2 mode timing format 564 Fig. 22-1 I2S/PCM controller receive operation flow chart 574 Fig. 22-1 I2S/PCM controller receive operation flow chart 573 Fig. 22-1 I2S/PCM controller (8 channel) Block Diagram 576 Fig. 23-1 I2S/PCM controller receive operation flow chart 574 Fig. 23-1 I2S/PCM/TDM controller receive-relave condition 577 Fig. 23-1 I2S ransmitter-master & receiver-slave condition 577 Fig. 23-5 I2S le			
Fig. 20-4 GPIO Interrupt RTL Block Diagram 555 Fig. 22-1 IZS/PCM controller (2 channel) Block Diagram 561 Fig. 22-2 IZS transmitter-master & receiver-slave condition 562 Fig. 22-3 IZS transmitter-slave& receiver-master condition 562 Fig. 22-5 IZS left justified mode timing format 563 Fig. 22-6 IZS right justified mode timing format 563 Fig. 22-7 PCM early mode timing format 563 Fig. 22-8 PCM late1 mode timing format 564 Fig. 22-9 PCM late2 mode timing format 564 Fig. 22-9 PCM late3 mode timing format 564 Fig. 22-1 IZS/PCM controller transmit operation flow chart 573 Fig. 22-1 IZS/PCM controller receive operation flow chart 574 Fig. 23-1 IZS/PCM/TDM controller (8 channel) Block Diagram 576 Fig. 23-3 IZS transmitter-master & receiver-slave condition 577 Fig. 23-3 IZS transmitter-slave & receiver-master condition 577 Fig. 23-5 IZS left justified mode timing format 578 Fig. 23-6 IZS right justified mode timing format 578 Fig. 23-7 PCM early mode timing format 578 Fig. 23-8 PCM late1 mode timing format 578 Fig. 23-9 PCM late2 mode timing format 579	Fig.	20-2 the start flow to enable the sensor and adc	551
Fig. 22-1 I2S/PCM controller (2 channel) Block Diagram 561 Fig. 22-2 I2S transmitter-master & receiver-slave condition 562 Fig. 22-3 I2S transmitter-slave& receiver-master condition 562 Fig. 22-4 I2S normal mode timing format 563 Fig. 22-5 I2S left justified mode timing format 563 Fig. 22-6 I2S right justified mode timing format 563 Fig. 22-7 PCM early mode timing format 563 Fig. 22-9 PCM late1 mode timing format 563 Fig. 22-9 PCM late2 mode timing format 564 Fig. 22-9 PCM late3 mode timing format 564 Fig. 22-10 PCM late3 mode timing format 564 Fig. 22-11 I2S/PCM controller transmit operation flow chart 573 Fig. 22-12 I2S/PCM controller receive operation flow chart 573 Fig. 23-112S/PCM/TDM controller (8 channel) Block Diagram 576 Fig. 23-12S transmitter-slave & receiver-master condition 577 Fig. 23-3 I2S transmitter-slave & receiver-master condition 577 Fig. 23-3 I2S transmitter-slave & receiver-master condition 577 Fig. 23-5 I2S left justified mode timing format 579 Fig. 23-5 I2S left justified mode timing format 578			
Fig. 22-2 I2S transmitter-master & receiver-slave condition 562 Fig. 22-3 I2S transmitter-slave& receiver-master condition 563 Fig. 22-4 I2S normal mode timing format 563 Fig. 22-5 I2S left justified mode timing format 563 Fig. 22-7 PCM early mode timing format 563 Fig. 22-8 PCM late1 mode timing format 563 Fig. 22-9 PCM late2 mode timing format 564 Fig. 22-10 PCM late3 mode timing format 564 Fig. 22-10 PCM late3 mode timing format 564 Fig. 22-11 I2S/PCM controller transmit operation flow chart 573 Fig. 22-12 I2S/PCM controller receive operation flow chart 573 Fig. 23-12 I2S/PCM/TDM controller (8 channel) Block Diagram 576 Fig. 23-3 I2S transmitter-master & receiver-master condition 577 Fig. 23-3 I2S transmitter-slave & receiver-master condition 577 Fig. 23-4 I2S normal mode timing format 578 Fig. 23-5 I2S left justified mode timing format 578 Fig. 23-7 PCM early mode timing format 578 Fig. 23-7 PCM early mode timing format 578 Fig. 23-9 PCM late2 mode timing format 578 Fig. 23-9 PCM late2 mode timing format 579 Fig. 23			
Fig. 22-3 12S transmitter-slave& receiver-master condition 562 Fig. 22-4 12S normal mode timing format 563 Fig. 22-5 12S left justified mode timing format 563 Fig. 22-6 12S right justified mode timing format 563 Fig. 22-7 PCM early mode timing format 563 Fig. 22-8 PCM late1 mode timing format 564 Fig. 22-9 PCM late2 mode timing format 564 Fig. 22-10 PCM late3 mode timing format 564 Fig. 22-11 I2S/PCM controller transmit operation flow chart 573 Fig. 22-12 I2S/PCM controller receive operation flow chart 573 Fig. 23-112S/PCM/TDM controller (8 channel) Block Diagram 576 Fig. 23-2 12S transmitter-master & receiver-slave condition 577 Fig. 23-3 12S transmitter-slave & receiver-master condition 577 Fig. 23-4 12S normal mode timing format 578 Fig. 23-5 12S left justified mode timing format 578 Fig. 23-6 12S right justified mode timing format 578 Fig. 23-7 PCM early mode timing format 578 Fig. 23-7 PCM early mode timing format 578 Fig. 23-8 PCM late1 mode timing format 579 Fig. 23-9 PCM late2 mode timing format 579 Fig. 23-10 P	Fig.	22-1 I2S/PCM controller (2 channel) Block Diagram	561
Fig. 22-4 I2S normal mode timing format 563 Fig. 22-5 I2S left justified mode timing format 563 Fig. 22-6 I2S right justified mode timing format 563 Fig. 22-7 PCM early mode timing format 563 Fig. 22-8 PCM late1 mode timing format 564 Fig. 22-9 PCM late2 mode timing format 564 Fig. 22-10 PCM late3 mode timing format 564 Fig. 22-11 I2S/PCM controller transmit operation flow chart 573 Fig. 22-12 I2S/PCM controller receive operation flow chart 574 Fig. 23-11ZS/PCM/TDM controller (8 channel) Block Diagram 576 Fig. 23-21 I2S transmitter-master & receiver-slave condition 577 Fig. 23-3 I2S transmitter-slave & receiver-master condition 577 Fig. 23-3 I2S normal mode timing format 578 Fig. 23-4 I2S normal mode timing format 578 Fig. 23-5 I2S left justified mode timing format 578 Fig. 23-6 I2S right justified mode timing format 578 Fig. 23-7 PCM early mode timing format 578 Fig. 23-8 PCM late1 mode timing format 578 Fig. 23-9 PCM late2 mode timing format 579 Fig. 23-10 PCM late3 mode timing format 579 Fig. 23-12 I2S/PCM/TDM contro			
Fig. 22-5 12S left justified mode timing format 563 Fig. 22-6 12S right justified mode timing format 563 Fig. 22-7 PCM early mode timing format 563 Fig. 22-8 PCM late1 mode timing format 564 Fig. 22-9 PCM late2 mode timing format 564 Fig. 22-10 PCM late3 mode timing format 564 Fig. 22-11 I2S/PCM controller transmit operation flow chart 573 Fig. 22-12 I2S/PCM controller receive operation flow chart 574 Fig. 23-11ZS/PCM/TDM controller (8 channel) Block Diagram 576 Fig. 23-3-12S transmitter-master & receiver-slave condition 577 Fig. 23-3 12S transmitter-slave & receiver-master condition 577 Fig. 23-5 12S left justified mode timing format 578 Fig. 23-5 12S left justified mode timing format 578 Fig. 23-7 PCM early mode timing format 578 Fig. 23-7 PCM early mode timing format 578 Fig. 23-8 PCM late1 mode timing format 578 Fig. 23-9 PCM late2 mode timing format 579 Fig. 23-10 PCM late3 mode timing format 579 Fig. 23-11 I2S/PCM/TDM controller transmit operation flow chart 599 Fig. 24-1 I2C architecture 599 Fig. 24-2 I2C DATA Va	Fig.	22-3 I2S transmitter-slave& receiver-master condition	562
Fig. 22-6 12S right justified mode timing format 563 Fig. 22-7 PCM early mode timing format 563 Fig. 22-8 PCM late1 mode timing format 564 Fig. 22-9 PCM late2 mode timing format 564 Fig. 22-10 PCM late3 mode timing format 564 Fig. 22-11 12S/PCM controller transmit operation flow chart 573 Fig. 22-12 12S/PCM/TDM controller (8 channel) Block Diagram 576 Fig. 23-112S/PCM/TDM controller (8 channel) Block Diagram 576 Fig. 23-2 12S transmitter-master & receiver-slave condition 577 Fig. 23-3 12S transmitter-slave & receiver-master condition 577 Fig. 23-3 12S transmitter-slave & receiver-master condition 577 Fig. 23-3 12S telf justified mode timing format 578 Fig. 23-5 12S left justified mode timing format 578 Fig. 23-6 12S right justified mode timing format 578 Fig. 23-7 PCM early mode timing format 578 Fig. 23-7 PCM late1 mode timing format 579 Fig. 23-9 PCM late2 mode timing format 579 Fig. 23-10 PCM late3 mode timing format 579 Fig. 23-11 I2S/PCM/TDM controller transmit operation flow chart 598 Fig. 24-1 I2C architecture 599 <t< td=""><td>Fig.</td><td>22-4 I2S normal mode timing format</td><td>563</td></t<>	Fig.	22-4 I2S normal mode timing format	563
Fig. 22-7 PCM early mode timing format. 563 Fig. 22-8 PCM late1 mode timing format. 564 Fig. 22-9 PCM late2 mode timing format. 564 Fig. 22-10 PCM late3 mode timing format. 564 Fig. 22-11 I2S/PCM controller transmit operation flow chart 573 Fig. 22-12 I2S/PCM controller receive operation flow chart 574 Fig. 23-112S/PCM/TDM controller (8 channel) Block Diagram 576 Fig. 23-2 12S transmitter-master & receiver-slave condition 577 Fig. 23-3 12S transmitter-slave & receiver-master condition 577 Fig. 23-4 12S normal mode timing format 578 Fig. 23-5 12S left justified mode timing format 578 Fig. 23-5 12S left justified mode timing format 578 Fig. 23-7 PCM early mode timing format 578 Fig. 23-8 PCM late1 mode timing format 578 Fig. 23-9 PCM late2 mode timing format 579 Fig. 23-10 PCM late3 mode timing format 579 Fig. 23-11 I2S/PCM/TDM controller transmit operation flow chart 597 Fig. 23-12 I2S/PCM/TDM controller receive operation flow chart 598 Fig. 24-1 I2C architecture 599 Fig. 24-2 I2C DATA Validity 601 Fig. 24-5 I2C byte tra	Fig.	22-5 I2S left justified mode timing format	563
Fig. 22-8 PCM late1 mode timing format. 564 Fig. 22-9 PCM late2 mode timing format. 564 Fig. 22-10 PCM late3 mode timing format. 564 Fig. 22-11 I2S/PCM controller transmit operation flow chart 573 Fig. 22-12 I2S/PCM controller receive operation flow chart 574 Fig. 23-112S/PCM/TDM controller (8 channel) Block Diagram 576 Fig. 23-2 12S transmitter-master & receiver-slave condition 577 Fig. 23-3 12S transmitter-slave & receiver-master condition 577 Fig. 23-4 12S normal mode timing format 578 Fig. 23-5 12S left justified mode timing format 578 Fig. 23-6 12S right justified mode timing format 578 Fig. 23-7 PCM early mode timing format 578 Fig. 23-8 PCM late1 mode timing format 578 Fig. 23-9 PCM late2 mode timing format 579 Fig. 23-10 PCM late3 mode timing format 579 Fig. 23-11 I2S/PCM/TDM controller transmit operation flow chart 597 Fig. 24-1 12C architecture 598 Fig. 24-2 12C DATA Validity 601 Fig. 24-4 12C Acknowledge 602 Fig. 24-5 12C byte transfer 602 Fig. 24-5 12C byte that for transmit only mode 613	Fig.	22-6 I2S right justified mode timing format	563
Fig. 22-9 PCM late2 mode timing format 564 Fig. 22-10 PCM late3 mode timing format 564 Fig. 22-11 I2S/PCM controller transmit operation flow chart 573 Fig. 23-112S/PCM controller receive operation flow chart 574 Fig. 23-112S/PCM/TDM controller (8 channel) Block Diagram 576 Fig. 23-2 I2S transmitter-master & receiver-slave condition 577 Fig. 23-3 I2S transmitter-slave & receiver-master condition 577 Fig. 23-4 I2S normal mode timing format 578 Fig. 23-5 I2S left justified mode timing format 578 Fig. 23-6 I2S right justified mode timing format 578 Fig. 23-7 PCM early mode timing format 578 Fig. 23-8 PCM late1 mode timing format 579 Fig. 23-8 PCM late2 mode timing format 579 Fig. 23-9 PCM late3 mode timing format 579 Fig. 23-10 PCM late3 mode timing format 579 Fig. 23-11 I2S/PCM/TDM controller receive operation flow chart 597 Fig. 23-12 I2S/PCM/TDM controller receive operation flow chart 598 Fig. 24-2 I2C DATA Validity 601 Fig. 24-3 I2C Start and stop conditions 601 Fig. 24-5 I2C byte transfer 602 Fig. 24-7I2C Flow chat for	Fig.	22-7 PCM early mode timing format	563
Fig. 22-10 PCM late3 mode timing format 564 Fig. 22-11 12S/PCM controller transmit operation flow chart 573 Fig. 22-12 12S/PCM controller receive operation flow chart 574 Fig. 23-112S/PCM/TDM controller (8 channel) Block Diagram 576 Fig. 23-2 12S transmitter-master & receiver-slave condition 577 Fig. 23-3 12S transmitter-slave & receiver-master condition 577 Fig. 23-4 12S normal mode timing format 578 Fig. 23-5 12S left justified mode timing format 578 Fig. 23-6 12S right justified mode timing format 578 Fig. 23-7 PCM early mode timing format 578 Fig. 23-8 PCM late1 mode timing format 579 Fig. 23-9 PCM late2 mode timing format 579 Fig. 23-10 PCM late3 mode timing format 579 Fig. 23-11 12S/PCM/TDM controller transmit operation flow chart 598 Fig. 23-12 12S/PCM/TDM controller receive operation flow chart 598 Fig. 24-1 12C architecture 599 Fig. 24-2 12C DATA Validity 601 Fig. 24-3 12C Start and stop conditions 601 Fig. 24-5 12C byte transfer 602 Fig. 24-612C Flow chat for receive only mode 613 Fig. 24-712C Flow chat for mi	Fig.	22-8 PCM late1 mode timing format	564
Fig. 22-11 I2S/PCM controller transmit operation flow chart 573 Fig. 22-12 I2S/PCM controller receive operation flow chart 574 Fig. 23-112S/PCM/TDM controller (8 channel) Block Diagram 576 Fig. 23-2 I2S transmitter-master & receiver-slave condition 577 Fig. 23-3 I2S transmitter-slave & receiver-master condition 577 Fig. 23-4 I2S normal mode timing format 578 Fig. 23-5 I2S left justified mode timing format 578 Fig. 23-6 I2S right justified mode timing format 578 Fig. 23-7 PCM early mode timing format 578 Fig. 23-8 PCM late1 mode timing format 579 Fig. 23-9 PCM late2 mode timing format 579 Fig. 23-10 PCM late3 mode timing format 579 Fig. 23-10 PCM late3 mode timing format 579 Fig. 23-11 I2S/PCM/TDM controller transmit operation flow chart 597 Fig. 23-12 I2S/PCM/TDM controller receive operation flow chart 598 Fig. 24-1 I2C architecture 599 Fig. 24-2 I2C DATA Validity 601 Fig. 24-3 I2C Start and stop conditions 601 Fig. 24-5 I2C byte transfer 602 Fig. 24-5 I2C blow chat for transmit only mode 612 Fig. 24-7I2C Flow chat for	Fig.	22-9 PCM late2 mode timing format	564
Fig. 22-12 I2S/PCM controller receive operation flow chart 574 Fig. 23-112S/PCM/TDM controller (8 channel) Block Diagram 576 Fig. 23-2 I2S transmitter-master & receiver-slave condition 577 Fig. 23-3 I2S transmitter-slave & receiver-master condition 577 Fig. 23-4 I2S normal mode timing format 577 Fig. 23-5 I2S left justified mode timing format 578 Fig. 23-6 I2S right justified mode timing format 578 Fig. 23-7 PCM early mode timing format 578 Fig. 23-8 PCM late1 mode timing format 579 Fig. 23-9 PCM late2 mode timing format 579 Fig. 23-10 PCM late3 mode timing format 579 Fig. 23-11 I2S/PCM/TDM controller transmit operation flow chart 597 Fig. 23-12 I2S/PCM/TDM controller receive operation flow chart 598 Fig. 24-1 I2C architecture 599 Fig. 24-2 I2C DATA Validity 601 Fig. 24-3 I2C Start and stop conditions 601 Fig. 24-4 I2C Acknowledge 602 Fig. 24-5 I2C byte transfer 602 Fig. 24-7I2C Flow chat for receive only mode 612 Fig. 25-1 ASPC With Four Stereo MIC 616 Fig. 25-2 ASPC with Eight Mono MIC 616 <td>Fig.</td> <td>22-10 PCM late3 mode timing format</td> <td>564</td>	Fig.	22-10 PCM late3 mode timing format	564
Fig. 23-112S/PCM/TDM controller (8 channel) Block Diagram 576 Fig. 23-2 I2S transmitter-master & receiver-slave condition 577 Fig. 23-3 I2S transmitter-slave & receiver-master condition 577 Fig. 23-4 I2S normal mode timing format 577 Fig. 23-5 I2S left justified mode timing format 578 Fig. 23-6 I2S right justified mode timing format 578 Fig. 23-7 PCM early mode timing format 578 Fig. 23-8 PCM late1 mode timing format 579 Fig. 23-9 PCM late2 mode timing format 579 Fig. 23-10 PCM late3 mode timing format 579 Fig. 23-11 I2S/PCM/TDM controller transmit operation flow chart 597 Fig. 23-12 I2S/PCM/TDM controller receive operation flow chart 598 Fig. 24-1 I2C architecture 598 Fig. 24-2 I2C DATA Validity 601 Fig. 24-3 I2C Start and stop conditions 601 Fig. 24-4 I2C Acknowledge 602 Fig. 24-5 I2C byte transfer 602 Fig. 24-7 I2C Flow chat for transmit only mode 613 Fig. 24-7 I2C Flow chat for mix mode 614 Fig. 25-1 ASPC Block Diagram 615 Fig. 25-2 ASPC with Four Stereo MIC 616 Fig.	Fig.	22-11 I2S/PCM controller transmit operation flow chart	573
Fig. 23-112S/PCM/TDM controller (8 channel) Block Diagram 576 Fig. 23-2 I2S transmitter-master & receiver-slave condition 577 Fig. 23-3 I2S transmitter-slave & receiver-master condition 577 Fig. 23-4 I2S normal mode timing format 577 Fig. 23-5 I2S left justified mode timing format 578 Fig. 23-6 I2S right justified mode timing format 578 Fig. 23-7 PCM early mode timing format 578 Fig. 23-8 PCM late1 mode timing format 579 Fig. 23-9 PCM late2 mode timing format 579 Fig. 23-10 PCM late3 mode timing format 579 Fig. 23-11 I2S/PCM/TDM controller transmit operation flow chart 597 Fig. 23-12 I2S/PCM/TDM controller receive operation flow chart 598 Fig. 24-1 I2C architecture 598 Fig. 24-2 I2C DATA Validity 601 Fig. 24-3 I2C Start and stop conditions 601 Fig. 24-4 I2C Acknowledge 602 Fig. 24-5 I2C byte transfer 602 Fig. 24-7 I2C Flow chat for transmit only mode 613 Fig. 24-7 I2C Flow chat for mix mode 614 Fig. 25-1 ASPC Block Diagram 615 Fig. 25-2 ASPC with Four Stereo MIC 616 Fig.	Fig.	22-12 I2S/PCM controller receive operation flow chart	574
Fig. 23-2 I2S transmitter-master & receiver-slave condition 577 Fig. 23-3 I2S transmitter-slave & receiver-master condition 577 Fig. 23-4 I2S normal mode timing format 577 Fig. 23-5 I2S left justified mode timing format 578 Fig. 23-6 I2S right justified mode timing format 578 Fig. 23-7 PCM early mode timing format 578 Fig. 23-8 PCM late1 mode timing format 579 Fig. 23-9 PCM late2 mode timing format 579 Fig. 23-10 PCM late3 mode timing format 579 Fig. 23-11 I2S/PCM/TDM controller transmit operation flow chart 597 Fig. 23-12 I2S/PCM/TDM controller receive operation flow chart 598 Fig. 24-1 I2C architecture 599 Fig. 24-2 I2C DATA Validity 601 Fig. 24-3 I2C Start and stop conditions 601 Fig. 24-3 I2C Stow chat for transmit only mode 602 Fig. 24-5 I2C byte transfer 602 Fig. 24-7I2C Flow chat for receive only mode 613 Fig. 25-1 ASPC Block Diagram 615 Fig. 25-1 ASPC With Eight Mono MIC 616 Fig. 25-2 ASPC With Eight Mono MIC 616 Fig. 25-5 ASPC Clock Structure 617 Fig. 25-6 ASPC O	_	·	
Fig. 23-4 I2S normal mode timing format 577 Fig. 23-5 I2S left justified mode timing format 578 Fig. 23-6 I2S right justified mode timing format 578 Fig. 23-7 PCM early mode timing format 578 Fig. 23-8 PCM late1 mode timing format 579 Fig. 23-9 PCM late2 mode timing format 579 Fig. 23-10 PCM late3 mode timing format 579 Fig. 23-11 I2S/PCM/TDM controller transmit operation flow chart 597 Fig. 23-12 I2S/PCM/TDM controller receive operation flow chart 598 Fig. 24-1 I2C architecture 599 Fig. 24-2 I2C DATA Validity 601 Fig. 24-3 I2C Start and stop conditions 601 Fig. 24-3 I2C Start and stop conditions 602 Fig. 24-5 I2C byte transfer 602 Fig. 24-5 I2C byte transfer 602 Fig. 24-7I2C Flow chat for transmit only mode 612 Fig. 24-7I2C Flow chat for mix mode 613 Fig. 25-1 ASPC Block Diagram 615 Fig. 25-2 ASPC with Fight Mono MIC 616 Fig. 25-3 ASPC with Four Stereo MIC 616 Fig. 25-5 ASPC Clock Structure 617 Fig. 25-6 ASPC operation flow 626			
Fig. 23-4 I2S normal mode timing format 577 Fig. 23-5 I2S left justified mode timing format 578 Fig. 23-6 I2S right justified mode timing format 578 Fig. 23-7 PCM early mode timing format 578 Fig. 23-8 PCM late1 mode timing format 579 Fig. 23-9 PCM late2 mode timing format 579 Fig. 23-10 PCM late3 mode timing format 579 Fig. 23-11 I2S/PCM/TDM controller transmit operation flow chart 597 Fig. 23-12 I2S/PCM/TDM controller receive operation flow chart 598 Fig. 24-1 I2C architecture 599 Fig. 24-2 I2C DATA Validity 601 Fig. 24-3 I2C Start and stop conditions 601 Fig. 24-3 I2C Start and stop conditions 602 Fig. 24-5 I2C byte transfer 602 Fig. 24-5 I2C byte transfer 602 Fig. 24-7I2C Flow chat for transmit only mode 612 Fig. 24-7I2C Flow chat for mix mode 613 Fig. 25-1 ASPC Block Diagram 615 Fig. 25-2 ASPC with Fight Mono MIC 616 Fig. 25-3 ASPC with Four Stereo MIC 616 Fig. 25-5 ASPC Clock Structure 617 Fig. 25-6 ASPC operation flow 626			
Fig. 23-5 I2S left justified mode timing format 578 Fig. 23-6 I2S right justified mode timing format 578 Fig. 23-7 PCM early mode timing format 578 Fig. 23-8 PCM late1 mode timing format 579 Fig. 23-9 PCM late2 mode timing format 579 Fig. 23-10 PCM late3 mode timing format 579 Fig. 23-11 I2S/PCM/TDM controller transmit operation flow chart 597 Fig. 23-12 I2S/PCM/TDM controller receive operation flow chart 598 Fig. 24-1 I2C architecture 599 Fig. 24-2 I2C DATA Validity 601 Fig. 24-3 I2C Start and stop conditions 601 Fig. 24-4 I2C Acknowledge 602 Fig. 24-5 I2C byte transfer 602 Fig. 24-5 I2C byte transfer 602 Fig. 24-6I2C Flow chat for transmit only mode 612 Fig. 24-7I2C Flow chat for mix mode 613 Fig. 25-1 ASPC Block Diagram 615 Fig. 25-2 ASPC with Eight Mono MIC 616 Fig. 25-3 ASPC with Four Stereo MIC 616 Fig. 25-5 ASPC Clock Structure 617 Fig. 25-6 ASPC operation flow 626 Fig. 25-7 OTP Architecture 627			
Fig. 23-6 I2S right justified mode timing format 578 Fig. 23-7 PCM early mode timing format 578 Fig. 23-8 PCM late1 mode timing format 579 Fig. 23-9 PCM late2 mode timing format 579 Fig. 23-10 PCM late3 mode timing format 579 Fig. 23-11 I2S/PCM/TDM controller transmit operation flow chart 597 Fig. 23-12 I2S/PCM/TDM controller receive operation flow chart 598 Fig. 24-1 I2C architecture 599 Fig. 24-2 I2C DATA Validity 601 Fig. 24-3 I2C Start and stop conditions 601 Fig. 24-4 I2C Acknowledge 602 Fig. 24-5 I2C byte transfer 602 Fig. 24-5 I2C byte transfer of conditions 601 Fig. 24-6I2C Flow chat for transmit only mode 612 Fig. 24-7I2C Flow chat for mix mode 613 Fig. 25-1 ASPC Block Diagram 615 Fig. 25-2 ASPC with Eight Mono MIC 616 Fig. 25-3 ASPC with Four Stereo MIC 616 Fig. 25-5 ASPC Clock Structure 617 Fig. 25-6 ASPC operation flow 626 Fig. 25-7 OTP Architecture 627	_		
Fig. 23-7 PCM early mode timing format 578 Fig. 23-8 PCM late1 mode timing format 579 Fig. 23-9 PCM late2 mode timing format 579 Fig. 23-10 PCM late3 mode timing format 579 Fig. 23-11 I2S/PCM/TDM controller transmit operation flow chart 597 Fig. 23-12 I2S/PCM/TDM controller receive operation flow chart 598 Fig. 24-1 I2C architecture 599 Fig. 24-2 I2C DATA Validity 601 Fig. 24-3 I2C Start and stop conditions 601 Fig. 24-4 I2C Acknowledge 602 Fig. 24-5 I2C byte transfer 602 Fig. 24-5 I2C Flow chat for transmit only mode 612 Fig. 24-7I2C Flow chat for receive only mode 613 Fig. 24-8I2C Flow chat for mix mode 613 Fig. 25-1 ASPC Block Diagram 615 Fig. 25-2 ASPC with Fight Mono MIC 616 Fig. 25-3 ASPC with Four Stereo MIC 616 Fig. 25-5 ASPC Clock Structure 617 Fig. 25-6 ASPC operation flow 626 Fig. 25-7 OTP Architecture 627	_	•	
Fig. 23-8 PCM late1 mode timing format 579 Fig. 23-9 PCM late2 mode timing format 579 Fig. 23-10 PCM late3 mode timing format 579 Fig. 23-11 I2S/PCM/TDM controller transmit operation flow chart 597 Fig. 23-12 I2S/PCM/TDM controller receive operation flow chart 598 Fig. 24-1 I2C architecture 599 Fig. 24-2 I2C DATA Validity 601 Fig. 24-3 I2C Start and stop conditions 601 Fig. 24-4 I2C Acknowledge 602 Fig. 24-5 I2C byte transfer 602 Fig. 24-6 I2C Flow chat for transmit only mode 612 Fig. 24-7I2C Flow chat for receive only mode 613 Fig. 24-7I2C Flow chat for mix mode 614 Fig. 25-1 ASPC Block Diagram 615 Fig. 25-2 ASPC with Eight Mono MIC 616 Fig. 25-3 ASPC with Four Stereo MIC 616 Fig. 25-4 ASPC interface diagram with external MIC 617 Fig. 25-5 ASPC Clock Structure 617 Fig. 25-6 ASPC operation flow 626 Fig. 25-7 OTP Architecture 627			
Fig. 23-9 PCM late2 mode timing format 579 Fig. 23-10 PCM late3 mode timing format 579 Fig. 23-11 I2S/PCM/TDM controller transmit operation flow chart 597 Fig. 23-12 I2S/PCM/TDM controller receive operation flow chart 598 Fig. 24-1 I2C architecture 599 Fig. 24-2 I2C DATA Validity 601 Fig. 24-3 I2C Start and stop conditions 601 Fig. 24-4 I2C Acknowledge 602 Fig. 24-5 I2C byte transfer 602 Fig. 24-6I2C Flow chat for transmit only mode 612 Fig. 24-7I2C Flow chat for receive only mode 613 Fig. 24-8I2C Flow chat for mix mode 614 Fig. 25-1 ASPC Block Diagram 615 Fig. 25-2 ASPC with Eight Mono MIC 616 Fig. 25-3 ASPC with Four Stereo MIC 616 Fig. 25-5 ASPC Clock Structure 617 Fig. 25-6 ASPC operation flow 626 Fig. 25-7 OTP Architecture 627			
Fig. 23-10 PCM late3 mode timing format 579 Fig. 23-11 I2S/PCM/TDM controller transmit operation flow chart 597 Fig. 23-12 I2S/PCM/TDM controller receive operation flow chart 598 Fig. 24-1 I2C architecture 599 Fig. 24-2 I2C DATA Validity 601 Fig. 24-3 I2C Start and stop conditions 601 Fig. 24-4 I2C Acknowledge 602 Fig. 24-5 I2C byte transfer 602 Fig. 24-6I2C Flow chat for transmit only mode 612 Fig. 24-7I2C Flow chat for receive only mode 613 Fig. 24-8I2C Flow chat for mix mode 614 Fig. 25-1 ASPC Block Diagram 615 Fig. 25-2 ASPC with Eight Mono MIC 616 Fig. 25-3 ASPC with Four Stereo MIC 616 Fig. 25-4 ASPC interface diagram with external MIC 617 Fig. 25-5 ASPC Clock Structure 617 Fig. 25-6 ASPC operation flow 626 Fig. 25-7 OTP Architecture 627			
Fig. 23-11 I2S/PCM/TDM controller transmit operation flow chart 597 Fig. 23-12 I2S/PCM/TDM controller receive operation flow chart 598 Fig. 24-1 I2C architecture 599 Fig. 24-2 I2C DATA Validity 601 Fig. 24-3 I2C Start and stop conditions 601 Fig. 24-4 I2C Acknowledge 602 Fig. 24-5 I2C byte transfer 602 Fig. 24-6I2C Flow chat for transmit only mode 612 Fig. 24-7I2C Flow chat for receive only mode 613 Fig. 24-8I2C Flow chat for mix mode 614 Fig. 25-1 ASPC Block Diagram 615 Fig. 25-2 ASPC with Eight Mono MIC 616 Fig. 25-3 ASPC with Four Stereo MIC 616 Fig. 25-4 ASPC interface diagram with external MIC 617 Fig. 25-5 ASPC Clock Structure 617 Fig. 25-6 ASPC operation flow 626 Fig. 25-7 OTP Architecture 627	_		
Fig. 23-12 I2S/PCM/TDM controller receive operation flow chart. 598 Fig. 24-1 I2C architecture. 599 Fig. 24-2 I2C DATA Validity. 601 Fig. 24-3 I2C Start and stop conditions. 601 Fig. 24-4 I2C Acknowledge. 602 Fig. 24-5 I2C byte transfer. 602 Fig. 24-5 I2C byte transfer mode. 612 Fig. 24-7I2C Flow chat for transmit only mode. 613 Fig. 24-8I2C Flow chat for mix mode. 614 Fig. 25-1 ASPC Block Diagram. 615 Fig. 25-2 ASPC with Eight Mono MIC. 616 Fig. 25-3 ASPC with Four Stereo MIC. 616 Fig. 25-4 ASPC interface diagram with external MIC. 617 Fig. 25-5 ASPC Clock Structure. 617 Fig. 25-6 ASPC operation flow. 626 Fig. 25-7 OTP Architecture. 627			
Fig. 24-1 I2C architecture 599 Fig. 24-2 I2C DATA Validity 601 Fig. 24-3 I2C Start and stop conditions 601 Fig. 24-4 I2C Acknowledge 602 Fig. 24-5 I2C byte transfer 602 Fig. 24-6I2C Flow chat for transmit only mode 612 Fig. 24-7I2C Flow chat for receive only mode 613 Fig. 25-1 ASPC Block Diagram 614 Fig. 25-1 ASPC Block Diagram 615 Fig. 25-2 ASPC with Eight Mono MIC 616 Fig. 25-3 ASPC with Four Stereo MIC 616 Fig. 25-4 ASPC interface diagram with external MIC 617 Fig. 25-5 ASPC Clock Structure 617 Fig. 25-6 ASPC operation flow 626 Fig. 25-7 OTP Architecture 627			
Fig. 24-2 I2C DATA Validity 601 Fig. 24-3 I2C Start and stop conditions 601 Fig. 24-4 I2C Acknowledge 602 Fig. 24-5 I2C byte transfer 602 Fig. 24-6I2C Flow chat for transmit only mode 612 Fig. 24-7I2C Flow chat for receive only mode 613 Fig. 25-1 ASPC Block Diagram 614 Fig. 25-1 ASPC Block Diagram 615 Fig. 25-2 ASPC with Eight Mono MIC 616 Fig. 25-3 ASPC with Four Stereo MIC 616 Fig. 25-4 ASPC interface diagram with external MIC 617 Fig. 25-5 ASPC Clock Structure 617 Fig. 25-6 ASPC operation flow 626 Fig. 25-7 OTP Architecture 627			
Fig. 24-3 I2C Start and stop conditions 601 Fig. 24-4 I2C Acknowledge 602 Fig. 24-5 I2C byte transfer 602 Fig. 24-6I2C Flow chat for transmit only mode 612 Fig. 24-7I2C Flow chat for receive only mode 613 Fig. 25-1 ASPC Block Diagram 614 Fig. 25-2 ASPC with Eight Mono MIC 616 Fig. 25-3 ASPC with Four Stereo MIC 616 Fig. 25-4 ASPC interface diagram with external MIC 617 Fig. 25-5 ASPC Clock Structure 617 Fig. 25-6 ASPC operation flow 626 Fig. 25-7 OTP Architecture 627	_		
Fig. 24-4 I2C Acknowledge 602 Fig. 24-5 I2C byte transfer 602 Fig. 24-6I2C Flow chat for transmit only mode 612 Fig. 24-7I2C Flow chat for receive only mode 613 Fig. 24-8I2C Flow chat for mix mode 614 Fig. 25-1 ASPC Block Diagram 615 Fig. 25-2 ASPC with Eight Mono MIC 616 Fig. 25-3 ASPC with Four Stereo MIC 616 Fig. 25-4 ASPC interface diagram with external MIC 617 Fig. 25-5 ASPC Clock Structure 617 Fig. 25-6 ASPC operation flow 626 Fig. 25-7 OTP Architecture 627			
Fig. 24-5 I2C byte transfer 602 Fig. 24-6I2C Flow chat for transmit only mode 612 Fig. 24-7I2C Flow chat for receive only mode 613 Fig. 24-8I2C Flow chat for mix mode 614 Fig. 25-1 ASPC Block Diagram 615 Fig. 25-2 ASPC with Eight Mono MIC 616 Fig. 25-3 ASPC with Four Stereo MIC 616 Fig. 25-4 ASPC interface diagram with external MIC 617 Fig. 25-5 ASPC Clock Structure 617 Fig. 25-6 ASPC operation flow 626 Fig. 25-7 OTP Architecture 627			
Fig. 24-6I2C Flow chat for transmit only mode 612 Fig. 24-7I2C Flow chat for receive only mode 613 Fig. 24-8I2C Flow chat for mix mode 614 Fig. 25-1 ASPC Block Diagram 615 Fig. 25-2 ASPC with Eight Mono MIC 616 Fig. 25-3 ASPC with Four Stereo MIC 616 Fig. 25-4 ASPC interface diagram with external MIC 617 Fig. 25-5 ASPC Clock Structure 617 Fig. 25-6 ASPC operation flow 626 Fig. 25-7 OTP Architecture 627			
Fig. 24-712C Flow chat for receive only mode 613 Fig. 24-812C Flow chat for mix mode 614 Fig. 25-1 ASPC Block Diagram 615 Fig. 25-2 ASPC with Eight Mono MIC 616 Fig. 25-3 ASPC with Four Stereo MIC 616 Fig. 25-4 ASPC interface diagram with external MIC 617 Fig. 25-5 ASPC Clock Structure 617 Fig. 25-6 ASPC operation flow 626 Fig. 25-7 OTP Architecture 627			
Fig. 24-8I2C Flow chat for mix mode			
Fig. 25-1 ASPC Block Diagram 615 Fig. 25-2 ASPC with Eight Mono MIC 616 Fig. 25-3 ASPC with Four Stereo MIC 616 Fig. 25-4 ASPC interface diagram with external MIC 617 Fig. 25-5 ASPC Clock Structure 617 Fig. 25-6 ASPC operation flow 626 Fig. 25-7 OTP Architecture 627			
Fig. 25-2 ASPC with Eight Mono MIC			
Fig. 25-3 ASPC with Four Stereo MIC			
Fig. 25-4 ASPC interface diagram with external MIC 617 Fig. 25-5 ASPC Clock Structure 617 Fig. 25-6 ASPC operation flow 626 Fig. 25-7 OTP Architecture 627			
Fig. 25-5 ASPC Clock Structure 617 Fig. 25-6 ASPC operation flow 626 Fig. 25-7 OTP Architecture 627	Fin	25-4 ASPC interface diagram with external MIC	617
Fig. 25-6 ASPC operation flow626Fig. 25-7 OTP Architecture627			
Fig. 25-7 OTP Architecture			

Table Index

Table 1-1 PX30 Interrupt connection list	14
Table 1-2 PX30 DMAC Hardware request connection list	16
Table 1-3 Source Clock Limitation of Fractional Divider	103
Table 3-1 GRF Adress Mapping Table	104
Table 5-1 CPU Configuration	245
Table 7-1 NandC Interface Description	298
Table 7-2 NandC Interface Connection	299
Table 7-3 NandC Page/Spare size for flash	301
Table 8-1 PX30 Power Domain and Voltage Domain Summary	305
Table 8-2 Low Power State	
Table 9-1 PWM Interface Description	349
Table 10-1 CPU interface connectivity	352
Table 11-1 DMAC Request Mapping Table	353
Table 11-2 DMAC boot interface	393
Table 11-3 Source size in CCRn	398
Table 11-4 DMAC Instruction sets	398
Table 11-5 DMAC instruction encoding	
Table 12-1 RMII Interface Description	
Table 14-1 SW-DP Interface Description	
Table 16-11SPI interface description	
Table 17-1 1SPI interface description	
Table 17-2 UART Interface Description	
Table 17-3 UART baud rate configuration	
Table 17-4 UART cts_n and rts_n polarity configuration	
Table 20-1 GPIO interface description	
Table 22-1 I2S Interface Description	
Table 23-1 I2S Interface Description	
Table 24-1 I2C Interface Description	
Table 25-1 Relation between ASP_CLK and sample rate	617
Table 25-2 ASPC Interface Description	625

Warranty Disclaimer

Rockchip Electronics Co.,Ltd makes no warranty, representation or guarantee (expressed, implied, statutory, or otherwise) by or with respect to anything in this document, and shall not be liable for any implied warranties of non-infringement, merchantability or fitness for a particular purpose or for any indirect, special or consequential damages.

Information furnished is believed to be accurate and reliable. However, Rockchip Electronics Co.,Ltd assumes no responsibility for the consequences of use of such information or for any infringement of patents or other rights of third parties that may result from its use.

Rockchip Electronics Co.,Ltd's products are not designed, intended, or authorized for using as components in systems intended for surgical implant into the body, or other applications intended to support or sustain life, or for any other application in which the failure of the Rockchip Electronics Co.,Ltd's product could create a situation where personal injury or death may occur, should buyer purchase or use Rockchip Electronics Co.,Ltd's products for any such unintended or unauthorized application, buyers shall indemnify and hold Rockchip Electronics Co.,Ltd and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, expenses, and reasonable attorney fees arising out of, either directly or indirectly, any claim of personal injury or death that may be associated with such unintended or unauthorized use, even if such claim alleges that Rockchip Electronics Co.,Ltd was negligent regarding the design or manufacture of the part.

Copyright and Patent Right

Information in this document is provided solely to enable system and software implementers to use Rockchip Electronics Co.,Ltd 's products. There are no expressedand patent or implied copyright licenses granted hereunder to design or fabricate any integrated circuits or integrated circuits based on the information in this document.

Rockchip Electronics Co.,Ltd does not convey any license under its copyright and patent rights nor the rights of others.

All copyright and patent rights referenced in this document belong to their respective owners and shall be subject to corresponding copyright and patent licensing requirements.

Trademarks

Rockchip and Rockchip™ logo and the name of Rockchip Electronics Co.,Ltd's products are trademarks of Rockchip Electronics Co.,Ltd. and are exclusively owned by Rockchip Electronics Co.,Ltd. References to other companies and their products use trademarks owned by the respective companies and are for reference purpose only.

Confidentiality

The information contained herein (including any attachments) is confidential. The recipient hereby acknowledges the confidentiality of this document, and except for the specific purpose, this document shall not be disclosed to any third party.

Reverse engineering or disassembly is prohibited.

ROCKCHIP ELECTRONICS CO.,LTD. RESERVES THE RIGHT TO MAKE CHANGES IN ITS PRODUCTS OR PRODUCT SPECIFICATIONS WITH THE INTENT TO IMPROVE FUNCTION OR DESIGN AT ANY TIME AND WITHOUT NOTICE AND IS NOT REQUIRED TO UNDATE THIS DOCUMENTATION TO REFLECT SUCH CHANGES.

Copyright © 2018 Rockchip Electronics Co., Ltd.

All rights reserved. No part of this publication may be reproduced, stored in a retrieval system, or transmitted in any form or by any means, electric or mechanical, by photocopying, recording, or otherwise, without the prior written consent of Rockchip Electronics Co.,Ltd.

Chapter 1 System Overview

1.1 Address Mapping

PX30 supports boot from internal bootrom, which supports remap function by software programming. Remap is controlledbyPMU_SGRF_SOC_CON0[13]. When remap is set to 1, the bootrom is un-accessable and PMU_MEM is mapped to address 0Xffff0000.

Addr	IP	Addr	IP	Addr	IP
FF1C0000		FF440000			
	I2C3		Reserved		
FF1B0000	64K	FF430000	64K		
	I2C2		GPU		
FF1A0000	64K	FF400000	192K		
	I2C1		Reserved		
FF190000	64K	FF3C0000	256K		
	I2C0		NANDC		
FF180000	64K	FF3B0000	64K	FFFF0000	
	UART5		SFC		Reserved
FF178000	32K	FF3A0000	64K	FF6C0000	9408K
	UART4		EMMC		CA35_Debug
FF170000	32K	FF390000	64K	FF680000	256K
	UART3		SDIO		Reserved
FF168000	32K	FF380000	64K	FF640000	256K
	UART2		SDMMC		DDR_BUF
FF160000	32K	FF370000	64K	FF638000	32K
	UART1		GMAC		DDR_GRF
FF158000	32K	FF360000	64K	FF630000	32K
	Reserved		USB2_Host_OHCI		DDR_STDBY
FF150000	32K	FF350000	64K	FF620000	64K
	GPU_GRF		USB2_Host_EHCI		DDR_Monitor
FF14C000	16K	FF340000	64K	FF610000	64K
	CORE_GRF		USB2_OTG		DDR_uPCTL
FF148000	16K	FF300000	256K	FF600000	64K
	GRF		CSI_PHY		Reserved
FF140000	32K	FF2F0000	64K	FF560000	640K
	GIC400		DSI_PHY		Service_vpu
FF130000	64K	FF2E0000	64K	FF558000	32K
	Reserved		OTP_FILTER		Service_vo
FF120000	64K	FF2D0000	64K	FF550000	32K
	SGRF		USB_GRF		Service_vi
FF11C000	16K	FF2C0000	64K	FF548000	32K
	KEY_READER		PMU_CRU		Service_usb
FF118000	16K	FF2BC000	16K	FF540000	32K
	OTP_S		CPU_Boost		Service_mmc
FF110000	32K	FF2B8000	16K	FF538000	32K

Addr	IP	Addr	IP	Addr	IP
	DMA_S		CRU		DDR_Firewall
FF100000	64K	FF2B0000	32K	FF534000	16K
	Reserved		DDR PHY		Service_msch
FF0F0000	64K	FF2A0000	64K	FF530000	16K
	Int_MEM		OTP_NS		Service sdcard
FF0E0000	64K	FF290000	64K	FF52C000	16K
	Reserved		SARADC		Service bus2peri
FF0D0000	64K	FF288000	32K	FF526000	24K
	Reserved		TSADC		Service bus2msch
FF0C0000	64K	FF280000	32K	FF524000	8K
	Crypto		GPIO3		Service gpu
FF0B0000	64K	FF270000	64K	FF520000	16K
	PDM		GPIO2		Service_gmac
FF0A0000	64K	FF260000	64K	FF518000	32K
	Reserved		GPIO1		Service crypto
FF090000	64K	FF250000	64K	FF510000	32K
	I2S2_2CH		DMA_NS		Service cpu
FF080000	64K	FF240000	64K	FF508000	32K
	I2S1_2CH		DCF		Service bus
FF070000	64K	FF230000	64K	FF500000	32K
	I2S0/TDM_8CH		Timer_S		Reserved
FF060000	64K	FF220000	64K	FF4B0000	64K
	PMU_SGRF		Timer_NS		ISP
FF050000	64K	FF210000	64K	FF4A0000	64K
	GPIO0		PWM1		VIP
FF040000	64K	FF208000	32K	FF490000	64K
	UART0		PWM0		RGA2-Lite
FF030000	64K	FF200000	32K	FF480000	64K
	PMU_MEM		WDT_S		VOP_S
FF020000	64K	FF1F0000	64K	FF470000	64K
	PMU_GRF		WDT_NS		VOP_M
FF010000	64K	FF1E0000	64K	FF460000	64K
	PMU		SPI1		DSI_Host
FF000000	64K	FF1D8000	32K	FF450000	64K
	DDR		SPI0		VPU
00000000	4GB-16MB	FF1D0000	32K	FF440000	64K

Fig. 1-1PX30 Address Mapping

The following figure show the boot address when before remap and after remap

Fig. 1-2PX30 remap function

1.2 System Boot

PX30 provides system boot from off-chip devices such as SDMMC card, eMMC memory, serial nand or nor flash. When boot code is not ready in these devices, also provide system code download into them by USB OTGinterface. All of the boot code will be stored in internal bootrom. The following is the whole boot procedure for boot code, which will be stored in bootromin advance.

The following features are supports.

- Support system boot from the following device:

 Serial Nor Flash, 1bit data width

 MMC Interface, 8bits data width

 SDMMC Card, 4bits data width

 Async Nand Flash, 8bit data width

 Bbits toggle Nand Flash, 8bit data width

 Support system code download by USB OTG
- Support system code download by USB OTG

Following figure shows PX30 boot procedure flow.

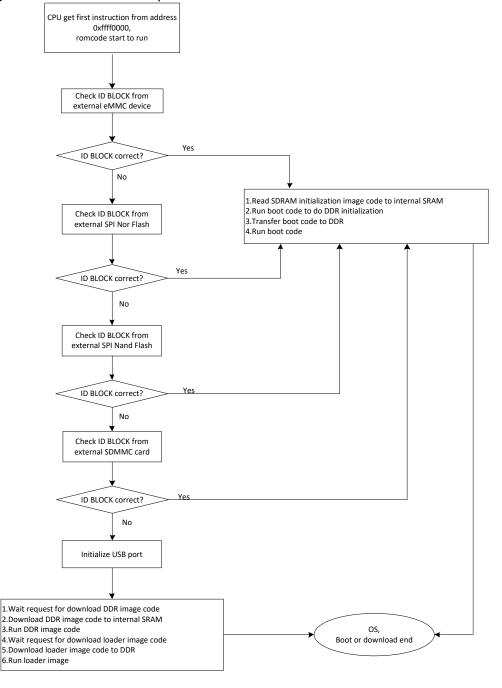


Fig. 1-3 PX30 boot procedure flow

1.3 System Interrupt connection

PX30 provides an general interrupt controller(GIC) for CPU, which has 128 SPI (shared peripheral interrupts) interrupt sources and 3 PPI(Private peripheral interrupt) interrupt source and separately generates one nIRQ and one nFIQ to CPU. The triggered type for each interrupts is high level sensitive, not programmable. The detailed interrupt sources connection is in the following table. For detailed GIC setting, please refer to Chapter 9.

Table 1-1 PX30 Interrupt connection list

Table 1-1 PX30 Interrupt connection list			
IRQ Type	IRQ ID	Source(spi)	Polarity
	32	dcf_int_dcf	High level
	33	dmac_irq	High level
	34	dmac_irq_abort	High level
	35	gpio0_int	High level
	36	gpio1_int	High level
	37	gpio2_int	High level
	38	gpio3_int	High level
	39	i2c_irq_i2c0	High level
	40	i2c_irq_i2c1	High level
	41	i2c_irq_i2c2	High level
	42	i2c_irq_i2c3	High level
	43	i2c_irq_i2c4	High level
	44	i2s_intr_i2s0_8ch	High level
	45	i2s_intr_i2s1_2ch	High level
	46	i2s_intr_i2s2_2ch	High level
	47	UART0_intr	High level
	48	intr_UART1	High level
	49	intr_UART2dbg	High level
	50	intr_UART3	High level
CDT	51	intr_UART4	High level
SPI	52	intr_UART5	High level
	53	otpc_int_otpc_ns	High level
	54	otpc_int_otpc_s	High level
	55	pdm_irq	High level
	56	pwm_int_pwm0	High level
	57	pwm_int_pwm1	High level
	58	spi_intr_spi0	High level
	59	spi_intr_spi1	High level
	60	timer0_int_stimer	High level
	61	timer1_int_stimer	High level
	62	timer0_int_rktimer	High level
	63	timer1_int_rktimer	High level
	64	timer2_int_rktimer	High level
	65	timer3_int_rktimer	High level
	66	timer4_int_rktimer	High level
	67	timer5_int_rktimer	High level
	68	tsadc_int_tsadc	High level
	69	wdtns_irq	High level
	70	wdts_irq	High level
	71	upctl_arpoison_int	High level

IRQ Type	IRQ ID	Source(spi)	Polarity
Турс	72	upctl_awpoison_int	High level
	73	upctl_alert_err_int	High level
	74	ddrmon int	High level
	75	gmac_intr_gmac2io	High level
	76	pmt_intr_gmac2io	High level
	77	irq_gpu	High level
	78	irq_mmu_gpu	High level
	79	irq_job_gpu	High level
	80	irq_event_gpu	High level
	81	irq_dec_mmu	High level
	82	irq_hevc_mmu	High level
	83	Reserved	High level
	84	Reserved	High level
	85	sdmmc_int_emmc	High level
	86	sdmmc_int_sdmmc	High level
	87	sdmmc_int_sdininc	High level
	88	sfc_int_sfc	High level
	89	nandc_int_flash	High level
	90	pmu int	High level
	91		High level
	91	host_arb_int_usb2host	High level
	93	host_ehci_int_usb2host	High level
		host_ohci_int_usb2host	
	94	otg_int_usb2otg	High level
	95	usbphy_otg_disconnect_irq	High level
	96	usbphy_otg_linestate_irq	High level
	97	usbphy_otg_id_irq	High level
	98	usbphy_otg_bvalid_irq	High level
	99	usbphy_host_disconnect_irq	High level
	100	usbphy_host_linestate_irq	High level
	101	cif_int_out_cif	High level
	102	isp_irq_isp	High level
	103	jpeg_err_irq_isp	High level
	104	jpeg_stat_irq_isp	High level
	105	mi_irq_isp	High level
	106	mipi_irq_isp	High level
	107	mipi_dsi_host_irq_dsihost	High level
	108	rga_irq	High level
	109	vop_intr_vopm	High level
	110	vop_intr_vops	High level
	111	vpu_dec_irq	High level
	112	vpu_enc_irq	High level
	113	vpu_mmu_irq	High level
	114	crypto_irq	High level
	115	otp_mask_int_otpphy	High level
	116	saradc_irq	High level
	117	hwffc_int	High level
	118	irq_isp_mmu_0	High level
	119	irq_isp_mmu_1	High level
	120	irq_isp_mmu_2	High level
	121	pwm_int_pwr_pwm0	High level

IRQ Type	IRQ ID	Source(spi)	Polarity
	122	pwm_int_pwr_pwm1	High level
	123	sdmmc_detectn_irq_grf	High level
	124	key_reader_irq	High level
	125	vop_intr_post_lb_vopm	High level
	126	Reserved	High level
	127	Reserved	High level
	128	Reserved	High level
	129	Reserved	High level
	130	Reserved	High level
	131	Reserved	High level
	132	npmuirq[0]	High level
	133	npmuirq[1]	High level
	134	npmuirq[2]	High level
	135	npmuirq[3]	High level
	136	Reserved	High level
	137	Reserved	High level
	138	Reserved	High level
	139	Reserved	High level

1.4 System DMA hardware request connection

PX30 provides one DMA controller inside the system. The trigger type for each of them is high level, not programmable. For detailed descriptions of DMAC, please refer to Chapter 8.

Table 1-2 PX30 DMAC Hardware request connection list

Req Number	Source	Polarity
0	UART0 tx	High level
1	UART0 rx	High level
2	UART1 tx	High level
3	UART1 rx	High level
4	UART2 tx	High level
5	UART2 rx	High level
6	UART3 tx	High level
7	UART3 rx	High level
8	UART4 tx	High level
9	UART4 rx	High level
10	UART5 tx	High level
11	UART5 rx	High level
12	SPI0 tx	High level
13	SPI0 rx	High level
14	SPI1 tx	High level
15	SPI1 rx	High level
16	I2S0_8ch tx	High level
17	I2S0_8ch rx	High level
18	I2S1_2ch_tx	High level
19	I2S1_2ch_rx	High level
20	I2S2_2ch_tx	High level
21	I2S2_2ch_rx	High level
22	pwm0	High level
23	pwm1	High level

Chapter 2 Clock & Reset Unit (CRU)

2.1 Overview

The CRU is an APB slave module that is designed for generating all of the internal and system clocks, resets of chip. CRU generates system clocks from PLL output clock or external clock source, and generates system reset from external power-on-reset, watchdog timer reset or software reset or temperature sensor.

CRU supports the following features:

- Compliance to the AMBA APB interface
- Embedded 5 PLLs
- Flexible selection of clock source
- Supports the respective divided clocks
- Supports the respective gating of all clocks
- Supports the respective software reset of all modules

2.2 Block Diagram

CRU comprises with:

- PLL
- Register configuration unit
- Clock generaté unit
- Reset generate unit

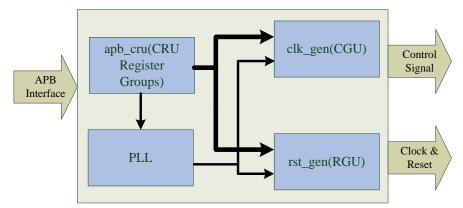


Fig. 2-1 CRU Block Diagram

2.3 System Reset Solution

The following diagram shows reset architecture.

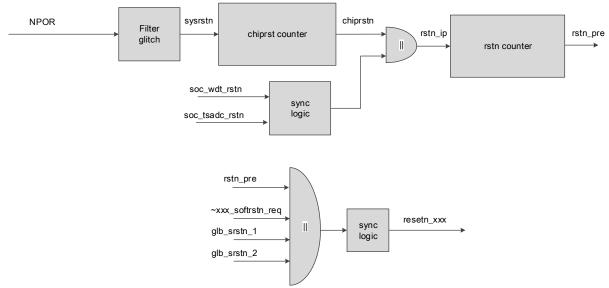


Fig. 2-2 Reset Architecture Diagram

Reset source of each reset signal includes hardware reset(NPOR), SoC watch dog reset(soc_wdt_rstn), SoC tsadc reset(soc_tsadc_rstn), software reset request(xxx_softrstn_req), global software first reset(glb_srstn_1), global software second reset(glb_srstn_2).

The 'xxx' of resetn_xxx and xxx_softrstn_req is the module name.

soc_wdt_rstn is the reset from watch-dog IP in the SoC.

glb_srstn_1 and glb_srstn_2 are the global software reset by programming CRU register. When writing register CRU_GLB_SRST_FST as 0xfdb9, glb_srstn_1 will be asserted, and when writing registerCRU_GLB_SRST_SND as 0xeca8, glb_srstn_2 will be asserted. The two software resets will be self-cleared by hardware. glb_srstn_1 will reset the all logic, and glb_srstn_2 will reset the all logic except GRF, SGRF and all GPIOs.

2.4 Function Description

There are 5 PLLs in the chip: ARM PLL, NEW PLL, DDR PLL, CODEC PLL and GENERAL PLL, and it supports only one crystal oscillator: 24MHz. Each PLL can only receive 24MHz oscillator.

These 5 PLLs all can be set to slow mode or deep slow mode, directly output selectable 24MHz. When power on or changing PLL setting, we must force PLL into slow mode or deep slow mode to ensure output stable clock.

To maximize the flexibility, some of clocks can select divider source from multiple PLLs. To provide some specific frequency, another solution is integrated: fractional divider. In order to guarantee the performance for divided clock, there is some usage limit, we can only get low frequency and divider factor must be larger than 20. For some IP also provide N.5 divisor and duty cycle 50% divisor.

All clocks can be software gated and all resets can be software generated.

2.5 PLL Introduction

2.5.1 Overview

The chip uses up to 3.2GHz PLL for all the PLLs. The 3.2GHz PLL is a general purpose, high-performance PLL-based clock generator. The PLL is a multi-function, general purpose frequency synthesizer. Ultra-wide input and output ranges along with best-in-class jitter performance allow the PLL to be used for almost any clocking application. With excellent supply noise immunity, the PLL is ideal for use in noisy mixed signal SoC environments. By combining ultra-low jitter output clocks into a low power, low area, widely programmable design, we can greatly simplify a SoC by enabling a single macro to be used for all clocking applications in the system.

3.2GHz PLL supports the following features:

- Input frequency range:1MHz to 800MHz(Integer Mode) and 10MHz to 800MHz(Fractional Mode)
- Output Frequency Range:16MHz to 3.2GHz
- VCO output clock from 800MHz to 3.2GHz
- 24 bit fractional accuracy, and fractional mode jitter performance to nearly match integer mode performance.
- 4:1 VCO frequency range allows PLL to be optimized for minimum jitter or minimum power.
- Isolated analog supply(1.8V) allows for excellent supply rejection in noisy SoC applications.
- LockDetectSignal indicates when frequency lock has been achieved.

2.5.2 Blockdiagram

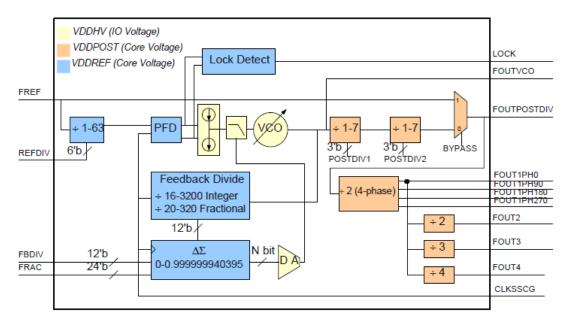


Fig. 2-3 PLLBlockDiagram

How to calculate the PLL

The Fractional PLL output frequency can be calculated using some simple formulas. These formulas also embedded with in the Fractional PLL Verilog model:

If DSMPD=1(DSM is disabled,"integer mode")

FOUTVCO=(FREF/REFDIV)*FBDIV

FOUTPOSTDIV=FOUTVCO/(POSTDIV1*POSTDIV2)

If DSMPD=0(DSM is enabled, "fractional mode")

FOUTVCO=(FREF/REFDIV)*(FBDIV+FRAC/(2^24))

FOUTPOSTDIV=FOUTVCO/(POSTDIV1*POSTDIV2)

Where:

FOUTVCO=Fractional PLL non-divided output frequency

FOUTPOSTDIV=Fractional PLL divided output frequency(output of second postdivider)

FREF=Fractional PLL input reference frequency

REFDIV=Fractional PLL input reference clock divider

FVCO=Frequency of internal VCO

FBDIV=Integer value programmed into feedback divide

FRAC=Fractional value programmed into DSM

Changing the PLL Programming

In most cases the PLL programming can be changed on-the-fly and the PLL will simply slew to the new frequency. However, certain changes have the potential to cause glitches on the PLL output clocks. These changes include:

- Switching into or out of BYPASS mode may cause a glitch on FOUTPOSTDIV
- Changing POSTDIV1 or POSTDIV2 may cause a short pulse with width equal to as little as one VCO period on FOUTPOSTDIV
- Changing POSTDIV could cause a shortened pulse on FOUT1PH*or FOUT2/3/4
- Asserting PD or FOUTPOSTDIVPD may cause a glitch on FOUTPOSTDIV

2.6 Register Description

2.6.1 Internal Address Mapping

Slave address can be divided into different length for different usage, which is shown as follows.

2.6.2 Registers Summary

Name	Offset	Size	Reset Value	Description
CRU APLL CONO	0x0000	W	0x00003064	APLL configuration register0
CRU APLL CON1	0x0004	W	0x00001041	APLL configuration register1
CRU APLL CON2	0x0008	W	0x0000001	APLL configuration register2
CRU APLL CON3	0x000c	W	0x00000007	APLL configuration register3
CRU APLL CON4	0x0010	W	0x00007f00	APLL configuration register4
CRU DPLL CONO	0x0020	W	0x000010c8	DPLL configuration register0
CRU DPLL CON1	0x0024	W	0x00001043	DPLL configuration register1
CRU DPLL CON2	0x0028	W	0x0000001	DPLL configuration register2
CRU DPLL CON3	0x002c	W	0x00000007	DPLL configuration register3
CRU DPLL CON4	0x0030	W	0x00007f00	DPLL configuration register4
CRU CPLL CONO	0x0040	W	0x00002063	CPLL configuration register0
CRU CPLL CON1	0x0044	W	0x00001041	CPLL configuration register1
CRU CPLL CON2	0x0048	W	0x0000001	CPLL configuration register2
CRU CPLL CON3	0x004c	W	0x00000007	CPLL configuration register3
CRU CPLL CON4	0x0050	W	0x00007f00	CPLL configuration register4
CRU NPLL CONO	0x0060	W	0x00002063	NPLL configuration register0
CRU NPLL CON1	0x0064	W	0x00001041	NPLL configuration register1
CRU_NPLL_CON2	0x0068	W	0x0000001	NPLL configuration register2
CRU NPLL CON3	0x006c	W	0x0000007	NPLL configuration register3
CRU NPLL CON4	0x0070	W	0x00007f00	NPLL configuration register4
CRU MODE	0x00a0	W	0x00000000	MODE
CRU MISC	0x00a4	W	0x00000000	MISC
CRU GLB CNT TH	0x00b0	W	0x3a980064	GLB_CNT_TH
CRU GLB RST ST	0x00b4	W	0x00000000	GLB_RST_ST
CRU GLB SRST FST	0x00b8	W	0x00000000	GLB_SRST_FST
CRU GLB SRST SND	0x00bc	W	0x00000000	GLB_SRST_SND
CRU GLB RST CON	0x00c0	W	0x00000000	GLB_RST_CON
CRU CLKSEL CONO	0x0100	W	0x00001300	Clock select and divide register0
CRU CLKSEL CON1	0x0104	W	0x00000202	Clock select and divide register1
CRU CLKSEL CON2	0x0108	W	0x00000b00	Clock select and divide register2
CRU CLKSEL CON3	0x010c	W	0x00002103	Clock select and divide register3
CRU CLKSEL CON4	0x0110	W	0x00000003	Clock select and divide register4

Name	Offset	Size	Reset	Description
CDLL CLIVEEL COME	0.0114	14/	Value	Clast salast and divide registers
CRU CLKSEL CONS	0x0114	W	0x00000007	Clock select and divide register5
CRU CLKSEL CON6	0x0118	W	0x0bb8ea60	Clock select and divide register6
CRU CLKSEL CON7	0x011c	W	0x0000000b	Clock select and divide register7
CRU CLKSEL CON8	0x0120	W	0×00000007	Clock select and divide register8
CRU CLKSEL CON9	0x0124	W	0x0bb8ea60	Clock select and divide register9
CRU_CLKSEL_CON10	0x0128	W	0x00000103	Clock select and divide register10
CRU CLKSEL CON11	0x012c	W	0x00000103	Clock select and divide register11
CRU CLKSEL CON12	0x0130	W	0x00001702	Clock select and divide register12
CRU CLKSEL CON13	0x0134	W	0x00000600	Clock select and divide register13
CRU CLKSEL CON14	0x0138	W	0x00000705	Clock select and divide register14
CRU CLKSEL CON15	0x013c	W	0x00000707	Clock select and divide register15
CRU CLKSEL CON16	0x0140	W	0x00000003	Clock select and divide register16
CRU CLKSEL CON17	0x0144	W	0x00000003	Clock select and divide register17
CRU CLKSEL CON18	0x0148	W	0x00000002	Clock select and divide register18
CRU CLKSEL CON19	0x014c	W	0x00000002	Clock select and divide register19
CRU CLKSEL CON20	0x0150	W	0x00000002	Clock select and divide register20
CRU CLKSEL CON21	0x0154	W	0x00000002	Clock select and divide register21
CRU CLKSEL CON22	0x0158	W	0x0000170b	Clock select and divide register22
CRU CLKSEL CON23	0x015c	W	0x00000581	Clock select and divide register23
CRU CLKSEL CON24	0x0160	W	0x00000107	Clock select and divide register24
CRU CLKSEL CON25	0x0164	W	0x00000305	Clock select and divide register25
CRU_CLKSEL_CON26	0x0168	W	0x000000b	Clock select and divide register26
CRU CLKSEL CON27	0x016c	W	0x0bb8ea60	Clock select and divide register27
CRU CLKSEL CON28	0x0170	W	0x000000b	Clock select and divide register28
CRU CLKSEL CON29	0x0174	W	0x0bb8ea60	Clock select and divide register29
CRU CLKSEL CON30	0x0178	W	0x000000b	Clock select and divide register30
CRU CLKSEL CON31	0x017c	W	0x0bb8ea60	Clock select and divide register31
CRU CLKSEL CON32	0x0180	W	0x000000b	Clock select and divide register32
CRU CLKSEL CON33	0x0184	W	0x0bb8ea60	Clock select and divide register33
CRU_CLKSEL_CON34	0x0188	W	0x0000000b	Clock select and divide register34
CRU CLKSEL CON35	0x018c	W	0x0000000b	Clock select and divide register35
CRU CLKSEL CON36	0x0190	W	0x0bb8ea60	Clock select and divide register36
CRU_CLKSEL_CON37	0x0194	W	0x0000000b	Clock select and divide register37
CRU CLKSEL CON38	0x0198	W	0x0000000b	Clock select and divide register38
CRU CLKSEL CON39	0x019c	W	0x0bb8ea60	Clock select and divide register39
CRU CLKSEL CON40	0x01a0	W	0x0000000b	Clock select and divide register40
CRU CLKSEL CON41	0x01a0	W	0x0000000b	Clock select and divide register40 Clock select and divide register41
CRU_CLKSEL_CON42	0x01a4	W	0x0bb8ea60	Clock select and divide register41 Clock select and divide register42
CRU CLKSEL CON43	0x01ac	W	0x00000000b	Clock select and divide register42
	1	W	0x0000000b	
CRU CLKSEL CON45	0x01b0			Clock select and divide register44
CRU CLKSEL CON45	0x01b4	W	0x0bb8ea60	Clock select and divide register45
CRU CLKSEL CON46	0x01b8	W	0x000000b	Clock select and divide register34

Name	Offset	Size	Reset Value	Description
CRU_CLKSEL_CON47	0x01bc	W	0x0000000b	Clock select and divide register47
CRU CLKSEL CON48	0x01c0	W	0x0bb8ea60	Clock select and divide register48
CRU CLKSEL CON49	0x01c4	W	0x00000b0b	Clock select and divide register49
CRU CLKSEL CON50	0x01c8	W	0x00000b0b	Clock select and divide register 50
CRU CLKSEL CON52	0x01d0	W	0x00000b0b	Clock select and divide register52
CRU_CLKSEL_CON53	0x01d4	W	0x00000b0b	Clock select and divide register49
CRU CLKSEL CON54	0x01d8	W	0x00000000	Clock select and divide register 43
CRU CLKSEL CON55	0x01dc	W	0x00000017	Clock select and divide register 44
CRU CLKSEL CON56	0x01e0	W	0x00000017	Clock select and divide register 45
CRU CLKSEL CON57	0x01e4	W	0x00001f00	Clock select and divide register 57
CRU CLKSEL CON58	0x01e8	W	0x00000100	Clock select and divide register58
CRU_CLKSEL_CON59	0x01ec	W	0x0bb8ea60	Clock select and divide register59
CRU CLKGATE CONO	0x0200	W	0x00000000	Clock gating register0
CRU CLKGATE CON1	0x0204	W	0x00000000	Clock gating register1
CRU CLKGATE CON2	0x0208	W	0x00000000	Clock gating register2
CRU CLKGATE CON3	0x020c	W	0x00000000	Clock gating register3
CRU_CLKGATE_CON4	0x0210	W	0x00000000	Clock gating register4
CRU CLKGATE CON5	0x0210	W	0x00000000	Clock gating register5
CRU CLKGATE CON6	0x0211	W	0x00000000	Clock gating register6
CRU CLKGATE CON7	0x021c	W	0x00000000	Clock gating register7
CRU CLKGATE CON8	0x0220	W	0x00000000	Clock gating register8
CRU_CLKGATE_CON9	0x0224	W	0x00000000	Clock gating register9
CRU CLKGATE CON10	0x0228	W	0x00000000	Clock gating register10
CRU CLKGATE CON11	0x022c	W	0x00000000	Clock gating register11
CRU_CLKGATE_CON12	0x0230	W	0x00000000	Clock gating register12
CRU CLKGATE CON13	0x0234	W	0x0000000	Clock gating register13
CRU CLKGATE CON14	0x0238	W	0×00000000	Clock gating register14
CRU CLKGATE CON15	0x023c	W	0×00000000	Clock gating register15
CRU CLKGATE CON16	0x0240	W	0×00000000	Clock gating register16
CRU_CLKGATE_CON17	0x0244	W	0x00000000	Clock gating register17
CRU SSGTBL0 3	0x0280	W	0x00000000	External wave table register0
CRU SSGTBL4 7	0x0284	W	0x00000000	External wave table register1
CRU_SSGTBL8_11	0x0288	W	0x00000000	External wave table register2
CRU SSGTBL12 15	0x028c	W	0x00000000	External wave table register3
CRU SSGTBL16 19	0x0290	W	0x00000000	External wave table register4
CRU SSGTBL20 23	0x0294	W	0x00000000	External wave table register5
CRU SSGTBL24 27	0x0298	W	0x00000000	External wave table register6
CRU_SSGTBL28_31	0x029c	W	0x00000000	External wave table register7
CRU SSGTBL32 35	0x02a0	W	0x00000000	External wave table register8
CRU SSGTBL36 39	0x02a4	W	0x00000000	External wave table register9
CRU SSGTBL40 43	0x02a8	W	0x00000000	External wave table register10
CRU SSGTBL44 47	0x02ac	W	0x00000000	External wave table register11

Name	Offset	Size	Reset	Description
Name	Oliset	Size	Value	Description
CRU_SSGTBL48_51	0x02b0	W	0x00000000	External wave table register12
CRU SSGTBL52 55	0x02b4	W	0x00000000	External wave table register13
CRU SSGTBL56 59	0x02b8	W	0x00000000	External wave table register14
CRU SSGTBL60 63	0x02bc	W	0x00000000	External wave table register15
CRU SSGTBL64 67	0x02c0	W	0x00000000	External wave table register16
CRU_SSGTBL68_71	0x02c4	W	0x00000000	External wave table register17
CRU SSGTBL72 75	0x02c8	W	0x00000000	External wave table register18
CRU SSGTBL76 79	0x02cc	W	0x00000000	External wave table register19
CRU SSGTBL80 83	0x02d0	W	0x00000000	External wave table register20
CRU SSGTBL84 87	0x02d4	W	0x00000000	External wave table register21
CRU SSGTBL88 91	0x02d8	W	0x00000000	External wave table register22
CRU_SSGTBL92_95	0x02dc	W	0x00000000	External wave table register23
CRU SSGTBL96 99	0x02e0	W	0x00000000	External wave table register24
CRU SSGTBL100 103	0x02e4	W	0x00000000	External wave table register25
CRU SSGTBL104 107	0x02e8	W	0x00000000	External wave table register26
CRU SSGTBL108 111	0x02ec	W	0x00000000	External wave table register27
CRU_SSGTBL112_115	0x02f0	W	0x00000000	External wave table register28
CRU SSGTBL116 119	0x02f4	W	0x00000000	External wave table register29
CRU SSGTBL120 123	0x02f8	W	0x00000000	External wave table register30
CRU SSGTBL124 127	0x02fc	W	0x00000000	External wave table register31
CRU SOFTRST CONO	0x0300	W	0x00000000	Software reset control register0
CRU_SOFTRST_CON1	0x0304	W	0x00000000	Software reset control register1
CRU SOFTRST CON2	0x0308	W	0x00000000	Software reset control register2
CRU SOFTRST CON3	0x030c	W	0x00000000	Software reset control register3
CRU_SOFTRST_CON4	0x0310	W	0x00000000	Software reset control register4
CRU SOFTRST CON5	0x0314	W	0x00000000	Software reset control register5
CRU SOFTRST CON6	0x0318	W	0x00000000	Software reset control register6
CRU SOFTRST CON7	0x031c	W	0x00000000	Software reset control register7
CRU SOFTRST CON8	0x0320	W	0x00000000	Software reset control register8
CRU_SOFTRST_CON9	0x0324	W	0x00000000	Software reset control register9
CRU SOFTRST CON10	0x0328	W	0x00000000	Software reset control register10
CRU SOFTRST CON11	0x032c	W	0x00000000	Software reset control register11
CRU_SDMMC_CON0	0x0380	W	0x00000004	SDMMC control0
CRU SDMMC CON1	0x0384	W	0x00000000	SDMMC control1
CRU SDIO CONO	0x0388	W	0x00000004	SDIO control0
CRU SDIO CON1	0x038c	W	0x00000000	SDIO control1
CRU EMMC CONO	0x0390	W	0x00000004	EMMC control0
CRU EMMC CON1	0x0394	W	0x00000000	EMMC control1
CRU GPLL CONO	0xc000	W	0x00001032	GPLL configuration register0
CRU GPLL CON1	0xc004	W	0x00001041	GPLL configuration register1
CRU GPLL CON2	0xc008	W	0x0000001	GPLL configuration register2
CRU GPLL CON3	0xc00c	W	0x0000007	GPLL configuration register3

Name	Offset	Size	Reset Value	Description
CRU GPLL CON4	0xc010	W	0x00007f00	GPLL configuration register4
CRU PMU MODE	0xc020	W	0x00000000	PMU_MODE
CRU_PMU_CLKSEL_CON0	0xc040	W	0x0000000b	PMU Clock select and divide register0
CRU PMU CLKSEL CON1	0xc044	W	0x0bb8ea60	PMU Clock select and divide register0
CRU PMU CLKSEL CON2	0xc048	W	0x00003131	PMU Clock select and divide register2
CRU PMU CLKSEL CON3	0xc04c	W	0x000000b	PMU Clock select and divide register3
CRU PMU CLKSEL CON4	0xc050	W	0x000000b	PMU Clock select and divide register4
CRU PMU CLKSEL CON5	0xc054	W	0x0bb8ea60	PMU Clock select and divide register5
CRU PMU CLKGATE CON 0	0xc080	W	0x00000000	PMU Clock gating register0
CRU PMU CLKGATE CON 1	0xc084	W	0x00000000	PMU Clock gating register1

Notes: Size: B- Byte (8 bits) access, HW- Half WORD (16 bits) access, W-WORD (32 bits) access

2.6.3 Detail Register Description

CRU APLL CONO

Address: Operational Base + offset (0x0000)

Bit	Attr	Reset Value	Description
			write_mask
31:16	WO	0x0000	When every bit HIGH, enable the writing corresponding bit; when
			every bit LOW, don't care the writing corresponding bit
			bypass
1 5	DW	RW 0x0	PLL Bypass. FREF bypasses PLL to FOUTPOSTDIV
15	KVV		1'b0: no bypass
			1'b1: bypass
14:12	DW	0.73	postdiv1
14:12	KVV	0x3	First Post Divide Value, (1-7)
			fbdiv
			Feedback Divide Value, valid divider settings are:
11:0	11:0 RW		[16, 3200] in integer mode
			[20, 320] in fractional mode
			Tips: no plus one operation

CRU APLL CON1

Address: Operational Base + offset (0x0004)

Bit	Attr	Reset Value	Description
			write_mask
31:16	WO	0x0000	When every bit HIGH, enable the writing corresponding bit; when
			every bit LOW, don't care the writing corresponding bit
			pllpdsel
			PLL global power down source selection
15	RW	0x0	If pllpdsel == 1, PLL can be power down only by pllpd1,
			otherwise pll is power down when any one of refdiv/fbdiv/fracdiv
			is changed or pllpd0 is asserted
			pllpd1
14	RW	0×0	PLL global power down request
14	IXVV	0.00	1'b0: no power down
			1'b1: power down
		V 0x0	pllpd0
13	RW		PLL global power down request
13	KVV		1'b0: no power down
			1'b1: power down
			dsmpd
12	RW	0x1	PLL delta sigma modulator enable
			1'b0: modulator is enable, 1'b1: modulator is disabled
11	RO	0x0	reserved
			pll_lock
10	RO	0×0	PLL lock status
10	KO	UXU	1'b0: unlock
			1'b1: lock
9	RO	0x0	reserved
8:6	RW	0x1	postdiv2
0.0	LVVV	OXI	Second Post Divide Value, (1-7)
5:0	RW	0x01	refdiv
5.0	IZVV	0701	Reference Clock Divide Value, (1-63)

CRU APLL CON2

Address: Operational Base + offset (0x0008)

Bit	Attr	Reset Value	Description			
31:28	RO	0x0	reserved			
			fout4phasepd			
27	DW	0×0	Power down 4-phase clocks and 2X, 3X, 4X clocks			
2/	RW		1'b0: no power down			
			1'b1: power down			
			foutvcopd			
26	RW	W 0×0	Power down buffered VCO clock			
20	20 KW		1'b0: no power down			
			1'b1: power down			

Bit	Attr	Reset Value	Description
			foutpostdivpd
25	RW	0x0	Power down all outputs except for buffered VCO clock
25	KVV	UXU	1'b0: no power down
			1'b1: power down
		0×0	dacpd
24	DW		Power down quantization noise cancellation DAC
24	KVV		1'b0: no power down
			1'b1: power down
			fracdiv
23:0	23:0 RW	0×000001	Fractional part of feedback divide
			(fraction = FRAC/2^24)

CRU_APLL_CON3

Address: Operational Base + offset (0x000c)

Bit	Attr	Reset Value	Description
			write_mask
31:16	WO	0x0000	When every bit HIGH, enable the writing corresponding bit; when
			every bit LOW, don't care the writing corresponding bit
15:13	RO	0x0	reserved
			ssmod_spread
12:8	WO	0x00	spread amplitude
			% = 0.1 * SPREAD[4:0]
7.4	wo	0×0	ssmod_divval
7:4	WO	0x0	Divider required to set the modulation frequency
			ssmod_downspread
2	wo	VO 0×0	Selects center spread or downs pread
3	WO		1'b0: down spread
			1'b1: center spread
		VO 0x1	ssmod_reset
2	wo		Reset modulator state
_	VVO		1'b0: no reset
			1'b1: reset
			ssmod_disable_sscg
1	wo	0x1	Bypass SSMOD by module
1	VVO	OXI	1'b0: no bypass
			1'b1: bypass
			ssmod_bp
0	wo	0x1	Bypass SSMOD by integration
U	WO	UXI	1'b0: no bypass
			1'b1: bypass

CRU APLL CON4

Address: Operational Base + offset (0x0010)

Bit	Attr	Reset Value	Description
			write_mask
31:16	WO	0x0000	When every bit HIGH, enable the writing corresponding bit; when
			every bit LOW, don't care the writing corresponding bit
			ssmod_ext_maxaddr
15:8	WO	0x7f	External wave table data inputs
			(0-255)
7:1	RO	0x0	reserved
		WO 0x0	ssmod_sel_ext_wave
	WO		select external wave
0			1'b0: no select ext_wave
			1'b1: select ext_wave

CRU DPLL CONO

Address: Operational Base + offset (0x0020)

Bit	Attr	Reset Value	Description
			write_mask
31:16	WO	0x0000	When every bit HIGH, enable the writing corresponding bit; when
			every bit LOW, don't care the writing corresponding bit
			bypass
15	RW	0x0	PLL Bypass. FREF bypasses PLL to FOUTPOSTDIV
13			1'b0: no bypass
			1'b1: bypass
14.12	RW	W 0x1	postdiv1
14.12			First Post Divide Value, (1-7)
		0x0c8	fbdiv
			Feedback Divide Value, valid divider settings are:
11:0	RW		[16, 3200] in integer mode
			[20, 320] in fractional mode
			Tips: no plus one operation

CRU DPLL CON1

Address: Operational Base + offset (0x0024)

Bit	Attr	Reset Value	Description
			write_mask
31:16	WO	0x0000	When every bit HIGH, enable the writing corresponding bit; when
			every bit LOW, don't care the writing corresponding bit
			pllpdsel
			PLL global power down source selection
15	RW	0x0	If $pllpdsel == 1$, PLL can be power down only by $pllpd1$,
			otherwise pll is power down when any one of refdiv/fbdiv/fracdiv
			is changed or pllpd0 is asserted

Bit	Attr	Reset Value	Description		
			pllpd1		
14	RW	0×0	PLL global power down request		
14	INV	0.00	1'b0: no power down		
			1'b1: power down		
			pllpd0		
13	RW	0×0	PLL global power down request		
	1200	0.00	1'b0: no power down		
			1'b1: power down		
			dsmpd		
12	RW	0x1	PLL delta sigma modulator enable		
			1'b0: modulator is enable, 1'b1: modulator is disabled		
11	RO	0x0	reserved		
		0×0	pll_lock		
10	RO		PLL lock status		
10	INO		1'b0: unlock		
					1'b1: lock
9	RO	0x0	reserved		
			postdiv2		
8:6	RW	0x1	Second Post Divide Value		
			(1-7)		
			refdiv		
5:0	RW	0x03	Reference Clock Divide Value		
			(1-63)		

CRU DPLL CON2

Address: Operational Base + offset (0x0028)

Bit	Attr	Reset Value	Description
31:28	RO	0x0	reserved
			fout4phasepd
27	RW	0x0	Power down 4-phase clocks and 2X, 3X, 4X clocks
27	IK VV	UXU	1'b0: no power down
			1'b1: power down
			foutvcopd
26	RW	0x0	Power down buffered VCO clock
20			1'b0: no power down
			1'b1: power down
		W 0×0	foutpostdivpd
25	RW		Power down all outputs except for buffered VCO clock
23	KW		1'b0: no power down
			1'b1: power down
			dacpd
24	RW	W 0×0	Power down quantization noise cancellation DAC
<u> </u>	IVVV		1'b0: no power down
			1'b1: power down

Bit	Attr	Reset Value	Description
			fracdiv
23:0	RW	0×000001	Fractional part of feedback divide
			(fraction = FRAC/2^24)

CRU DPLL CON3

Address: Operational Base + offset (0x002c)

Bit	Attr	Reset Value	Description
			write_mask
31:16	WO	0x0000	When every bit HIGH, enable the writing corresponding bit; when
			every bit LOW, don't care the writing corresponding bit
15:13	RO	0x0	reserved
			ssmod_spread
12:8	WO	0x00	spread amplitude
			% = 0.1 * SPREAD[4:0]
7:4	wo	0.40	ssmod_divval
7:4	WO	0x0	Divider required to set the modulation frequency
		0x0	ssmod_downspread
2	wo		Selects center spread or downs pread
3	VVO		1'b0: down spread
			1'b1: center spread
		0 0x1	ssmod_reset
2	wo		Reset modulator state
2	WO		1'b0: no reset
			1'b1: reset
			ssmod_disable_sscg
1	wo	0×1	Bypass SSMOD by module
	VVO	OXI	1'b0: no bypass
			1'b1: bypass
			ssmod_bp
0	wo	0.41	Bypass SSMOD by integration
ال	WO	NO 0x1	1'b0: no bypass
			1'b1: bypass

CRU DPLL CON4

Address: Operational Base + offset (0x0030)

Bit	Attr	Reset Value	Description
			write_mask
31:16	WO	0x0000	When every bit HIGH, enable the writing corresponding bit; when
			every bit LOW, don't care the writing corresponding bit
15:8	WO	O 0x7f	ssmod_ext_maxaddr
			External wave table data inputs, (0-255)
7:1	RO	0x0	reserved

Bit	Attr	Reset Value	Description
		0x0	ssmod_sel_ext_wave
	wo		select external wave
0	VVO		1'b0: no select ext_wave
			1'b1: select ext_wave

CRU CPLL CONO

Address: Operational Base + offset (0x0040)

Bit	Attr	Reset Value	Description
			write_mask
31:16	WO	0x0000	When every bit HIGH, enable the writing corresponding bit; when
			every bit LOW, don't care the writing corresponding bit
			bypass
15	RW	0x0	PLL Bypass. FREF bypasses PLL to FOUTPOSTDIV
13	KVV		1'b0: no bypass
			1'b1: bypass
14:12	DW	V 0x2	postdiv1
14.12	KVV		First Post Divide Value, (1-7)
		0x063	fbdiv
			Feedback Divide Value, valid divider settings are:
11:0	RW		[16, 3200] in integer mode
			[20, 320] in fractional mode
			Tips: no plus one operation

CRU_CPLL_CON1

Address: Operational Base + offset (0x0044)

Bit	Attr	Reset Value	Description
			write_mask
31:16	WO	0x0000	When every bit HIGH, enable the writing corresponding bit; when
			every bit LOW, don't care the writing corresponding bit
			pllpdsel
			PLL global power down source selection
15	RW	0×0	If pllpdsel == 1, PLL can be power down only by pllpd1,
			otherwise pll is power down when any one of refdiv/fbdiv/fracdiv
			is changed or pllpd0 is asserted
	RW	W 0×0	pllpd1
14			PLL global power down request
14			1'b0: no power down
			1'b1: power down
		W 0×0	pllpd0
13	RW		PLL global power down request
13	IT VV		1'b0: no power down
			1'b1: power down

Bit	Attr	Reset Value	Description
			dsmpd
12	RW	0x1	PLL delta sigma modulator enable
			1'b0: modulator is enable, 1'b1: modulator is disabled
11	RO	0x0	reserved
			pll_lock
10	RO	0x0	PLL lock status
10	KU		1'b0: unlock
			1'b1: lock
9	RO	0x0	reserved
			postdiv2
8:6	RW	0x1	Second Post Divide Value
			(1-7)
			refdiv
5:0	RW	0x01	Reference Clock Divide Value
			(1-63)

CRU CPLL CON2

Address: Operational Base + offset (0x0048)

Bit	Attr	Reset Value	Description
31:28	RO	0x0	reserved
			fout4phasepd
27	RW	0×0	Power down 4-phase clocks and 2X, 3X, 4X clocks
27	IK VV	0.00	1'b0: no power down
			1'b1: power down
			foutvcopd
26	RW	0×0	Power down buffered VCO clock
20	FC V V	OXO	1'b0: no power down
			1'b1: power down
		V 0×0	foutpostdivpd
25	RW		Power down all outputs except for buffered VCO clock
23	KVV		1'b0: no power down
			1'b1: power down
			dacpd
24	RW	0×0	Power down quantization noise cancellation DAC
24	IVV	.w UXU	1'b0: no power down
			1'b1: power down
			fracdiv
23:0	RW	V 0x000001	Fractional part of feedback divide
			(fraction = FRAC/2^24)

CRU CPLL CON3

Address: Operational Base + offset (0x004c)

Bit	Attr	Reset Value	Description
			write_mask
31:16	WO	0x0000	When every bit HIGH, enable the writing corresponding bit; when
			every bit LOW, don't care the writing corresponding bit
15:13	RO	0x0	reserved
			ssmod_spread
12:8	WO	0x00	spread amplitude
			% = 0.1 * SPREAD[4:0]
7:4	wo	0x0	ssmod_divval
7.4	WO	UXU	Divider required to set the modulation frequency
		0x0	ssmod_downspread
3	WO		Selects center spread or downs pread
3	WO		1'b0: down spread
			1'b1: center spread
		0×1	ssmod_reset
2	wo		Reset modulator state
_	***		1'b0: no reset
			1'b1: reset
			ssmod_disable_sscg
1	wo	0×1	Bypass SSMOD by module
1	VV O	O OXI	1'b0: no bypass
			1'b1: bypass
			ssmod_bp
0	wo	VO 0x1	Bypass SSMOD by integration
	***		1'b0: no bypass
			1'b1: bypass

CRU CPLL CON4

Address: Operational Base + offset (0x0050)

Bit	Attr	Reset Value	Description
31:16	WO	0x0000	write_mask When every bit HIGH, enable the writing corresponding bit; when every bit LOW, don't care the writing corresponding bit
15:8	WO	0x7f	ssmod_ext_maxaddr External wave table data inputs (0-255)
7:1	RO	0x0	reserved
0	WO	0×0	ssmod_sel_ext_wave select external wave 1'b0: no select ext_wave 1'b1: select ext_wave

CRU NPLL CONO

Address: Operational Base + offset (0x0060)

Bit	Attr	Reset Value	Description
			write_mask
31:16	WO	0x0000	When every bit HIGH, enable the writing corresponding bit; when
			every bit LOW, don't care the writing corresponding bit
			bypass
15	RW	0x0	PLL Bypass. FREF bypasses PLL to FOUTPOSTDIV
15	KVV	0x0	1'b0: no bypass
			1'b1: bypass
14.12	RW	W 0x2	postdiv1
14.12			First Post Divide Value, (1-7)
			fbdiv
			Feedback Divide Value, valid divider settings are:
11:0	RW	RW 0x063	[16, 3200] in integer mode
			[20, 320] in fractional mode
			Tips: no plus one operation

CRU NPLL CON1
Address: Operational Base + offset (0x0064)

Bit	Attr	Reset Value	Description
			write_mask
31:16	WO	0x0000	When every bit HIGH, enable the writing corresponding bit; when
			every bit LOW, don't care the writing corresponding bit
			pllpdsel
			PLL global power down source selection
15	RW	0x0	If pllpdsel == 1, PLL can be power down only by pllpd1,
			otherwise pll is power down when any one of refdiv/fbdiv/fracdiv
			is changed or pllpd0 is asserted
			pllpd1
14	RW	V 0×0	PLL global power down request
14	KVV		1'b0: no power down
			1'b1: power down
	RW	W 0x0	pllpd0
13			PLL global power down request
13			1'b0: no power down
			1'b1: power down
			dsmpd
12	RW	0x1	PLL delta sigma modulator enable
			1'b0: modulator is enable, 1'b1: modulator is disabled
11	RO	0x0	reserved
			pll_lock
10	DO.	0×0	PLL lock status
	RO		1'b0: unlock
			1'b1: lock
9	RO	0x0	reserved

Bit	Attr	Reset Value	Description
			postdiv2
8:6	RW	0x1	Second Post Divide Value
			(1-7)
			refdiv
5:0	RW	0x01	Reference Clock Divide Value
			(1-63)

CRU NPLL CON2

Address: Operational Base + offset (0x0068)

Bit	Attr	Reset Value	Description
31:28	RO	0x0	reserved
			fout4phasepd
27	RW	0×0	Power down 4-phase clocks and 2X, 3X, 4X clocks
27	IVV	0.00	1'b0: no power down
			1'b1: power down
			foutvcopd
26	RW	0×0	Power down buffered VCO clock
20	FC V V	OXO	1'b0: no power down
			1'b1: power down
			foutpostdivpd
25	RW		Power down all outputs except for buffered VCO clock
23	IVV		1'b0: no power down
			1'b1: power down
			dacpd
24	RW	0×0	Power down quantization noise cancellation DAC
27	IVV	W UXU	1'b0: no power down
			1'b1: power down
			fracdiv
23:0	RW	/ 0x000001	Fractional part of feedback divide
			(fraction = FRAC/2^24)

CRU_NPLL_CON3

Address: Operational Base + offset (0x006c)

Bit	Attr	Reset Value	Description
			write_mask
31:16	WO	0x0000	When every bit HIGH, enable the writing corresponding bit; when
			every bit LOW, don't care the writing corresponding bit
15:13	RO	0x0	reserved
			ssmod_spread
12:8	RW	W 0x00	spread amplitude
			% = 0.1 * SPREAD[4:0]
7:4	RW	W 00	ssmod_divval
		KW	RW 0×0

Bit	Attr	Reset Value	Description
			ssmod_downspread
3	RW	0x0	Selects center spread or downs pread
3	FCVV	UXU	1'b0: down spread
			1'b1: center spread
			ssmod_reset
2	DW	0x1	Reset modulator state
2	RW		1'b0: no reset
			1'b1: reset
		V 0×1	ssmod_disable_sscg
1	RW		Bypass SSMOD by module
1	KVV		1'b0: no bypass
			1'b1: bypass
		0×1	ssmod_bp
0	DW		Bypass SSMOD by integration
	KW		1'b0: no bypass
			1'b1: bypass

CRU_NPLL_CON4

Address: Operational Base + offset (0x0070)

Bit	Attr	Reset Value	Description
			write_mask
31:16	WO	0x0000	When every bit HIGH, enable the writing corresponding bit; when
			every bit LOW, don't care the writing corresponding bit
		0x7f	ssmod_ext_maxaddr
15:8	RW		External wave table data inputs
			(0-255)
7:1	RO	0x0	reserved
		RW 0x0	ssmod_sel_ext_wave
0	RW		select external wave
0			1'b0: no select ext_wave
			1'b1: select ext_wave

CRU_MODE

Address: Operational Base + offset (0x00a0)

Bit	Attr	Reset Value	Description
			write_mask
31:16	WO	0x0000	When every bit HIGH, enable the writing corresponding bit; when
			every bit LOW, don't care the writing corresponding bit
15:10	RO	0x0	reserved
	RW	RW 0x0	usbphy480m_work_mode
9:8			2'h0:clock from xin_osc0_func_div
9.0			2'h1:clock from pll
			2'h2:clock from clk_rtc_32k

Bit	Attr	Reset Value	Description
			npll_work_mode
7:6	RW	0×0	2'h0:clock from xin_osc0_func_div
7.6	KVV	UXU	2'h1:clock from pll
			2'h2:clock from clk_rtc_32k
			dpll_work_mode
5:4	RW	0x0	2'h0:clock from xin_osc0_func_div
3.4	KVV		2'h1:clock from pll
			2'h2:clock from clk_rtc_32k
		W 0×0	cpll_work_mode
3:2	RW		2'h0:clock from xin_osc0_func_div
3.2	KVV		2'h1:clock from pll
			2'h2:clock from clk_rtc_32k
			apll_work_mode
1.0	DW	W 0x0	2'h0:clock from xin_osc0_func_div
1:0	KVV		2'h1:clock from pll

CRU_MISC

Address: Operational Base + offset (0x00a4)

Bit	Attr	Reset Value	Description
31:16	WO	0×0000	write_mask
			When every bit HIGH, enable the writing corresponding bit; when
			every bit LOW, don't care the writing corresponding bit
15:12	RW	0×0	core_high_freq_rst_en
			1'b1:enable high frequency rst gate function
			1'b0:disable high frequency rst gate function.
			Each bit for each core, eg. bit0 for core0
11:5	RO	0x0	reserved
4	RW	0×0	corepo_wrst_wfien
			1'b1: enable core0/1/2/3 warm reset for cpu power on reset.
			1'b0: disable core0/1/2/3 warm reset for cpu power on reset
3	RW	0×0	corepo_srst_wfien
			1'b1: enable core0/1/2/3 wfi reset for cpu power on reset
			1'b0: disable core0/1/2/3 wif reset for cpu power on reset
2	RW	0×0	core_wrst_wfien
			1'b1: enable core0/1/2/3 warm reset for cpu reset.
			1'b0: disable core0/1/2/3 warm reset for cpu reset
1	RW	0×0	core_srst_wfien
			1'b1: enable core0/1/2/3 wfi reset for cpu reset
			1'b0: disable core0/1/2/3 wif reset for cpu reset
0	RW	0x0	warmrst_en
			1'b1: enable cpu warm reset.
			1'b0: disable cpu warm reset

CRU GLB CNT TH
Address: Operational Base + offset (0x00b0)

Bit	Attr	Reset Value	Description
31:16	RW	10x3a98	pll_lockperiod
			PLL lock filtered period time, measured in OSC clock cycles
			global_reset_counter_threshold
15:0	RW	0x0064	Global soft reset, wdt reset or tsadc_shut reset asserted time
			counter threshold. Measured in OSC clock cycles

CRU GLB RST ST

Address: Operational Base + offset (0x00b4)

Bit	Attr	Reset Value	Description
31:24	RO	0x0	reserved
23:20	RO	0x0	resetn_corepo_src_st corepo resetn source status of core0~3. Each bit for each core
19:16	RO	0x0	resetn_core_src_st core resetn source status of core0~3. Each bit for each core
15:6	RO	0x0	reserved
5	W1C	0×0	snd_glb_tsadc_rst_st sencond global TSADC triggered reset flag 1'b0: last hot reset is not sencond global TSADC triggered reset 1'b1: last hot reset is sencond global TSADC triggered reset
4	W1C	0×0	fst_glb_tsadc_rst_st first global TSADC triggered reset flag 1'b0: last hot reset is not first global TSADC triggered reset 1'b1: last hot reset is first global TSADC triggered reset
3	W1C	0×0	snd_glb_wdt_rst_st sencond global WDT triggered reset flag 1'b0: last hot reset is not sencond global WDT triggered reset 1'b1: last hot reset is sencond global WDT triggered reset
2	W1C	0x0	fst_glb_wdt_rst_st first global WDT triggered reset flag 1'b0: last hot reset is not first global WDT triggered reset 1'b1: last hot reset is first global WDT triggered reset
1	W1C	0x0	snd_glb_rst_st second global rst flag 1'b0: last hot reset is not sencond global reset 1'b1: last hot reset is sencond global reset
0	W1C	0x0	fst_glb_rst_st first global rst flag 1'b0: last hot reset is not first global reset 1'b1: last hot reset is first global reset

CRU GLB SRST FST

Address: Operational Base + offset (0x00b8)

Bit	Attr	Reset Value	Description
31:16	RO	0x0	reserved
15:0	RW	0x0000	GLB_SRST_FST
15.0	IK VV	00000	The first global software reset config value

CRU GLB SRST SND

Address: Operational Base + offset (0x00bc)

Bit	Attr	Reset Value	Description
31:16	RO	0x0	reserved
15:0	DW	0x0000	GLB_SRST_SND
15.0	KVV	00000	The second global software reset config value

CRU GLB RST CON

Address: Operational Base + offset (0x00c0)

Bit	Attr	Reset Value	Description
31:8	RO	0x0	reserved
7	RW	0×0	wdt_reset_ext_en 1'b1: enable wdt reset extend, reset extend time depend on bit15~0 of GLB_CNT_TH 1'b0: disable wdt reset extend
6	RW	0x0	tsadc_shut_reset_ext_en 1'b1: enable tsadc_shut reset extend, reset extend time depend on bit15~0 of GLB_CNT_TH 1'b0: disable tsadc_shut reset extend
5	RO	0x0	reserved
4	RW	0×0	pmu_srst_wdt_en 1'b0: enable wdt reset as pmu reset source 1'b1: disable wdt reset as pmu reset source
3	RW	0×0	pmu_srst_glb_rst_en 1'b0: enable first or second global reset as pmu reset source 1'b1: disable first or second global reset as pmu reset source
2	RW	0×0	pmu_srst_ctrl 1'b1: second global reset trigger pmu reset 1'b0: first global reset trigger pmu reset
1	RW	0×0	wdt_glb_srst_ctrl 1'b0: wdt trigger second global reset 1'b1: wdt trigger first global reset
0	RW	0x0	tsadc_glb_srst_ctrl 1'b0: tsadc trigger second global reset 1'b1: tsadc trigger first global reset

CRU CLKSEL CONO

Address: Operational Base + offset (0x0100)

Bit	Attr	Reset Value	Description
31:16	WO	0×0000	write_mask When every bit HIGH, enable the writing corresponding bit; when every bit LOW, don't care the writing corresponding bit
15	RO	0x0	reserved
14:12	RW	0x1	aclk_core_div_con aclk_core=clk_core/(div_con+1)
11:8	RW	0x3	core_dbg_div_con pclk_dbg=clk_core/(div_con+1)
7	RW	0x0	core_clk_pll_sel 1'b0:APLL 1'b1:GPLL
6:4	RO	0x0	reserved
3:0	RW	0×0	clk_core_div_con clk_core=pll_clk_src/(div_con+1)

CRU CLKSEL CON1

Address: Operational Base + offset (0x0104)

Bit	Attr	Reset Value	Description
			write_mask
31:16	WO	0x0000	When every bit HIGH, enable the writing corresponding bit; when
			every bit LOW, don't care the writing corresponding bit
			clk_gpu_sel
15	RW	0x0	1'b0: select clk_gpu_div
			1'b1: select clk_gpu_np5
14:13	D\M	0×0	aclk_gpu_div_con
14.13	KVV	UXU	aclk_gpu=clk_gpu/(div_con+1)
12	RO	0x0	reserved
11:8	RW	0x2	clk_gpu_divnp5_con
11.6	I VV		clk_gpu_np5=2*clk_gpu_div/(2*div_con+3)
			clk_gpu_pll_sel
			2'h0:GPLL
7:6	RW	0x0	2'h1:CPLL
			2'h2:usbphy480M
			2'h3:NPLL
5:4	RO	0x0	reserved
3:0	RW	0x2	clk_gpu_div_con
3.0	IK VV	UAZ	clk_gpu_div=pll_clk_src/(div_con+1)

CRU CLKSEL CON2

Address: Operational Base + offset (0x0108)

Bit	Attr	Reset Value	Description
			write_mask
31:16	wo	0x0000	When every bit HIGH, enable the writing corresponding bit; when
			every bit LOW, don't care the writing corresponding bit
15:13	RO	0x0	reserved
12:8	RW	0x0b	pclk_ddr_div_con
12.0	IK VV	UXUD	pclk_ddr=gpll_clk_src/(div_con+1)
			ddrphy4x_pll_clk_sel
7	RW	0x0	1'b0: DPLL
			1'b1: GPLL
6:5	RO	0x0	reserved
			clk_ddrstdby_sel
4	RW	0x0	1'b0: select ddrphy1x as clk_ddrstdby clock
			1'b1: select ddrphy4x/4 as clk_ddrstdby clock
3	RO	0x0	reserved
2.0	DW	0.40	ddrphy4x_div_con
2:0	RW	0x0	clk_ddrphy4x=pll_clk_src/(div_con+1)

CRU_CLKSEL_CON3

Address: Operational Base + offset (0x010c)

Bit	Attr	Reset Value	Description	
			write_mask	
31:16	WO	0x0000	When every bit HIGH, enable the writing corresponding bit; when	
			every bit LOW, don't care the writing corresponding bit	
15:12	DW	0.72	pclk_vo_div_con	
15:12	KVV	0x2	pclk_vo=aclk_vo/(div_con+1)	
11:8	RW	0x1	hclk_vo_div_con	
11.0			hclk_vo=aclk_vo/(div_con+1)	
	RW	RW 0x0	aclk_vo_pll_sel	
7:6			2'b0:GPLL	
7.6			2'b1:CPLL	
			2'b2:NPLL	
5	RO	0x0	reserved	
4.0	DW	0×02	aclk_vo_div_con	
4:0	RW	KW	W 0x03	aclk_vo=pll_clk_src/(div_con+1)

CRU CLKSEL CON4

Address: Operational Base + offset (0x0110)

Bit	Attr	Reset Value	Description
			write_mask
31:16	WO	0x0000	When every bit HIGH, enable the writing corresponding bit; when
			every bit LOW, don't care the writing corresponding bit
15:8	RO	0x0	reserved
	RW	0×0	clk_rga_core_pll_sel
7.6			2'b0:GPLL
7:6			2'b1:CPLL
			2'b2:NPLL
5	RO	0x0	reserved
4.0	DW	0.03	clk_rga_core_div_con
4:0	RW	W 0x03	clk_rga_core=pll_clk_src/(div_con+1)

Address: Operational Base + offset (0x0114)

Bit	Attr	Reset Value	Description	
			write_mask	
31:16	WO	0x0000	When every bit HIGH, enable the writing corresponding bit; when	
			every bit LOW, don't care the writing corresponding bit	
			dclk_vopb_sel	
15.14	DW	0.40	2'b0: select dclk_vopb	
15:14	KW	/ 0x0	2'b1: select dclk_vopb_frac_out	
			2'b2: select xin_osc0	
13:12	RO	0x0	reserved	
			dclk_vopb_pll_sel	
11	RW	0x0	1'b0:CPLL	
			1'b1:NPLL	
10:8	RO	0x0	reserved	
7.0	DW		dclk_vopb_div_con	
7:0	ΚW	RW	RW 0x07	dclk_vopb=pll_clk_src/(div_con+1)

CRU CLKSEL CON6

Address: Operational Base + offset (0x0118)

Bit	Attr	Reset Value	Description
31:0	RW	0x0bb8ea60	dclk_vopb_frac_div_con High 16-bit for numerator, Low 16-bit for denominator, clock source is dclk_vopb

CRU CLKSEL CON7

Address: Operational Base + offset (0x011c)

Bit	Attr	Reset Value	Description
			write_mask
31:16	WO	0x0000	When every bit HIGH, enable the writing corresponding bit; when
			every bit LOW, don't care the writing corresponding bit
15:8	RO	0x0	reserved
			clk_pwm_vopb_pll_sel
7	RW	0x0	1'b0:GPLL
			1'b1:xin_osc0
6:0	DW		clk_pwm_vopb_div_con
	ΚW	RW	0x0b

Address: Operational Base + offset (0x0120)

Bit	Attr	Reset Value	Description
31:16	WO	0×0000	write_mask When every bit HIGH, enable the writing corresponding bit; when
			every bit LOW, don't care the writing corresponding bit
			dclk_vopl_sel
15:14	DW	0x0	2'b0: select dclk_vopl
15.14	KW		2'b1: select dclk_vopl_frac_out
			2'b2: select xin_osc0
13:12	RO	0x0	reserved
			dclk_vopl_pll_sel
11	RW	0x0	1'b0:NPLL
			1'b1:CPLL
10:8	RO	0x0	reserved
7.0	DW	0×07	dclk_vopl_div_con
7:0	RW	RW 0x07	dclk_vopl=pll_clk_src/(div_con+1)

CRU CLKSEL CON9

Address: Operational Base + offset (0x0124)

Bit	Attr	Reset Value	Description
31:0	RW		dclk_vopl_frac_div_con High 16-bit for numerator, Low 16-bit for denominator, clock
			source is dclk_vopl

CRU CLKSEL CON10

Address: Operational Base + offset (0x0128)

Bit	Attr	Reset Value	Description
			write_mask
31:16	RW	0x0000	When every bit HIGH, enable the writing corresponding bit; when
			every bit LOW, don't care the writing corresponding bit
15:12	RO	0x0	reserved
11:8	DW	W 0x1	hclk_vpu_div_con
11:0	KVV		hclk_vpu=aclk_vpu/(div_con+1)
		W 0x0	aclk_vpu_pll_sel
7:6	DW		2'b0:GPLL
7:6	KVV		2'b1:CPLL
			2'b2:NPLL
5	RO	0x0	reserved
4.0	DW	0x03	aclk_vpu_div_con
4:0	KVV		aclk_vpu=pll_clk_src/(div_con+1)

Address: Operational Base + offset (0x012c)

Bit	Attr	Reset Value	Description
			write_mask
31:16	WO	0x0000	When every bit HIGH, enable the writing corresponding bit; when
			every bit LOW, don't care the writing corresponding bit
15:12	RO	0x0	reserved
11:8	DW	0x1	hclk_vi_div_con
11:0	RW		hclk_vi=aclk_vi/(div_con+1)
	RW	W 0x0	aclk_vi_pll_sel
7:6			2'b0:GPLL
7:6			2'b1:CPLL
			2'b2:NPLL
5	RO	0x0	reserved
4.0	RW	0x03	aclk_vi_div_con
4:0			aclk_vi=pll_clk_src/(div_con+1)

CRU CLKSEL CON12

Address: Operational Base + offset (0x0130)

Bit	Attr	Reset Value	Description
31:16			write_mask
	WO	0x0000	When every bit HIGH, enable the writing corresponding bit; when
			every bit LOW, don't care the writing corresponding bit
	RW	W 0x0	clk_gmac_out_pll_sel
15.14			2'b0:GPLL
15.14			2'b1:CPLL
			2'b2:NPLL
13	RO	0x0	reserved
12:8	RW	RW 0x17	clk_gmac_out_div_con
			clk_gmac_out=pll_clk_src/(div_con+1)

Bit	Attr	Reset Value	Description
	RW	0×0	clk_isp_pll_sel 2'b0:GPLL
7:6			2'b1:CPLL
			2'b2:NPLL
5	RO	0x0	reserved
4:0	RW	ロメロノ	clk_isp_div_con clk_isp=pll_clk_src/(div_con+1)

<u>CRU CLKSEL CON13</u> Address: Operational Base + offset (0x0134)

Bit	Attr	Reset Value	Description
			write_mask
31:16	WO	0x0000	When every bit HIGH, enable the writing corresponding bit; when
			every bit LOW, don't care the writing corresponding bit
			clk_vpu_core_pll_clk_sel
15:14	DW	0.40	2'b0:GPLL
15:14	KVV	0×0	2'b1:CPLL
			2'b2:NPLL
13	RO	0x0	reserved
12.0	RW	0x06	clk_vpu_core_div_con
12:8			clk_vpu_core=pll_clk_src/(div_con+1)
		V 0x0	clk_cif_out_pll_sel
			2'b0:xin_osc0
7:6	RW		2'b1:CPLL
			2'b2:NPLL
			2'b3:usbphy480M
E.O.	DW	0.400	clk_cif_out_div_con
5:0	RW	0x00	clk_cif_out=pll_clk_src/(div_con+1)

CRU CLKSEL CON14

Address: Operational Base + offset (0x0138)

Bit	Attr	Reset Value	Description
			write_mask
31:16	WO	0x0000	When every bit HIGH, enable the writing corresponding bit; when
			every bit LOW, don't care the writing corresponding bit
			aclk_hclk_peri_pll_sel
15	RW	0x0	1'b0:GPLL
			1'b1:CPLL
14:13	RO	0x0	reserved
12:8	RW	0x07	hclk_peri_div_con
12:0	KVV	0x07	hclk_peri=pll_clk_src/(div_con+1)
7:5	RO	0x0	reserved
4.0	DW	0,405	aclk_peri_div_con
4:0	RW	RW 0×05	aclk_peri=pll_clk_src/(div_con+1)

Address: Operational Base + offset (0x013c)

Bit	Attr	Reset Value	Description
			write_mask
31:16	WO	0x0000	When every bit HIGH, enable the writing corresponding bit; when
			every bit LOW, don't care the writing corresponding bit
			clk_nandc_sel
15	RW	0x0	1'b0: select clk_nandc
			1'b1: select clk_nandc_div50
14:13	RO	0x0	reserved
			clk_nandc_div50_div_con
12:8	RW	0x07	clk_nandc_div50=clk_nandc/(div_con+1), duty cycle is 50% for
			any value
		W 0x0	clk_nandc_pll
7:6	DW		2'b0:GPLL
7.0	RW		2'b1:CPLL
			2'b2:NPLL
5	RO	0x0	reserved
4:0	RW	0x07	clk_nandc_div_con
4.0	IK VV	UXU7	clk_nandc=pll_clk_src/(div_con+1)

CRU CLKSEL CON16

Address: Operational Base + offset (0x0140)

Bit	Attr	Reset Value	Description
			write_mask
31:16	WO	0x0000	When every bit HIGH, enable the writing corresponding bit; when
			every bit LOW, don't care the writing corresponding bit
			clk_sdmmc_pll_sel
			2'b0:GPLL
15:14	RW	0x0	2'b1:CPLL
			2'b2:NPLL
			2'b3:xin_osc0
13:8	RO	0x0	reserved
7:0	DW/	0.00	clk_sdmmc_div_con
7:0	RW	0x03	clk_sdmmc=pll_clk_src/(div_con+1)

CRU CLKSEL CON17

Address: Operational Base + offset (0x0144)

Bit	Attr	Reset Value	Description
			write_mask
31:16	WO	0x0000	When every bit HIGH, enable the writing corresponding bit; when
			every bit LOW, don't care the writing corresponding bit

Bit	Attr	Reset Value	Description
			clk_sdmmc_sel
15	RW	0x0	1'b0:select clk_sdmmc
			1'b1:select clk_sdmmc_div50
14:8	RO	0x0	reserved
			clk_sdmmc_div50_div_con
7:0	RW	0x03	clk_sdmmc_div50=clk_sdmmc/(div_con+1), duty cycle is 50%
			for any value

Address: Operational Base + offset (0x0148)

Bit	Attr	Reset Value	Description
			write_mask
31:16	WO	0x0000	When every bit HIGH, enable the writing corresponding bit; when
			every bit LOW, don't care the writing corresponding bit
			clk_sdio_pll_sel
			2'b0:GPLL
15:14	RW	0x0	2'b1:CPLL
			2'b2:NPLL
			2'b3:xin_osc0
13:8	RO	0x0	reserved
7.0	RW	1()x()/	clk_sdio_div_con
7:0	KVV		clk_sdio=pll_clk_src/(div_con+1)

CRU CLKSEL CON19

Address: Operational Base + offset (0x014c)

Bit	Attr	Reset Value	Description
			write_mask
31:16	WO	0x0000	When every bit HIGH, enable the writing corresponding bit; when
			every bit LOW, don't care the writing corresponding bit
			clk_sdio_sel
15	RW	0x0	1'b0:select clk_sdio
			1'b1:select clk_sdio_div50
14:8	RO	0x0	reserved
			clk_sdio_div50_div_con
7:0	RW	0x02	clk_sdio_div50=clk_sdio/(div_con+1), duty cycle is 50% for any
			value

CRU CLKSEL CON20

Address: Operational Base + offset (0x0150)

Bit	Attr	Reset Value	Description
			write_mask
31:16	WO	0x0000	When every bit HIGH, enable the writing corresponding bit; when
			every bit LOW, don't care the writing corresponding bit

Bit	Attr	Reset Value	Description
			clk_emmc_pll_sel
	RW	0x0	2'b0:GPLL
15:14			2'b1:CPLL
			2'b2:NPLL
			2'b3:xin_osc0
13:8	RO	0x0	reserved
7:0	RW	2W 10x02 1	clk_emmc_div_con
			clk_emmc=pll_clk_src/(div_con+1)

Address: Operational Base + offset (0x0154)

Bit	Attr	Reset Value	Description
			write_mask
31:16	WO	0x0000	When every bit HIGH, enable the writing corresponding bit; when
			every bit LOW, don't care the writing corresponding bit
			clk_emmc_sel
15	RW	0x0	1'b0:select clk_emmc
			1'b1:select clk_emmc_div50
14:8	RO	0x0	reserved
			clk_emmc_div50_div_con
7:0	RW	0x02	clk_emmc_div50=clk_emmc/(div_con+1), duty cycle is 50% for
			any value

CRU CLKSEL CON22

Address: Operational Base + offset (0x0158)

Bit	Attr	Reset Value	Description
31:16	WO	0×0000	write_mask When every bit HIGH, enable the writing corresponding bit; when every bit LOW, don't care the writing corresponding bit
15:14	RW	0×0	clk_gmac_pll_sel 2'h0:GPLL 2'h1:CPLL 2'h2:NPLL
13	RO	0x0	reserved
12:8	RW	0x17	clk_gmac_div_con clk_gmac=pll_clk_src/(div_con+1)
7	RW	0×0	clk_sfc_pll_sel 1'b0:GPLL 1'b1:CPLL
6:0	RW	0x0b	clk_sfc_div_con clk_sfc=pll_clk_src/(div_con+1)

Address: Operational Base + offset (0x015c)

Bit	Attr	Reset Value	Description
			write_mask
31:16	WO	0x0000	When every bit HIGH, enable the writing corresponding bit; when
			every bit LOW, don't care the writing corresponding bit
			aclk_hclk_pclk_bus_pll_sel
15	RW	0x0	1'b0:GPLL
			1'b1:CPLL
14:13	RO	0x0	reserved
12:8	RW	0x05	aclk_bus_div_con
12.0	KVV		aclk_bus=pll_clk_src/(div_con+1)
			rmii_clk_sel
7	RW	0x1	1'b0:10M
			1'b1:100M
			rmii_extclksrc_sel
6	RW	0x0	1'b0:select clk_gmac as clk_gmac
			1'b1:select external phy clock as clk_gmac
5:4	RO	0x0	reserved
2.0	DW	0×1	pclk_gmac_div_con
3:0	RW	0x1	pclk_gmac=aclk_peri/(div_con+1)

CRU CLKSEL CON24

Address: Operational Base + offset (0x0160)

Bit	Attr	Reset Value	Description
			write_mask
31:16	WO	0x0000	When every bit HIGH, enable the writing corresponding bit; when
			every bit LOW, don't care the writing corresponding bit
15:10	RO	0x0	reserved
0.0	RW	N/ 0 1	pclk_bus_div_con
9:8		0×1	pclk_bus=aclk_bus/(div_con+1)
7:5	RO	0x0	reserved
4.0	RW	.W 10x07	hclk_bus_div_con
4:0			hclk_bus=pll_clk_src/(div_con+1)

CRU CLKSEL CON25

Address: Operational Base + offset (0x0164)

Bit	Attr	Reset Value	Description
		0x0000	write_mask
31:16	WO		When every bit HIGH, enable the writing corresponding bit; when
			every bit LOW, don't care the writing corresponding bit
	RW	0×0	clk_crypto_apk_sel
15:14			2'h0:GPLL
15.14			2'h1:CPLL
			2'h2:NPLL

Bit	Attr	Reset Value	Description
13	RO	0x0	reserved
12:8	RW	0.40.3	clk_crypto_apk_div_con
12:8	KVV	0x03	clk_crypto_apk=pll_clk_src/(div_con+1)
	RW	RW 0x0	clk_crypto_pll_sel
7.6			2'h0:GPLL
7:6			2'h1:CPLL
			2'h2:NPLL
5	RO	0x0	reserved
4:0	DW	V 00F	clk_crypto_div_con
4.0	RW	0x05	clk_crypto=pll_clk_src/(div_con+1)

Address: Operational Base + offset (0x0168)

Bit	Attr	Reset Value	Description
			write_mask
31:16	WO	0x0000	When every bit HIGH, enable the writing corresponding bit; when
			every bit LOW, don't care the writing corresponding bit
			clk_pdm_sel
15	RW	0x0	1'b0:select clk_pdm
			1'b1:select clk_pdm_frac_out
14:10	RO	0x0	reserved
	DIM	0×0	clk_pdm_pll_sel
0.0			2'h0:GPLL
9:8	KW		2'h1:xin_osc0
			2'h2:NPLL
7	RO	0x0	reserved
C . O	DW	005	clk_pdm_div_con
6:0	RW	0x0b	clk_pdm=pll_clk_src/(div_con+1)

CRU CLKSEL CON27

Address: Operational Base + offset (0x016c)

Bit	Attr	Reset Value	Description
31:0	RW	0x0bb8ea60	clk_pdm_frac_div_con High 16-bit for numerator, Low 16-bit for denominator, clock source is clk_pdm

CRU CLKSEL CON28

Address: Operational Base + offset (0x0170)

Bit	Attr	Reset Value	Description
			write_mask
31:16	WO	0x0000	When every bit HIGH, enable the writing corresponding bit; when
			every bit LOW, don't care the writing corresponding bit
			clk_i2s0_tx_out_mclk_sel
15:14	DW	0×0	2'h0:select selected clock by clk_i2s0_tx_rx_clk_sel
13.14	IK VV	UXU	2'h1:select xin_osc0_half
			2'h2:select clk_i2s0_rx
13	RO	0x0	reserved
			clk_i2s0_tx_rx_clk_sel
12	RW	0x0	1'b0: select clk_i2s0_tx_clk
			1'b1: select clk_i2s0_rx_clk
			clk_i2s0_tx_sel
			2'h0:select clk_i2s0_tx
11:10	RW	0x0	2'h1:select clk_i2s0_tx_frac_out
			2'h2:select mclk_i2s0_tx_in
			2'h3:select xin_osc0_half
9	RO	0x0	reserved
			clk_i2s0_tx_pll_sel
8	RW	0x0	1'b0:GPLL
			1'b1:NPLL
7	RO	0x0	reserved
6.0	RW	0v0b	clk_i2s0_tx_div_con
6:0	KVV	0x0b	clk_i2s0_tx=pll_clk_src/(div_con+1)

Address: Operational Base + offset (0x0174)

Bit	Attr	Reset Value	Description
31:0	RW	0x0bb8ea60	clk_i2s0_tx_frac_div_con High 16-bit for numerator, Low 16-bit for denominator, clock source is clk_i2s0_tx

CRU CLKSEL CON30

Address: Operational Base + offset (0x0178)

Bit	Attr	Reset Value	Description
			write_mask
31:16	WO	0x0000	When every bit HIGH, enable the writing corresponding bit; when
			every bit LOW, don't care the writing corresponding bit
			clk_i2s1_out_mclk_sel
15	RW	0x0	1'b0:select selected clock by clk_i2s1_sel
			1'b1:select xin_osc0_half
14:12	RO	0x0	reserved

Bit	Attr	Reset Value	Description
			clk_i2s1_sel
			2'h0:select clk_i2s1
11:10	RW	0x0	2'h1:select clk_i2s1_frac_out
			2'h2:select mclk_i2s1_in
			2'h3:select xin_osc0_half
9	RO	0x0	reserved
			clk_i2s1_pll_sel
8	RW	0x0	1'b0:GPLL
			1'b1:NPLL
7	RO	0x0	reserved
C . O	DW/	005	clk_i2s1_div_con
6:0	RW	0x0b	clk_i2s1=pll_clk_src/(div_con+1)

Address: Operational Base + offset (0x017c)

Bit	Attr	Reset Value	Description
			clk_i2s1_frac_div_con
31:0	RW	0x0bb8ea60	High 16-bit for numerator, Low 16-bit for denominator, clock
			source is clk_i2s1

CRU CLKSEL CON32

Address: Operational Base + offset (0x0180)

Bit	Attr	Reset Value	Description
			write_mask
31:16	WO	0x0000	When every bit HIGH, enable the writing corresponding bit; when
			every bit LOW, don't care the writing corresponding bit
			clk_i2s2_out_mclk_sel
15	RW	0x0	1'b0:select selected clock by clk_i2s2_sel
			1'b1:select xin_osc0_half
14:12	RO	0x0	reserved
			clk_i2s2_sel
			2'h0:select clk_i2s2
11:10	RW	0x0	2'h1:select clk_i2s2_frac_out
			2'h2:select mclk_i2s2_in
			2'h3:select xin_osc0_half
9	RO	0x0	reserved
			clk_i2s2_pll_sel
8	RW	0x0	1'b0:GPLL
			1'b1:NPLL
7	RO	0x0	reserved
6.0	DW	0.406	clk_i2s2_div_con
6:0	RW	0x0b	clk_i2s2=pll_clk_src/(div_con+1)

CRU CLKSEL CON33

Address: Operational Base + offset (0x0184)

Bit	Attr	Reset Value	Description
			clk_i2s2_frac_div_con
31:0	RW	0x0bb8ea60	High 16-bit for numerator, Low 16-bit for denominator, clock
			source is clk_i2s2

CRU CLKSEL CON34

Address: Operational Base + offset (0x0188)

Bit	Attr	Reset Value	Description
			write_mask
31:16	WO	0x0000	When every bit HIGH, enable the writing corresponding bit; when
			every bit LOW, don't care the writing corresponding bit
			clk_uart1_pll_sel
			2'b0:GPLL
15:14	RW	0x0	2'b1:xin_osc0
			2'b2:usbphy480M
			2'b3:NPLL
13:5	RO	0x0	reserved
4:0	DW	0.01	clk_uart1_div_con
4.0	RW	0x0b	clk_uart1=pll_clk_src/(div_con+1)

CRU CLKSEL CON35

Address: Operational Base + offset (0x018c)

Bit	Attr	Reset Value	Description
			write_mask
31:16	WO	0x0000	When every bit HIGH, enable the writing corresponding bit; when
			every bit LOW, don't care the writing corresponding bit
		0x0	clk_uart1_sel
15.14	RW		2'b0:select clk_uart1
15.14			2'b1:select clk_uart1_np5
			2'b2:select clk_uart1_frac_out
13:5	RO	0x0	reserved
4:0	RW	RW 0x0b	clk_uart1_divnp5_div_con
4:0			clk_uart1_np5=2*clk_uart1/(2*div_con+3)

CRU CLKSEL CON36

Address: Operational Base + offset (0x0190)

Bit	Attr	Reset Value	Description
31:0	RW	0x0bb8ea60	clk_uart1_frac_div_con High 16-bit for numerator, Low 16-bit for denominator, clock source is clk_uart1

CRU CLKSEL CON37

Address: Operational Base + offset (0x0194)

Bit	Attr	Reset Value	Description
			write_mask
31:16	WO	0x0000	When every bit HIGH, enable the writing corresponding bit; when
			every bit LOW, don't care the writing corresponding bit
			clk_uart2_pll_sel
			2'b0:GPLL
15:14	RW	0x0	2'b1:xin_osc0
			2'b2:usbphy480M
			2'b3:NPLL
13:5	RO	0x0	reserved
4:0	DW	0.01	clk_uart2_div_con
4:0	RW	0x0b	clk_uart2=pll_clk_src/(div_con+1)

Address: Operational Base + offset (0x0198)

Bit	Attr	Reset Value	Description	
			write_mask	
31:16	WO	0x0000	When every bit HIGH, enable the writing corresponding bit; when	
			every bit LOW, don't care the writing corresponding bit	
	RW	W 0×0	clk_uart2_sel	
15.14			2'b0:select clk_uart2	
15:14			2'b1:select clk_uart2_np5	
			2'b2:select clk_uart2_frac_out	
13:5	RO	0x0	reserved	
4.0	DW	0.01	clk_uart2_divnp5_div_con	
4:0	KW	RW (W 0x0b	clk_uart2_np5=2*clk_uart2/(2*div_con+3)

CRU CLKSEL CON39

Address: Operational Base + offset (0x019c)

Bit	Attr	Reset Value	Description
31:0	RW	0x0bb8ea60	clk_uart2_frac_div_con High 16-bit for numerator, Low 16-bit for denominator, clock source is clk_uart2

CRU CLKSEL CON40

Address: Operational Base + offset (0x01a0)

Bit	Attr	Reset Value	Description
			write_mask
31:16	WO	0x0000	When every bit HIGH, enable the writing corresponding bit; when
			every bit LOW, don't care the writing corresponding bit
			clk_uart3_pll_sel
			2'b0:GPLL
15:14	RW	0x0	2'b1:xin_osc0
			2'b2:usbphy480M
			2'b3:NPLL
13:5	RO	0x0	reserved

Bit	Attr	Reset Value	Description
4:0	RW	10x0h	clk_uart3_div_con
4.0	IK VV		clk_uart3=pll_clk_src/(div_con+1)

Address: Operational Base + offset (0x01a4)

Bit	Attr	Reset Value	Description	
			write_mask	
31:16	WO	0x0000	When every bit HIGH, enable the writing corresponding bit; when	
			every bit LOW, don't care the writing corresponding bit	
	RW	W 0×0	clk_uart3_sel	
15.14			2'b0:select clk_uart3	
15:14			2'b1:select clk_uart3_np5	
			2'b2:select clk_uart3_frac_out	
13:5	RO	0x0	reserved	
4.0	DW		clk_uart3_divnp5_div_con	
4:0	KW	RW	tW 0x0b	clk_uart3_np5=2*clk_uart3/(2*div_con+3)

CRU CLKSEL CON42

Address: Operational Base + offset (0x01a8)

Bit	Attr	Reset Value	Description
31:0	RW		clk_uart3_frac_div_con High 16-bit for numerator, Low 16-bit for denominator, clock
31.0	IXVV		source is clk_uart3

CRU CLKSEL CON43

Address: Operational Base + offset (0x01ac)

Bit	Attr	Reset Value	Description
			write_mask
31:16	WO	0x0000	When every bit HIGH, enable the writing corresponding bit; when
			every bit LOW, don't care the writing corresponding bit
		0×0	clk_uart4_pll_sel
	RW		2'b0:GPLL
15:14			2'b1:xin_osc0
			2'b2:usbphy480M
			2'b3:NPLL
13:5	RO	0x0	reserved
4.0	RW	$W = 0 \times 0 h$	clk_uart4_div_con
4:0			clk_uart4=pll_clk_src/(div_con+1)

CRU CLKSEL CON44

Address: Operational Base + offset (0x01b0)

Bit	Attr	Reset Value	Description
			write_mask
31:16	WO	0x0000	When every bit HIGH, enable the writing corresponding bit; when
			every bit LOW, don't care the writing corresponding bit
	RW		clk_uart4_sel
15.14			2'b0:select clk_uart4
15:14			2'b1:select clk_uart4_np5
			2'b2:select clk_uart4_frac_out
13:5	RO	0x0	reserved
4.0	RW		clk_uart4_divnp5_div_con
4:0		0x0b	clk_uart4_np5=2*clk_uart4/(2*div_con+3)

Address: Operational Base + offset (0x01b4)

Bit	Attr	Reset Value	Description
			clk_uart4_frac_div_con
31:0	RW	0x0bb8ea60	High 16-bit for numerator, Low 16-bit for denominator, clock
			source is clk_uart4

CRU CLKSEL CON46

Address: Operational Base + offset (0x01b8)

Bit	Attr	Reset Value	Description
			write_mask
31:16	WO	0x0000	When every bit HIGH, enable the writing corresponding bit; when
			every bit LOW, don't care the writing corresponding bit
			clk_uart5_pll_sel
	RW	W 0×0	2'b0:GPLL
15:14			2'b1:xin_osc0
			2'b2:usbphy480M
			2'b3:NPLL
13:5	RO	0x0	reserved
4:0	DW/	001-	clk_uart5_div_con
4.0	RW	0x0b	clk_uart5=pll_clk_src/(div_con+1)

CRU CLKSEL CON47

Address: Operational Base + offset (0x01bc)

Bit	Attr	Reset Value	Description
		0x0000	write_mask
31:16	WO		When every bit HIGH, enable the writing corresponding bit; when
			every bit LOW, don't care the writing corresponding bit
	RW		clk_uart5_sel
15.14			2'b0:select clk_uart5
15:14			2'b1:select clk_uart5_np5
			2'b2:select clk_uart5_frac_out
13:5	RO	0x0	reserved

Bit	Attr	Reset Value	Description
4:0	RW	I()x()h	clk_uart5_divnp5_div_con
4.0	IK VV		clk_uart5_np5=2*clk_uart5/(2*div_con+3)

Address: Operational Base + offset (0x01c0)

Bit	Attr	Reset Value	Description
			clk_uart5_frac_div_con
31:0	RW	0x0bb8ea60	High 16-bit for numerator, Low 16-bit for denominator, clock
			source is clk_uart5

CRU CLKSEL CON49

Address: Operational Base + offset (0x01c4)

Bit	Attr	Reset Value	Description
			write_mask
31:16	WO	0x0000	When every bit HIGH, enable the writing corresponding bit; when
			every bit LOW, don't care the writing corresponding bit
			clk_i2c1_pll_sel
15	RW	0x0	1'b0:GPLL
			1'b1:xin_osc0
14:8	RW	0x0b	clk_i2c1_div_con
14.0			clk_i2c1=pll_clk_src/(div_con+1)
			clk_i2c0_pll_sel
7	RW	V 0×0	1'b0:GPLL
			1'b1:xin_osc0
6.0	DW/	M 0 - 0 -	clk_i2c0_div_con
6:0	RW	0x0b	clk_i2c0=pll_clk_src/(div_con+1)

CRU CLKSEL CON50

Address: Operational Base + offset (0x01c8)

Bit	Attr	Reset Value	Description
			write_mask
31:16	WO	0x0000	When every bit HIGH, enable the writing corresponding bit; when
			every bit LOW, don't care the writing corresponding bit
			clk_i2c3_pll_sel
15	RW	0x0	1'b0:GPLL
			1'b1:xin_osc0
14:8	RW	0x0b	clk_i2c3_div_con
14:0			clk_i2c3=pll_clk_src/(div_con+1)
			clk_i2c2_pll_sel
7	RW	0x0	1'b0:GPLL
			1'b1:xin_osc0
6.0	DW	0,406	clk_i2c2_div_con
6:0	RW	RW 0x0b	clk_i2c2=pll_clk_src/(div_con+1)

Address: Operational Base + offset (0x01d0)

Bit	Attr	Reset Value	Description
			write_mask
31:16	WO	0x0000	When every bit HIGH, enable the writing corresponding bit; when
			every bit LOW, don't care the writing corresponding bit
			clk_pwm1_pll_sel
15	RW	0x0	1'b0:GPLL
			1'b1:xin_osc0
14:8	RW	0x0b	clk_pwm1_div_con
14.0			clk_pwm1=pll_clk_src/(div_con+1)
			clk_pwm0_pll_sel
7	RW	W 0x0	1'b0:GPLL
			1'b1:xin_osc0
6.0	DW	0x0b	clk_pwm0_div_con
6:0	RW	UXUD	clk_pwm0=pll_clk_src/(div_con+1)

CRU CLKSEL CON53

Address: Operational Base + offset (0x01d4)

Bit	Attr	Reset Value	Description
			write_mask
31:16	WO	0x0000	When every bit HIGH, enable the writing corresponding bit; when
			every bit LOW, don't care the writing corresponding bit
			clk_spi1_pll_sel
15	RW	0×0	1'b0:GPLL
			1'b1:xin_osc0
14:8	RW	0x0b	clk_spi1_div_con
14.0			clk_spi1=pll_clk_src/(div_con+1)
	RW	W 0x0	clk_spi0_pll_sel
7			1'b0:GPLL
			1'b1:xin_osc0
6.0	RW	/ OO-	clk_spi0_div_con
6:0	KVV	0x0b	clk_spi0=pll_clk_src/(div_con+1)

CRU CLKSEL CON54

Address: Operational Base + offset (0x01d8)

Bit	Attr	Reset Value	Description
31:16	WO	0x0000	write_mask
			When every bit HIGH, enable the writing corresponding bit; when
			every bit LOW, don't care the writing corresponding bit
15:11	RO	0x0	reserved
10:0	RW	$W = (0 \times 0) \times 1$	clk_tsadc_div_con
			clk_tsadc=xin_osc0/(div_con+1)

Address: Operational Base + offset (0x01dc)

Bit	Attr	Reset Value	Description
			write_mask
31:16	WO		When every bit HIGH, enable the writing corresponding bit; when
			every bit LOW, don't care the writing corresponding bit
15:11	RO	0x0	reserved
10:0	RW	!W 10x01/ 1	clk_saradc_div_con
			clk_saradc=xin_osc0/(div_con+1)

CRU CLKSEL CON56

Address: Operational Base + offset (0x01e0)

Bit	Attr	Reset Value	Description
			write_mask
31:16	RW	0x0000	When every bit HIGH, enable the writing corresponding bit; when
			every bit LOW, don't care the writing corresponding bit
15:6	RO	0x0	reserved
E. 4	RW	. 0.1	clk_otp_usr_div_con
5:4		0x1	clk_otp_usr=clk_otp/(div_con+1)
3	RO	0x0	reserved
2.0	RW	W 1()x()	clk_otp_div_con
2:0			clk_otp=xin_osc0/(div_con+1)

CRU CLKSEL CON57

Address: Operational Base + offset (0x01e4)

Bit	Attr	Reset Value	Description
	WO		write_mask
31:16			When every bit HIGH, enable the writing corresponding bit; when
			every bit LOW, don't care the writing corresponding bit
15:13	RO	0x0	reserved
12.0	RW	N IOx1f	test_div_con
12:8			clk_test_out=test_clk_src/(div_con+1)
7:5	RO	0x0	reserved

Bit	Attr	Reset Value	Description
			testclk_sel
			5'd00: clk_core
			5'd01: aclk_gpu
			5'd02: clk_ddrphy4x
			5'd03: clk_i2c0
			5'd04: aclk_vo
			5'd05: clk_rga_core
			5'd06: dclk_vopb
			5'd07: dclk_vopl
			5'd08: aclk_vpu
			5'd09: aclk_vi
			5'd10: clk_isp
			5'd11: clk_rtc
			5'd12: clk_ddrphy1x
			5'd13: aclk_peri
			5'd14: clk_nandc
4:0	RW	0x00	5'd15: clk_sdmmc
			5'd16: clk_sdio
			5'd17: clk_emmc
			5'd18: clk_pwm
			5'd19: otp_ips_osc_out
			5'd20: aclk_crypto
			5'd21: clk_crypto_apk
			5'd22: clk_24m
			5'd23: aclk_gmac
			5'd24: clk_gmac
			5'd25: aclk_bus
			5'd26: clk_pdm
			5'd27: clk_i2s0
			5'd28: clk_tsadc
			5'd29: clk_uart1
			5'd30: clk_saradc
			5'd31: clk_otp

CRU CLKSEL CON58
Address: Operational Base + offset (0x01e8)

Bit	Attr	Reset Value	Description
			write_mask
31:16	WO		When every bit HIGH, enable the writing corresponding bit; when
			every bit LOW, don't care the writing corresponding bit
	RW		clk_i2s0_rx_out_mclk_sel
15.14			2'b0:select selected clock by clk_i2s0_rx_tx_clk_sel
15.14			2'b1:select xin_osc0_half
			2'b2:select clk_i2s0_tx
13	RO	0x0	reserved

Bit	Attr	Reset Value	Description
			clk_i2s0_rx_tx_clk_sel
12	RW	0x0	1'b0: select clk_i2s0_rx_clk
			1'b1: select clk_i2s0_tx_clk
			clk_i2s0_rx_sel
	RW		2'b0:select clk_i2s0_rx
11:10		0x0	2'b1:select clk_i2s0_rx_frac_out
			2'b2:select mclk_i2s0_rx_in
			2'b3:select xin_osc0_half
9	RO	0x0	reserved
			clk_i2s0_rx_pll_sel
8	RW	0x0	1'b0:GPLL
			1'b1:NPLL
7	RO	0x0	reserved
C . O	DW	005	clk_i2s0_rx_div_con
6:0	RW	0x0b	clk_i2s0_rx=pll_clk_src/(div_con+1)

Address: Operational Base + offset (0x01ec)

Bit	Attr	Reset Value	Description
31:0	RW	0x0bb8ea60	clk_i2s0_rx_frac_div_con High 16-bit for numerator, Low 16-bit for denominator, clock source is clk_i2s0_rx

CRU CLKGATE CONO

Address: Operational Base + offset (0x0200)

Bit	Attr	Reset Value	Description
			write_mask
31:16	WO	0x0000	When every bit HIGH, enable the writing corresponding bit; when
			every bit LOW, don't care the writing corresponding bit
15	RW	0x0	clk_ddrmon24m_clk_en
13	IK VV	UXU	When HIGH, disable clock
14	RW	0x0	clk_ddrphy4x_clk_en
14	KVV	UXU	When HIGH, disable clock
13	RW	0x0	ddrphy_gpll_clk_en
13			When HIGH, disable clock
12	RW	/ 0x0	gpu_clk_div_clk_en
12	I VV		When HIGH, disable clock
11	DW	W 0x0	aclk_gpu_niu_clk_en
11	I VV		When HIGH, disable clock
10	RW	0x0	clk_gpu_clk_en
10	I VV	UXU	When HIGH, disable clock
9	RW	0x0	gpu_clk_np5_src_clk_en
9	IK VV	0.00	When HIGH, disable clock

Bit	Attr	Reset Value	Description
8	RW	0x0	gpu_pll_clk_en When HIGH, disable clock
7	RW	0x0	ddrphy_dpll_clk_en When HIGH, disable clock
6	RW	0x0	pclk_core_dbg_daplite_clk_en When HIGH, disable clock
5	RW	0x0	pclk_core_dbg_niu_clk_en When HIGH, disable clock
4	RW	0×0	aclk_core_niu_clk_en When HIGH, disable clock
3	RW	0×0	clk_jtag_core_clk_en When HIGH, disable clock
2	RW	0×0	pclk_core_dbg_src_clk_en When HIGH, disable clock
1	RW	0×0	aclk_core_src_clk_en When HIGH, disable clock
0	RW	0x0	core_pll_clk_en When HIGH, disable clock

Address: Operational Base + offset (0x0204)

Bit	Attr	Reset Value	Description
31:16	WO	0×0000	write_mask When every bit HIGH, enable the writing corresponding bit; when every bit LOW, don't care the writing corresponding bit
15	RW	0×0	aclk_axi_split_clk_en When HIGH, disable clock
14	RW	0×0	pclk_ddr_grf_clk_en When HIGH, disable clock
13	RW	0x0	clk_ddrstanby_clk_en When HIGH, disable clock
12	RW	0x0	pclk_ddrstdby_clk_en When HIGH, disable clock
11	RW	0×0	clk_ddrmon_clk_en When HIGH, disable clock
10	RW	0×0	pclk_ddrmon_clk_en When HIGH, disable clock
9	RW	0×0	pclk_msch_clk_en When HIGH, disable clock
8	RW	0×0	clk_msch_clk_en When HIGH, disable clock
7	RW	0×0	pclk_upctl2_clk_en When HIGH, disable clock

Bit	Attr	Reset Value	Description
6	RW	0x0	clk_ddrc_upctl2_clk_en
			When HIGH, disable clock
5	RW	0×0	aclk_upctl2_clk_en
٥	ICVV	UXU	When HIGH, disable clock
4	RO	0x0	reserved
3	DW	0x0	pclk_axi_cmd_buffer_clk_en
3	RW		When HIGH, disable clock
2	RW	V 00	aclk_axi_cmd_buffer_clk_en
2	KVV	0x0	When HIGH, disable clock
4	DW	0.40	ddr_pclk_pll_clk_en
1	RW	W 0x0	When HIGH, disable clock
0	DW	0.40	clk_stdby_src_clk_en
0	RW	0×0	When HIGH, disable clock

<u>CRU CLKGATE CON2</u> Address: Operational Base + offset (0x0208)

			+ offset (0x0208)									
Bit	Attr	Reset Value	Description									
24.45			write_mask									
31:16	WO	0x0000	When every bit HIGH, enable the writing corresponding bit; when									
			every bit LOW, don't care the writing corresponding bit									
15:14	RO	0x0	reserved									
13	RW	0×0	pclk_vo_src_clk_en									
	1200	0,00	When HIGH, disable clock									
12	RW	0×0	hclk_vo_src_clk_en									
12	IXVV	0.00	When HIGH, disable clock									
11:9	RO	0x0	reserved									
8	RW	0x0	dclk_vopl_clk_en									
0	IK VV	UXU	When HIGH, disable clock									
7	RW	W 0×0	dclk_vopl_frac_src_clk_en									
/	KVV		When HIGH, disable clock									
6	RW	/ 0×0	dclk_vopl_pll_clk_en									
О	KVV		When HIGH, disable clock									
5	RW	W 0x0	clk_pwm_vopb_pll_clk_en									
3	KW (When HIGH, disable clock									
4	DW	/ 0×0	dclk_vopb_clk_en									
4	RW	RW	KVV	FCVV	KVV	IXVV	KVV	IXVV	1744	IXVV	0.70	When HIGH, disable clock
3	RW	0x0	dclk_vopb_frac_src_clk_en									
3	IT VV	UXU	When HIGH, disable clock									
2	RW	0x0	dclk_vopb_pll_clk_en									
	L/, AA	UXU	When HIGH, disable clock									
1	RW	0x0	clk_rga_core_pll_clk_en									
1	IX VV		When HIGH, disable clock									
0	RW	0x0	aclk_vo_pll_clk_en									
U	LZ VV	UXU	When HIGH, disable clock									

Address: Operational Base + offset (0x020c)

Bit	Attr	Reset Value	Description								
			write_mask								
31:16	WO	0x0000	When every bit HIGH, enable the writing corresponding bit; when								
			every bit LOW, don't care the writing corresponding bit								
15:10	RO	0x0	reserved								
9	RW	0x0	pclk_mipi_dsi_host_clk_en								
9	KVV	UXU	When HIGH, disable clock								
8	RW	0x0	hclk_rga_clk_en								
0	KVV	UXU	When HIGH, disable clock								
7	RW	0x0	aclk_rga_clk_en								
/	FCVV	UXU	When HIGH, disable clock								
6	RW	0x0	hclk_vopl_clk_en								
0	KVV		When HIGH, disable clock								
5	RW	W 0x0	aclk_vopl_clk_en								
J	IXVV		When HIGH, disable clock								
4	RW	W 0×0	hclk_vopb_clk_en								
7	KVV	KVV	KVV	KVV	IXVV	ICVV	IXVV	1000	100		When HIGH, disable clock
3	RW	0x0	aclk_vopb_clk_en								
J	KVV	UXU	When HIGH, disable clock								
2	RW	0x0	pclk_vo_niu_clk_en								
	IXVV	0.00	When HIGH, disable clock								
1	RW	0×0	hclk_vo_niu_clk_en								
_	17.00	0.00	When HIGH, disable clock								
0	RW	0×0	aclk_vo_niu_clk_en								
	1200	0.00	When HIGH, disable clock								

CRU_CLKGATE_CON4

Address: Operational Base + offset (0x0210)

Bit	Attr	Reset Value	Description
			write_mask
31:16	WO	0x0000	When every bit HIGH, enable the writing corresponding bit; when
			every bit LOW, don't care the writing corresponding bit
15	RW	0x0	aclk_vi_niu_clk_en
13	KVV	UXU	When HIGH, disable clock
14	RW	0x0	pclkin_cif_clk_en
14			When HIGH, disable clock
13	RW	/ 0×0	pclkin_isp_clk_en
13	IK VV	UXU	When HIGH, disable clock
12	RW	0x0	hclk_vi_src_clk_en
12	IK VV	UXU	When HIGH, disable clock
11	DW	0.40	clk_cif_out_pll_clk_en
11	RW	0x0	When HIGH, disable clock

Bit	Attr	Reset Value	Description
10	RO	0x0	reserved
9	RW	0x0	clk_isp_pll_clk_en
9	IVV	0.00	When HIGH, disable clock
8	RW	0×0	aclk_vi_pll_clk_en
6	IVV	0.00	When HIGH, disable clock
7	RW	0×0	hclk_vpu_niu_clk_en
/	KVV	0.00	When HIGH, disable clock
6	RW	V 0x0	hclk_vpu_clk_en
0	IVV	0.00	When HIGH, disable clock
5	RW	V 0×0	aclk_vpu_niu_clk_en
3	IVV		When HIGH, disable clock
4	RW	RW 0x0	aclk_vpu_clk_en
T	1200		When HIGH, disable clock
3	RO	0x0	reserved
2	RW	0x0	hclk_vpu_src_clk_en
	I VV	0.00	When HIGH, disable clock
1	RW	0x0	clk_vpu_core_pll_clk_en
	17.44	0.00	When HIGH, disable clock
0	RW	0x0	aclk_vpu_pll_clk_en
U	L/ AA	0.00	When HIGH, disable clock

Address: Operational Base + offset (0x0214)

Bit	Attr	Reset Value	Description
31:16	WO	0×0000	write_mask When every bit HIGH, enable the writing corresponding bit; when every bit LOW, don't care the writing corresponding bit
15	RW	0×0	hclk_nandc_clk_en When HIGH, disable clock
14	RO	0x0	reserved
13	RW	0x0	clk_nandc_clk_en When HIGH, disable clock
12	RW	0x0	clk_nandc_div50_clk_en When HIGH, disable clock
11	RW	0×0	clk_nandc_pll_clk_en When HIGH, disable clock
10	RO	0x0	reserved
9	RW	0x0	aclk_peri_niu_clk_en When HIGH, disable clock
8	RW	0x0	aclk_peri_clk_en When HIGH, disable clock
7	RW	0×0	aclk_hclk_pclk_peri_pll_clk_en When HIGH, disable clock
6:5	RO	0x0	reserved

Bit	Attr	Reset Value	Description	
4	RW	0×0	hclk_isp_clk_en	
	1244	0.00	When HIGH, disable clock	
3	RW	0.0	aclk_isp_clk_en	
3	KVV	0x0	When HIGH, disable clock	
2	RW	V 0×0	hclk_cif_clk_en	
2			When HIGH, disable clock	
1	DW	0x0	aclk_cif_clk_en	
1	KVV		When HIGH, disable clock	
0	DW	N 00	hclk_vi_niu_clk_en	
0	KVV	RW 0	/ 0x0	When HIGH, disable clock

CRU CLKGATE CON6
Address: Operational Base + offset (0x0218)

Bit	Attr	Reset Value	Description
31:16	WO	0×0000	write_mask When every bit HIGH, enable the writing corresponding bit; when every bit LOW, don't care the writing corresponding bit
15	RW	0×0	clk_sdmmc_clk_en When HIGH, disable clock
14	RW	0×0	clk_sdmmc_div50_clk_en When HIGH, disable clock
13	RW	0×0	clk_sdmmc_pll_clk_en When HIGH, disable clock
12	RW	0×0	hclk_pdsdcard_clk_en When HIGH, disable clock
11	RW	0x0	hclk_sfc_clk_en When HIGH, disable clock
10	RW	0x0	hclk_emmc_clk_en When HIGH, disable clock
9	RW	0×0	hclk_sdio_clk_en When HIGH, disable clock
8	RW	0×0	hclk_pdmmc_nand_niu_clk_en When HIGH, disable clock
7	RW	0x0	clk_sfc_pll_clk_en When HIGH, disable clock
6	RW	0×0	clk_emmc_clk_en When HIGH, disable clock
5	RW	0×0	clk_emmc_div50_clk_en When HIGH, disable clock
4	RW	0×0	clk_emmc_pll_clk_en When HIGH, disable clock
3	RW	0×0	clk_sdio_clk_en When HIGH, disable clock

Bit	Attr	Reset Value	Description
2	RW	0x0	clk_sdio_div50_clk_en
2			When HIGH, disable clock
4	RW	V 0×0	clk_sdio_pll_clk_en
1			When HIGH, disable clock
0	DW	RW 0x0	hclk_pdmmc_nand_clk_en
U	KVV		When HIGH, disable clock

Address: Operational Base + offset (0x021c)

Bit	Attr	Reset Value	Description					
			write_mask					
31:16	WO	0×0000	When every bit HIGH, enable the writing corresponding bit; when					
			every bit LOW, don't care the writing corresponding bit					
15	RW	0×0	clk_gmac_ref_clk_en					
13	IVV	0.00	When HIGH, disable clock					
14	RO	0x0	reserved					
13	RW	0×0	clk_gmac_tx_rx_clk_en					
13	1744	0.00	When HIGH, disable clock					
12	RW	0×0	pclk_gmac_src_clk_en					
	100	O X O	When HIGH, disable clock					
11	RW	0×0	clk_gmac_pll_clk_en					
			When HIGH, disable clock					
10	RW	0×0	aclk_pdgmac_clk_en					
			When HIGH, disable clock					
9	RO	0x0	reserved					
8	RW	W 0×0	hclk_usb2host_arb_clk_en					
			When HIGH, disable clock					
7	RO	0x0	reserved					
6	RW	0×0	hclk_usb2host_clk_en					
	1000							When HIGH, disable clock
5	RW	W 0x0	hclk_usb2otg_clk_en					
								When HIGH, disable clock
4	RW	0x0	hclk_pdusb_niu_clk_en					
			When HIGH, disable clock					
3	RW	0x0	clk_otg_adp_clk_en					
			When HIGH, disable clock					
2	RW	0x0	hclk_pdusb_clk_en					
			When HIGH, disable clock					
1	RW	0×0	hclk_sdmmc_clk_en					
			When HIGH, disable clock					
0	RW	0×0	hclk_pdsdcard_niu_clk_en					
					When HIGH, disable clock			

Address: Operational Base + offset (0x0220)

Bit	Attr	Reset Value	Description
31:16	WO	0×0000	write_mask When every bit HIGH, enable the writing corresponding bit; when every bit LOW, don't care the writing corresponding bit
15	RW	0×0	clk_crypto_apk_pll_clk_en When HIGH, disable clock
14	RW	0×0	clk_crypto_pll_clk_en When HIGH, disable clock
13	RW	0×0	hclk_pdcrypto_clk_en When HIGH, disable clock
12	RW	0×0	aclk_pdcrypto_clk_en When HIGH, disable clock
11	RO	0x0	reserved
10	RW	0x0	pclk_top_clk_en When HIGH, disable clock
9	RW	0x0	pclk_bus_clk_en When HIGH, disable clock
8	RW	0x0	hclk_bus_clk_en When HIGH, disable clock
7	RW	0x0	aclk_bus_clk_en When HIGH, disable clock
6	RW	0x0	pd_bus_pll_clk_en When HIGH, disable clock
5	RW	0x0	clk_gmac_out_pll_clk_en When HIGH, disable clock
4	RO	0x0	reserved
3	RW	0x0	pclk_gmac_clk_en When HIGH, disable clock
2	RW	0x0	aclk_gmac_clk_en When HIGH, disable clock
1	RW	0x0	pclk_gmac_niu_clk_en When HIGH, disable clock
0	RW	0x0	aclk_gmac_niu_clk_en When HIGH, disable clock

CRU CLKGATE CON9

Address: Operational Base + offset (0x0224)

Bit	Attr	Reset Value	Description
	wo	0x0000	write_mask
31:16			When every bit HIGH, enable the writing corresponding bit; when
			every bit LOW, don't care the writing corresponding bit
15	RW	00	clk_i2s0_tx_out_mclk_en
		0x0	When HIGH, disable clock

Bit	Attr	Reset Value	Description		
14	RW	0×0	clk_i2s0_tx_clk_en		
	1	O A O	When HIGH, disable clock		
13	RW	0×0	clk_i2s0_tx_frac_src_clk_en		
15	1244	OXO	When HIGH, disable clock		
12	RW	0×0	clk_i2s0_tx_pll_clk_en		
12	IVV	0.00	When HIGH, disable clock		
11	RW	0x0	clk_pdm_clk_en		
11	KVV	UXU	When HIGH, disable clock		
10	RW	0x0	clk_pdm_frac_src_clk_en		
10	KVV	UXU	When HIGH, disable clock		
9	RW	0x0	clk_pdm_pll_clk_en		
9	IK VV		When HIGH, disable clock		
8:6	RO	0x0	reserved		
5	RW	0x0	hclk_crypto_clk_en		
3	KVV	IXVV	1200	V OXU	When HIGH, disable clock
4	RW	0.0	aclk_crypto_clk_en		
4	KVV	/ 0x0	When HIGH, disable clock		
3	RW	0x0	hclk_crypto_niu_clk_en		
3	KVV	UXU	When HIGH, disable clock		
2	RW	0x0	aclk_crypto_niu_clk_en		
	KVV	UXU	When HIGH, disable clock		
1:0	RO	0x0	reserved		

Address: Operational Base + offset (0x0228)

Bit	Attr	Reset Value	Description
			write_mask
31:16	WO	0x0000	When every bit HIGH, enable the writing corresponding bit; when
			every bit LOW, don't care the writing corresponding bit
15	RW	0x0	clk_uart1_clk_en
13	KVV	UXU	When HIGH, disable clock
1.4	RW	0.40	clk_uart1_frac_src_clk_en
14	KVV	0x0	When HIGH, disable clock
13	RW	/ 0x0	clk_uart1_divnp5_clk_en
13			When HIGH, disable clock
12	DW	W 0x0	clk_uart1_pll_clk_en
12	KVV		When HIGH, disable clock
			clk_i2s0_rx_out_mclk_oe
11	RW	RW 0x0	0:disable clk_i2s0_rx_out_mclk pad
			1:enable clk_i2s0_rx_out_mclk pad
	RW		clk_i2s2_out_mclk_oe
10		W 0x0	0:disable clk_i2s2_out_mclk pad
			1:enable clk_i2s2_out_mclk pad

Bit	Attr	Reset Value	Description
			clk_i2s1_out_mclk_oe
9	RW	0x0	0:disable clk_i2s1_out_mclk pad
			1:enable clk_i2s1_out_mclk pad
			clk_i2s0_tx_out_mclk_oe
8	RW	0x0	0:disable clk_i2s0_tx_out_mclk pad
			1:enable clk_i2s0_tx_out_mclk pad
7	RW	0×0	clk_i2s2_out_mclk_en
/	KVV	0.00	When HIGH, disable clock
6	RW	0x0	clk_i2s2_clk_en
0	KVV	0.00	When HIGH, disable clock
5	RW	0x0	clk_i2s2_frac_src_clk_en
3	KVV		When HIGH, disable clock
4	RW	0×0	clk_i2s2_pll_clk_en
7	KVV		When HIGH, disable clock
3	RW	0x0	clk_i2s1_out_mclk_en
3	KVV	0.00	When HIGH, disable clock
2	RW	0x0	clk_i2s1_clk_en
	KVV	UXU	When HIGH, disable clock
1	RW	0x0	clk_i2s1_frac_src_clk_en
1	KVV	UXU	When HIGH, disable clock
0	RW	0.40	clk_i2s1_pll_clk_en
U	KVV	V 0×0	When HIGH, disable clock

Address: Operational Base + offset (0x022c)

Bit	Attr	Reset Value	Description				
			write_mask				
31:16	WO	0x0000	When every bit HIGH, enable the writing corresponding bit; when				
			every bit LOW, don't care the writing corresponding bit				
15	RW	0x0	clk_uart5_clk_en				
15	KVV	UXU	When HIGH, disable clock				
14	RW	0.40	clk_uart5_frac_src_clk_en				
14	KVV	0x0	When HIGH, disable clock				
13	RW	0x0	clk_uart5_divnp5_clk_en				
13	KVV		When HIGH, disable clock				
12	RW	V 0×0	clk_uart5_pll_clk_en				
12	KVV		When HIGH, disable clock				
11	DW	0x0	clk_uart4_clk_en				
11	KVV	KW	RW	KVV	KVV	V UXU	When HIGH, disable clock
1.0	RW	0.40	clk_uart4_frac_src_clk_en				
10	KVV	V 0×0	When HIGH, disable clock				
9	DW	0.40	clk_uart4_divnp5_clk_en				
9	RW	V 0x0	When HIGH, disable clock				

Bit	Attr	Reset Value	Description
8	RW	0x0	clk_uart4_pll_clk_en When HIGH, disable clock
7	RW	0x0	clk_uart3_clk_en When HIGH, disable clock
6	RW	0x0	clk_uart3_frac_src_clk_en When HIGH, disable clock
5	RW	0x0	clk_uart3_divnp5_clk_en When HIGH, disable clock
4	RW	0×0	clk_uart3_pll_clk_en When HIGH, disable clock
3	RW	0×0	clk_uart2_clk_en When HIGH, disable clock
2	RW	0×0	clk_uart2_frac_src_clk_en When HIGH, disable clock
1	RW	0×0	clk_uart2_divnp5_clk_en When HIGH, disable clock
0	RW	0x0	clk_uart2_pll_clk_en When HIGH, disable clock

Address: Operational Base + offset (0x0230)

Bit	Attr	Reset Value	Description
31:16	RW	0×0000	write_mask When every bit HIGH, enable the writing corresponding bit; when every bit LOW, don't care the writing corresponding bit
15:13	RO	0x0	reserved
12	RW	0x0	clk_cpu_boost_clk_en When HIGH, disable clock
11	RW	0x0	clk_otp_pll_clk_en When HIGH, disable clock
10	RW	0x0	clk_saradc_pll_clk_en When HIGH, disable clock
9	RW	0x0	clk_tsadc_pll_clk_en When HIGH, disable clock
8	RW	0x0	clk_spi1_pll_clk_en When HIGH, disable clock
7	RW	0x0	clk_spi0_pll_clk_en When HIGH, disable clock
6	RW	0×0	clk_pwm1_pll_clk_en When HIGH, disable clock
5	RW	0x0	clk_pwm0_pll_clk_en When HIGH, disable clock
4	RO	0x0	reserved

Bit	Attr	Reset Value	Description
3	RW	0x0	clk_i2c3_pll_clk_en
3	KVV		When HIGH, disable clock
2	DW	0x0	clk_i2c2_pll_clk_en
2	RW		When HIGH, disable clock
1	RW	RW 0x0	clk_i2c1_pll_clk_en
1			When HIGH, disable clock
	RW	RW 0x0	clk_i2c0_pll_clk_en
0			When HIGH, disable clock

Address: Operational Base + offset (0x0234)

Bit	Attr	Reset Value	Description
			write_mask
31:16	WO	0x0000	When every bit HIGH, enable the writing corresponding bit; when
			every bit LOW, don't care the writing corresponding bit
15	RW	0x0	aclk_dfc_clk_en
13	IVV	0.00	When HIGH, disable clock
14	RW	0×0	hclk_rom_clk_en
	1244	OXO	When HIGH, disable clock
13	RO	0x0	reserved
12	RW	0×0	aclk_gic_clk_en
	1000	O X O	When HIGH, disable clock
11	RW	0×0	aclk_intmem_clk_en
		0.00	When HIGH, disable clock
10	RW	0×0	pclk_bus_niu_clk_en
			When HIGH, disable clock
9	RW	W 0×0	hclk_bus_niu_clk_en
			When HIGH, disable clock
8	RW	0x0	aclk_bus_niu_clk_en
			When HIGH, disable clock
7	RO	0x0	reserved
6	RW	0x0	clk_otp_usr_clk_en
			When HIGH, disable clock
5	RW	0×0	clk_timer5_clk_en
			When HIGH, disable clock
4	RW	0x0	clk_timer4_clk_en
			When HIGH, disable clock
3	RW	0×0	clk_timer3_clk_en
			When HIGH, disable clock
2	RW	0x0	clk_timer2_clk_en
			When HIGH, disable clock
1	RW	0×0	clk_timer1_clk_en
			When HIGH, disable clock

Bit	Attr	Reset Value	Description
0	RW	l()x()	clk_timer0_clk_en
	LVV		When HIGH, disable clock

Address: Operational Base + offset (0x0238)

Bit	Attr	Reset Value	Description
			write_mask
31:16	WO	0x0000	When every bit HIGH, enable the writing corresponding bit; when
			every bit LOW, don't care the writing corresponding bit
15	RW	0×0	pclk_pwm0_clk_en
			When HIGH, disable clock
14	RO	0x0	reserved
12	RW	0×0	pclk_i2c3_clk_en
13			When HIGH, disable clock
12	RW	0×0	pclk_i2c2_clk_en
12			When HIGH, disable clock
11	RW	0×0	pclk_i2c1_clk_en
11			When HIGH, disable clock
10	RW	0×0	pclk_i2c0_clk_en
10			When HIGH, disable clock
9	RW	0×0	pclk_uart5_clk_en
<i></i>	KVV		When HIGH, disable clock
8	RW	0×0	pclk_uart4_clk_en
			When HIGH, disable clock
7	RW	0x0	pclk_uart3_clk_en
,	1000		When HIGH, disable clock
6	RW	0x0	pclk_uart2_clk_en
			When HIGH, disable clock
5	RW	0×0	pclk_uart1_clk_en
			When HIGH, disable clock
4	RW	0×0	hclk_i2s2_clk_en
			When HIGH, disable clock
3	RW	0×0	hclk_i2s1_clk_en
			When HIGH, disable clock
2	RW	0×0	hclk_i2s0_clk_en
			When HIGH, disable clock
1	RW	0×0	hclk_pdm_clk_en
			When HIGH, disable clock
0	RW	0x0	pclk_dcf_clk_en
			When HIGH, disable clock

CRU CLKGATE CON15

Address: Operational Base + offset (0x023c)

Bit	Attr	Reset Value	Description
			write_mask
31:16	WO	0x0000	When every bit HIGH, enable the writing corresponding bit; when
			every bit LOW, don't care the writing corresponding bit
15:13	RO	0x0	reserved
12	RW	0x0	pclk_bus_sgrf_clk_en
12	FCVV	UXU	When HIGH, disable clock
11	RW	0x0	pclk_bus_grf_clk_en
11	KVV	UXU	When HIGH, disable clock
10	RW	0x0	pclk_gpio3_clk_en
10	IXVV	0.00	When HIGH, disable clock
9	RW	0×0	pclk_gpio2_clk_en
9	IXVV	0.00	When HIGH, disable clock
8	D\M	RW 0x0	pclk_gpio1_clk_en
0	IXVV		When HIGH, disable clock
7	RW	0×0	pclk_wdt_ns_en
	1200		When HIGH, disable clock
6	RW	W 0×0	pclk_otp_ns_clk_en
<u> </u>	1200		When HIGH, disable clock
5	RW	0×0	pclk_timer_clk_en
	1277	OXO .	When HIGH, disable clock
4	RW	0×0	pclk_tsadc_clk_en
	1200	O X O	When HIGH, disable clock
3	RW	0×0	pclk_saradc_clk_en
		o x o	When HIGH, disable clock
2	RW	0×0	pclk_spi1_clk_en
		o x o	When HIGH, disable clock
1	RW	0×0	pclk_spi0_clk_en
			When HIGH, disable clock
0	RW	0×0	pclk_pwm1_clk_en
			When HIGH, disable clock

CRU CLKGATE CON16
Address: Operational Base + offset (0x0240)

Bit	Attr	Reset Value	Description	
			write_mask	
31:16	WO	0x0000	When every bit HIGH, enable the writing corresponding bit; when	
			every bit LOW, don't care the writing corresponding bit	
15	DW	(W 1()x()	testclk_clk_en	
15	KVV		When HIGH, disable clock	
14:8	RO	0x0	reserved	
7	RW	1 00	pclk_cpu_boost_clk_en	
/	IK VV	0x0	When HIGH, disable clock	
6	DW	NA 00	pclk_usb_grf_en	
6	KVV	RW	0x0	When HIGH, disable clock

Bit	Attr	Reset Value	Description			
5	RW	0x0	pclk_mipicsiphy_clk_en			
3	KVV	UXU	When HIGH, disable clock			
1	DW	0.40	pclk_mipidsiphy_clk_en			
4	KVV	RW 0x0	When HIGH, disable clock			
2	DW	V 0x0	pclk_ddrphy_clk_en			
3	RW		When HIGH, disable clock			
2	DW	0x0	pclk_otp_phy_clk_en			
2	KVV		When HIGH, disable clock			
1	RW	0.0	pclk_top_cru_clk_en			
1	KVV	W 0×0	When HIGH, disable clock			
0	DW/	N 00	pclk_top_niu_clk_en			
0	IK VV	KVV	KVV	RW	0×0	When HIGH, disable clock

CRU CLKGATE CON17
Address: Operational Base + offset (0x0244)

Bit	Attr	Reset Value	Description
			write_mask
31:16	WO	0x0000	When every bit HIGH, enable the writing corresponding bit; when
			every bit LOW, don't care the writing corresponding bit
15:11	RO	0x0	reserved
10	DW	00	aclk_gpu_div_clk_en
10	RW	0x0	When HIGH, disable clock
0	DW	0x0	pclk_gpu_grf_clk_en
9	RW	UXU	When HIGH, disable clock
c	DW	0.40	aclk_gpu_perf_clk_en
8	RW	0x0	When HIGH, disable clock
7	RO	0x0	reserved
(DW	W 0x0	pclk_core_grf_clk_en
6	RW		When HIGH, disable clock
5	DW	V 00	aclk_core_perf_clk_en
ח	RW	0x0	When HIGH, disable clock
4	RW	/ 0x0	clk_core_pvtm_clk_en
4	KVV	UXU	When HIGH, disable clock
3	RW	0x0	clk_i2s0_rx_out_mclk_en
5	KVV	UXU	When HIGH, disable clock
2	RW	0x0	clk_i2s0_rx_clk_en
2	KVV	UXU	When HIGH, disable clock
1	RW	0x0	clk_i2s0_rx_divfrac_clk_en
Т	LZ VV	UXU	When HIGH, disable clock
0	RW	0x0	clk_i2s0_rx_pll_clk_en
U	LVV	V UXU	When HIGH, disable clock

CRU SSGTBL0 3

Address: Operational Base + offset (0x0280)

Bit	Attr	Reset Value	Description
	WO	0x00000000	ssgtbl0_3
			Extern wave table 0-3
21.0			7-0: table0
31:0			15-8: table1
			23-16: table2
			31-24: table3

CRU SSGTBL4 7

Address: Operational Base + offset (0x0284)

Bit	Attr	Reset Value	Description
		0x00000000	ssgtbl4_7
	WO		Extern wave table 4-7
31:0			7-0: table4
31.0			15-8: table5
			23-16: table6
			31-24: table7

CRU SSGTBL8 11

Address: Operational Base + offset (0x0288)

Bit	Attr	Reset Value	Description
	WO	0×00000000	ssgtbl8_11
			Extern wave table 8-11
31:0			7-0: table8
31.0			15-8: table9
			23-16: table10
			31-24: table11

CRU SSGTBL12 15

Address: Operational Base + offset (0x028c)

Bit	Attr	Reset Value	Description
	WO	0x00000000	ssgtbl12_15
			Extern wave table 12-15
31:0			7-0: table12
31.0			15-8: table13
			23-16: table14
			31-24: table15

CRU SSGTBL16 19

Address: Operational Base + offset (0x0290)

Bit	Attr	Reset Value	Description
	WO	0x00000000	ssgtbl16_19
			Extern wave table 16-19
21.0			7-0: table16
31:0			15-8: table17
			23-16: table18
			31-24: table19

CRU SSGTBL20 23

Address: Operational Base + offset (0x0294)

Bit	Attr	Reset Value	Description
	WO	0×00000000	ssgtbl20_23
			Extern wave table 20-23
31:0			7-0: table20
31.0			15-8: table21
			23-16: table22
			31-24: table23

CRU SSGTBL24 27

Address: Operational Base + offset (0x0298)

Bit	Attr	Reset Value	Description
	WO	0x00000000	ssgtbl24_27
			Extern wave table 24-27
31:0			7-0: table24
31.0			15-8: table25
			23-16: table26
			31-24: table27

CRU SSGTBL28 31

Address: Operational Base + offset (0x029c)

Bit	Attr	Reset Value	Description
		0x00000000	ssgtbl28_31
	WO		Extern wave table 28-31
31:0			7-0: table28
31:0			15-8: table29
			23-16: table30
			31-24: table31

CRU_SSGTBL32_35

Address: Operational Base + offset (0x02a0)

Bit	Attr	Reset Value	Description
	WO	0×00000000	ssgtbl32_35
			Extern wave table 32-35
21.0			7-0: table32
31:0			15-8: table33
			23-16: table34
			31-24: table35

CRU SSGTBL36 39

Address: Operational Base + offset (0x02a4)

Bit	Attr	Reset Value	Description
		0x00000000	ssgtbl36_39
	WO		Extern wave table 36-39
31:0			7-0: table36
31.0			15-8: table37
			23-16: table38
			31-24: table39

CRU SSGTBL40 43

Address: Operational Base + offset (0x02a8)

Bit	Attr	Reset Value	Description
	WO	0×00000000	ssgtbl40_43
			Extern wave table 40-43
31:0			7-0: table40
31.0			15-8: table41
			23-16: table42
			31-24: table43

CRU SSGTBL44 47

Address: Operational Base + offset (0x02ac)

Bit	Attr	Reset Value	Description
		0×00000000	ssgtbl44_47
	WO		Extern wave table 44-47
31:0			7-0: table44
31.0			15-8: table45
			23-16: table46
			31-24: table47

CRU SSGTBL48 51

Address: Operational Base + offset (0x02b0)

Bit	Attr	Reset Value	Description
	WO	0x00000000	ssgtbl48_51
			Extern wave table 48-51
21.0			7-0: table48
31:0			15-8: table49
			23-16: table50
			31-24: table51

CRU SSGTBL52 55

Address: Operational Base + offset (0x02b4)

Bit	Attr	Reset Value	Description
	WO	0x00000000	ssgtbl52_55
			Extern wave table 52-55
31:0			7-0: table52
31:0			15-8: table53
			23-16: table54
			31-24: table55

CRU SSGTBL56 59

Address: Operational Base + offset (0x02b8)

Bit	Attr	Reset Value	Description
	WO	0x00000000	ssgtbl56_59
			Extern wave table 56-59
31:0			7-0: table56
31.0			15-8: table57
			23-16: table58
			31-24: table59

CRU SSGTBL60 63

Address: Operational Base + offset (0x02bc)

Bit	Attr	Reset Value	Description
	WO	0x00000000	ssgtbl60_63
			Extern wave table 60-63
31:0			7-0: table60
31.0			15-8: table61
			23-16: table62
			31-24: table63

CRU SSGTBL64 67

Address: Operational Base + offset (0x02c0)

Bit	Attr	Reset Value	Description
	WO	0x00000000	ssgtbl64_67
			Extern wave table 64-67
31:0			7-0: table64
31.0			15-8: table65
			23-16: table66
			31-24: table67

CRU SSGTBL68 71

Address: Operational Base + offset (0x02c4)

Bit	Attr	Reset Value	Description
		0x00000000	ssgtbl68_71
	WO		Extern wave table 68-71
31:0			7-0: table68
31:0			15-8: table69
			23-16: table70
			31-24: table71

CRU SSGTBL72 75

Address: Operational Base + offset (0x02c8)

Bit	Attr	Reset Value	Description
	WO	0×00000000	ssgtbl72_75
			Extern wave table 72-75
21.0			7-0: table72
31:0			15-8: table73
			23-16: table74
			31-24: table75

CRU SSGTBL76 79

Address: Operational Base + offset (0x02cc)

Bit	Attr	Reset Value	Description
		0x00000000	ssgtbl76_79
	WO		Extern wave table 76-79
21.0			7-0: table76
31:0			15-8: table77
			23-16: table78
			31-24: table79

CRU SSGTBL80 83

Address: Operational Base + offset (0x02d0)

Bit	Attr	Reset Value	Description
	WO	0×00000000	ssgtbl80_83
			Extern wave table 76-79
31:0			7-0: table80
31.0			15-8: table81
			23-16: table82
			31-24: table83

CRU SSGTBL84 87

Address: Operational Base + offset (0x02d4)

Bit	Attr	Reset Value	Description
	WO		ssgtbl84_87
			Extern wave table 84-87
31:0			7-0: table84
31.0			15-8: table85
			23-16: table86
			31-24: table87

CRU SSGTBL88 91

Address: Operational Base + offset (0x02d8)

Bit	Attr	Reset Value	Description
	WO	0×00000000	ssgtbl88_91
			Extern wave table 88-91
31:0			7-0: table88
31.0			15-8: table89
			23-16: table90
			31-24: table91

CRU SSGTBL92 95

Address: Operational Base + offset (0x02dc)

Bit	Attr	Reset Value	Description
	WO	0×00000000	ssgtbl92_95
			Extern wave table 92-95
31:0			7-0: table92
31.0			15-8: table93
			23-16: table94
			31-24: table95

CRU SSGTBL96 99

Address: Operational Base + offset (0x02e0)

Bit	Attr	Reset Value	Description
		0×00000000	ssgtbl96_99
			Extern wave table 96-99
31:0	wo		7-0: table96
31.0	VVO		15-8: table97
			23-16: table98
			31-24: table99

CRU SSGTBL100 103

Address: Operational Base + offset (0x02e4)

Bit	Attr	Reset Value	Description
		0×00000000	ssgtbl100_103
			Extern wave table 100-103
21.0	WO		7-0: table100
31:0	WO		15-8: table101
			23-16: table102
			31-24: table103

CRU SSGTBL104 107

Address: Operational Base + offset (0x02e8)

Bit	Attr	Reset Value	Description
		0×00000000	ssgtbl104_107
			Extern wave table 104-107
31:0	21.0 WO		7-0: table104
31.0	WO		15-8: table105
			23-16: table106
			31-24: table107

CRU SSGTBL108 111

Address: Operational Base + offset (0x02ec)

Bit	Attr	Reset Value	Description
	WO	0×00000000	ssgtbl108_111
			Extern wave table 108-111
21.0			7-0: table108
31:0			15-8: table109
			23-16: table110
			31-24: table111

CRU SSGTBL112 115

Address: Operational Base + offset (0x02f0)

Bit	Attr	Reset Value	Description
	WO	0x00000000	ssgtbl112_115
			Extern wave table 112-115
31:0			7-0: table112
31:0			15-8: table113
			23-16: table114
			31-24: table115

CRU SSGTBL116 119

Address: Operational Base + offset (0x02f4)

Bit	Attr	Reset Value	Description
		0x00000000	ssgtbl116_119
			Extern wave table 116-119
21.0	WO.		7-0: table116
31:0	VVO		15-8: table117
			23-16: table118
			31-24: table119

CRU SSGTBL120 123

Address: Operational Base + offset (0x02f8)

Bit	Attr	Reset Value	Description
		0x00000000	ssgtbl120_123
			Extern wave table 120-123
31:0	wo		7-0: table120
31.0	VVO		15-8: table121
			23-16: table122
			31-24: table123

CRU SSGTBL124 127

Address: Operational Base + offset (0x02fc)

Bit	Attr	Reset Value	Description
		0×00000000	ssgtbl124_127
			Extern wave table 124-127
21.0	wo		7-0: table124
31:0	WO		15-8: table125
			23-16: table126
			31-24: table127

Address: Operational Base + offset (0x0300)

Bit		Reset Value	+ oπset (0x0300) Description					
			write_mask					
31:16	wo	0x0000	When every bit HIGH, enable the writing corresponding bit; when					
			every bit LOW, don't care the writing corresponding bit					
4 =	R/W	0.0	I2_srstn_req					
15	SC	0x0	When HIGH, reset relative logic					
14	R/W	0x0	strc_sys_asrstn_req					
14	SC	UXU	When HIGH, reset relative logic					
13	R/W	0x0	core_noc_srstn_req					
13	SC	0.00	When HIGH, reset relative logic					
12	RW	0×0	topdbg_srstn_req					
12	1200	0.00	When HIGH, reset relative logic					
11	RW	0×0	core3_dbg_srstn_req					
		o x o	When HIGH, reset relative logic					
10	RW	0×0	core2_dbg_srstn_req					
		o x o	When HIGH, reset relative logic					
9	RW	0×0	core1_dbg_srstn_req					
			When HIGH, reset relative logic					
8	RW	0x0	core0_dbg_srstn_req					
			When HIGH, reset relative logic					
7	RW	0×0	core3_srstn_req					
			When HIGH, reset relative logic					
6	RW	0×0	core2_srstn_req					
								When HIGH, reset relative logic
5	RW	0x0	core1_srstn_req					
	D /\\/		When HIGH, reset relative logic					
4	R/W SC	0x0	core0_srstn_req When HIGH, reset relative logic					
	30		corepo3_srstn_req					
3	RW	0x0	When HIGH, reset relative logic					
			corepo2_srstn_req					
2	RW	0x0	When HIGH, reset relative logic					
			corepo1_srstn_req					
1	RW	0x0	When HIGH, reset relative logic					
	R/W		corepo0_srstn_req					
0	SC	0×0	When HIGH, reset relative logic					
	l	1	·					

CRU SOFTRST CON1

Address: Operational Base + offset (0x0304)

Bit	Attr	Reset Value	Description
			write_mask
31:16	WO	0x0000	When every bit HIGH, enable the writing corresponding bit; when
			every bit LOW, don't care the writing corresponding bit

Bit	Attr	Reset Value	Description		
15	RW	0x0	axi_cmd_buffert_psrstn_req		
13	IXVV	0.00	When HIGH, reset relative logic		
14	RW	0×0	axi_cmd_buffer_asrstn_req		
- '	1000	O X O	When HIGH, reset relative logic		
13	RW	0×0	axi_split_asrstn_req		
13	1000	O X O	When HIGH, reset relative logic		
12	RW	0×0	ddrgrf_psrstn_req		
		0.00	When HIGH, reset relative logic		
11	RW	0×0	ddrstdby_srstn_req		
	1000	O X O	When HIGH, reset relative logic		
10	RW	0×0	ddrstdby_psrstn_req		
10	1200	O X O	When HIGH, reset relative logic		
9	RW	0×0	ddrmon_psrstn_req		
,	1200	0.00	When HIGH, reset relative logic		
8	RW	0×0	msch_psrstn_req		
0	1200	0.00	When HIGH, reset relative logic		
7	RW	0x0	msch_srstn_req		
,	1200		When HIGH, reset relative logic		
6	RW	W 0×0	upctl2_prstn_req		
0	1244		When HIGH, reset relative logic		
5	RW	0x0	upctl2_asrstn_req		
,		IXVV	IXVV	IVV	
4	RW	0x0	upctl2_srstn_req		
T	IVV	0.00	When HIGH, reset relative logic		
3	RW	0x0	gpu_niu_srstn_req		
5	INV	0.00	When HIGH, reset relative logic		
2	RW	0x0	gpu_srstn_req		
۷	IVV	0.00	When HIGH, reset relative logic		
1	RW	0x0	core_pvtm_srstn_req		
1	IK VV	UXU	When HIGH, reset relative logic		
0	DW	0x0	dap_srstn_req		
0	RW	UXU	When HIGH, reset relative logic		

CRU_SOFTRST_CON2

Address: Operational Base + offset (0x0308)

Bit	Attr	Reset Value	Description
			write_mask
31:16	WO	0x0000	When every bit HIGH, enable the writing corresponding bit; when
			every bit LOW, don't care the writing corresponding bit
1 5	RW	aw 0x0	mipicsiphy_psrstn_req
15			When HIGH, reset relative logic
1.4	RW	RW 0x0	cif_pclkin_srstn_req
14			When HIGH, reset relative logic

Attr	Reset Value	Description				
RW	0x0	cif_hsrstn_req				
		When HIGH, reset relative logic				
RW	0×0	cif_asrstn_req				
1200		When HIGH, reset relative logic				
RW.	0×0	isp_srstn_req				
1200	0.00	When HIGH, reset relative logic				
DW	0×0	isp_hsrstn_req				
IVV	0.00	When HIGH, reset relative logic				
DW	0×0	vi_niu_hsrstn_req				
IK VV	UXU	When HIGH, reset relative logic				
DW	0.0	vi_niu_asrstn_req				
IK VV	UXU	When HIGH, reset relative logic				
DW	0x0	vpu_niu_hsrstn_req				
KVV		When HIGH, reset relative logic				
DW	0x0	vpu_hsrstn_req				
KVV		When HIGH, reset relative logic				
DW	0.00	vpu_niu_asrstn_req				
KW	KVV	KVV	FCVV	KVV	UXU	When HIGH, reset relative logic
DW	0.40	vpu_asrstn_req				
KVV	UXU	When HIGH, reset relative logic				
RO	0x0	reserved				
DW	00	ddrphy_psrstn_req				
KVV	UXU	When HIGH, reset relative logic				
D\A/	0.40	ddrphydiv_srstn_req				
KVV	UXU	When HIGH, reset relative logic				
DW	0.40	ddrphy_srstn_req				
RW	UXU	When HIGH, reset relative logic				
	RW RW RW RW RW RW	RW 0x0				

<u>CRU SOFTRST CON3</u> Address: Operational Base + offset (0x030c)

Bit	Attr	Reset Value	Description	
			write_mask	
31:16	WO	0x0000	When every bit HIGH, enable the writing corresponding bit; when	
			every bit LOW, don't care the writing corresponding bit	
15	RW	0x0	vpu_core_srstn_req	
13	ICVV	V OXO	When HIGH, reset relative logic	
14	RW	0x0	mipidsiphy_psrstn_req	
14	KVV		When HIGH, reset relative logic	
13	RW	W 0×0	mipidsi_host_psrstn_req	
13	ICVV	0.00	When HIGH, reset relative logic	
12	RW	0x0	rga_srstn_req	
12	IT VV	UXU	When HIGH, reset relative logic	
11	DW	0x0	rga_hsrstn_req	
11	KW	RW	UXU	When HIGH, reset relative logic

Bit	Attr	Reset Value	Description
10	RW	0×0	rga_asrstn_req When HIGH, reset relative logic
9	RW	0×0	vopl_srstn_req When HIGH, reset relative logic
8	RW	0×0	vopl_hsrstn_req When HIGH, reset relative logic
7	RW	0×0	vopl_asrstn_req When HIGH, reset relative logic
6	RW	0×0	pwm_vopb_srstn_req When HIGH, reset relative logic
5	RW	0x0	vopb_srstn_req When HIGH, reset relative logic
4	RW	0x0	vopb_hsrstn_req When HIGH, reset relative logic
3	RW	0x0	vopb_asrstn_req When HIGH, reset relative logic
2	RW	0x0	vo_niu_psrstn_req When HIGH, reset relative logic
1	RW	0x0	vo_niu_hsrstn_req When HIGH, reset relative logic
0	RW	0×0	vo_niu_asrstn_req When HIGH, reset relative logic

Address: Operational Base + offset (0x0310)

Bit	Attr	Reset Value	Description
			write_mask
31:16	WO	0x0000	When every bit HIGH, enable the writing corresponding bit; when
			every bit LOW, don't care the writing corresponding bit
15	RW	0x0	cpu_boost_srstn_req
13	KVV	UXU	When HIGH, reset relative logic
14	RW	0.0	cpu_boost_psrstn_req
14	KVV	0x0	When HIGH, reset relative logic
13	RW	0x0	usbphy_grf_psrstn_req
13	IT. VV		When HIGH, reset relative logic
12	DW	W 0x0	usbphy_host_port_srstn_req
12	KVV		When HIGH, reset relative logic
11	RW	0x0	usbphy_otg_port_srstn_req
11	KVV	UXU	When HIGH, reset relative logic
10	RW	0x0	usbphypor_srstn_req
10	IVVV	0.00	When HIGH, reset relative logic
9	RW	0x0	usb2host_srstn_req
J	17.00	0.00	When HIGH, reset relative logic

Bit	Attr	Reset Value	Description				
8	RW	0x0	usb2host_ehci_srstn_req				
0	IXVV	UXU	When HIGH, reset relative logic				
7	RW	0x0	usb2host_aux_hsrstn_req				
/	FCVV	UXU	When HIGH, reset relative logic				
6	RW	0x0	usb2host_arb_hsrstn_req				
0	FCVV	UXU	When HIGH, reset relative logic				
5	RW	W 0x0	usb2host_hsrstn_req				
5	FCVV		When HIGH, reset relative logic				
4	RW	0x0	usb2otg_adp_srstn_req				
4	FCVV	UXU	When HIGH, reset relative logic				
3	RW	0×0	usb2otg_srstn_req				
3	FCVV	KVV	KVV	KVV	KVV	UXU	When HIGH, reset relative logic
2	RW	0x0	usb2otg_hsrstn_req				
2	KVV		When HIGH, reset relative logic				
1	RW	0x0	usb_niu_hsrstn_req				
1	KVV	UXU	When HIGH, reset relative logic				
0	RW	0x0	peri_niu_asrstn_req				
0	IK VV	KVV UXU	When HIGH, reset relative logic				

Address: Operational Base + offset (0x0314)

Bit	Attr	Reset Value	Description
31:16	WO	0×0000	write_mask When every bit HIGH, enable the writing corresponding bit; when every bit LOW, don't care the writing corresponding bit
15	RO	0x0	reserved
14	RW	0x0	gmac_asrstn_req When HIGH, reset relative logic
13	RW	0x0	gmac_niu_psrstn_req When HIGH, reset relative logic
12	RW	0x0	gmac_niu_asrstn_req When HIGH, reset relative logic
11	RO	0x0	reserved
10	RW	0x0	nandc_srstn_req When HIGH, reset relative logic
9	RW	0×0	nandc_hrstn_req When HIGH, reset relative logic
8:7	RO	0x0	reserved
6	RW	0×0	sdmmc_hsrstn_req When HIGH, reset relative logic
5	RW	0×0	pdsdcard_niu_hsrstn_req When HIGH, reset relative logic
4	RW	0×0	sfc_srstn_req When HIGH, reset relative logic

Bit	Attr	Reset Value	Description
2	DW	0x0	sfc_hsrstn_req
3	RW		When HIGH, reset relative logic
2	DW	/ 0x0	emmc_hsrstn_req
2	RW		When HIGH, reset relative logic
1	DW	W 0x0	sdio_hsrstn_req
1	RW		When HIGH, reset relative logic
0	RW	.W 0x0	pdmmc_nand_niu_hsrstn_req
0			When HIGH, reset relative logic

Address: Operational Base + offset (0x0318)

Bit	Attr	Reset Value	Description				
			write_mask				
31:16	WO	0x0000	When every bit HIGH, enable the writing corresponding bit; when				
			every bit LOW, don't care the writing corresponding bit				
15	RW	0x0	gpu_grf_psrstn_req				
13	IXVV	0.00	When HIGH, reset relative logic				
14	RW	0×0	gpu_perf_asrstn_req				
17	IVV	0.00	When HIGH, reset relative logic				
13	RW	0×0	core_grf_psrstn_req				
13	IVV	0.00	When HIGH, reset relative logic				
12	RW	0×0	core_perf_asrstn_req				
12	1200	0.00	When HIGH, reset relative logic				
11	RW	RW	RW	0×0	pmu_ddr_fail_save_srstn_req		
				KVV	IXVV	0.00	When HIGH, reset relative logic
10	RW	w 0x0	pmu_niu_hrstn_req				
	1200	OXO	When HIGH, reset relative logic				
9	RW	w 0x0	pmu_uart_srstn_req				
		o x o	When HIGH, reset relative logic				
8	RW	W 0x0	pmu_pvtm_srstn_req				
	IXVV	1200	o x o	When HIGH, reset relative logic			
7	RW	RW	RW	RW	RW	0×0	pmu_cru_psrstn_req
			When HIGH, reset relative logic				
6	RW	0x0	pmu_uart0_psrstn_req				
			When HIGH, reset relative logic				
5	RW	0×0	pmu_gpio0_psrstn_req				
			When HIGH, reset relative logic				
4	RW	0×0	pmu_mem_psrstn_req				
			When HIGH, reset relative logic				
3	RW	0x0	pmu_pmu_srstn_req				
			When HIGH, reset relative logic				
2	RW	0×0	pmu_grf_psrstn_req				
		1 < 4 A		When HIGH, reset relative logic			

Bit	Attr	Reset Value	Description
1	RW	(()X()	pmu_sgrf_psrstn_req When HIGH, reset relative logic
0	RW	(() y ()	pmu_niu_psrstn_req When HIGH, reset relative logic

CRU SOFTRST CON7
Address: Operational Base + offset (0x031c)

Bit	Attr	Reset Value	Description		
			write_mask		
31:16	WO	0x0000	When every bit HIGH, enable the writing corresponding bit; when		
			every bit LOW, don't care the writing corresponding bit		
15	RW	0×0	dcf_asrstn_req		
13	1200	0.00	When HIGH, reset relative logic		
14	RW	0×0	rom_hsrstn_req		
			When HIGH, reset relative logic		
13	RO	0x0	reserved		
12	RW	0×0	gic_asrst_req		
	1000	O X O	When HIGH, reset relative logic		
11	RW	0×0	intmem_asrst_req		
	1000	O X O	When HIGH, reset relative logic		
10	RW	0×0	bus_top_niu_psrst_req		
10	1277	O X O	When HIGH, reset relative logic		
9	RW	/ 0x0	bus_niu_psrst_req		
	1000	O X O	When HIGH, reset relative logic		
8	RW	0×0	bus_niu_hsrstn_req		
	1000		When HIGH, reset relative logic		
7:6	RO	0x0	reserved		
5	RW	W 0×0	crypto_apk_srstn_req		
	1244	OXO	When HIGH, reset relative logic		
4	RW	0×0	crypto_srstn_req		
•	1277			O X O	When HIGH, reset relative logic
3	RW	0×0	crypto_hsrstn_req		
3	1244	0.00	When HIGH, reset relative logic		
2	RW	0×0	crypto_asrstn_req		
	1000	O X O	When HIGH, reset relative logic		
1	RW	0×0	crypto_niu_hsrstn_req		
_	1		When HIGH, reset relative logic		
0	RW	0x0	crypto_niu_asrstn_req		
3	IK VV	.vv UXU	When HIGH, reset relative logic		

CRU SOFTRST CON8

Address: Operational Base + offset (0x0320)

Bit	Attr	Reset Value	Description						
			write_mask						
31:16	WO	0x0000	When every bit HIGH, enable the writing corresponding bit; when						
			every bit LOW, don't care the writing corresponding bit						
15	RW	0x0	uart4_psrstn_req						
13	KVV	UXU	When HIGH, reset relative logic						
14	RW	0x0	uart3_srstn_req						
14	IXVV	0.00	When HIGH, reset relative logic						
13	RW	0×0	uart3_psrstn_req						
13	IVV	0.00	When HIGH, reset relative logic						
12	RW	0×0	uart2_srstn_req						
12	1200	0.00	When HIGH, reset relative logic						
11	RW	0×0	uart2_psrstn_req						
	1000	OXO .	When HIGH, reset relative logic						
10	RW	0×0	uart1_srstn_req						
	1000	OXO .	When HIGH, reset relative logic						
9	RW	V 0×0	uart1_psrstn_req						
	1000	O X O	When HIGH, reset relative logic						
8	RW	/ 0×0	i2s2_srstn_req						
			When HIGH, reset relative logic						
7	RW	V 0x0	i2s2_hsrstn_req						
			When HIGH, reset relative logic						
6	RW	W 0x0	i2s1_srstn_req						
	IVV								When HIGH, reset relative logic
5	RW	0×0	i2s1_hsrstn_req						
	1200	1000		When HIGH, reset relative logic					
4	RW	0×0	i2s0_tx_srstn_req						
			When HIGH, reset relative logic						
3	RW	0×0	i2s0_hsrstn_req						
			When HIGH, reset relative logic						
2	RW	0×0	pdm_srstn_req						
			When HIGH, reset relative logic						
1	RW	0x0	pdm_hsrstn_req						
			When HIGH, reset relative logic						
0	RW	0×0	dcf_psrstn_req						
			When HIGH, reset relative logic						

<u>CRU SOFTRST CON9</u> Address: Operational Base + offset (0x0324)

Bit	Attr	Reset Value	Description
			write_mask
31:16	WO	0x0000	When every bit HIGH, enable the writing corresponding bit; when
			every bit LOW, don't care the writing corresponding bit
15	RW	₹W 1()X()	pwm1_psrstn_req
			When HIGH, reset relative logic

Bit	Attr	Reset Value	Description
14	RW	0x0	pwm0_srstn_req When HIGH, reset relative logic
13	RW	0×0	pwm0_psrstn_req When HIGH, reset relative logic
12:11	RO	0x0	reserved
10	RW	0×0	i2c3_srstn_req When HIGH, reset relative logic
9	RW	0x0	i2c3_psrstn_req When HIGH, reset relative logic
8	RW	0x0	i2c2_srstn_req When HIGH, reset relative logic
7	RW	0×0	i2c2_psrstn_req When HIGH, reset relative logic
6	RW	0×0	i2c1_srstn_req When HIGH, reset relative logic
5	RW	0×0	i2c1_psrstn_req When HIGH, reset relative logic
4	RW	0×0	i2c0_srstn_req When HIGH, reset relative logic
3	RW	0x0	i2c0_psrstn_req When HIGH, reset relative logic
2	RW	0×0	uart5_srstn_req When HIGH, reset relative logic
1	RW	0×0	uart5_psrstn_req When HIGH, reset relative logic
0	RW	0×0	uart4_srstn_req When HIGH, reset relative logic

<u>CRU SOFTRST CON10</u> Address: Operational Base + offset (0x0328)

Bit	Attr	Reset Value	Description		
			write_mask		
31:16	WO	0x0000	When every bit HIGH, enable the writing corresponding bit; when		
			every bit LOW, don't care the writing corresponding bit		
15	RW	0x0	timer5_srstn_req		
13	KVV	UXU	When HIGH, reset relative logic		
14	RW	0x0	timer4_srstn_req		
14			When HIGH, reset relative logic		
13	RW	V 0×0	timer3_srstn_req		
13			When HIGH, reset relative logic		
12	DW	0x0	timer2_srstn_req		
12	KVV		When HIGH, reset relative logic		
1 1	D\M/	0x0	timer1_srstn_req		
11	KVV	KW	RW	UXU	When HIGH, reset relative logic

Bit	Attr	Reset Value	Description
10	RW	0x0	timer0_srstn_req When HIGH, reset relative logic
9	RW	0x0	timer_psrstn_req When HIGH, reset relative logic
8	RW	0×0	tsadc_srstn_req When HIGH, reset relative logic
7	RW	0×0	tsadc_psrstn_req When HIGH, reset relative logic
6	RW	0x0	saradc_srstn_req When HIGH, reset relative logic
5	RW	0x0	saradc_psrstn_req When HIGH, reset relative logic
4	RW	0×0	spi1_srstn_req When HIGH, reset relative logic
3	RW	0×0	spi1_psrstn_req When HIGH, reset relative logic
2	RW	0x0	spi0_srstn_req When HIGH, reset relative logic
1	RW	0x0	spi0_psrstn_req When HIGH, reset relative logic
0	RW	0×0	pwm1_srstn_req When HIGH, reset relative logic

Address: Operational Base + offset (0x032c)

Bit	Attr	Reset Value	Description
31:16	WO	0x0000	write_mask When every bit HIGH, enable the writing corresponding bit; when every bit LOW, don't care the writing corresponding bit
15	RW	0x0	i2s0_rx_srstn_req When HIGH, reset relative logic
14:11	RO	0x0	reserved
10	RW	0x0	grf_psrstn_req When HIGH, reset relative logic
9	RW	0x0	sgrf_psrstn_req When HIGH, reset relative logic
8	RW	0x0	gpio3_psrstn_req When HIGH, reset relative logic
7	RW	0x0	gpio2_psrstn_req When HIGH, reset relative logic
6	RW	0x0	gpio1_psrstn_req When HIGH, reset relative logic
5	RW	0x0	wdt_ns_psrstn_req When HIGH, reset relative logic

Bit	Attr	Reset Value	Description
4	RW	0×0	otp_phy_srstn_req When HIGH, reset relative logic
3	RW	0x0	otp_phy_psrstn_req When HIGH, reset relative logic
2	RW	0×0	otp_ns_usr_srstn_req When HIGH, reset relative logic
1	RW	0×0	otp_ns_sbpi_srstn_req When HIGH, reset relative logic
0	RW	0×0	otp_ns_psrstn_req When HIGH, reset relative logic

CRU SDMMC CONO

Address: Operational Base + offset (0x0380)

Bit	Attr	Reset Value	Description
			write_mask
31:16	WO	0x0000	When every bit HIGH, enable the writing corresponding bit; when
			every bit LOW, don't care the writing corresponding bit
15:12	RO	0x0	reserved
	RW	0x0	drv_sel
11			drv_sel
10.2	RW	RW 0×00	drv_delaynum
10:3			drv_delaynum
2.1	DW	RW 0x2	drv_degree
2:1	KVV		drv_degree
0	DW	0.40	init_state
0	RW	0x0	init_state

CRU SDMMC CON1

Address: Operational Base + offset (0x0384)

Bit	Attr	Reset Value	Description
			write_mask
31:16	WO	0x0000	When every bit HIGH, enable the writing corresponding bit; when
			every bit LOW, don't care the writing corresponding bit
15:12	RO	0x0	reserved
1.1	RW	0x0	sample_sel
11			sample_sel
10:3	RW	W 0×00	sample_delaynum
10.3		KVV	UXUU
2:1	DW	W 0 0	sample_degree
2.1	RW	0x0	sample_degree
0	RO	0x0	reserved

CRU SDIO CONO

Address: Operational Base + offset (0x0388)

Bit	Attr	Reset Value	Description
			write_mask
31:16	WO	0x0000	When every bit HIGH, enable the writing corresponding bit; when
			every bit LOW, don't care the writing corresponding bit
15:12	RO	0x0	reserved
1.1	RW	0x0	drv_sel
11			drv_sel
10:3	RW	RW 0x00	drv_delaynum
10:3			drv_delaynum
2:1	RW	W 0-2	drv_degree
2.1	KVV	0x2	drv_degree
0	RW	0.40	init_state
U	IK VV	RW 0x0	init_state

CRU SDIO CON1

Address: Operational Base + offset (0x038c)

Bit	Attr	Reset Value	Description			
			write_mask			
31:16	WO	0x0000	When every bit HIGH, enable the writing corresponding bit; when			
			every bit LOW, don't care the writing corresponding bit			
15:12	RO	0x0	reserved			
11	RW	0x0	sample_sel			
11			sample_sel			
10:3	RW	W 0×00	sample_delaynum			
10.3		KW	KVV	KVV	KVV	0.000
2:1	RW	(W (()x()	sample_degree			
Z.1			sample_degree			
0	RO	0x0	reserved			

CRU EMMC CONO

Address: Operational Base + offset (0x0390)

Bit	Attr	Reset Value	Description
			write_mask
31:16	WO	0x0000	When every bit HIGH, enable the writing corresponding bit; when
			every bit LOW, don't care the writing corresponding bit
15:12	RO	0x0	reserved
1.1	RW	0x0	drv_sel
11			drv_sel
10.2	RW	RW 0x00	drv_delaynum
10:3			drv_delaynum
2:1	DW	RW 0x2	drv_degree
2.1	KVV		drv_degree
0	DW	0.40	init_state
0	RW	W 0×0	init_state

CRU EMMC CON1

Address: Operational Base + offset (0x0394)

Bit	Attr	Reset Value	Description				
			write_mask				
31:16	WO	0x0000	When every bit HIGH, enable the writing corresponding bit; when				
			every bit LOW, don't care the writing corresponding bit				
15:12	RO	0x0	reserved				
11	RW	W 0x0	sample_sel				
11			sample_sel				
10:3	RW	RW 0×00	sample_delaynum				
10.3		KVV	K VV	K VV	I VV	IT VV	UXUU
2:1	RW	NA 00	sample_degree				
2.1		0x0	sample_degree				
0	RO	0x0	reserved				

CRU_GPLL_CON0

Address: Operational Base + offset (0xc000)

Bit	Attr	Reset Value	Description
			write_mask
31:16	WO	0x0000	When every bit HIGH, enable the writing corresponding bit; when
			every bit LOW, don't care the writing corresponding bit
			bypass
15	DW	0×0	PLL Bypass. FREF bypasses PLL to FOUTPOSTDIV
13	RW		1'b0: no bypass
			1'b1: bypass
14.12	RW	W 0x1	postdiv1
14:12			First Post Divide Value, (1-7)
			fbdiv
			Feedback Divide Value, valid divider settings are:
11:0	RW		[16, 3200] in integer mode
			[20, 320] in fractional mode
			Tips: no plus one operation

CRU GPLL CON1

Address: Operational Base + offset (0xc004)

Bit	Attr	Reset Value	Description
			write_mask
31:16	WO	0x0000	When every bit HIGH, enable the writing corresponding bit; when
			every bit LOW, don't care the writing corresponding bit

Bit	Attr	Reset Value	Description
			pllpdsel
			PLL global power down source selection
15	RW	0x0	If $pllpdsel == 1$, PLL can be power down only by $pllpd1$,
			otherwise pll is power down when any one of refdiv/fbdiv/fracdiv
			is changed or pllpd0 is asserted
			pllpd1
14	RW	0x0	PLL global power down request
14	KVV	UXU	1'b0: no power down
			1'b1: power down
			pllpd0
1.2	RW	0x0	PLL global power down request
13	KVV		1'b0: no power down
			1'b1: power down
		0x1	dsmpd
12	RW		PLL delta sigma modulator enable
			1'b0: modulator is enable, 1'b1: modulator is disabled
11	RO	0x0	reserved
			pll_lock
10	RO	0x0	PLL lock status
10	KU	UXU	1'b0: unlock
			1'b1: lock
9	RO	0x0	reserved
0.6	DW	0.41	postdiv2
8:6	RW	0×1	Second Post Divide Value, (1-7)
F.0	DW	0.01	refdiv
5:0	RW	0x01	Reference Clock Divide Value, (1-63)

CRU GPLL CON2

Address: Operational Base + offset (0xc008)

Bit	Attr	Reset Value	Description
31:28	RO	0x0	reserved
			fout4phasepd
27	RW	0.40	Power down 4-phase clocks and 2X, 3X, 4X clocks
27	KVV	0×0	1'b0: no power down
			1'b1: power down
	RW		foutvcopd
26			Power down buffered VCO clock
20			1'b0: no power down
			1'b1: power down
			foutpostdivpd
25	DW		Power down all outputs except for buffered VCO clock
23	IK VV		1'b0: no power down
			1'b1: power down

Bit	Attr	Reset Value	Description
		0x0	dacpd
24	DW		Power down quantization noise cancellation DAC
24	RW		1'b0: no power down
			1'b1: power down
	RW		fracdiv
23:0			Fractional part of feedback divide
			(fraction = FRAC/2^24)

CRU GPLL CON3

Address: Operational Base + offset (0xc00c)

Bit	Attr	Reset Value	Description
			write_mask
31:16	WO	0x0000	When every bit HIGH, enable the writing corresponding bit; when
			every bit LOW, don't care the writing corresponding bit
15:13	RO	0x0	reserved
			ssmod_spread
12:8	WO	0x00	spread amplitude
			% = 0.1 * SPREAD[4:0]
7.4	WO	0.40	ssmod_divval
7:4	WO	0x0	Divider required to set the modulation frequency
			ssmod_downspread
2	wo	0.40	Selects center spread or downs pread
3	WO	0x0	1'b0: down spread
			1'b1: center spread
		0x1	ssmod_reset
2	wo		Reset modulator state
2	WO		1'b0: no reset
			1'b1: reset
			ssmod_disable_sscg
1	wo	0v1	Bypass SSMOD by module
	WO	O 0x1	1'b0: no bypass
			1'b1: bypass
			ssmod_bp
	wo	JUXI	Bypass SSMOD by integration
0	VVO		1'b0: no bypass
			1'b1: bypass

CRU GPLL CON4

Address: Operational Base + offset (0xc010)

Bit	Attr	Reset Value	Description
			write_mask
31:16	WO	0x0000	When every bit HIGH, enable the writing corresponding bit; when
			every bit LOW, don't care the writing corresponding bit

Bit	Attr	Reset Value	Description
15:8	WO	0x7f	ssmod_ext_maxaddr
			External wave table data inputs, (0-255)
7:1	RO	0x0	reserved
	WO	VO 0x0	ssmod_sel_ext_wave
0			1'b0: no select ext_wave
			1'b1: select ext_wave

CRU_PMU_MODE

Address: Operational Base + offset (0xc020)

Bit	Attr	Reset Value	Description
			write_mask
31:16	WO	0x0000	When every bit HIGH, enable the writing corresponding bit; when
			every bit LOW, don't care the writing corresponding bit
15:2	RO	0x0	reserved
	RW	RW 0x0	gpll_work_mode
1.0			2'h0:clock from xin_osc0_func_div
1:0			2'h1:clock from pll
			2'h2:clock from clk_rtc_32k

CRU PMU CLKSEL CONO

Address: Operational Base + offset (0xc040)

Bit	Attr	Reset Value	Description	
			write_mask	
31:16	WO	0x0000	When every bit HIGH, enable the writing corresponding bit; when	
			every bit LOW, don't care the writing corresponding bit	
			clk_rtc32k_clk_sel	
15:14	DW	0x0	2'h0:select clk_32k_from_io as clk_rtc_32k	
15:14	KW		2'h1:select clk_32k_from_pvtm as clk_rtc_32k	
			2'h2:select clk_div32p768khz as clk_rtc_32k	
13	RO	0x0	reserved	
12.0	DW	000	xin_osc0_func_div_con	
12:8	RW	0x00	xin_osc0_func_div=xin_osc0/(div_con+1)	
7:5	RO	0x0	0x0 reserved	
4.0	DW	W 1()x()h	pclk_pdpmu_div_con	
4:0	RW		pclk_pdpmu=gpll_clk_src/(div_con+1)	

CRU PMU CLKSEL CON1

Address: Operational Base + offset (0xc044)

Bit	Attr	Reset Value	Description	
31:0 RW 0x0bb8ea60 clk_div32p768khz_div_con High 16-bit for numerator, Low 16-bit for denomination source is xin_osc0			clk_div32p768khz_div_con	
		0x0bb8ea60	High 16-bit for numerator, Low 16-bit for denominator, clock	
		source is xin_osc0		

CRU PMU CLKSEL CON2

Address: Operational Base + offset (0xc048)

Bit	Attr	Reset Value	Description	
			write_mask	
31:16	WO	0x0000	When every bit HIGH, enable the writing corresponding bit; when	
			every bit LOW, don't care the writing corresponding bit	
			clk_wifi_sel	
15	RW	0x0	1'b0:select xin_osc0 as clk_wifi_out	
			1'b1:select clk_wifi_div as clk_wifi_out	
14	RO	0x0	reserved	
12.0	DW	/ 0x31	clk_wifi_div_con	
13:8	RW		clk_wifi_div=gpll_clk_src/(div_con+1)	
			mipidsiphy_ref_sel	
7	RW	0x0	1'b0:select xin_osc0 as mipidsi phy reference clock	
			1'b1:select clk_ref24m as mipidsi phy reference clock	
			usbphy_ref_sel	
6	RW	0x0	1'b0:select xin_osc0 as usbphy reference clock	
			1'b1:select clk_ref24m as usbphy reference clock	
F. 0	DW	0.21	clk_ref24m_div_con	
5:0	RW	0x31	clk_ref24m=gpll_clk_src/(div_con+1)	

CRU PMU CLKSEL CON3

Address: Operational Base + offset (0xc04c)

Bit	Attr	Reset Value	Description	
			write_mask	
31:16	WO	0x0000	When every bit HIGH, enable the writing corresponding bit; when	
			every bit LOW, don't care the writing corresponding bit	
			clk_uart0_pll_sel	
			2'h0:GPLL	
15:14	RW	0x0	2'h1:xin_osc0	
			2'h2:usbphy480M	
			2'h3:NPLL	
13:5	RO	0x0	reserved	
4.0	DW	0.01	clk_uart0_div_con	
4:0	RW	0x0b	clk_uart0=pll_clk_src/(div_con+1)	

CRU PMU CLKSEL CON4

Address: Operational Base + offset (0xc050)

Bit	Attr	Reset Value	Description	
			write_mask	
31:16	31:16 WO 0x0000		When every bit HIGH, enable the writing corresponding bit; when	
			every bit LOW, don't care the writing corresponding bit	

Bit	Attr	Reset Value	Description	
15:14	RW	0x0	clk_uart0_sel 2'h0:select clk_uart0 2'h1:select clk_uart0_np5	
			2'h2:select clk_uart0_frac_out	
13:5	RO	0x0	reserved	
4:0	RW	RW 0x0b clk_uart0_divnp5_div_con clk_uart0_np5=2*clk_uart0/(2*div_con+3)		

<u>CRU PMU CLKSEL CON5</u> Address: Operational Base + offset (0xc054)

Bit	Attr	Reset Value	Description	
			clk_uart0_frac_div_con	
31:0			High 16-bit for numerator, Low 16-bit for denominator, clock	
source is clk_uart0			source is clk_uart0	

CRU PMU CLKGATE CONO

Address: Operational Base + offset (0xc080)

Bit	Attr	Reset Value	Description	
31:16	WO	0×0000	write_mask When every bit HIGH, enable the writing corresponding bit; when every bit LOW, don't care the writing corresponding bit	
15	RW	0×0	clk_wifi_clk_en When HIGH, disable clock	
14	RW	0x0	clk_wifi_pll_clk_en When HIGH, disable clock	
13	RW	0×0	clk_div32p768khz_src_clk_en When HIGH, disable clock	
12	RW	0×0	xin_osc0_func_div_src_clk_en When HIGH, disable clock	
11:9	RO	0x0	reserved	
8	RW	0×0	pclk_pmu_cru_clk_en When HIGH, disable clock	
7	RW	0x0	pclk_pmu_uart0_clk_en When HIGH, disable clock	
6	RW	0x0	pclk_pmu_gpio0_clk_en When HIGH, disable clock	
5	RW	0x0	oclk_pmu_mem_clk_en When HIGH, disable clock	
4	RW	0×0	pclk_pmu_pmu_clk_en When HIGH, disable clock	
3	RW	0×0	pclk_pmu_grf_clk_en When HIGH, disable clock	
2	RW	0x0	pclk_pmu_sgrf_clk_en When HIGH, disable clock	
1	RW	0×0	pclk_pmu_niu_clk_en When HIGH, disable clock	
0	RW	0×0	pclk_pdpmu_pll_clk_en When HIGH, disable clock	

CRU PMU CLKGATE CON1
Address: Operational Base + offset (0xc084)

Bit	Attr	Reset Value	Description	
			write_mask	
31:16	RW	0x0000	When every bit HIGH, enable the writing corresponding bit; when	
			every bit LOW, don't care the writing corresponding bit	
15:11	RO	0x0	reserved	
10	RW	W 0x0	mipidsiphy_ref_cclk_en	
10	IK VV		When HIGH, disable clock	
9	RW	0.40	usbphy_ref_clk_en	
9	KVV	RW 0x0	When HIGH, disable clock	
8	DW	RW 0x0	clk_ref24m_pll_clk_en	
0	IK VV		When HIGH, disable clock	

Bit	Attr	Reset Value	Description	
7:5	RO	0x0	reserved	
4	RW	0×0	lk_pvtm_pmu_clk_en Vhen HIGH, disable clock	
3	RW	0x0	clk_uart0_pmu_clk_en When HIGH, disable clock	
2	RW	0x0	clk_uart0_pmu_frac_clk_en When HIGH, disable clock	
1	RW	clk_uart0_pmu_divnp5_clk_en When HIGH, disable clock		
0	RW	clk uart0 pmu pll clk en		

2.7 Timing Diagram

Power on reset timing is shown as follow:

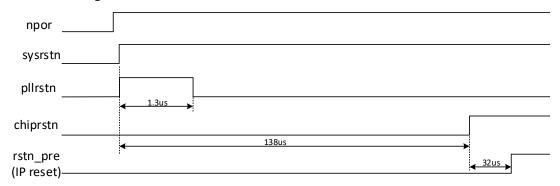


Fig. 2-4 Chip Power On Reset Timing Diagram

Npor is hardware reset signal from out-chip, which is filtered glitch to obtain signal sysrstn. To make PLLs work normally, the PLL reset signal (pllrstn) must maintain high for more than 1us, and PLLs start to lock when pllrstn de-assert, and the PLL max lock time is 1500 PLL REFCLK cycles. And then the system will wait about 138us, and then de-assert reset signal chiprstn. The signal chiprstn is used to generate output clocks in CRU. After CRU start output clocks, the system waits again for 768cycles (21.3us) to de-assert signal rstn_pre, which is used to generate power on reset of all IPs.

2.8 Application Notes

2.8.1 PLL usage

A. PLL output frequency configuration

FBDIV, POSTDIV1, BYPASS can be configured by programming CRU_xPLL_CON0. DSMPD, REFDIV, POSTDIV2 can be configured by programming CRU_xPLL_CON1.

FRAC can be configured by programming CRU_xPLL_CON2.

If DSMPD = 1 (DSM is disabled, "integer mode")

FOUTVCO = (FREF / REFDIV) * FBDIV

FOUTPOSTDIV = FOUTVCO / (POSTDIV1*POSTDIV2)

When FREF is 24MHz, and if 700MHz FOUTPOSTDIV is needed. The configuration can be: DSMPD = 1

```
REFDIV = 6
FBDIV = 175
      POSTDIV1=1
      POSTDIV2=1
And then
FOUTVCO = (FREF / REFDIV) * FBDIV = 24/6*175=700
FOUTPOSTDIV = FOUTVCO / (POSTDIV1*POSTDIV2)=700/1/1=700
If DSMPD = 0 (DSM is enabled, "fractional mode")
FOUTVCO = (FREF / REFDIV) * (FBDIV + FRAC / (2^24))
FOUTPOSTDIV = FOUTVCO / (POSTDIV1*POSTDIV2)
When FREF is 24MHz, and if 491.52MHz FOUTPOSTDIV is needed. The configuration can be:
      DSMPD = 0
      REFDIV = 1
FBDIV = 40
      FRAC
             = 24'hf5c28f
      POSTDIV1=2
      POSTDIV2=1
And then
FOUTVCO = (FREF / REFDIV) * (FBDIV + FRAC / (2^24)) = 983.04
FOUTPOSTDIV = FOUTVCO / (POSTDIV1*POSTDIV2)=983.04/(2*1)=491.52
```

B. PLL setting consideration

- If the POSTDIV value is changed during operation a short pulse (glitch) may occur on FOUTPOSTDIV. The minimum width of the short pulse will be equal to twice the period of the VCO. Therefore, if the circuitry clocked by the PLL is sensitive to short pulses, the new divide value should be re-timed so that it is synchronous with the rising edge of the output clock (FOUTPOSTDIV). Glitches cannot occur on any of the other outputs.
- For lowest power operation, the minimum VCO and FREF frequencies should be used. For minimum jitter operation, the highest VCO and FREF frequencies should be used. The normal operating range for the VCO is described above in.
- The supply rejection will be worse at the low end of the VCO range so care should be taken to keep the supply clean for low power applications.
- The feedback divider is not capable of dividing by all possible settings due to the use of a power-saving architecture. The following settings are valid for FBDIV:
- DSMPD=1 (Integer Mode)
- DSMPD=0 (Fractional Mode)
- The PD input places the PLL into the lowest power mode. In this case, all analog circuits are turned off and FREF will be "ignored". The FOUTPOSTDIV and FOUTVCO pins are forced to logic low (0V).
- The BYPASS pin controls a mux which selects FREF to be passed to the FOUTPOSTDIV when active high. However, the PLL continues to run as it normally would if bypass were low. This is a useful feature for PLL testing since the clock path can be verified without the PLL being required to work. Also, the effect that the PLL induced supply noise has on the output buffering can be evaluated. It is not recommended to switch between BYPASS mode and normal mode for regular chip operation since this may result in a glitch. Also, FOUTPOSTDIVPD should be set low if the PLL is to be used in BYPASS mode.

2.8.2 PLL frequency change and lock check

The PLL programming supports changed on-the-fly and the PLL will simply slew to the new frequency.

PLL lock state can be checked in CRU_APLL_CON1[10], CRU_DPLL_CON1[10], CRU_CPLL_CON1[10], CRU_GPLL_CON1[10] register. The lock state is high when both original hardware PLL lock and PLL counter lock are high. The PLL counter lock initial value is CRU_GLB_CNT_TH[31:16].

The max delay time is 500 REF CLK.

PLL locking consists of three phases.

Phase 1 is control voltage slewing. During this phase one of the clocks (reference or

- divide) is much faster than the other, and the PLL frequency adjusts almost continuously. When locking from power down, the divide clock is initially very slow and steadily increases frequency. It will take slightly longer for faster VCO settings when locking from power down, since the PLL must slew further.
- Phase 2 is small signal phase acquisition. During this phase, the internal up/down signals alternate semi-chaotically as the phase slowly adjusts until the two signals are aligned. The duration of this phase depends on the loop bandwidth and is faster with higher bandwidth. Bandwidth can be estimated as FREF / REFDIV / 20 for integer mode and FREF /REFDIV / 40 for fractional mode. The duration of small signal locking is about 1/Bandwidth.
- Phase 3 is the digital cycle count. After the last cycle slip is detected, an internal counter waits 256 FREF / REFDIV cycles before the lock signal goes high. This is frequently the dominant factor in lock time – especially for slower reference clock signals or large reference divide settings. This time can be calculated as 256*REFDIV/FREF.

2.8.3 Fractional divider usage

To get specific frequency, clocks of I2S, PDM, UART can be generated by fractional divider. Generally you must set that denominator is 20 times larger than numerator to generate precise clock frequency. So the fractional divider applies only to generate low frequency clock like I2S, UART and PDM. For implementation issue, the input source clocks of fractional divider also have the following limitation.

Clock Name	Fractional divider source clock Limit
clk_pdm	600MHz
clk_i2s0_tx/rx	600MHz
clk_i2s1/2	600MHz
clk_uart0~5	600MHz
vopb_dclk	600MHz
vopl_dclk	600MHz

Table 2-1 Source Clock Limitation of Fractional Divider

2.8.4 Divfree50 divider usage

Some IPs, such as NAND, EMMC, SDIO and SDMMC need clock of 50% duty cycle, divfree50 can generate clock of 50% duty cycle even in odd value divisor.

2.8.5 DivFreeNP5 divider usage

Some IPs, such as GPU and UART need some special frequency can use this divider. Frequency of this divider= $clk_src/((2*n+1)/2)$. Eg, UART with baud rate of 4Mbps need use this divider to generate 64MHz clock from 480MHz of usbphypll.

2.8.6 Global software reset

Two global software resets are designed in the chip, you can program CRU_GLB_SRST_FST_VALUE[15:0] as 0xfdb9 to assert the first global software reset glb_srstn_1 and program CRU_GLB_SRST_SND_VALUE[15:0] as 0xeca8 to assert the second global software reset glb_srstn_2. These two software resets are self-de-asserted by hardware. Resetting hold timing of global software reset (glb_srstn_1, glb_srstn_2, soc_wdt_rstn, soc_tsadc_rstn) can be programmable up to 1ms. Glb srstn 1 resets almost all logic.

Glb_srstn_2 resets almost all logic except GRF and GPIOs.

Chapter 3 General Register Files (GRF)

3.1 Overview

The general register file will be used to do static set by software, which is composed of many registers for system control. The GRF is located at several addresses.

GRF, used for general non-secure system,

PMUGRF, used for always on system,

CORE_GRF, used for core pvtm and performance monitor

GPU_GRF, used for gpu configuration and performance monitor

USBPHY_GRF, used for usbphy configuration

DDR_GRF, used for controlling ip in PD_DDR

3.2 Function Description

The function of general register file is:

IOMUX control

Control the state of GPIO in power-down mode

GPIO PAD pull down and pull up control

Used for common system control

Used to record the system state

Table 3-1GRF Adress Mapping Table

Name	Address Base
PMUGRF	0xFF010000
GRF	0xFF140000
CORE_GRF	0xFF148000
GPU_GRF	0xFF14C000
USBPHY_GRF	0xFF2C0000
DDR_GRF	0xFF630000

3.3 GRF Register Description

3.3.1 Internal Address Mapping

Slave address can be divided into different length for different usage, which is shown as follows.

3.3.2 Registers Summary

Name	Offset	Size	Reset Value	Description
GRF GPIO1A IOMUX L	0x0000	W	0x00000000	GPIO1A iomux control low bits
GRF_GPIO1A_IOMUX_H	0x0004	W	0x00000000	GPIO1A iomux control high bits
GRF GPIO1B IOMUX L	0x0008	W	0x00000000	GPIO1B iomux control low bits
GRF GPIO1B IOMUX H	0x000c	W	0x00000000	GPIO1B iomux control high bits
GRF GPIO1C IOMUX L	0x0010	W	0x00000000	GPIO1C iomux control low bits
GRF GPIO1C IOMUX H	0x0014	W	0x00000000	GPIO1C iomux control high bits
GRF GPIO1D IOMUX L	0x0018	W	0x00002200	GPIO1D iomux control low bits
GRF GPIO1D IOMUX H	0x001c	W	0x00000033	GPIO1D iomux control high bits
GRF_GPIO2A_IOMUX_L	0x0020	W	0x00000000	GPIO2A iomux control low bits
GRF_GPIO2A_IOMUX_H	0x0024	W	0x00000000	GPIO2A iomux control high bits

Name	Offset	Size	Reset Value	Description
GRF GPIO2B IOMUX L	0x0028	W	0x00000000	GPIO2B iomux control low bits
GRF GPIO2B IOMUX H	0x002c	W	0x00000000	GPIO2B iomux control high bits
GRF GPIO2C IOMUX L	0x0030	W	0x00000000	GPIO2C iomux control low bits
GRF GPIO2C IOMUX H	0x0034	W	0x00000000	GPIO2C iomux control high bits
GRF GPIO3A IOMUX L	0x0040	W	0x00000000	GPIO3A iomux control low bits
GRF_GPIO3A_IOMUX_H	0x0044	W	0x00000000	GPIO3A iomux control high bits
GRF GPIO3B IOMUX L	0x0048	W	0x00000000	GPIO3B iomux control low bits
GRF GPIO3B IOMUX H	0x004c	W	0x00000000	GPIO3B iomux control high bits
GRF GPIO3C IOMUX L	0x0050	W	0x00000000	GPIO3C iomux control low bits
GRF GPIO3C IOMUX H	0x0054	W	0x00000000	GPIO3C iomux control high bits
GRF GPIO3D IOMUX L	0x0058	W	0x00000000	GPIO3D iomux control low bits
GRF_GPIO3D_IOMUX_H	0x005c	W	0x00000000	GPIO3D iomux control high bits
GRF GPIO1A P	0x0060	W	0x00005555	GPIO1A PU/PD control
GRF_GPIO1B_P	0x0064	W	0x00005555	GPIO1B PU/PD control
GRF GPIO1C P	0x0068	W	0x00005955	GPIO1C PU/PD control
GRF GPIO1D P	0x006c	W	0x00006555	GPIO1D PU/PD control
GRF_GPIO2A_P	0x0070	W	0x00000aaaa	GPIO2A PU/PD control
GRF GPIO2B P	0x0074	W	0x00006aaa	GPIO2B PU/PD control
GRF GPIO2C P	0x0071	W	0x00000aa9	GPIO2C PU/PD control
GRF GPIO3A P	0x0070	W	0x00002aa3	GPIO3A PU/PD control
GRF GPIO3B P	0x0084	W	0x0000aaaa	GPIO3B PU/PD control
GRF_GPIO3C_P	0x0088	W	0x0000aaaa	GPIO3C PU/PD control
GRF GPIO3D P	0x008c	W	0x000000aa	GPIO3D PU/PD control
GRF GPIO1A SR	0x0090	W	0x0000000	GPIO1A slow rate control
GRF GPIO1B SR	0x0094	W	0x0000000	GPIO1B slow rate control
GRF GPIO1C SR	0x0098	W	0x00000000	
GRF GPIO1D SR	0x009c	W	0x0000000	GPIO1D slow rate control
GRF GPIO2A SR	0x00a0	W	0x00000000	GPIO2A slow rate control
GRF GPIO2B SR	0x00a4	W	0x00000000	GPIO2B slow rate control
GRF_GPIO2C_SR	0x00a8	W	0x00000000	GPIO2C slow rate control
GRF GPIO3A SR	0x00b0	W	0x00000000	GPIO3A slow rate control
GRF GPIO3B SR	0x00b4	W	0x00000000	GPIO3B slow rate control
GRF_GPIO3C_SR	0x00b8	W	0x00000000	GPIO3C slow rate control
GRF GPIO3D SR	0x00bc	W	0x0000000	GPIO3D slow rate control
GRF GPIO1A SMT	0x00c0	W	0x0000000	GPIO1A smitter control
GRF GPIO1B SMT	0x00c4	W	0x0000000	GPIO1B smitter control
GRF GPIO1C SMT	0x00c8	W	0x00000000	GPIO1C smitter control
GRF_GPIO1D_SMT	0х00сс	W	0x00000000	GPIO1D smitter control
GRF GPIO2A SMT	0x00d0	W	0x00000000	GPIO2A smitter control
GRF GPIO2B SMT	0x00d4	W	0x0000000	GPIO2B smitter control
GRF GPIO2C SMT	0x00d8	W	0x0000000	GPIO2C smitter control
GRF GPIO3A SMT	0x00e0	W	0x00000000	GPIO3A smitter control

Name	Offset	Size	Reset Value	Description
GRF_GPIO3B_SMT	0x00e4	W	0x00000000	GPIO3B smitter control
GRF GPIO3C SMT	0x00e8	W	0x0000000	GPIO3C smitter control
GRF GPIO3D SMT	0x00ec	W	0x00000000	GPIO3D smitter control
GRF GPIO1A E	0x00f0	W	0x0000aaaa	GPIO1A driver strengh control
GRF GPIO1B E	0x00f4	W	0x0000aaaa	GPIO1B driver strengh control
GRF_GPIO1C_E	0x00f8	W	0x0000aa55	GPIO1C driver strengh control
GRF GPIO1D E	0x00fc	W	0x0000aaaa	GPIO1D driver strengh control
GRF GPIO2A E	0x0100	W	0x00005555	GPIO2A driver strengh control
GRF GPIO2B E	0x0104	W	0x00000000	GPIO2B driver strengh control
GRF GPIO2C E	0x0108	W	0x00001554	GPIO2C driver strengh control
GRF GPIO3A E	0x0110	W	0x00005555	GPIO3A driver strengh control
GRF_GPIO3B_E	0x0114	W	0x00005555	GPIO3B driver strengh control
GRF GPIO3C E	0x0118	W	0x00005555	GPIO3C driver strengh control
GRF_GPIO3D_E	0x011c	W	0x00000055	GPIO3D driver strengh control
GRF IO VSEL	0x0180	W	0x00000000	IO Voltage Seletion register
GRF IOFUNC CONO	0x0184	W	0x00000000	io function control register0
GRF_SOC_CON0	0x0400	W	0x00000000	SOC control register0
GRF SOC CON1	0x0404	W	0x00000000	SOC control register1
GRF SOC CON2	0x0408	W	0x00001000	SOC control register2
GRF SOC CON3	0x040c	W	0x00000000	SOC control register3
GRF SOC CON4	0x0410	W	0x00000000	SOC control register4
GRF_SOC_CON5	0x0414	W	0x00000000	SOC control register5
GRF PD VI CON	0x0430	W	0x00000000	PD_VI control register
GRF PD VO CONO	0x0434	W	0x00000000	PD_VO control register0
GRF_PD_VO_CON1	0x0438	W	0x00000000	PD_VO control register1
GRF SOC STATUSO	0x0480	W	0x00000000	SOC status register0
GRF CPU CONO	0x0500	W	0x00000060	CPU control register0
GRF CPU CON1	0x0504	W	0x0000008c	CPU control register1
GRF CPU CON2	0x0508	W	0x00000021	CPU control register2
GRF_CPU_STATUS0	0x0520	W	0x00000000	CPU status register0
GRF CPU STATUS1	0x0524	W	0x00000000	CPU status register1
GRF SOC NOC CONO	0x0530	W	0x00000000	NOC control register0
GRF_SOC_NOC_CON1	0x0534	W	0x00000000	NOC control register1
GRF DDR BANKHASH CT RL	0x0550	W	0×00000000	DDR BANK HASH control register0
GRF DDR BANK MASKO	0x0554	W	0×00000000	The MSB mask for the first bank bit
GRF DDR BANK MASK1	0x0558	W	0×00000000	The MSB mask for the second bank bit
GRF DDR BANK MASK2	0x055c	W	0x00000000	The MSB mask for the third bank bit
GRF HOSTO CONO	0x0700	W	0x00000820	USB host control register0
GRF HOSTO CON1	0x0704	W	0x000004bc	USB host control register1

Name	Offset	Size	Reset Value	Description
GRF OTG CON3	0x0880	W	0x00000000	OTG control register
GRF HOSTO STATUS4	0x0890	W	0x00000000	USB host status register
GRF MAC CON1	0x0904	W	0x00000000	MAC control register1

Notes: Size: **B**- Byte (8 bits) access, **HW**- Half WORD (16 bits) access, **W**-WORD (32 bits) access

3.3.3 Detail Register Description

GRF GPIO1A IOMUX L

Address: Operational Base + offset (0x0000)

Bit	Attr	Reset Value	Description			
			write_enable			
			When bit16=1, bit0 can be written by software.			
			When bit16=0, bit 0 cannot be written by software;			
31:16	WO	0x0000	When bit 17=1, bit 1 can be written by software.			
31.10	WO	00000	When bit 17=0, bit 1 cannot be written by software;			
			When bit 31=1, bit 15 can be written by software.			
			When bit 31=0, bit 15 cannot be written by software;			
			gpio1a3_sel			
			4'h0: gpio			
15:12	RW	0x0	4'h1: flash_d3			
			4'h2: emmc_d3			
			4'h3: sfc_sio3			
		0x0	gpio1a2_sel			
	RW		4'h0: gpio			
11:8			4'h1: flash_d2			
			4'h2: emmc_d2			
			4'h3: sfc_sio2			
			gpio1a1_sel			
			4'h0: gpio			
7:4	RW	0x0	4'h1: flash_d1			
			4'h2: emmc_d1			
			4'h3: sfc_sio1			
			gpio1a0_sel			
			4'h0: gpio			
3:0	RW	0x0	4'h1: flash_d0			
			4'h2: emmc_d0			
			4'h3: sfc_sio0			

GRF GPIO1A IOMUX H

Address: Operational Base + offset (0x0004)

Bit	Attr	Reset Value	Description				
			write_enable				
			When bit16=1, bit0 can be written by software.				
		0×0000	When bit16=0, bit 0 cannot be written by software;				
31:16	wo		When bit 17=1, bit 1 can be written by software.				
31.10	VVO		When bit 17=0, bit 1 cannot be written by software;				
			When bit 31=1, bit 15 can be written by software.				
			When bit 31=0, bit 15 cannot be written by software;				
			gpio1a7_sel				
15:12	D\M	0×0	4'h0: gpio				
13.12	KVV		4'h1: flash_d7				
			4'h2: emmc_d7				
		V 0×0	gpio1a6_sel				
11:8	RW		4'h0: gpio				
11.0			4'h1: flash_d6				
			4'h2: emmc_d6				
	RW		gpio1a5_sel				
7:4		0×0	4'h0: gpio				
7.4			4'h1: flash_d5				
			4'h2: emmc_d5				
	RW	V 0×0	gpio1a4_sel				
			4'h0: gpio				
3:0			4'h1: flash_d4				
			4'h2: emmc_d4				
			4'h3: sfc_csn0				

GRF GPIO1B IOMUX L

Address: Operational Base + offset (0x0008)

Bit	Attr	Reset Value	Description				
31:16	WO	0×0000	write_enable When bit16=1, bit0 can be written by software. When bit16=0, bit 0 cannot be written by software; When bit 17=1, bit 1 can be written by software. When bit 17=0, bit 1 cannot be written by software; When bit 31=1, bit 15 can be written by software. When bit 31=0, bit 15 cannot be written by software;				
15:12	RW	0x0	gpio1b3_sel 4'h0: gpio 4'h1: flash_ale 4'h2: emmc_rstn				
11:8	RW	0x0	gpio1b2_sel 4'h0: gpio 4'h1: flash_dqs 4'h2: emmc_cmd				

Bit	Attr	Reset Value	Description
			gpio1b1_sel
		0x0	4'h0: gpio
7:4	RW		4'h1: flash_rdy
			4'h2: emmc_clkout
			4'h3: sfc_clk
			gpio1b0_sel
3:0	DW	0x0	4'h0: gpio
3:0	RW		4'h1: flash_cs0
			4'h2: emmc_pwren

GRF GPIO1B IOMUX H

Address: Operational Base + offset (0x000c)

Bit	Attr	Reset Value	Description
			write_enable
			When bit16=1, bit0 can be written by software.
			When bit16=0, bit 0 cannot be written by software;
31:16	WO	0x0000	When bit 17=1, bit 1 can be written by software.
31.10	VVO	00000	When bit 17=0, bit 1 cannot be written by software;
			When bit 31=1, bit 15 can be written by software.
			When bit 31=0, bit 15 cannot be written by software;
			gpio1b7_sel
			4'h0: gpio
15:12	RW	0x0	4'h1: flash_rdn
			4'h2: uart3_rxm1
			4'h3: spi0_clk
		0x0	gpio1b6_sel
			4'h0: gpio
11:8	RW		4'h1: flash_cs1
			4'h2: uart3_txm1
			4'h3: spi0_csn
			gpio1b5_sel
			4'h0: gpio
7:4	RW	0×0	4'h1: flash_wrn
		o x o	4'h2: uart3_rtsm1
			4'h3: spi0_miso
			4'h4: i2c3_scl
			gpio1b4_sel
			4'h0: gpio
3:0	RW		4'h1: flash_cle
			4'h2: uart3_ctsm1
			4'h3: spi0_mosi
			4'h4: i2c3_sda

GRF GPIO1C IOMUX L

Address: Operational Base + offset (0x0010)

Bit	Attr	Reset Value	Description
			write_enable When bit16=1, bit0 can be written by software.
			When bit16=0, bit 0 cannot be written by software;
31:16	WO	0x0000	When bit 17=1, bit 1 can be written by software. When bit 17=0, bit 1 cannot be written by software;
			When bit 31=1, bit 15 can be written by software. When bit 31=0, bit 15 cannot be written by software;
			gpio1c3_sel
15:12	RW	0x0	4'h0: gpio 4'h1: uart1_rts
			gpio1c2_sel
11:8	RW	0x0	4'h0: gpio
			4'h1: uart1_cts gpio1c1_sel
7:4	RW	0x0	4'h0: gpio
			4'h1: uart1_tx
3:0	RW	0x0	gpio1c0_sel 4'h0: gpio
3.0	IK VV		4'h1: uart1_rx

GRF GPIO1C IOMUX H

Address: Operational Base + offset (0x0014)

Bit	Attr	Reset Value	Description
31:16	WO	0x0000	write_enable When bit16=1, bit0 can be written by software. When bit16=0, bit 0 cannot be written by software; When bit 17=1, bit 1 can be written by software. When bit 17=0, bit 1 cannot be written by software; When bit 31=1, bit 15 can be written by software. When bit 31=0, bit 15 cannot be written by software;
15:12	RW	0×0	gpio1c7_sel 4'h0: gpio 4'h1: sdio_d1
11:8	RW	0×0	gpio1c6_sel 4'h0: gpio 4'h1: sdio_d0
7:4	RW	0×0	gpio1c5_sel 4'h0: gpio 4'h1: sdio_clk

Bit	Attr	Reset Value	Description
			gpio1c4_sel
3:0	RW	0x0	4'h0: gpio
			4'h1: sdio_cmd

GRF GPIO1D IOMUX L

Address: Operational Base + offset (0x0018)

Bit	Attr	Reset Value	Description
31:16	WO	0×0000	write_enable When bit16=1, bit0 can be written by software. When bit16=0, bit 0 cannot be written by software; When bit 17=1, bit 1 can be written by software. When bit 17=0, bit 1 cannot be written by software; When bit 31=1, bit 15 can be written by software. When bit 31=0, bit 15 cannot be written by software;
15:12	RW	0x2	gpio1d3_sel 4'h0: gpio 4'h1: sdmmc_d1 4'h2: uart2dbg_rxm0
11:8	RW	0x2	gpio1d2_sel 4'h0: gpio 4'h1: sdmmc_d0 4'h2: uart2dbg_txm0
7:4	RW	0×0	gpio1d1_sel 4'h0: gpio 4'h1: sdio_d3
3:0	RW	0x0	gpio1d0_sel 4'h0: gpio 4'h1: sdio_d2

GRF GPIO1D IOMUX H

Address: Operational Base + offset (0x001c)

Bit	Attr	Reset Value	Description
31:16	WO	0×0000	write_enable When bit16=1, bit0 can be written by software. When bit16=0, bit 0 cannot be written by software; When bit 17=1, bit 1 can be written by software. When bit 17=0, bit 1 cannot be written by software; When bit 31=1, bit 15 can be written by software. When bit 31=0, bit 15 cannot be written by software;

Bit	Attr	Reset Value	Description
			gpio1d7_sel
15:12	DW	0x0	4'h0: gpio
15.12	KVV	UXU	4'h1: sdmmc_cmd
			4'h2: uart4_rts
			gpio1d6_sel
			4'h0: gpio
11:8	RW	0×0	4'h1: sdmmc_clkout
			4'h2: uart4_cts
			4'h3: test_clk0
			gpio1d5_sel
			4'h0: gpio
7:4	RW	W 0x3	4'h1: sdmmc_d3
			4'h2: uart4_tx
			4'h3: jtag_tms
			gpio1d4_sel
			4'h0: gpio
3:0	RW	/ 0x3	4'h1: sdmmc_d2
			4'h2: uart4_rx
			4'h3: jtag_tck

GRF GPIO2A IOMUX L Address: Operational Base + offset (0x0020)

Bit		Reset Value	Description
31:16	WO	0x0000	write_enable When bit16=1, bit0 can be written by software. When bit16=0, bit 0 cannot be written by software; When bit 17=1, bit 1 can be written by software. When bit 17=0, bit 1 cannot be written by software; When bit 31=1, bit 15 can be written by software. When bit 31=0, bit 15 cannot be written by software;
15:12	RW	0×0	gpio2a3_sel 4'h0: gpio 4'h1: cif_d5m0 4'h2: rmii_rxd0
11:8	RW	0x0	gpio2a2_sel 4'h0: gpio 4'h1: cif_d4m0 4'h2: rmii_txd0
7:4	RW	0x0	gpio2a1_sel 4'h0: gpio 4'h1: cif_d3m0 4'h2: rmii_txd1

Bit	Attr	Reset Value	Description
		0x0	gpio2a0_sel
3:0	RW		4'h0: gpio
3.0	FC VV		4'h1: cif_d2m0
			4'h2: rmii_txen

GRF GPIO2A IOMUX H

Address: Operational Base + offset (0x0024)

Bit	Attr	Reset Value	Description
			write_enable
			When bit16=1, bit0 can be written by software.
			When bit16=0, bit 0 cannot be written by software;
31:16	WO	0x0000	When bit 17=1, bit 1 can be written by software.
31.10	VVO	00000	When bit 17=0, bit 1 cannot be written by software;
			When bit 31=1, bit 15 can be written by software.
			When bit 31=0, bit 15 cannot be written by software;
			gpio2a7_sel
15:12	DW	0×0	4'h0: gpio
13.12	KVV		4'h1: cif_d9m0
			4'h2: rmii_mdio
			gpio2a6_sel
11:8	RW	0×0	4'h0: gpio
11.0	KVV	W OXO	4'h1: cif_d8m0
			4'h2: rmii_rxdv
			gpio2a5_sel
7:4	RW	0×0	4'h0: gpio
7.4	IXVV	W OXO	4'h1: cif_d7m0
			4'h2: rmii_rxer
			gpio2a4_sel
3:0	RW	0×0	4'h0: gpio
3.0	KW		4'h1: cif_d6m0
			4'h2: rmii_rxd1

GRF GPIO2B IOMUX L

Address: Operational Base + offset (0x0028)

Bit	Attr	Reset Value	Description
31:16	WO	0×0000	write_enable When bit16=1, bit0 can be written by software. When bit16=0, bit 0 cannot be written by software; When bit 17=1, bit 1 can be written by software. When bit 17=0, bit 1 cannot be written by software; When bit 31=1, bit 15 can be written by software. When bit 31=0, bit 15 cannot be written by software;

Bit	Attr	Reset Value	Description
			gpio2b3_sel
15:12	DW	0x0	4'h0: gpio
15.12	IK VV	UXU	4'h1: cif_clkoutm0
			4'h2: clk_out_ethernet
			gpio2b2_sel
11:8	RW	0x0	4'h0: gpio
11:0	KW		4'h1: cif_clkinm0
			4'h2: rmii_clk
		W 0x0	gpio2b1_sel
7:4	DW		4'h0: gpio
7:4	KVV		4'h1: cif_hrefm0
			4'h2: rmii_mdc
	RW		gpio2b0_sel
3:0		.W 0x0	4'h0: gpio
			4'h1: cif_vsyncm0

GRF GPIO2B IOMUX H

Address: Operational Base + offset (0x002c)

Bit	Attr	Reset Value	Description
			write_enable
			When bit16=1, bit0 can be written by software.
			When bit16=0, bit 0 cannot be written by software;
31:16	wo	0×0000	When bit 17=1, bit 1 can be written by software.
31.10	VVO	0,0000	When bit 17=0, bit 1 cannot be written by software;
			When bit 31=1, bit 15 can be written by software.
			When bit 31=0, bit 15 cannot be written by software;
			gpio2b7_sel
15:12	DW	0.40	4'h0: gpio
15.12	IK VV	0×0	4'h1: cif_d10m0
			4'h2: i2c2_scl
			gpio2b6_sel
11:8	RW	0v0	4'h0: gpio
11.0	IK VV	/ 0x0	4'h1: cif_d1m0
			4'h2: uart2_rxm1
			gpio2b5_sel
7:4	RW	0x0	4'h0: gpio
			4'h1: pwm2
			gpio2b4_sel
3:0	RW	0x0	4'h0: gpio
3.0	KW	V OXU	4'h1: cif_d0m0
			4'h2: uart2_txm1

GRF GPIO2C IOMUX L

Address: Operational Base + offset (0x0030)

Bit	Attr	Reset Value	Description
			write_enable
			When bit16=1, bit0 can be written by software.
			When bit16=0, bit 0 cannot be written by software;
31:16	WO	0x0000	When bit 17=1, bit 1 can be written by software.
31.10	WO	00000	When bit 17=0, bit 1 cannot be written by software;
			When bit 31=1, bit 15 can be written by software.
			When bit 31=0, bit 15 cannot be written by software;
	RW	0x0	gpio2c3_sel
15:12			4'h0: gpio
			4'h1: i2s1_2ch_mclk
			gpio2c2_sel
11:8	RW	0x0	4'h0: gpio
			4'h1: i2s1_2ch_sclk
			gpio2c1_sel
7:4	RW	V 0x0	4'h0: gpio
			4'h1: i2s1_2ch_lrck
			gpio2c0_sel
3:0	RW	N 0×0	4'h0: gpio
3.0	KW		4'h1: cif_d11m0
			4'h2: i2c2_sda

GRF GPIO2C IOMUX H

Address: Operational Base + offset (0x0034)

Bit	Attr	Reset Value	Description
31:16	WO	0×0000	write_enable When bit16=1, bit0 can be written by software. When bit16=0, bit 0 cannot be written by software; When bit 17=1, bit 1 can be written by software. When bit 17=0, bit 1 cannot be written by software; When bit 31=1, bit 15 can be written by software. When bit 31=0, bit 15 cannot be written by software;
15:12	RW	0x0	gpio2c7_sel 4'h0: gpio
11:8	RW	0×0	gpio2c6_sel 4'h0: gpio 4'h1: pdm_clk0m1
7:4	RW	0×0	gpio2c5_sel 4'h0: gpio 4'h1: i2s1_2ch_sdi 4'h2: pdm_sdi0m1

Bit	Attr	Reset Value	Description
			gpio2c4_sel
3:0	RW	0x0	4'h0: gpio
			4'h1: i2s1_2ch_sdo

GRF_GPIO3A_IOMUX_LAddress: Operational Base + offset (0x0040)

Bit	1	Reset Value	+ offset (0x0040) Description
Dit	Atti	Reset Value	write enable
			_
			When bit16=1, bit0 can be written by software.
			When bit16=0, bit 0 cannot be written by software;
31:16	wo	0x0000	When bit 17=1, bit 1 can be written by software.
			When bit 17=0, bit 1 cannot be written by software;
			When bit 31=1, bit 15 can be written by software.
			When bit 31=0, bit 15 cannot be written by software;
			gpio3a3_sel
			4'h0: gpio
15:12	D\M	0×0	4'h1: lcdc_denm0
13.12	IVV		4'h2: i2s2_2ch_lrck
			4'h3: cif_d2m1
			4'h4: uart5_cts
			gpio3a2_sel
			4'h0: gpio
11:8	RW	0.0	4'h1: lcdc_vsyncm0
11.0	KVV	V 0×0	4'h2: i2s2_2ch_sclk
			4'h3: cif_d1m1
			4'h4: uart5_tx
			gpio3a1_sel
			4'h0: gpio
7:4	RW	0x0	4'h1: lcdc_hsyncm0
7:4	KVV	UXU	4'h2: i2s2_2ch_mclk
			4'h3: cif_d0m1
			4'h4: uart5_rx
			gpio3a0_sel
3:0	RW	0x0	4'h0: gpio
			4'h1: lcdc_clk

GRF GPIO3A IOMUX H

Address: Operational Base + offset (0x0044)

Bit	Attr	Reset Value	Description
31:16	wo	0×0000	write_enable When bit16=1, bit0 can be written by software. When bit16=0, bit 0 cannot be written by software; When bit 17=1, bit 1 can be written by software. When bit 17=0, bit 1 cannot be written by software; When bit 31=1, bit 15 can be written by software. When bit 31=0, bit 15 cannot be written by software;
15:12	RW	0×0	gpio3a7_sel 4'h0: gpio 4'h1: lcdc_d3m0 4'h2: i2s2_2ch_sdo 4'h3: cif_d4m1
11:8	RW	0x0	gpio3a6_sel 4'h0: gpio 4'h1: lcdc_d2
7:4	RW	0×0	gpio3a5_sel 4'h0: gpio 4'h1: lcdc_d1m0 4'h2: i2s2_2ch_sdi 4'h3: cif_d3m1 4'h4: uart5_rts
3:0	RW	0×0	gpio3a4_sel 4'h0: gpio 4'h1: lcdc_d0

GRF GPIO3B IOMUX L

Address: Operational Base + offset (0x0048)

Bit	Attr	Reset Value	Description
			write_enable
			When bit16=1, bit0 can be written by software.
			When bit16=0, bit 0 cannot be written by software;
21.16	WO	0.0000	When bit 17=1, bit 1 can be written by software.
31:16	WO	0x0000	When bit 17=0, bit 1 cannot be written by software;
			When bit 31=1, bit 15 can be written by software.
			When bit 31=0, bit 15 cannot be written by software;
	DIM	W 0×0	gpio3b3_sel
15:12			4'h0: gpio
15:12	KVV		4'h1: lcdc_d7
			4'h2: i2s0_8ch_sdi1
			gpio3b2_sel
11:8	DW	(W (()X()	4'h0: gpio
11:0	IK VV		4'h1: lcdc_d6
			4'h2: spi1_cs1

Bit	Attr	Reset Value	Description
			gpio3b1_sel
			4'h0: gpio
7.4	DW	0.40	4'h1: lcdc_d5m0
7:4	RW		4'h2: i2s0_8ch_sdi2
			4'h3: cif_d6m1
			4'h4: spi1_csn
		0×0	gpio3b0_sel
			4'h0: gpio
3:0	RW		4'h1: lcdc_d4m0
			4'h2: i2s0_8ch_sdi3
			4'h3: cif_d5m1

GRF GPIO3B IOMUX H

Address: Operational Base + offset (0x004c)

Bit		Reset Value	Description
			write_enable
			When bit16=1, bit0 can be written by software.
			When bit16=0, bit 0 cannot be written by software;
31:16	wo	0x0000	When bit 17=1, bit 1 can be written by software.
31:16	WO	00000	When bit 17=0, bit 1 cannot be written by software;
			When bit 31=1, bit 15 can be written by software.
			When bit 31=0, bit 15 cannot be written by software;
			gpio3b7_sel
			4'h0: gpio
15:12	RW	0×0	4'h1: lcdc_d11m0
13.12	IXVV	UXU	4'h2: i2s0_8ch_sdo2
			4'h3: cif_d9m1
			4'h4: spi1_clk
			gpio3b6_sel
			4'h0: gpio
11:8	RW	0x0	4'h1: lcdc_d10m0
		V	4'h2: i2s0_8ch_sdo3
			4'h3: cif_d8m1
			4'h4: spi1_miso
			gpio3b5_sel
7:4	RW	0x0	4'h0: gpio
			4'h1: lcdc_d9m0
			4'h2: i2s0_8ch_lrckrx
			gpio3b4_sel
			4'h0: gpio
3:0	RW	W 0x0	4'h1: lcdc_d8m0
			4'h2: i2s0_8ch_sclkrx
			4'h3: cif_d7m1
			4'h4: spi1_mosi

GRF GPIO3C IOMUX L

Address: Operational Base + offset (0x0050)

Bit	Attr	Reset Value	Description
31:16	WO	0×0000	write_enable When bit16=1, bit0 can be written by software. When bit16=0, bit 0 cannot be written by software; When bit 17=1, bit 1 can be written by software. When bit 17=0, bit 1 cannot be written by software; When bit 31=1, bit 15 can be written by software. When bit 31=0, bit 15 cannot be written by software;
15:12	RW	0×0	gpio3c3_sel 4'h0: gpio 4'h1: lcdc_d15 4'h2: i2s0_8ch_sclktx 4'h3: pwm_5
11:8	RW	0×0	gpio3c2_sel 4'h0: gpio 4'h1: lcdc_d14 4'h2: i2s0_8ch_lrcktx 4'h3: pwm_4
7:4	RW	0×0	gpio3c1_sel 4'h0: gpio 4'h1: lcdc_d13 4'h2: i2s0_8ch_mclk
3:0	RW	0×0	gpio3c0_sel 4'h0: gpio 4'h1: lcdc_d12 4'h2: i2s0_8ch_sdo1

GRF GPIO3C IOMUX H

Address: Operational Base + offset (0x0054)

Bit	Attr	Reset Value	Description
31:16	WO	0×0000	write_enable When bit16=1, bit0 can be written by software. When bit16=0, bit 0 cannot be written by software; When bit 17=1, bit 1 can be written by software. When bit 17=0, bit 1 cannot be written by software; When bit 31=1, bit 15 can be written by software. When bit 31=0, bit 15 cannot be written by software;

Bit	Attr	Reset Value	Description
			gpio3c7_sel
			4'h0: gpio
15:12	RW	0x0	4'h1: lcdc_d19
			4'h2: pdm_clk1
			4'h3: cif_d11m1
			gpio3c6_sel
			4'h0: gpio
11:8	RW	0x0	4'h1: lcdc_d18
			4'h2: pdm_clk0m0
			4'h3: cif_d10m1
			gpio3c5_sel
			4'h0: gpio
7:4	RW	0x0	4'h1: lcdc_d17
			4'h2: i2s0_8ch_sdi0
			4'h3: pwm_7
			gpio3c4_sel
			4'h0: gpio
3:0	RW	0x0	4'h1: lcdc_d16
			4'h2: i2s0_8ch_sdo0
			4'h3: pwm_6

GRF GPIO3D IOMUX L Address: Operational Base + offset (0x0058)

Bit	Attr	Reset Value	Description
31:16	wo	0×0000	write_enable When bit16=1, bit0 can be written by software. When bit16=0, bit 0 cannot be written by software; When bit 17=1, bit 1 can be written by software. When bit 17=0, bit 1 cannot be written by software; When bit 31=1, bit 15 can be written by software. When bit 31=0, bit 15 cannot be written by software;
15:12	RW	0×0	gpio3d3_sel 4'h0: gpio 4'h1: lcdc_d23 4'h2: pdm_sdi0m0 4'h3: cif_clkinm1 4'h4: isp_fl_trig
11:8	RW	0×0	gpio3d2_sel 4'h0: gpio 4'h1: lcdc_d22 4'h2: pdm_sdi3 4'h3: cif_hrefm1 4'h4: isp_flash_trig

Bit	Attr	Reset Value	Description
			gpio3d1_sel
			4'h0: gpio
7.4	DW	0.40	4'h1: lcdc_d21
7:4	RW	0x0	4'h2: pdm_sdi2
			4'h3: cif_vsyncm1
			4'h4: isp_prelight_trig
		V 0×0	gpio3d0_sel
			4'h0: gpio
3:0	RW		4'h1: lcdc_d20
			4'h2: pdm_sdi1
			4'h3: cif_clkoutm1

GRF GPIO3D IOMUX H

Address: Operational Base + offset (0x005c)

Bit		Reset Value	Description
		0x0000	write_enable When bit16=1, bit0 can be written by software. When bit16=0, bit 0 cannot be written by software;
31:16	wo		When bit 17=1, bit 1 can be written by software. When bit 17=0, bit 1 cannot be written by software;
			When bit 31=1, bit 15 can be written by software. When bit 31=0, bit 15 cannot be written by software;
15:12	RW	0x0	gpio3d7_sel 4'h0: gpio
11:8	RW	0×0	gpio3d6_sel 4'h0: gpio
7:4	RW	0x0	gpio3d5_sel 4'h0: gpio
3:0	RW	0x0	gpio3d4_sel 4'h0: gpio 4'h0: osc_gpi

GRF GPIO1A P

Address: Operational Base + offset (0x0060)

Bit	Attr	Reset Value	Description
31:16	WO	0×0000	write_enable When bit16=1, bit0 can be written by software. When bit16=0, bit 0 cannot be written by software; When bit 17=1, bit 1 can be written by software. When bit 17=0, bit 1 cannot be written by software; When bit 31=1, bit 15 can be written by software. When bit 31=0, bit 15 cannot be written by software;

Bit	Attr	Reset Value	Description
			gpio1a7_p
			2'b00: Z(Normal operation);
15:14	RW	0x1	2'b01: weak 1(pull-up);
			2'b10: weak 0(pull_down);
			2'b11: Repeater(Bus keeper)
			gpio1a6_p
			2'b00: Z(Normal operation);
13:12	RW	0x1	2'b01: weak 1(pull-up);
			2'b10: weak 0(pull_down);
			2'b11: Repeater(Bus keeper)
			gpio1a5_p
			2'b00: Z(Normal operation);
11:10	RW	0x1	2'b01: weak 1(pull-up);
			2'b10: weak 0(pull_down);
			2'b11: Repeater(Bus keeper)
			gpio1a4_p
			2'b00: Z(Normal operation);
9:8	RW	0x1	2'b01: weak 1(pull-up);
			2'b10: weak 0(pull_down);
			2'b11: Repeater(Bus keeper)
			gpio1a3_p
			2'b00: Z(Normal operation);
7:6	RW	0x1	2'b01: weak 1(pull-up);
			2'b10: weak 0(pull_down);
			2'b11: Repeater(Bus keeper)
			gpio1a2_p
			2'b00: Z(Normal operation);
5:4	RW	0x1	2'b01: weak 1(pull-up);
			2'b10: weak 0(pull_down);
			2'b11: Repeater(Bus keeper)
			gpio1a1_p
			2'b00: Z(Normal operation);
3:2	RW	0x1	2'b01: weak 1(pull-up);
			2'b10: weak 0(pull_down);
			2'b11: Repeater(Bus keeper)
			gpio1a0_p
			2'b00: Z(Normal operation);
1:0	RW	0×1	2'b01: weak 1(pull-up);
			2'b10: weak 0(pull_down);
			2'b11: Repeater(Bus keeper)

GRF GPIO1B PAddress: Operational Base + offset (0x0064)

Bit	Attr	Reset Value	Description
			write_enable
			When bit16=1, bit0 can be written by software.
			When bit16=0, bit 0 cannot be written by software;
24.46		0.000	When bit 17=1, bit 1 can be written by software.
31:16	WO	0x0000	When bit 17=0, bit 1 cannot be written by software;
			When bit 31=1, bit 15 can be written by software.
			When bit 31=0, bit 15 cannot be written by software;
			gpio1b7_p
			2'b00: Z(Normal operation);
15:14	RW	0x1	2'b01: weak 1(pull-up);
			2'b10: weak 0(pull_down);
			2'b11: Repeater(Bus keeper)
			gpio1b6_p
			2'b00: Z(Normal operation);
13:12	RW	0x1	2'b01: weak 1(pull-up);
			2'b10: weak 0(pull_down);
			2'b11: Repeater(Bus keeper)
			gpio1b5_p
			2'b00: Z(Normal operation);
11:10	RW	0×1	2'b01: weak 1(pull-up);
			2'b10: weak 0(pull_down);
			2'b11: Repeater(Bus keeper)
			gpio1b4_p
0.0	DW	0.42	2'b00: Z(Normal operation);
9:8	RW	0x2	2'b01: weak 1(pull-up);
			2'b10: weak 0(pull_down); 2'b11: Repeater(Bus keeper)
			gpio1b3_p 2'b00: Z(Normal operation);
7:6	RW	0x2	2'b01: weak 1(pull-up);
7.0	IXVV	UXZ	2'b10: weak 1(pull_down);
			2'b11: Repeater(Bus keeper)
			gpio1b2_p
			2'b00: Z(Normal operation);
5:4	RW	0×1	2'b01: weak 1(pull-up);
			2'b10: weak 1(pull_down);
			2'b11: Repeater(Bus keeper)
			gpio1b1_p
			2'b00: Z(Normal operation);
3:2	RW	0×1	2'b01: weak 1(pull-up);
			2'b10: weak 0(pull_down);
			2'b11: Repeater(Bus keeper)
		I	

Bit	Attr	Reset Value	Description
			gpio1b0_p
			2'b00: Z(Normal operation);
1:0	RW	0x1	2'b01: weak 1(pull-up);
			2'b10: weak 0(pull_down);
			2'b11: Repeater(Bus keeper)

GRF_GPIO1C_P

Address: Operational Base + offset (0x0068)

Bit		Reset Value	Description
31:16	WO	0×0000	write_enable When bit16=1, bit0 can be written by software. When bit16=0, bit 0 cannot be written by software; When bit 17=1, bit 1 can be written by software. When bit 17=0, bit 1 cannot be written by software; When bit 31=1, bit 15 can be written by software. When bit 31=0, bit 15 cannot be written by software;
15:14	RW	0×1	<pre>gpio1c7_p 2'b00: Z(Normal operation); 2'b01: weak 1(pull-up); 2'b10: weak 0(pull_down); 2'b11: Repeater(Bus keeper)</pre>
13:12	RW	0×1	<pre>gpio1c6_p 2'b00: Z(Normal operation); 2'b01: weak 1(pull-up); 2'b10: weak 0(pull_down); 2'b11: Repeater(Bus keeper)</pre>
11:10	RW	0x2	gpio1c5_p 2'b00: Z(Normal operation); 2'b01: weak 1(pull-up); 2'b10: weak 0(pull_down); 2'b11: Repeater(Bus keeper)
9:8	RW	0×1	gpio1c4_p 2'b00: Z(Normal operation); 2'b01: weak 1(pull-up); 2'b10: weak 0(pull_down); 2'b11: Repeater(Bus keeper)
7:6	RW	0x1	<pre>gpio1c3_p 2'b00: Z(Normal operation); 2'b01: weak 1(pull-up); 2'b10: weak 0(pull_down); 2'b11: Repeater(Bus keeper)</pre>

Bit	Attr	Reset Value	Description
			gpio1c2_p
			2'b00: Z(Normal operation);
5:4	RW	0x1	2'b01: weak 1(pull-up);
			2'b10: weak 0(pull_down);
			2'b11: Repeater(Bus keeper)
			gpio1c1_p
	RW	V 0x1	2'b00: Z(Normal operation);
3:2			2'b01: weak 1(pull-up);
			2'b10: weak 0(pull_down);
			2'b11: Repeater(Bus keeper)
			gpio1c0_p
			2'b00: Z(Normal operation);
1:0	RW	W 0x1	2'b01: weak 1(pull-up);
			2'b10: weak 0(pull_down);
			2'b11: Repeater(Bus keeper)

GRF GPIO1D P

Address: Operational Base + offset (0x006c)

Bit	Attr	Reset Value	Description
			write_enable
			When bit16=1, bit0 can be written by software.
			When bit16=0, bit 0 cannot be written by software;
31:16	WO.	0x0000	When bit 17=1, bit 1 can be written by software.
31:16	WO	00000	When bit 17=0, bit 1 cannot be written by software;
			When bit 31=1, bit 15 can be written by software.
			When bit 31=0, bit 15 cannot be written by software;
			gpio1d7_p
		V 0x1	2'b00: Z(Normal operation);
15:14	RW		2'b01: weak 1(pull-up);
			2'b10: weak 0(pull_down);
			2'b11: Repeater(Bus keeper)
			gpio1d6_p
		RW 0x2	2'b00: Z(Normal operation);
13:12	RW		2'b01: weak 1(pull-up);
			2'b10: weak 0(pull_down);
			2'b11: Repeater(Bus keeper)
			gpio1d5_p
			2'b00: Z(Normal operation);
11:10	RW	0x1	2'b01: weak 1(pull-up);
			2'b10: weak 0(pull_down);
			2'b11: Repeater(Bus keeper)

Bit	Attr	Reset Value	Description
			gpio1d4_p
			2'b00: Z(Normal operation);
9:8	RW	0x1	2'b01: weak 1(pull-up);
			2'b10: weak 0(pull_down);
			2'b11: Repeater(Bus keeper)
			gpio1d3_p
			2'b00: Z(Normal operation);
7:6	RW	0x1	2'b01: weak 1(pull-up);
			2'b10: weak 0(pull_down);
			2'b11: Repeater(Bus keeper)
			gpio1d2_p
			2'b00: Z(Normal operation);
5:4	RW	0x1	2'b01: weak 1(pull-up);
			2'b10: weak 0(pull_down);
			2'b11: Repeater(Bus keeper)
			gpio1d1_p
			2'b00: Z(Normal operation);
3:2	RW	0x1	2'b01: weak 1(pull-up);
			2'b10: weak 0(pull_down);
			2'b11: Repeater(Bus keeper)
			gpio1d0_p
			2'b00: Z(Normal operation);
1:0	RW	0x1	2'b01: weak 1(pull-up);
			2'b10: weak 0(pull_down);
			2'b11: Repeater(Bus keeper)

GRF_GPIO2A_P

Address: Operational Base + offset (0x0070)

Bit	Attr	Reset Value	Description
31:16	WO	0×0000	write_enable When bit16=1, bit0 can be written by software. When bit16=0, bit 0 cannot be written by software; When bit 17=1, bit 1 can be written by software. When bit 17=0, bit 1 cannot be written by software; When bit 31=1, bit 15 can be written by software. When bit 31=0, bit 15 cannot be written by software;
15:14	RW	0x2	<pre>gpio2a7_p 2'b00: Z(Normal operation); 2'b01: weak 1(pull-up); 2'b10: weak 0(pull_down); 2'b11: Repeater(Bus keeper)</pre>

Bit	Attr	Reset Value	Description
			gpio2a6_p
			2'b00: Z(Normal operation);
13:12	RW	0x2	2'b01: weak 1(pull-up);
			2'b10: weak 0(pull_down);
			2'b11: Repeater(Bus keeper)
			gpio2a5_p
			2'b00: Z(Normal operation);
11:10	RW	0x2	2'b01: weak 1(pull-up);
			2'b10: weak 0(pull_down);
			2'b11: Repeater(Bus keeper)
			gpio2a4_p
			2'b00: Z(Normal operation);
9:8	RW	0x2	2'b01: weak 1(pull-up);
			2'b10: weak 0(pull_down);
			2'b11: Repeater(Bus keeper)
			gpio2a3_p
			2'b00: Z(Normal operation);
7:6	RW	0x2	2'b01: weak 1(pull-up);
			2'b10: weak 0(pull_down);
			2'b11: Repeater(Bus keeper)
			gpio2a2_p
			2'b00: Z(Normal operation);
5:4	RW	0x2	2'b01: weak 1(pull-up);
			2'b10: weak 0(pull_down);
			2'b11: Repeater(Bus keeper)
			gpio2a1_p
			2'b00: Z(Normal operation);
3:2	RW	0x2	2'b01: weak 1(pull-up);
			2'b10: weak 0(pull_down);
			2'b11: Repeater(Bus keeper)
			gpio2a0_p
			2'b00: Z(Normal operation);
1:0	RW	0x2	2'b01: weak 1(pull-up);
			2'b10: weak 0(pull_down);
			2'b11: Repeater(Bus keeper)

GRF GPIO2B PAddress: Operational Base + offset (0x0074)

Bit	Attr	Reset Value	Description
			write_enable
			When bit16=1, bit0 can be written by software.
			When bit16=0, bit 0 cannot be written by software;
24.46		0.000	When bit 17=1, bit 1 can be written by software.
31:16	WO	0x0000	When bit 17=0, bit 1 cannot be written by software;
			When bit 31=1, bit 15 can be written by software.
			When bit 31=0, bit 15 cannot be written by software;
			gpio2b7_p
			2'b00: Z(Normal operation);
15:14	RW	0x1	2'b01: weak 1(pull-up);
			2'b10: weak 0(pull_down);
			2'b11: Repeater(Bus keeper)
			gpio2b6_p
			2'b00: Z(Normal operation);
13:12	RW	0x2	2'b01: weak 1(pull-up);
			2'b10: weak 0(pull_down);
			2'b11: Repeater(Bus keeper)
			gpio2b5_p
	D.4.		2'b00: Z(Normal operation);
11:10	RW	0x2	2'b01: weak 1(pull-up);
			2'b10: weak 0(pull_down);
			2'b11: Repeater(Bus keeper)
			gpio2b4_p
9:8	RW	0x2	2'b00: Z(Normal operation); 2'b01: weak 1(pull-up);
9.0	KVV	UXZ	
			2'b10: weak 0(pull_down); 2'b11: Repeater(Bus keeper)
			gpio2b3_p
			2'b00: Z(Normal operation);
7:6	RW	0x2	2'b01: weak 1(pull-up);
,		OXZ	2'b10: weak 1(pail ap), 2'b10: weak 0(pull_down);
			2'b11: Repeater(Bus keeper)
			gpio2b2_p
			2'b00: Z(Normal operation);
5:4	RW	0x2	2'b01: weak 1(pull-up);
			2'b10: weak 0(pull_down);
			2'b11: Repeater(Bus keeper)
			gpio2b1_p
			2'b00: Z(Normal operation);
3:2	RW	0x2	2'b01: weak 1(pull-up);
			2'b10: weak 0(pull_down);
			2'b11: Repeater(Bus keeper)

Bit	Attr	Reset Value	Description
			gpio2b0_p
			2'b00: Z(Normal operation);
1:0	RW	0x2	2'b01: weak 1(pull-up);
			2'b10: weak 0(pull_down);
			2'b11: Repeater(Bus keeper)

GRF_GPIO2C_P

Address: Operational Base + offset (0x0078)

Bit		Reset Value	Description
31:16		0×0000	write_enable When bit16=1, bit0 can be written by software. When bit16=0, bit 0 cannot be written by software; When bit 17=1, bit 1 can be written by software. When bit 17=0, bit 1 cannot be written by software; When bit 31=1, bit 15 can be written by software. When bit 31=0, bit 15 cannot be written by software;
15:14	RW	0×0	gpio2c7_p 2'b00: Z(Normal operation); 2'b01: weak 1(pull-up); 2'b10: weak 0(pull_down); 2'b11: Repeater(Bus keeper)
13:12	RW	0x2	<pre>gpio2c6_p 2'b00: Z(Normal operation); 2'b01: weak 1(pull-up); 2'b10: weak 0(pull_down); 2'b11: Repeater(Bus keeper)</pre>
11:10	RW	0x2	gpio2c5_p 2'b00: Z(Normal operation); 2'b01: weak 1(pull-up); 2'b10: weak 0(pull_down); 2'b11: Repeater(Bus keeper)
9:8	RW	0x2	gpio2c4_p 2'b00: Z(Normal operation); 2'b01: weak 1(pull-up); 2'b10: weak 0(pull_down); 2'b11: Repeater(Bus keeper)
7:6	RW	0x2	<pre>gpio2c3_p 2'b00: Z(Normal operation); 2'b01: weak 1(pull-up); 2'b10: weak 0(pull_down); 2'b11: Repeater(Bus keeper)</pre>

Bit	Attr	Reset Value	Description
			gpio2c2_p
			2'b00: Z(Normal operation);
5:4	RW	0x2	2'b01: weak 1(pull-up);
			2'b10: weak 0(pull_down);
			2'b11: Repeater(Bus keeper)
			gpio2c1_p
	RW	0x2	2'b00: Z(Normal operation);
3:2			2'b01: weak 1(pull-up);
			2'b10: weak 0(pull_down);
			2'b11: Repeater(Bus keeper)
			gpio2c0_p
			2'b00: Z(Normal operation);
1:0	RW	N 0x1	2'b01: weak 1(pull-up);
			2'b10: weak 0(pull_down);
			2'b11: Repeater(Bus keeper)

GRF GPIO3A P

Address: Operational Base + offset (0x0080)

Bit	Attr	Reset Value	Description
			write_enable
			When bit16=1, bit0 can be written by software.
			When bit16=0, bit 0 cannot be written by software;
31:16	WO.	0x0000	When bit 17=1, bit 1 can be written by software.
31:16	WO	00000	When bit 17=0, bit 1 cannot be written by software;
			When bit 31=1, bit 15 can be written by software.
			When bit 31=0, bit 15 cannot be written by software;
			gpio3a7_p
		0x2	2'b00: Z(Normal operation);
15:14	RW		2'b01: weak 1(pull-up);
			2'b10: weak 0(pull_down);
			2'b11: Repeater(Bus keeper)
			gpio3a6_p
		W 0x2	2'b00: Z(Normal operation);
13:12	RW		2'b01: weak 1(pull-up);
			2'b10: weak 0(pull_down);
			2'b11: Repeater(Bus keeper)
			gpio3a5_p
			2'b00: Z(Normal operation);
11:10	RW		2'b01: weak 1(pull-up);
			2'b10: weak 0(pull_down);
			2'b11: Repeater(Bus keeper)

Bit	Attr	Reset Value	Description
			gpio3a4_p
			2'b00: Z(Normal operation);
9:8	RW	0x2	2'b01: weak 1(pull-up);
			2'b10: weak 0(pull_down);
			2'b11: Repeater(Bus keeper)
			gpio3a3_p
			2'b00: Z(Normal operation);
7:6	RW	0x2	2'b01: weak 1(pull-up);
			2'b10: weak 0(pull_down);
			2'b11: Repeater(Bus keeper)
			gpio3a2_p
			2'b00: Z(Normal operation);
5:4	RW	0x2	2'b01: weak 1(pull-up);
			2'b10: weak 0(pull_down);
			2'b11: Repeater(Bus keeper)
			gpio3a1_p
			2'b00: Z(Normal operation);
3:2	RW	0x2	2'b01: weak 1(pull-up);
			2'b10: weak 0(pull_down);
			2'b11: Repeater(Bus keeper)
			gpio3a0_p
			2'b00: Z(Normal operation);
1:0	RW	0x2	2'b01: weak 1(pull-up);
			2'b10: weak 0(pull_down);
			2'b11: Repeater(Bus keeper)

GRF_GPIO3B_P

Address: Operational Base + offset (0x0084)

Bit	Attr	Reset Value	Description
31:16	WO	0×0000	write_enable When bit16=1, bit0 can be written by software. When bit16=0, bit 0 cannot be written by software; When bit 17=1, bit 1 can be written by software. When bit 17=0, bit 1 cannot be written by software; When bit 31=1, bit 15 can be written by software. When bit 31=0, bit 15 cannot be written by software;
15:14	RW	0x2	gpio3b7_p 2'b00: Z(Normal operation); 2'b01: weak 1(pull-up); 2'b10: weak 0(pull_down); 2'b11: Repeater(Bus keeper)

Bit	Attr	Reset Value	Description
			gpio3b6_p
			2'b00: Z(Normal operation);
13:12	RW	0x2	2'b01: weak 1(pull-up);
			2'b10: weak 0(pull_down);
			2'b11: Repeater(Bus keeper)
			gpio3b5_p
			2'b00: Z(Normal operation);
11:10	RW	0x2	2'b01: weak 1(pull-up);
			2'b10: weak 0(pull_down);
			2'b11: Repeater(Bus keeper)
			gpio3b4_p
			2'b00: Z(Normal operation);
9:8	RW	0x2	2'b01: weak 1(pull-up);
			2'b10: weak 0(pull_down);
			2'b11: Repeater(Bus keeper)
			gpio3b3_p
			2'b00: Z(Normal operation);
7:6	RW	0x2	2'b01: weak 1(pull-up);
			2'b10: weak 0(pull_down);
			2'b11: Repeater(Bus keeper)
			gpio3b2_p
			2'b00: Z(Normal operation);
5:4	RW	0x2	2'b01: weak 1(pull-up);
			2'b10: weak 0(pull_down);
			2'b11: Repeater(Bus keeper)
			gpio3b1_p
			2'b00: Z(Normal operation);
3:2	RW	0x2	2'b01: weak 1(pull-up);
			2'b10: weak 0(pull_down);
			2'b11: Repeater(Bus keeper)
			gpio3b0_p
			2'b00: Z(Normal operation);
1:0	RW	0x2	2'b01: weak 1(pull-up);
			2'b10: weak 0(pull_down);
			2'b11: Repeater(Bus keeper)

GRF GPIO3C PAddress: Operational Base + offset (0x0088)

Bit	Attr	Reset Value	Description
			write_enable
			When bit16=1, bit0 can be written by software.
			When bit16=0, bit 0 cannot be written by software;
24.46		0.000	When bit 17=1, bit 1 can be written by software.
31:16	WO	0x0000	When bit 17=0, bit 1 cannot be written by software;
			When bit 31=1, bit 15 can be written by software.
			When bit 31=0, bit 15 cannot be written by software;
			gpio3c7_p
			2'b00: Z(Normal operation);
15:14	RW	0x2	2'b01: weak 1(pull-up);
			2'b10: weak 0(pull_down);
			2'b11: Repeater(Bus keeper)
			gpio3c6_p
13:12	DW	0.42	2'b00: Z(Normal operation);
13:12	KVV	0x2	2'b01: weak 1(pull-up);
			2'b10: weak 0(pull_down); 2'b11: Repeater(Bus keeper)
			gpio3c5_p
			2'b00: Z(Normal operation);
11:10	RW	0x2	2'b01: weak 1(pull-up);
		o x L	2'b10: weak 0(pull_down);
			2'b11: Repeater(Bus keeper)
			gpio3c4_p
			2'b00: Z(Normal operation);
9:8	RW	0x2	2'b01: weak 1(pull-up);
			2'b10: weak 0(pull_down);
			2'b11: Repeater(Bus keeper)
			gpio3c3_p
			2'b00: Z(Normal operation);
7:6	RW	0x2	2'b01: weak 1(pull-up);
			2'b10: weak 0(pull_down);
			2'b11: Repeater(Bus keeper)
			gpio3c2_p
F. 4	DVA	0.42	2'b00: Z(Normal operation);
5:4	RW	0x2	2'b01: weak 1(pull-down);
			2'b10: weak 0(pull_down);
			2'b11: Repeater(Bus keeper)
			gpio3c1_p 2'b00: Z(Normal operation);
3:2	RW	0x2	2'b01: weak 1(pull-up);
3.2			2'b10: weak 1(pull dp), 2'b10: weak 0(pull_down);
			2'b11: Repeater(Bus keeper)
L	1	I	_ 1 (Bub

Bit	Attr	Reset Value	Description
			gpio3c0_p
			2'b00: Z(Normal operation);
1:0	RW	0x2	2'b01: weak 1(pull-up);
			2'b10: weak 0(pull_down);
			2'b11: Repeater(Bus keeper)

GRF_GPIO3D_P

Address: Operational Base + offset (0x008c)

Bit		Reset Value	Description
			write_enable
			When bit16=1, bit0 can be written by software.
			When bit16=0, bit 0 cannot be written by software;
31:16	WO.	0x0000	When bit 17=1, bit 1 can be written by software.
31:16	WO	00000	When bit 17=0, bit 1 cannot be written by software;
			When bit 31=1, bit 15 can be written by software.
			When bit 31=0, bit 15 cannot be written by software;
			gpio3d7_p
			2'b00: Z(Normal operation);
15:14	RW	0x0	2'b01: weak 1(pull-up);
			2'b10: weak 0(pull_down);
			2'b11: Repeater(Bus keeper)
			gpio3d6_p
			2'b00: Z(Normal operation);
13:12	RW	0x0	2'b01: weak 1(pull-up);
			2'b10: weak 0(pull_down);
			2'b11: Repeater(Bus keeper)
			gpio3d5_p
			2'b00: Z(Normal operation);
11:10	RW	0x0	2'b01: weak 1(pull-up);
			2'b10: weak 0(pull_down);
			2'b11: Repeater(Bus keeper)
			gpio3d4_p
0.0	DVV		2'b00: Z(Normal operation);
9:8	RW	0x0	2'b01: weak 1(pull-up);
			2'b10: weak 0(pull_down);
			2'b11: Repeater(Bus keeper)
			gpio3d3_p
7.6	DVV	0.42	2'b00: Z(Normal operation);
7:6	RW	0x2	2'b01: weak 1(pull-up);
			2'b10: weak 0(pull_down);
			2'b11: Repeater(Bus keeper)

Bit	Attr	Reset Value	Description
			gpio3d2_p
			2'b00: Z(Normal operation);
5:4	RW	0x2	2'b01: weak 1(pull-up);
			2'b10: weak 0(pull_down);
			2'b11: Repeater(Bus keeper)
			gpio3d1_p
	RW	0x2	2'b00: Z(Normal operation);
3:2			2'b01: weak 1(pull-up);
			2'b10: weak 0(pull_down);
			2'b11: Repeater(Bus keeper)
			gpio3d0_p
			2'b00: Z(Normal operation);
1:0	RW	/ 0x2	2'b01: weak 1(pull-up);
			2'b10: weak 0(pull_down);
			2'b11: Repeater(Bus keeper)

GRF GPIO1A SR

Address: Operational Base + offset (0x0090)

Bit	Attr	Reset Value	Description
31:16	wo	0×0000	write_enable When bit16=1, bit0 can be written by software. When bit16=0, bit 0 cannot be written by software; When bit 17=1, bit 1 can be written by software. When bit 17=0, bit 1 cannot be written by software; When bit 31=1, bit 15 can be written by software.
15:8	RO	0x0	When bit 31=0, bit 15 cannot be written by software; reserved
7	RW	0×0	gpio1a7_sr 1'b0: slow(half frequency) 1'b1: fast
6	RW	0×0	<pre>gpio1a6_sr 1'b0: slow(half frequency) 1'b1: fast</pre>
5	RW	0×0	gpio1a5_sr 1'b0: slow(half frequency) 1'b1: fast
4	RW	0×0	gpio1a4_sr 1'b0: slow(half frequency) 1'b1: fast
3	RW	0×0	gpio1a3_sr 1'b0: slow(half frequency) 1'b1: fast

Bit	Attr	Reset Value	Description
			gpio1a2_sr
2	RW	0x0	1'b0: slow(half frequency)
			1'b1: fast
			gpio1a1_sr
1	RW	0x0	1'b0: slow(half frequency)
			1'b1: fast
			gpio1a0_sr
0	RW	0x0	1'b0: slow(half frequency)
			1'b1: fast

GRF GPIO1B SR

Address: Operational Base + offset (0x0094)

Bit	Attr	Reset Value	Description
			write_enable
			When bit16=1, bit0 can be written by software.
			When bit16=0, bit 0 cannot be written by software;
31:16	WO	0x0000	When bit 17=1, bit 1 can be written by software.
31:16	WO	UXUUUU	When bit 17=0, bit 1 cannot be written by software;
			When bit 31=1, bit 15 can be written by software.
			When bit 31=0, bit 15 cannot be written by software;
15:8	RO	0x0	reserved
			gpio1b7_sr
7	RW	0x0	1'b0: slow(half frequency)
			1'b1: fast
			gpio1b6_sr
6	RW	0x0	1'b0: slow(half frequency)
			1'b1: fast
	RW	W 0×0	gpio1b5_sr
5			1'b0: slow(half frequency)
			1'b1: fast
			gpio1b4_sr
4	RW	0x0	1'b0: slow(half frequency)
			1'b1: fast
			gpio1b3_sr
3	RW	0x0	1'b0: slow(half frequency)
			1'b1: fast
			gpio1b2_sr
2	RW	0x0	1'b0: slow(half frequency)
			1'b1: fast

Bit	Attr	Reset Value	Description
			gpio1b1_sr
1	RW	0x0	1'b0: slow(half frequency)
			1'b1: fast
			gpio1b0_sr
0	RW	0x0	1'b0: slow(half frequency)
			1'b1: fast

GRF GPIO1C SR

Address: Operational Base + offset (0x0098)

Bit	Attr	Reset Value	Description
			write_enable
			When bit16=1, bit0 can be written by software.
			When bit16=0, bit 0 cannot be written by software;
31:16	wo	0x0000	When bit 17=1, bit 1 can be written by software.
31:16	WO	00000	When bit 17=0, bit 1 cannot be written by software;
			When bit 31=1, bit 15 can be written by software.
			When bit 31=0, bit 15 cannot be written by software;
15:8	RO	0x0	reserved
			gpio1c7_sr
7	RW	0x0	1'b0: slow(half frequency)
			1'b1: fast
			gpio1c6_sr
6	RW	0x0	1'b0: slow(half frequency)
			1'b1: fast
			gpio1c5_sr
5	RW	0x0	1'b0: slow(half frequency)
			1'b1: fast
			gpio1c4_sr
4	RW	0x0	1'b0: slow(half frequency)
			1'b1: fast
			gpio1c3_sr
3	RW	0x0	1'b0: slow(half frequency)
			1'b1: fast
			gpio1c2_sr
2	RW	0x0	1'b0: slow(half frequency)
			1'b1: fast
			gpio1c1_sr
1	RW	0x0	1'b0: slow(half frequency)
			1'b1: fast
			gpio1c0_sr
0	RW	0x0	1'b0: slow(half frequency)
			1'b1: fast

GRF GPIO1D SR

Address: Operational Base + offset (0x009c)

Bit	Attr	Reset Value	Description
31:16	WO	0×0000	write_enable When bit16=1, bit0 can be written by software. When bit16=0, bit 0 cannot be written by software; When bit 17=1, bit 1 can be written by software. When bit 17=0, bit 1 cannot be written by software; When bit 31=1, bit 15 can be written by software. When bit 31=0, bit 15 cannot be written by software;
15:8	RO	0x0	reserved
7	RW	0×0	<pre>gpio1d7_sr 1'b0: slow(half frequency) 1'b1: fast</pre>
6	RW	0×0	gpio1d6_sr 1'b0: slow(half frequency) 1'b1: fast
5	RW	0x0	<pre>gpio1d5_sr 1'b0: slow(half frequency) 1'b1: fast</pre>
4	RW	0×0	gpio1d4_sr 1'b0: slow(half frequency) 1'b1: fast
3	RW	0×0	gpio1d3_sr 1'b0: slow(half frequency) 1'b1: fast
2	RW	0×0	<pre>gpio1d2_sr 1'b0: slow(half frequency) 1'b1: fast</pre>
1	RW	0×0	<pre>gpio1d1_sr 1'b0: slow(half frequency) 1'b1: fast</pre>
0	RW	0x0	<pre>gpio1d0_sr 1'b0: slow(half frequency) 1'b1: fast</pre>

GRF GPIO2A SR

Address: Operational Base + offset (0x00a0)

Bit	Attr	Reset Value	Description
			write_enable
			When bit16=1, bit0 can be written by software.
			When bit16=0, bit 0 cannot be written by software;
21.16		0000	When bit $17=1$, bit 1 can be written by software.
31:16	WO	0x0000	When bit 17=0, bit 1 cannot be written by software;
			When bit 31=1, bit 15 can be written by software.
			When bit 31=0, bit 15 cannot be written by software;
15:8	RO	0x0	reserved
			gpio2a7_sr
7	RW	0x0	1'b0: slow(half frequency)
			1'b1: fast
			gpio2a6_sr
6	RW	0x0	1'b0: slow(half frequency)
			1'b1: fast
			gpio2a5_sr
5	RW	0x0	1'b0: slow(half frequency)
			1'b1: fast
			gpio2a4_sr
4	RW	0x0	1'b0: slow(half frequency)
			1'b1: fast
			gpio2a3_sr
3	RW	0x0	1'b0: slow(half frequency)
			1'b1: fast
			gpio2a2_sr
2	RW	0x0	1'b0: slow(half frequency)
			1'b1: fast
			gpio2a1_sr
1	RW	0x0	1'b0: slow(half frequency)
			1'b1: fast
			gpio2a0_sr
0	RW	0x0	1'b0: slow(half frequency)
			1'b1: fast

GRF GPIO2B SR

Address: Operational Base + offset (0x00a4)

Bit	Attr	Reset Value	Description
31:16	WO	0×0000	write_enable When bit16=1, bit0 can be written by software. When bit16=0, bit 0 cannot be written by software; When bit 17=1, bit 1 can be written by software. When bit 17=0, bit 1 cannot be written by software; When bit 31=1, bit 15 can be written by software. When bit 31=0, bit 15 cannot be written by software;

Bit	Attr	Reset Value	Description
15:8	RO	0x0	reserved
			gpio2b7_sr
7	RW	0x0	1'b0: slow(half frequency)
			1'b1: fast
			gpio2b6_sr
6	RW	0x0	1'b0: slow(half frequency)
			1'b1: fast
			gpio2b5_sr
5	RW	0x0	1'b0: slow(half frequency)
			1'b1: fast
			gpio2b4_sr
4	RW	0x0	1'b0: slow(half frequency)
			1'b1: fast
			gpio2b3_sr
3	RW	0x0	1'b0: slow(half frequency)
			1'b1: fast
			gpio2b2_sr
2	RW	0x0	1'b0: slow(half frequency)
			1'b1: fast
			gpio2b1_sr
1	RW	0x0	1'b0: slow(half frequency)
			1'b1: fast
			gpio2b0_sr
0	RW	0x0	1'b0: slow(half frequency)
			1'b1: fast

GRF GPIO2C SR

Address: Operational Base + offset (0x00a8)

Bit	Attr	Reset Value	Description
31:16	WO	0×0000	write_enable When bit16=1, bit0 can be written by software. When bit16=0, bit 0 cannot be written by software; When bit 17=1, bit 1 can be written by software. When bit 17=0, bit 1 cannot be written by software;
15:8	RO	0x0	When bit 31=1, bit 15 can be written by software. When bit 31=0, bit 15 cannot be written by software; reserved
7		0×0	gpio2c7_sr 1'b0: slow(half frequency) 1'b1: fast
6	RW	0×0	gpio2c6_sr 1'b0: slow(half frequency) 1'b1: fast

Bit	Attr	Reset Value	Description
			gpio2c5_sr
5	RW	0x0	1'b0: slow(half frequency)
			1'b1: fast
			gpio2c4_sr
4	RW	0x0	1'b0: slow(half frequency)
			1'b1: fast
			gpio2c3_sr
3	RW	0x0	1'b0: slow(half frequency)
			1'b1: fast
			gpio2c2_sr
2	RW	0x0	1'b0: slow(half frequency)
			1'b1: fast
			gpio2c1_sr
1	RW	0x0	1'b0: slow(half frequency)
			1'b1: fast
			gpio2c0_sr
0	RW	0x0	1'b0: slow(half frequency)
			1'b1: fast

GRF_GPIO3A_SR

Address: Operational Base + offset (0x00b0)

Bit	Attr	Reset Value	Description
31:16	WO	0x0000	write_enable When bit16=1, bit0 can be written by software. When bit16=0, bit 0 cannot be written by software; When bit 17=1, bit 1 can be written by software. When bit 17=0, bit 1 cannot be written by software; When bit 31=1, bit 15 can be written by software. When bit 31=0, bit 15 cannot be written by software;
15:8	RO	0×0	reserved
7	RW	0x0	gpio3a7_sr 1'b0: slow(half frequency) 1'b1: fast
6	RW	0×0	gpio3a6_sr 1'b0: slow(half frequency) 1'b1: fast
5	RW	0×0	gpio3a5_sr 1'b0: slow(half frequency) 1'b1: fast
4	RW	0×0	gpio3a4_sr 1'b0: slow(half frequency) 1'b1: fast

Bit	Attr	Reset Value	Description
			gpio3a3_sr
3	RW	0x0	1'b0: slow(half frequency)
			1'b1: fast
			gpio3a2_sr
2	RW	0×0	1'b0: slow(half frequency)
			1'b1: fast
	RW	0x0	gpio3a1_sr
1			1'b0: slow(half frequency)
			1'b1: fast
			gpio3a0_sr
0	RW	0x0	1'b0: slow(half frequency)
			1'b1: fast

GRF GPIO3B SR Address: Operational Base + offset (0x00b4)

Bit	Attr	Reset Value	Description
	wo	0×0000	write_enable
			When bit16=1, bit0 can be written by software.
			When bit16=0, bit 0 cannot be written by software;
31:16			When bit $17=1$, bit 1 can be written by software.
31.10			When bit 17=0, bit 1 cannot be written by software;
			When bit 31=1, bit 15 can be written by software.
			When bit 31=0, bit 15 cannot be written by software;
15:8	RO	0x0	reserved
			gpio3b7_sr
7	RW	0x0	1'b0: slow(half frequency)
			1'b1: fast
	RW	0x0	gpio3b6_sr
6			1'b0: slow(half frequency)
			1'b1: fast
		0x0	gpio3b5_sr
5	RW		1'b0: slow(half frequency)
			1'b1: fast
			gpio3b4_sr
4	RW	0x0	1'b0: slow(half frequency)
			1'b1: fast
	RW	0x0	gpio3b3_sr
3			1'b0: slow(half frequency)
			1'b1: fast
		0x0	gpio3b2_sr
2	RW		1'b0: slow(half frequency)
			1'b1: fast

Bit	Attr	Reset Value	Description
1	RW		gpio3b1_sr
			1'b0: slow(half frequency)
			1'b1: fast
0			gpio3b0_sr
	RW	0x0	1'b0: slow(half frequency)
			1'b1: fast

GRF GPIO3C SR

Address: Operational Base + offset (0x00b8)

Bit	Attr	Reset Value	Description
			write_enable
			When bit16=1, bit0 can be written by software.
		0×0000	When bit16=0, bit 0 cannot be written by software;
21.16	WO		When bit 17=1, bit 1 can be written by software.
31:16	WO		When bit 17=0, bit 1 cannot be written by software;
			When bit 31=1, bit 15 can be written by software.
			When bit 31=0, bit 15 cannot be written by software;
15:8	RO	0x0	reserved
		0×0	gpio3c7_sr
7	RW		1'b0: slow(half frequency)
			1'b1: fast
		W 0x0	gpio3c6_sr
6	RW		1'b0: slow(half frequency)
			1'b1: fast
		0×0	gpio3c5_sr
5	RW		1'b0: slow(half frequency)
			1'b1: fast
		W 0x0	gpio3c4_sr
4	RW		1'b0: slow(half frequency)
			1'b1: fast
			gpio3c3_sr
3	RW	0x0	1'b0: slow(half frequency)
			1'b1: fast
			gpio3c2_sr
2	RW	0x0	1'b0: slow(half frequency)
			1'b1: fast
		0×0	gpio3c1_sr
1	RW		1'b0: slow(half frequency)
			1'b1: fast
			gpio3c0_sr
0	RW	0x0	1'b0: slow(half frequency)
			1'b1: fast

GRF GPIO3D SR

Address: Operational Base + offset (0x00bc)

Bit	Attr	Reset Value	Description
			write_enable
			When bit16=1, bit0 can be written by software.
			When bit16=0, bit 0 cannot be written by software;
	WO	0×0000	When bit 17=1, bit 1 can be written by software.
31:16			When bit 17=0, bit 1 cannot be written by software;
			When bit 31=1, bit 15 can be written by software.
			When bit 31=0, bit 15 cannot be written by software;
15:8	RO	0x0	reserved
			gpio3d7_sr
7	RW	0x0	1'b0: slow(half frequency)
			1'b1: fast
			gpio3d6_sr
6	RW	0x0	1'b0: slow(half frequency)
			1'b1: fast
			gpio3d5_sr
5	RW	0x0	1'b0: slow(half frequency)
			1'b1: fast
	RW	0×0	gpio3d4_sr
4			1'b0: slow(half frequency)
			1'b1: fast
			gpio3d3_sr
3	RW	0x0	1'b0: slow(half frequency)
			1'b1: fast
			gpio3d2_sr
2	RW	0x0	1'b0: slow(half frequency)
			1'b1: fast
		0×0	gpio3d1_sr
1	RW		1'b0: slow(half frequency)
			1'b1: fast
			gpio3d0_sr
0	RW	0x0	1'b0: slow(half frequency)
			1'b1: fast

GRF GPIO1A SMT

Address: Operational Base + offset (0x00c0)

Bit	Attr	Reset Value	Description
			write_enable
			When bit16=1, bit0 can be written by software.
			When bit16=0, bit 0 cannot be written by software;
			When bit 17=1, bit 1 can be written by software.
31:16	wo	0×0000	When bit 17=0, bit 1 cannot be written by software;
			When bit 31=1, bit 15 can be written by software.
			When bit 31=0, bit 15 cannot be written by software;
15:8	RO	0x0	reserved
			gpio1a7_smt
7	RW	0x0	0: No hysteresis
			1: Schmitt trigger enabled
			gpio1a6_smt
6	RW	0x0	0: No hysteresis
			1: Schmitt trigger enabled
			gpio1a5_smt
5	RW	0x0	0: No hysteresis
			1: Schmitt trigger enabled
			gpio1a4_smt
4	RW	0x0	0: No hysteresis
			1: Schmitt trigger enabled
			gpio1a3_smt
3	RW	0x0	0: No hysteresis
			1: Schmitt trigger enabled
			gpio1a2_smt
2	RW	0x0	0: No hysteresis
			1: Schmitt trigger enabled
			gpio1a1_smt
1	RW	0x0	0: No hysteresis
			1: Schmitt trigger enabled
			gpio1a0_smt
0	RW	0x0	0: No hysteresis
			1: Schmitt trigger enabled

GRF GPIO1B SMT

Address: Operational Base + offset (0x00c4)

Bit	Attr	Reset Value	Description
31:16	WO	0×0000	write_enable When bit16=1, bit0 can be written by software. When bit16=0, bit 0 cannot be written by software; When bit 17=1, bit 1 can be written by software. When bit 17=0, bit 1 cannot be written by software; When bit 31=1, bit 15 can be written by software. When bit 31=0, bit 15 cannot be written by software;

Bit	Attr	Reset Value	Description
15:8	RO	0x0	reserved
			gpio1b7_smt
7	RW	0x0	0: No hysteresis
			1: Schmitt trigger enabled
			gpio1b6_smt
6	RW	0x0	0: No hysteresis
			1: Schmitt trigger enabled
			gpio1b5_smt
5	RW	0x0	0: No hysteresis
			1: Schmitt trigger enabled
			gpio1b4_smt
4	RW	0x0	0: No hysteresis
			1: Schmitt trigger enabled
			gpio1b3_smt
3	RW	0x0	0: No hysteresis
			1: Schmitt trigger enabled
			gpio1b2_smt
2	RW	0x0	0: No hysteresis
			1: Schmitt trigger enabled
			gpio1b1_smt
1	RW	0x0	0: No hysteresis
			1: Schmitt trigger enabled
			gpio1b0_smt
0	RW	0x0	0: No hysteresis
			1: Schmitt trigger enabled

GRF GPIO1C SMT

Address: Operational Base + offset (0x00c8)

Bit	Attr	Reset Value	Description
			write_enable
			When bit16=1, bit0 can be written by software.
			When bit16=0, bit 0 cannot be written by software;
31:16	WO	0.0000	When bit 17=1, bit 1 can be written by software.
31:16	WO	0x0000	When bit 17=0, bit 1 cannot be written by software;
			When bit 31=1, bit 15 can be written by software.
			When bit 31=0, bit 15 cannot be written by software;
15:8	RO	0x0	reserved
			gpio1c7_smt
7	RW	0x0	0: No hysteresis
			1: Schmitt trigger enabled
			gpio1c6_smt
6	RW	0x0	0: No hysteresis
			1: Schmitt trigger enabled

Bit	Attr	Reset Value	Description
			gpio1c5_smt
5	RW	0x0	0: No hysteresis
			1: Schmitt trigger enabled
			gpio1c4_smt
4	RW	0x0	0: No hysteresis
			1: Schmitt trigger enabled
			gpio1c3_smt
3	RW	0x0	0: No hysteresis
			1: Schmitt trigger enabled
			gpio1c2_smt
2	RW	0x0	0: No hysteresis
			1: Schmitt trigger enabled
			gpio1c1_smt
1	RW	0x0	0: No hysteresis
			1: Schmitt trigger enabled
			gpio1c0_smt
0	RW	0x0	0: No hysteresis
			1: Schmitt trigger enabled

GRF GPIO1D SMT

Address: Operational Base + offset (0x00cc)

Bit	Attr	Reset Value	Description
			write_enable When bit16=1, bit0 can be written by software.
			When bit16=0, bit 0 cannot be written by software;
24.46		0.000	When bit 17=1, bit 1 can be written by software.
31:16	WO	0x0000	When bit 17=0, bit 1 cannot be written by software;
			When bit 31=1, bit 15 can be written by software.
			When bit 31=0, bit 15 cannot be written by software;
15:8	RO	0x0	reserved
			gpio1d7_smt
7	RW	0x0	0: No hysteresis
			1: Schmitt trigger enabled
			gpio1d6_smt
6	RW	0x0	0: No hysteresis
			1: Schmitt trigger enabled
			gpio1d5_smt
5	RW	0x0	0: No hysteresis
			1: Schmitt trigger enabled
			gpio1d4_smt
4	RW	0x0	0: No hysteresis
			1: Schmitt trigger enabled

Bit	Attr	Reset Value	Description
			gpio1d3_smt
3	RW	0x0	0: No hysteresis
			1: Schmitt trigger enabled
			gpio1d2_smt
2	RW	0x0	0: No hysteresis
			1: Schmitt trigger enabled
			gpio1d1_smt
1	RW	0x0	0: No hysteresis
			1: Schmitt trigger enabled
			gpio1d0_smt
0	RW	0x0	0: No hysteresis
			1: Schmitt trigger enabled

GRF GPIO2A SMT Address: Operational Base + offset (0x00d0)

Bit	Attr	Reset Value	Description
			write_enable
			When bit16=1, bit0 can be written by software.
			When bit16=0, bit 0 cannot be written by software;
31:16	W/O	0x0000	When bit 17=1, bit 1 can be written by software.
31:16	WO	UXUUUU	When bit 17=0, bit 1 cannot be written by software;
			When bit 31=1, bit 15 can be written by software.
			When bit 31=0, bit 15 cannot be written by software;
15:8	RO	0x0	reserved
			gpio2a7_smt
7	RW	0x0	0: No hysteresis
			1: Schmitt trigger enabled
			gpio2a6_smt
6	RW	0x0	0: No hysteresis
			1: Schmitt trigger enabled
			gpio2a5_smt
5	RW	0x0	0: No hysteresis
			1: Schmitt trigger enabled
			gpio2a4_smt
4	RW	0x0	0: No hysteresis
			1: Schmitt trigger enabled
			gpio2a3_smt
3	RW	0x0	0: No hysteresis
			1: Schmitt trigger enabled
			gpio2a2_smt
2	RW	0x0	0: No hysteresis
			1: Schmitt trigger enabled

Bit	Attr	Reset Value	Description
			gpio2a1_smt
1	RW	0x0	0: No hysteresis
			1: Schmitt trigger enabled
			gpio2a0_smt
0	RW	0x0	0: No hysteresis
			1: Schmitt trigger enabled

GRF GPIO2B SMT

Address: Operational Base + offset (0x00d4)

Bit	Attr	Reset Value	Description
			write_enable
			When bit16=1, bit0 can be written by software.
			When bit16=0, bit 0 cannot be written by software;
21.16	WO	0×0000	When bit 17=1, bit 1 can be written by software.
31:16	WO	0x0000	When bit 17=0, bit 1 cannot be written by software;
			When bit 31=1, bit 15 can be written by software.
			When bit 31=0, bit 15 cannot be written by software;
15:8	RO	0x0	reserved
			gpio2b7_smt
7	RW	0x0	0: No hysteresis
			1: Schmitt trigger enabled
			gpio2b6_smt
6	RW	0x0	0: No hysteresis
			1: Schmitt trigger enabled
			gpio2b5_smt
5	RW	0x0	0: No hysteresis
			1: Schmitt trigger enabled
			gpio2b4_smt
4	RW	0x0	0: No hysteresis
			1: Schmitt trigger enabled
			gpio2b3_smt
3	RW	0x0	0: No hysteresis
			1: Schmitt trigger enabled
			gpio2b2_smt
2	RW	0x0	0: No hysteresis
			1: Schmitt trigger enabled
			gpio2b1_smt
1	RW	0x0	0: No hysteresis
			1: Schmitt trigger enabled
			gpio2b0_smt
0	RW	0x0	0: No hysteresis
			1: Schmitt trigger enabled

GRF GPIO2C SMT

Address: Operational Base + offset (0x00d8)

Bit		Reset Value	Description
			write_enable
			When bit16=1, bit0 can be written by software.
			When bit16=0, bit 0 cannot be written by software;
			When bit 17=1, bit 1 can be written by software.
31:16	wo	0x0000	When bit 17=0, bit 1 cannot be written by software;
			When bit 31=1, bit 15 can be written by software.
			When bit 31=0, bit 15 cannot be written by software;
15:8	RO	0x0	reserved
			gpio2c7_smt
7	RW	0x0	0: No hysteresis
			1: Schmitt trigger enabled
			gpio2c6_smt
6	RW	0x0	0: No hysteresis
			1: Schmitt trigger enabled
			gpio2c5_smt
5	RW	0x0	0: No hysteresis
			1: Schmitt trigger enabled
			gpio2c4_smt
4	RW	0x0	0: No hysteresis
			1: Schmitt trigger enabled
			gpio2c3_smt
3	RW	0x0	0: No hysteresis
			1: Schmitt trigger enabled
			gpio2c2_smt
2	RW	0x0	0: No hysteresis
			1: Schmitt trigger enabled
			gpio2c1_smt
1	RW	0x0	0: No hysteresis
			1: Schmitt trigger enabled
			gpio2c0_smt
0	RW	0x0	0: No hysteresis
			1: Schmitt trigger enabled

GRF GPIO3A SMT

Address: Operational Base + offset (0x00e0)

Bit	Attr	Reset Value	Description
			write_enable
			When bit16=1, bit0 can be written by software.
			When bit16=0, bit 0 cannot be written by software;
			When bit 17=1, bit 1 can be written by software.
31:16	WO	0x0000	When bit 17=0, bit 1 cannot be written by software;
			When bit 31=1, bit 15 can be written by software.
			When bit 31=0, bit 15 cannot be written by software;
15:8	RO	0x0	reserved
			gpio3a7_smt
7	RW	0x0	0: No hysteresis
			1: Schmitt trigger enabled
			gpio3a6_smt
6	RW	0x0	0: No hysteresis
			1: Schmitt trigger enabled
			gpio3a5_smt
5	RW	0x0	0: No hysteresis
			1: Schmitt trigger enabled
			gpio3a4_smt
4	RW	0x0	0: No hysteresis
			1: Schmitt trigger enabled
			gpio3a3_smt
3	RW	0x0	0: No hysteresis
			1: Schmitt trigger enabled
			gpio3a2_smt
2	RW	0x0	0: No hysteresis
			1: Schmitt trigger enabled
			gpio3a1_smt
1	RW	0x0	0: No hysteresis
			1: Schmitt trigger enabled
			gpio3a0_smt
0	RW	0x0	0: No hysteresis
			1: Schmitt trigger enabled

GRF GPIO3B SMT

Address: Operational Base + offset (0x00e4)

Bit	Attr	Reset Value	Description
31:16	WO	0×0000	write_enable When bit16=1, bit0 can be written by software. When bit16=0, bit 0 cannot be written by software; When bit 17=1, bit 1 can be written by software. When bit 17=0, bit 1 cannot be written by software; When bit 31=1, bit 15 can be written by software. When bit 31=0, bit 15 cannot be written by software;

Bit	Attr	Reset Value	Description
15:8	RO	0x0	reserved
			gpio3b7_smt
7	RW	0x0	0: No hysteresis
			1: Schmitt trigger enabled
			gpio3b6_smt
6	RW	0x0	0: No hysteresis
			1: Schmitt trigger enabled
			gpio3b5_smt
5	RW	0x0	0: No hysteresis
			1: Schmitt trigger enabled
			gpio3b4_smt
4	RW	0x0	0: No hysteresis
			1: Schmitt trigger enabled
			gpio3b3_smt
3	RW	0x0	0: No hysteresis
			1: Schmitt trigger enabled
			gpio3b2_smt
2	RW	0x0	0: No hysteresis
			1: Schmitt trigger enabled
			gpio3b1_smt
1	RW	0x0	0: No hysteresis
			1: Schmitt trigger enabled
			gpio3b0_smt
0	RW	0x0	0: No hysteresis
			1: Schmitt trigger enabled

GRF GPIO3C SMT

Address: Operational Base + offset (0x00e8)

Bit	Attr	Reset Value	Description
31:16	WO	0x0000	write_enable When bit16=1, bit0 can be written by software. When bit16=0, bit 0 cannot be written by software; When bit 17=1, bit 1 can be written by software. When bit 17=0, bit 1 cannot be written by software; When bit 31=1, bit 15 can be written by software. When bit 31=0, bit 15 cannot be written by software;
15:8	RO	0x0	reserved
7	RW	0×0	gpio3c7_smt 0: No hysteresis 1: Schmitt trigger enabled
6	RW	0x0	gpio3c6_smt 0: No hysteresis 1: Schmitt trigger enabled

Bit	Attr	Reset Value	Description
			gpio3c5_smt
5	RW	0x0	0: No hysteresis
			1: Schmitt trigger enabled
			gpio3c4_smt
4	RW	0x0	0: No hysteresis
			1: Schmitt trigger enabled
			gpio3c3_smt
3	RW	0x0	0: No hysteresis
			1: Schmitt trigger enabled
			gpio3c2_smt
2	RW	0x0	0: No hysteresis
			1: Schmitt trigger enabled
			gpio3c1_smt
1	RW	0x0	0: No hysteresis
			1: Schmitt trigger enabled
			gpio3c0_smt
0	RW	0x0	0: No hysteresis
			1: Schmitt trigger enabled

GRF GPIO3D SMT

Address: Operational Base + offset (0x00ec)

Bit	Attr	Reset Value	Description
			write_enable
			When bit16=1, bit0 can be written by software.
			When bit16=0, bit 0 cannot be written by software;
31:16	wo	0×0000	When bit 17=1, bit 1 can be written by software.
31.10	VVO	0.0000	When bit 17=0, bit 1 cannot be written by software;
			When bit 31=1, bit 15 can be written by software.
			When bit 31=0, bit 15 cannot be written by software;
15:8	RO	0x0	reserved
			gpio3d7_smt
7	RW	0x0	0: No hysteresis
			1: Schmitt trigger enabled
			gpio3d6_smt
6	RW	0x0	0: No hysteresis
			1: Schmitt trigger enabled
			gpio3d5_smt
5	RW	0x0	0: No hysteresis
			1: Schmitt trigger enabled
			gpio3d4_smt
4	RW	0x0	0: No hysteresis
			1: Schmitt trigger enabled

Bit	Attr	Reset Value	Description
			gpio3d3_smt
3	RW	0x0	0: No hysteresis
			1: Schmitt trigger enabled
			gpio3d2_smt
2	RW	0x0	0: No hysteresis
			1: Schmitt trigger enabled
			gpio3d1_smt
1	RW	0x0	0: No hysteresis
			1: Schmitt trigger enabled
			gpio3d0_smt
0	RW	0x0	0: No hysteresis
			1: Schmitt trigger enabled

GRF GPIO1A E
Address: Operational Base + offset (0x00f0)

Bit	Attr	Reset Value	Description
			write_enable
			When bit16=1, bit0 can be written by software.
			When bit16=0, bit 0 cannot be written by software;
31:16	WO	0x0000	When bit 17=1, bit 1 can be written by software.
31.10	VVO	00000	When bit 17=0, bit 1 cannot be written by software;
			When bit 31=1, bit 15 can be written by software.
			When bit 31=0, bit 15 cannot be written by software;
			gpio1a7_e
			2'b00: 2mA
15:14	RW	V 0x2	2'b01: 4mA
			2'b10: 8mA
			2'b11: 12mA
			gpio1a6_e
	RW	W 0x2	2'b00: 2mA
13:12			2'b01: 4mA
			2'b10: 8mA
			2'b11: 12mA
			gpio1a5_e
			2'b00: 2mA
11:10	RW	0x2	2'b01: 4mA
			2'b10: 8mA
			2'b11: 12mA
			gpio1a4_e
			2'b00: 2mA
9:8	RW	W 0x2	2'b01: 4mA
			2'b10: 8mA
			2'b11: 12mA

Bit	Attr	Reset Value	Description
			gpio1a3_e
			2'b00: 2mA
7:6	RW	0x2	2'b01: 4mA
			2'b10: 8mA
			2'b11: 12mA
			gpio1a2_e
			2'b00: 2mA
5:4	RW	0x2	2'b01: 4mA
			2'b10: 8mA
			2'b11: 12mA
			gpio1a1_e
			2'b00: 2mA
3:2	RW	0x2	2'b01: 4mA
			2'b10: 8mA
			2'b11: 12mA
			gpio1a0_e
			2'b00: 2mA
1:0	RW	0x2	2'b01: 4mA
		. 0/12	2'b10: 8mA
			2'b11: 12mA
			<u> </u>

GRF GPIO1B E

Address: Operational Base + offset (0x00f4)

Bit	Attr	Reset Value	Description
31:16	wo	0×0000	write_enable When bit16=1, bit0 can be written by software. When bit16=0, bit 0 cannot be written by software; When bit 17=1, bit 1 can be written by software. When bit 17=0, bit 1 cannot be written by software; When bit 31=1, bit 15 can be written by software. When bit 31=0, bit 15 cannot be written by software;
15:14	RW	0x2	gpio1b7_e 2'b00: 2mA 2'b01: 4mA 2'b10: 8mA 2'b11: 12mA
13:12	RW	0x2	gpio1b6_e 2'b00: 2mA 2'b01: 4mA 2'b10: 8mA 2'b11: 12mA

Bit	Attr	Reset Value	Description
			gpio1b5_e
			2'b00: 2mA
11:10	RW	0x2	2'b01: 4mA
			2'b10: 8mA
			2'b11: 12mA
			gpio1b4_e
			2'b00: 2mA
9:8	RW	0x2	2'b01: 4mA
			2'b10: 8mA
			2'b11: 12mA
			gpio1b3_e
			2'b00: 2mA
7:6	RW	0x2	2'b01: 4mA
			2'b10: 8mA
			2'b11: 12mA
			gpio1b2_e
			2'b00: 2mA
5:4	RW	0x2	2'b01: 4mA
			2'b10: 8mA
			2'b11: 12mA
			gpio1b1_e
			2'b00: 2mA
3:2	RW	0x2	2'b01: 4mA
			2'b10: 8mA
			2'b11: 12mA
			gpio1b0_e
			2'b00: 2mA
1:0	RW	0x2	2'b01: 4mA
			2'b10: 8mA
			2'b11: 12mA

GRF GPIO1C E
Address: Operational Base + offset (0x00f8)

Bit	Attr	Reset Value	Description
31:16		0x0000	write_enable When bit16=1, bit0 can be written by software. When bit16=0, bit 0 cannot be written by software; When bit 17=1, bit 1 can be written by software. When bit 17=0, bit 1 cannot be written by software;
			When bit 31=1, bit 15 can be written by software.
			When bit 31=0, bit 15 cannot be written by software;

Bit	Attr	Reset Value	Description
			gpio1c7_e
			2'b00: 2mA
15:14	RW	0x2	2'b01: 4mA
			2'b10: 8mA
			2'b11: 12mA
			gpio1c6_e
			2'b00: 2mA
13:12	RW	0x2	2'b01: 4mA
			2'b10: 8mA
			2'b11: 12mA
			gpio1c5_e
			2'b00: 2mA
11:10	RW	0x2	2'b01: 4mA
			2'b10: 8mA
			2'b11: 12mA
			gpio1c4_e
			2'b00: 2mA
9:8	RW	0x2	2'b01: 4mA
			2'b10: 8mA
			2'b11: 12mA
			gpio1c3_e
			2'b00: 2mA
7:6	RW	0x1	2'b01: 4mA
			2'b10: 8mA
			2'b11: 12mA
			gpio1c2_e
			2'b00: 2mA
5:4	RW	0x1	2'b01: 4mA
			2'b10: 8mA
			2'b11: 12mA
			gpio1c1_e
			2'b00: 2mA
3:2	RW	0x1	2'b01: 4mA
			2'b10: 8mA
			2'b11: 12mA
			gpio1c0_e
			2'b00: 2mA
1:0	RW	0x1	2'b01: 4mA
			2'b10: 8mA
			2'b11: 12mA

GRF GPIO1D EAddress: Operational Base + offset (0x00fc)

VO		write_enable
VO		When hit10 1 hit0 can be written by coftware
vo		When bit16=1, bit0 can be written by software.
vo		When bit16=0, bit 0 cannot be written by software;
VO I	0.0000	When bit 17=1, bit 1 can be written by software.
	0x0000	When bit 17=0, bit 1 cannot be written by software;
		When bit 31=1, bit 15 can be written by software.
		When bit 31=0, bit 15 cannot be written by software;
		gpio1d7_e
		2'b00: 2mA
W	0x2	2'b01: 4mA
		2'b10: 8mA
		2'b11: 12mA
		gpio1d6_e
		2'b00: 2mA
W	0x2	2'b01: 4mA
		2'b10: 8mA
		2'b11: 12mA
		gpio1d5_e
		2'b00: 2mA
W	0x2	2'b01: 4mA
		2'b10: 8mA
		2'b11: 12mA
		gpio1d4_e
	02	2'b00: 2mA
CVV	UX2	2'b01: 4mA
		2'b10: 8mA 2'b11: 12mA
		gpio1d3_e 2'b00: 2mA
١٨/	0×2	2'b01: 4mA
VV	UXZ	2'b10: 8mA
		2'b11: 12mA
		gpio1d2_e
		2'b00: 2mA
w	0x2	2'b01: 4mA
. • •	U	2'b10: 8mA
		2'b11: 12mA
		gpio1d1_e
		2'b00: 2mA
w	0x2	2'b01: 4mA
		2'b10: 8mA
		2'b11: 12mA
	w w w	 W 0x2 W 0x2 W 0x2 W 0x2 W 0x2

			gpio1d0_e 2'b00: 2mA
1:0	RW	0x2	2'b01: 4mA
		2'b10: 8mA	2'b10: 8mA
			2'b11: 12mA

GRF GPIO2A E
Address: Operational Base + offset (0x0100)

Bit	Attr	Reset Value	Description
			write_enable
			When bit16=1, bit0 can be written by software.
			When bit16=0, bit 0 cannot be written by software;
21.16	wo	0000	When bit $17=1$, bit 1 can be written by software.
31:16	WO	0x0000	When bit 17=0, bit 1 cannot be written by software;
			When bit 31=1, bit 15 can be written by software.
			When bit 31=0, bit 15 cannot be written by software;
			gpio2a7_e
			2'b00: 2mA
15:14	RW	0x1	2'b01: 4mA
			2'b10: 8mA
			2'b11: 12mA
			gpio2a6_e
			2'b00: 2mA
13:12	RW	0x1	2'b01: 4mA
			2'b10: 8mA
			2'b11: 12mA
			gpio2a5_e
			2'b00: 2mA
11:10	RW	0x1	2'b01: 4mA
			2'b10: 8mA
			2'b11: 12mA
			gpio2a4_e
			2'b00: 2mA
9:8	RW	0x1	2'b01: 4mA
			2'b10: 8mA
			2'b11: 12mA
			gpio2a3_e
			2'b00: 2mA
7:6	RW	RW 0x1	2'b01: 4mA
			2'b10: 8mA
			2'b11: 12mA

Bit	Attr	Reset Value	Description
			gpio2a2_e
			2'b00: 2mA
5:4	RW	0x1	2'b01: 4mA
			2'b10: 8mA
			2'b11: 12mA
		W 0x1	gpio2a1_e
			2'b00: 2mA
3:2	RW		2'b01: 4mA
			2'b10: 8mA
			2'b11: 12mA
			gpio2a0_e
			2'b00: 2mA
1:0	RW	RW 0x1	2'b01: 4mA
			2'b10: 8mA
			2'b11: 12mA

GRF GPIO2B E

Address: Operational Base + offset (0x0104)

Bit	Attr	Reset Value	Description
			write_enable
			When bit16=1, bit0 can be written by software.
			When bit16=0, bit 0 cannot be written by software;
31:16	WO	0x0000	When bit $17=1$, bit 1 can be written by software.
31:16	WO	00000	When bit 17=0, bit 1 cannot be written by software;
			When bit 31=1, bit 15 can be written by software.
			When bit 31=0, bit 15 cannot be written by software;
			gpio2b7_e
			2'b00: 2mA
15:14	RW	V 0x0	2'b01: 4mA
			2'b10: 8mA
			2'b11: 12mA
			gpio2b6_e
			2'b00: 2mA
13:12	RW	0x0	2'b01: 4mA
			2'b10: 8mA
			2'b11: 12mA
			gpio2b5_e
			2'b00: 2mA
11:10	RW	RW 0x0	2'b01: 4mA
			2'b10: 8mA
			2'b11: 12mA

Bit	Attr	Reset Value	Description
			gpio2b4_e
			2'b00: 2mA
9:8	RW	0x0	2'b01: 4mA
			2'b10: 8mA
			2'b11: 12mA
			gpio2b3_e
			2'b00: 2mA
7:6	RW	0x0	2'b01: 4mA
			2'b10: 8mA
			2'b11: 12mA
			gpio2b2_e
			2'b00: 2mA
5:4	RW	0x0	2'b01: 4mA
			2'b10: 8mA
			2'b11: 12mA
			gpio2b1_e
			2'b00: 2mA
3:2	RW	0x0	2'b01: 4mA
			2'b10: 8mA
			2'b11: 12mA
			gpio2b0_e
			2'b00: 2mA
1:0	RW	0x0	2'b01: 4mA
			2'b10: 8mA
			2'b11: 12mA

GRF GPIO2C E
Address: Operational Base + offset (0x0108)

Bit	Attr	Reset Value	Description
31:16	WO	0×0000	write_enable When bit16=1, bit0 can be written by software. When bit16=0, bit 0 cannot be written by software; When bit 17=1, bit 1 can be written by software. When bit 17=0, bit 1 cannot be written by software; When bit 31=1, bit 15 can be written by software. When bit 31=0, bit 15 cannot be written by software;
15:14	RW	0x0	gpio2c7_e 2'b00: 2mA 2'b01: 4mA 2'b10: 8mA 2'b11: 12mA

Bit	Attr	Reset Value	Description
			gpio2c6_e
			2'b00: 2mA
13:12	RW	0x1	2'b01: 4mA
			2'b10: 8mA
			2'b11: 12mA
			gpio2c5_e
			2'b00: 2mA
11:10	RW	0x1	2'b01: 4mA
			2'b10: 8mA
			2'b11: 12mA
			gpio2c4_e
			2'b00: 2mA
9:8	RW	0x1	2'b01: 4mA
			2'b10: 8mA
			2'b11: 12mA
			gpio2c3_e
			2'b00: 2mA
7:6	RW	0x1	2'b01: 4mA
			2'b10: 8mA
			2'b11: 12mA
			gpio2c2_e
			2'b00: 2mA
5:4	RW	0x1	2'b01: 4mA
			2'b10: 8mA
			2'b11: 12mA
			gpio2c1_e
			2'b00: 2mA
3:2	RW	0x1	2'b01: 4mA
			2'b10: 8mA
			2'b11: 12mA
			gpio2c0_e
			2'b00: 2mA
1:0	RW	0x0	2'b01: 4mA
			2'b10: 8mA
			2'b11: 12mA

GRF GPIO3A EAddress: Operational Base + offset (0x0110)

O 0x0000	write_enable When bit16=1, bit0 can be written by software. When bit16=0, bit 0 cannot be written by software; When bit 17=1, bit 1 can be written by software.
O 0x0000	When bit16=0, bit 0 cannot be written by software; When bit 17=1, bit 1 can be written by software.
O 0x0000	When bit $17=1$, bit 1 can be written by software.
O ×0000	•
0 00000	-
	When bit 17=0, bit 1 cannot be written by software;
	When bit 31=1, bit 15 can be written by software.
	When bit 31=0, bit 15 cannot be written by software;
	gpio3a7_e
	2'b00: 2mA
V 0x1	2'b01: 4mA
	2'b10: 8mA
	2'b11: 12mA
	gpio3a6_e
	2'b00: 2mA
V 0x1	2'b01: 4mA
	2'b10: 8mA
	2'b11: 12mA
	gpio3a5_e
	2'b00: 2mA
V 0x1	2'b01: 4mA
	2'b10: 8mA
	2'b11: 12mA
	gpio3a4_e
A/ 01	2'b00: 2mA
A OXI	2'b01: 4mA
	2'b10: 8mA 2'b11: 12mA
	gpio3a3_e 2'b00: 2mA
N 0×1	2'b01: 4mA
V	2'b10: 8mA
	2'b11: 12mA
	gpio3a2_e
	2'b00: 2mA
V 0x1	2'b01: 4mA
. 0/1	2'b10: 8mA
	2'b11: 12mA
	gpio3a1_e
	2'b00: 2mA
V 0x1	2'b01: 4mA
	2'b10: 8mA
	2'b11: 12mA
	V 0x1 V 0x1 V 0x1 V 0x1 V 0x1

Bit	Attr	Reset Value	Description
			gpio3a0_e
			2'b00: 2mA
1:0	RW	0x1	2'b01: 4mA
			2'b10: 8mA
			2'b11: 12mA

GRF_GPIO3B_E

Address: Operational Base + offset (0x0114)

Bit		Reset Value	Description	
			write_enable	
			When bit16=1, bit0 can be written by software.	
			When bit16=0, bit 0 cannot be written by software;	
24.46		0.000	When bit 17=1, bit 1 can be written by software.	
31:16	WO	0x0000	When bit 17=0, bit 1 cannot be written by software;	
			When bit 31=1, bit 15 can be written by software.	
			When bit 31=0, bit 15 cannot be written by software;	
			gpio3b7_e	
			2'b00: 2mA	
15:14	RW	0x1	2'b01: 4mA	
			2'b10: 8mA	
			2'b11: 12mA	
			gpio3b6_e	
			2'b00: 2mA	
13:12	RW	V 0×1	2'b01: 4mA	
			2'b10: 8mA	
			2'b11: 12mA	
			gpio3b5_e	
			2'b00: 2mA	
11:10	RW	0x1	2'b01: 4mA	
			2'b10: 8mA	
			gpio3b4_e	
			2'b00: 2mA	
9:8	RW	0x1	2'b01: 4mA	
			2'b10: 8mA	
			2'b11: 12mA	
			gpio3b3_e	
			2'b00: 2mA	
7:6	RW	0x1	2'b01: 4mA	
			2'b10: 8mA	
			2'b11: 12mA	

Bit	Attr	Reset Value	Description
			gpio3b2_e
			2'b00: 2mA
5:4	RW	0x1	2'b01: 4mA
			2'b10: 8mA
			2'b11: 12mA
		2W 0×1	gpio3b1_e
			2'b00: 2mA
3:2	RW		2'b01: 4mA
			2'b10: 8mA
			2'b11: 12mA
			gpio3b0_e
			2'b00: 2mA
1:0	RW	0x1	2'b01: 4mA
			2'b10: 8mA
			2'b11: 12mA

GRF GPIO3C E

Address: Operational Base + offset (0x0118)

Bit	Attr	Reset Value	Description
			write_enable
			When bit16=1, bit0 can be written by software.
			When bit16=0, bit 0 cannot be written by software;
31:16	WO	0x0000	When bit 17=1, bit 1 can be written by software.
31.10	WO	00000	When bit 17=0, bit 1 cannot be written by software;
			When bit 31=1, bit 15 can be written by software.
			When bit 31=0, bit 15 cannot be written by software;
			gpio3c7_e
	RW	0x1	2'b00: 2mA
15:14			2'b01: 4mA
			2'b10: 8mA
			2'b11: 12mA
			gpio3c6_e
		RW 0x1	2'b00: 2mA
13:12	RW		2'b01: 4mA
			2'b10: 8mA
			2'b11: 12mA
			gpio3c5_e
			2'b00: 2mA
11:10	RW	0x1	2'b01: 4mA
			2'b10: 8mA
			2'b11: 12mA

Bit	Attr	Reset Value	Description
			gpio3c4_e
			2'b00: 2mA
9:8	RW	0x1	2'b01: 4mA
			2'b10: 8mA
			2'b11: 12mA
			gpio3c3_e
			2'b00: 2mA
7:6	RW	0x1	2'b01: 4mA
			2'b10: 8mA
			2'b11: 12mA
			gpio3c2_e
			2'b00: 2mA
5:4	RW	0x1	2'b01: 4mA
			2'b10: 8mA
			2'b11: 12mA
			gpio3c1_e
			2'b00: 2mA
3:2	RW	0x1	2'b01: 4mA
			2'b10: 8mA
			2'b11: 12mA
			gpio3c0_e
			2'b00: 2mA
1:0	RW	0x1	2'b01: 4mA
			2'b10: 8mA
			2'b11: 12mA

<u>GRF GPIO3D E</u> Address: Operational Base + offset (0x011c)

Bit	Attr	Reset Value	Description
31:16	WO	0×0000	write_enable When bit16=1, bit0 can be written by software. When bit16=0, bit 0 cannot be written by software; When bit 17=1, bit 1 can be written by software. When bit 17=0, bit 1 cannot be written by software; When bit 31=1, bit 15 can be written by software. When bit 31=0, bit 15 cannot be written by software;
15:14	RW	0×0	gpio3d7_e 2'b00: 2mA 2'b01: 4mA 2'b10: 8mA 2'b11: 12mA

Bit	Attr	Reset Value	Description
			gpio3d6_e
			2'b00: 2mA
13:12	RW	0x0	2'b01: 4mA
			2'b10: 8mA
			2'b11: 12mA
			gpio3d5_e
			2'b00: 2mA
11:10	RW	0x0	2'b01: 4mA
			2'b10: 8mA
			2'b11: 12mA
			gpio3d4_e
			2'b00: 2mA
9:8	RW	0x0	2'b01: 4mA
			2'b10: 8mA
			2'b11: 12mA
			gpio3d3_e
			2'b00: 2mA
7:6	RW	0x1	2'b01: 4mA
			2'b10: 8mA
			2'b11: 12mA
			gpio3d2_e
			2'b00: 2mA
5:4	RW	0x1	2'b01: 4mA
			2'b10: 8mA
			2'b11: 12mA
			gpio3d1_e
			2'b00: 2mA
3:2	RW	0x1	2'b01: 4mA
			2'b10: 8mA
			2'b11: 12mA
			gpio3d0_e
			2'b00: 2mA
1:0	RW	0x1	2'b01: 4mA
			2'b10: 8mA
			2'b11: 12mA

GRF IO VSEL

Address: Operational Base + offset (0x0180)

Bit	Attr	Reset Value	Description		
			write_enable		
			When bit16=1, bit0 can be written by software.		
			When bit16=0, bit 0 cannot be written by software;		
24.46			When bit 17=1, bit 1 can be written by software.		
31:16	WO	0x0000	When bit 17=0, bit 1 cannot be written by software;		
			When bit 31=1, bit 15 can be written by software.		
			When bit 31=0, bit 15 cannot be written by software;		
15:8	RO	0x0	reserved		
			grf_vccio_oscgpi_vsel		
7	RW	0×0	IO voltage select		
,	1200	0.00	1'b0:3.3V		
			1'b1:1.8V		
			grf_vccio5_vsel		
6	RW	0×0	VCC IO5 voltage select		
	KVV	UXU	1'b0:3.3V		
			1'b1:1.8V		
			grf_vccio4_vsel		
_	RW	0.40	VCC IO4 voltage select		
5	KVV	0x0	1'b0:3.3V		
			1'b1:1.8V		
			grf_vccio3_vsel		
4	DW	0.40	VCC IO3 voltage select		
4	RW	0x0	1'b0:3.3V		
			1'b1:1.8V		
		W 0×0	grf_vccio2_vsel		
2	DW		VCC IO2 voltage select		
3	KVV		1'b0:3.3V		
			1'b1:1.8V		
			grf_vccio1_vsel		
2	DW	0.40	VCC IO1 voltage select		
2	RW	0x0	1'b0:3.3V		
			1'b1:1.8V		
			grf_vccio6_vsel		
	DVV	0.40	VCC IO6 voltage select		
1	RW	0x0	1'b0:3.3V		
			1'b1:1.8V		
			grf_vccio6_vsel_src		
	DVV	0.40	VCC IO6 voltage source select		
0	RW		1'b0: controlled by GPIO0B6		
			1'b1: controlled by grf_vccio6_vsel		

GRF IOFUNC CONO

Address: Operational Base + offset (0x0184)

Bit	Attr	Reset Value	Description
31:16	WO	0x0000	write_enable When bit16=1, bit0 can be written by software. When bit16=0, bit 0 cannot be written by software; When bit 17=1, bit 1 can be written by software. When bit 17=0, bit 1 cannot be written by software; When bit 31=1, bit 15 can be written by software. When bit 31=0, bit 15 cannot be written by software;
15:14	RO	0x0	reserved
13:12	RW	0×0	grf_con_i2s0_iomode_sel SCLK input of I2S0 source selection 2'b00: sclk_rx is from GPIO3B4, sclk_tx is from GPIO3C3 2'b01: sclk_rx is from GPIO3C3, sclk_tx is from GPIO3C3 2'b10: sclk_rx is from GPIO3B4, sclk_tx is from GPIO3B4 2'b11: both sclk_rx and sclk_tx are from I2S1 SCLK output LRCK input of I2S0 source selection 2'b00: lrck_rx is from GPIO3B5, lrck_tx is from GPIO3C2 2'b01: lrck_rx is from GPIO3C2, lrck_tx is from GPIO3C2 2'b10: lrck_rx is from GPIO3B5, lrck_tx is from GPIO3B5 2'b11: both lrck_rx and lrck_tx are from I2S1 lrck(tx or rx, grf_iofunc_sel[0]) output
11:10	RW	0×0	grf_con_uart2_iomux_sel 2'b00: m0(tx:gpio1d2,rx,gpio1d3); 2'b01: m1(tx:gpio2b4,rx:gpio2b6); 2'b10,2'b11: USBPHY uart debug port;
9	RW	0×0	<pre>grf_con_uart3_iomux_sel 1'b0: m0(tx:gpio0c0,rx,gpio0c1,cts:gpio0c2,rts:gpio0c3); 1'b1: m1(tx:gpio1b6,rx:gpio1b7,cts:gpio1b4,rts:gpio1b5)</pre>
8	RW	0×0	grf_con_pdm_iomux_sel 1'b0: m0(gpio3c6,gpio2c5); 1'b1: m1(gpio2c6,gpio3c3)

Bit	Attr	Reset Value	Description			
			grf_con_cif_iomux_ 1'b0:m0,1'b1:m1;	_sel		
			M0, M1,			
				pio2b4,	gpio3a1	
			cif_d1m0 g	pio2b6,	gpio3a2	
			cif_d2m0 g	pio2a0,	gpio3a3	
			cif_d3m0 g	pio2a1,	gpio3a5	
			cif_d4m0 g	pio2a2,	gpio3a7	
			cif_d5m0 g	pio2a3,	gpio3b0	
7	RW	0x0	cif_d6m0 g	pio2a4,	gpio3b1	
			cif_d7m0 g	pio2a5,	gpio3b4	
			cif_d8m0 g	jpio2a6,	gpio3b6	
			cif_d9m0 g	jpio2a7,	gpio3b7	
			cif_d10m0	gpio2b7,	gpio3c6	
			cif_d11m0	gpio2c0,	gpio3c7	
			cif_vsyncm0 g	pio2b0,	gpio3d1	
			cif_hrefm0 g	pio2b1,	gpio3d2	
			cif_clkinm0 gp	oio2b2,	gpio3d3	
			cif_clkoutm0 g	pio2b3,	gpio3d0	
		0x0	grf_con_pwm0_vop	ob_sel		
6	RW		PWM1 io output sel	ection:		
	IXVV		1'b1: VOP pwm out	tput;		
			1'b0: PWM controlle	er output		
			grf_con_i2s0_sclk_	sel		
5	RW	0x0	1'b1: tx mode;			
			1'b0: rx mode			
4:2	RO	0x0	reserved			
			grf_con_i2s2_2ch_	Irck		
1	RW	0x0	1'b1: tx mode;			
			1'b0: rx mode			
			grf_con_i2s1_2ch_	Irck		
0	RW	0x0	1'b1: tx mode			
			1'b0: rx mode			

Address: Operational Base + offset (0x0400)

Bit	Attr	Reset Value	Description		
31:16		0x0000	write_enable When bit16=1, bit0 can be written by software. When bit16=0, bit 0 cannot be written by software; When bit 17=1, bit 1 can be written by software. When bit 17=0, bit 1 cannot be written by software; When bit 31=1, bit 15 can be written by software.		
			When bit 31=0, bit 15 cannot be written by software;		

Bit	Attr	Reset Value	Description	
15:0	RW	1()x()()()	grf_tsadc_testbit_h	
15.0	IT VV		tsadc_testbit_h bit register	

Address: Operational Base + offset (0x0404)

Bit	Attr	Reset Value	Description		
31:16	6 WO	VO 0x0000	write_enable When bit16=1, bit0 can be written by software. When bit16=0, bit 0 cannot be written by software; When bit 17=1, bit 1 can be written by software. When bit 17=0, bit 1 cannot be written by software;		
			When bit $31=1$, bit 15 can be written by software.		
			When bit 31=0, bit 15 cannot be written by software;		
15:0	RW	0x0000	grf_tsadc_testbit_l tsadc_testbit_l bit register		

GRF SOC CON2

Address: Operational Base + offset (0x0408)

Bit	Attr	Reset Value	Description				
			write_enable When bit16=1, bit0 can be written by software.				
			When bit16=0, bit 0 cannot be written by software;				
31:16	wo	0x0000	When bit 17=1, bit 1 can be written by software.				
			When bit 17=0, bit 1 cannot be written by software;				
			When bit 31=1, bit 15 can be written by software.				
			When bit 31=0, bit 15 cannot be written by software;				
15:13	RO	0x0	reserved				
		0×1	grf_con_wdtns_glb_reset_en				
12	RW		WDT NS global reset enable.				
12	KVV		1'b0: WDTNS cann't trigger reset.				
			1'b1: WDTNS can trigger reset				
11	RW	V 0×0	grf_con_uart5_rts_inv				
11	KW		uart5_rts_inv_selection				
10	DW	0x0	grf_con_uart5_cts_inv				
10	ΚW	RW	KVV	KVV	KW	UXU	uart5_cts_inv_selection
9	RW	0x0	grf_con_uart4_rts_inv				
9	KVV	UXU	uart4_rts_inv_selection				
8	RW	0x0	grf_con_uart4_cts_inv				
J	17.44	0.00	uart4_cts_inv_selection				
7	RW	0x0	grf_con_uart3_rts_inv				
	1744	0,0	uart3_rts_inv_selection				

Bit	Attr	Reset Value	Description
6	RW	0x0	grf_con_uart3_cts_inv
G	IK VV	UXU	uart3_cts_inv_selection
5	RW	0x0	grf_con_uart2_rts_inv
3	KVV	UXU	uart2_rts_inv_selection
4	DW	0.40	grf_con_uart2_cts_inv
4	RW	0x0	uart2_cts_inv_selection
3	RW	0x0	grf_con_uart1_rts_inv
3	KVV		uart1_rts_inv_selection
2	RW	W 0x0	grf_con_uart1_cts_inv
2	KVV		uart1_cts_inv_selection
1	RW	0.40	grf_con_tsadc_ch_inv
1	KVV	RW 0x0	tsadc_ch_inv
			grf_con_gpll_clk_sel
0	RW	0x0	1'b1: GPLL output bypass level shifter.
			1'b0: GPLL output has level shifter

Address: Operational Base + offset (0x040c)

Bit	Attr	Reset Value	Description
			write_enable When bit16=1, bit0 can be written by software.
			,
			When bit16=0, bit 0 cannot be written by software;
31:16	wo	0x0000	When bit 17=1, bit 1 can be written by software.
			When bit 17=0, bit 1 cannot be written by software;
			When bit 31=1, bit 15 can be written by software.
			When bit 31=0, bit 15 cannot be written by software;
			grf_con_id_cif_aw
15	RW	0x0	1'b1, axi access to ddr stored into buffer.
			1'b0, axi access to ddr bypass ddrbuffer module
			grf_con_id_cif_ar
14	RW	0x0	1'b1, axi access to ddr stored into buffer.
			1'b0, axi access to ddr bypass ddrbuffer module
			grf_con_id_gpu_aw1
13	RW	0x0	1'b1, axi access to ddr stored into buffer.
			1'b0, axi access to ddr bypass ddrbuffer module
			grf_con_id_gpu_ar1
12	RW	0x0	1'b1, axi access to ddr stored into buffer.
			1'b0, axi access to ddr bypass ddrbuffer module
			grf_con_id_gpu_aw0
11	RW	0x0	1'b1, axi access to ddr stored into buffer.
			1'b0, axi access to ddr bypass ddrbuffer module

Bit	Attr	Reset Value	Description
			grf_con_id_gpu_ar0
10	RW	0x0	1'b1, axi access to ddr stored into buffer.
			1'b0, axi access to ddr bypass ddrbuffer module
			grf_con_id_gmac_aw
9	RW	0x0	1'b1, axi access to ddr stored into buffer.
			1'b0, axi access to ddr bypass ddrbuffer module
			grf_con_id_gmac_ar
8	RW	0x0	1'b1, axi access to ddr stored into buffer.
			1'b0, axi access to ddr bypass ddrbuffer module
			grf_con_id_dma_aw
7	RW	0x0	1'b1, axi access to ddr stored into buffer.
			1'b0, axi access to ddr bypass ddrbuffer module
			grf_con_id_dma_ar
6	RW	0x0	1'b1, axi access to ddr stored into buffer.
			1'b0, axi access to ddr bypass ddrbuffer module
			grf_con_id_dcf_aw
5	RW	0x0	1'b1, axi access to ddr stored into buffer.
			1'b0, axi access to ddr bypass ddrbuffer module
			grf_con_id_dcf_ar
4	RW	0x0	1'b1, axi access to ddr stored into buffer.
			1'b0, axi access to ddr bypass ddrbuffer module
			grf_con_id_crypto_aw
3	RW	0x0	1'b1, axi access to ddr stored into buffer.
			1'b0, axi access to ddr bypass ddrbuffer module
			grf_con_id_crypto_ar
2	RW	0x0	1'b1, axi access to ddr stored into buffer.
			1'b0, axi access to ddr bypass ddrbuffer module
			grf_con_id_cpu_aw
1	RW	0x0	1'b1, axi access to ddr stored into buffer.
			1'b0, axi access to ddr bypass ddrbuffer module
			grf_con_id_cpu_ar
0	RW	0×0	1'b1, axi access to ddr stored into buffer.
-			1'b0, axi access to ddr bypass ddrbuffer module
	1		1 27, and december of the syptem darket included

Address: Operational Base + offset (0x0410)

Bit	Attr	Reset Value	Description
31:16	WO		write_enable When bit16=1, bit0 can be written by software. When bit16=0, bit 0 cannot be written by software; When bit 17=1, bit 1 can be written by software. When bit 17=0, bit 1 cannot be written by software; When bit 31=1, bit 15 can be written by software. When bit 31=0, bit 15 cannot be written by software;

Bit	Attr	Reset Value	Description
			grf_con_hevc_vcode_sel
4 -	DVV		Selection for AXI BUS interface of hevc_codec connected to niu
15	RW	0x0	1'b0: vcodec
			1'b1: HEVC
			grf_con_pmu_pwr_idle_req
14	RW	0x0	1'b1, Requst to idle niu in PD_PMU.
			1'b0, No request
			grf_con_id_vpu_aw
13	RW	0x0	1'b1, axi access to ddr stored into buffer.
			1'b0, axi access to ddr bypass ddrbuffer module
			grf_con_id_vpu_ar
12	RW	0x0	1'b1, axi access to ddr stored into buffer.
			1'b0, axi access to ddr bypass ddrbuffer module
			grf_con_id_vops_aw
11	RW	0x0	1'b1, axi access to ddr stored into buffer.
			1'b0, axi access to ddr bypass ddrbuffer module
			grf_con_id_vops_ar
10	RW	0x0	1'b1, axi access to ddr stored into buffer.
			1'b0, axi access to ddr bypass ddrbuffer module
			grf_con_id_vopm_aw
9	RW	0x0	1'b1, axi access to ddr stored into buffer.
			1'b0, axi access to ddr bypass ddrbuffer module
			grf_con_id_vopm_ar
8	RW	0x0	1'b1, axi access to ddr stored into buffer.
			1'b0, axi access to ddr bypass ddrbuffer module
			grf_con_id_rga_aw
7	RW	0x0	1'b1, axi access to ddr stored into buffer.
			1'b0, axi access to ddr bypass ddrbuffer module
			grf_con_id_rga_ar
6	RW	0x0	1'b1, axi access to ddr stored into buffer.
			1'b0, axi access to ddr bypass ddrbuffer module
			grf_con_id_isp_aw_m1
5	RW	0x0	1'b1, axi access to ddr stored into buffer.
			1'b0, axi access to ddr bypass ddrbuffer module
			grf_con_id_isp_ar_rd
4	RW	0x0	1'b1, axi access to ddr stored into buffer.
			1'b0, axi access to ddr bypass ddrbuffer module
			grf_con_id_isp_aw_m3
3	RW	0x0	1'b1, axi access to ddr stored into buffer.
	1		1'b0, axi access to ddr bypass ddrbuffer module
			grf_con_id_isp_ar_m3
2	RW	0x0	1'b1, axi access to ddr stored into buffer.
			1'b0, axi access to ddr bypass ddrbuffer module

Bit	Attr	Reset Value	Description
			grf_con_id_isp_aw_m2
1	RW	0x0	1'b1, axi access to ddr stored into buffer.
			1'b0, axi access to ddr bypass ddrbuffer module
			grf_con_id_isp_ar_m2
0	RW	0x0	1'b1, axi access to ddr stored into buffer.
			1'b0, axi access to ddr bypass ddrbuffer module

Address: Operational Base + offset (0x0414)

Bit	Attr	Reset Value	Description
31:0	DW	N 10x000000000 1	grf_con_sdcard_dectn_dly
31.0	KW		Delay counter setting after sdcard plug out. Count by 24M clock

GRF_PD_VI_CON

Address: Operational Base + offset (0x0430)

Bit	Attr	Reset Value	Description
31:16	WO	0×0000	write_enable When bit16=1, bit0 can be written by software. When bit16=0, bit 0 cannot be written by software; When bit 17=1, bit 1 can be written by software. When bit 17=0, bit 1 cannot be written by software; When bit 31=1, bit 15 can be written by software. When bit 31=0, bit 15 cannot be written by software;
15	RO	0x0	reserved
14:13	RW	0×0	grf_con_isp_cif_if_datawidth 2'b00: 8bit; 2'b01: 10bit; others: 12bit;
12	RW	0×0	grf_con_cif_clk_inv_sel 1'b1: clock inverted; 1'b0: clock is not inverted
11:10	RO	0x0	reserved
9	RW	0×0	grf_con_csiphy_clkinv_selection 1'b1: enable csiphy clock lane; 1'b0: disable csiphy clock lane
8	RW	0×0	grf_con_csiphy_clklane_en 1'b1: enable csiphy lane0; 1'b0: disable csiphy_lane4
7	RW	0×0	grf_con_csiphy_datalane_en_3 1'b1: enable csiphy lane0; 1'b0: disable csiphy_lane3

Bit	Attr	Reset Value	Description
			grf_con_csiphy_datalane_en_2
6	RW	0x0	1'b1: enable csiphy lane0;
			1'b0: disable csiphy_lane2
			grf_con_csiphy_datalane_en_1
5	RW	0x0	1'b1: enable csiphy lane0;
			1'b0: disable csiphy_lane1
			grf_con_csiphy_datalane_en_0
4	RW	0x0	1'b1: enable csiphy lane0;
			1'b0: disable csiphy_lane0
			grf_con_csiphy_forcerxmode_3
3	RW	0x0	1'b1: force to rx mode;
			1'b0: disable force control
			grf_con_csiphy_forcerxmode_2
2	RW	0x0	1'b1: force to rx mode;
			1'b0: disable force control
			grf_con_csiphy_forcerxmode_1
1	RW	0x0	1'b1: force to rx mode;
			1'b0: disable force control
			grf_con_csiphy_forcerxmode_0
0	RW	0x0	1'b1: force to rx mode;
			1'b0: disable force control

GRF PD VO CONO Address: Operational Base + offset (0x0434)

Bit		Reset Value	Description
31:16	WO	0x0000	write_enable When bit16=1, bit0 can be written by software. When bit16=0, bit 0 cannot be written by software; When bit 17=1, bit 1 can be written by software. When bit 17=0, bit 1 cannot be written by software; When bit 31=1, bit 15 can be written by software. When bit 31=0, bit 15 cannot be written by software;
15:14	RW	0×0	grf_con_vops_press control bit for NIU in PD_VO
13:12	RW	0×0	grf_con_vopm_press control bit for NIU in PD_VO
11:10	RW	0x0	grf_con_dcf_vop_standby_sel 2'b00: ((aclk_vopm_en dsp_hold_vopm) & (aclk_vops_en dsp_hold_vops)) 2'b01: aclk_vopm_en dsp_hold_vopm Others: aclk_vops_en dsp_hold_vops;

Bit	Attr	Reset Value	Description			
			grf_con_lvds_den_only_tie_value			
9	RW	0×0	Only valid when grf_con_lvds_den_only == 1			
9	IK VV	0.00	1'b1: LVDS vsync/hsync are tied to 1			
			1'b0: LVDS vsync/hsync are tied to 0			
			grf_con_lvds_den_only			
8	RW	0×0	1'b1: LVDS vsync/hsync are tied to			
	IVV	0.00	grf_con_lvds_den_only_tie_value			
			1'b0: LVDS vsync/hsync normal output			
7	RW	0×0	grf_con_dsihost_dpiupdatecfg			
,	IVV	0.00	dsihost_dpiupdatecfg			
6	RO	0x0	reserved			
		0x0	grf_con_lvds_dclk_inv_sel			
5	RW		1'b1: LVDS Clock is inverted.			
			1'b0: Normal clock.			
4	RO	0x0	reserved			
3	DW	00	grf_con_dsihost_dpicolorm			
3	RW	0x0	dsihost_dpicolorm			
2	DW	0.40	grf_con_dsihost_dpishutdn			
2	RW	RW	RW	KW	0x0	dsihost_dpishutdn
			grf_con_vopl_dma_finish_enable			
1	RW	0×0	1'b1: dma_finish from vopl to dcf is enabled;			
			1'b0: dma_finish from vopl to dcf is disable			
			grf_con_vopb_dma_finish_enable			
0	RW	0×0	1'b1: dma_finish from vopb to dcf is enabled;			
			1'b0: dma_finish from vopb to dcf is disable			

GRF PD VO CON1

Address: Operational Base + offset (0x0438)

Bit	Attr	Reset Value	Description
31:16	WO	0×0000	write_enable When bit16=1, bit0 can be written by software. When bit16=0, bit 0 cannot be written by software; When bit 17=1, bit 1 can be written by software. When bit 17=0, bit 1 cannot be written by software; When bit 31=1, bit 15 can be written by software. When bit 31=0, bit 15 cannot be written by software;
15	RO	0x0	reserved
14:13	RW	0x0	grf_con_lvdsformat_lvds_select 2'b00: VESA 24bit 2'b01: JEIDA 24bit 2'b10: JEIDA 18bit 2'b11: VESA 18bit

Bit	Attr	Reset Value	Description
			grf_con_dsiphy_lvds_mode
12	RW	0x0	grf_con_dsiphy_lvds_mode
12	KVV	UXU	1'b1: lvds mode
			1'b0: dsi mode
11	RW	0x0	grf_con_lvdsformat_lvds_msbsel
11	KVV	UXU	1'b1:MSB, 1'b0: LSB
10	RW	0x0	grf_con_dsiphy_lane3_frctxstpm
10	FCVV	UXU	grf_con_dsiphy_lane1_frctxstpm
9	RW	0x0	grf_con_dsiphy_lane2_frctxstpm
9	FCVV	UXU	grf_con_dsiphy_lane1_frctxstpm
0	RW	0x0	grf_con_dsiphy_lane1_frctxstpm
8	KVV	UXU	grf_con_dsiphy_lane1_frctxstpm
7	RW	0x0	grf_con_dsiphy_lane0_frctxstpm
/	FCVV	UXU	grf_con_dsiphy_lane0_frctxstpm
6	RW	0x0	grf_con_dsiphy_forcerxmode
O	FCVV	UXU	grf_con_dsiphy_forcerxmode
			grf_con_dsiphy_lane0_turndisable
5	RW	0x0	Disable Turn-around. This signal is used to prevent Lane from
٦	KVV	UXU	going into transmit mode, even if it observes a turn-around
			request on the Lane interconnect.
			grf_con_lcdc_dclk_inv_sel
4	RW	0x0	1'b0: normal clock
			1'b1: inverted clock
			grf_con_rgb_bypass
3	RW	0x0	1'b1: bypass data sync,
			1'b0: use data sync
2	RW	0x0	grf_con_rgb_vop_sel
	KVV	UXU	1'b0: vopb, 1'b1: vopl
1	RW	0x0	grf_con_lvds_vop_sel
Т	IK VV	UXU	1'b0: vopb, 1'b1: vopl
0	DW	0×0	grf_con_dsihost_vop_sel
<u> </u>) RW	/ 0x0	1'b0: vopb, 1'b1: vopl

GRF SOC STATUSO

Address: Operational Base + offset (0x0480)

Bit	Attr	Reset Value	Description
31:21	RO	0x0	reserved
20	RO	()X()	pmu_pwr_idle_ack Niu idle acknowledge status
19	RO	0x0	pmu_pwr_idle Niu idle status
18	RO	0x0	vopl_dma_finish vopl_dma_finish_status

Bit	Attr	Reset Value	Description
17	D.O.	0×0	vopb_dma_finish
	RO		vopb_dma_finish_status
16	DO	0×0	timer_en_status5
	RO		timer5_en_status
1 [DO	0×0	timer_en_status4
15	RO		timer4_en_status
14	RO	0×0	timer_en_status3
14	KU		timer3_en_status
13	RO	0×0	timer_en_status2
13			timer2_en_status
12	RO	0×0	timer_en_status1
12	KO		timer1_en_status
11	RO	0x0	timer_en_status0
11	KO		timer0_en_status
10	RO	0x0	reserved
9	DO.	0×0	opt_sbpi_busy_ns
9	RO		opt_sbpi_busy_ns bit register
8	RO	0x0	opt_user_busy_ns
0			opt_user_busy_ns bit register
7	RO	0×0	opt_sbpi_busy_s
/			opt_sbpi_busy_s bit register
6	RO	0x0	opt_user_busy_s
0	KO		opt_user_busy_s bit register
5	RO	0x0	reserved
4	RO	0x0	npll_lock
4	KU		NPLL lock status
3	RO	0x0	gpll_lock
3	KU		GPLL lock status
2	RO	0×0	cpll_lock
2			CPLL lock status
1	RO	0×0	dpll_lock
1			DPLL lock status
0	RO	0×0	apll_lock
0	NO.		APLL lock status

GRF_CPU_CON0Address: Operational Base + offset (0x0500)

Bit	Attr	Reset Value	Description
31:16	WO	0x0000	write_enable When bit16=1, bit0 can be written by software. When bit16=0, bit 0 cannot be written by software; When bit 17=1, bit 1 can be written by software. When bit 17=0, bit 1 cannot be written by software; When bit 31=1, bit 15 can be written by software. When bit 31=0, bit 15 cannot be written by software;
15:12	RW	0×0	grf_con_cfgte cpu cfgte bit control
11:8	RW	0×0	grf_con_cfgend cpu cfgend bit control
7	RO	0x0	reserved
6	RW	0x1	grf_con_qnap_dis_dataram qnap_dis_dataram bit control
5	RW	0x1	grf_con_qnap_dis_tagram qnap_dis_tagram bit control
4	RW	0x0	grf_con_l2rstdisable cpu dbgl1 rstdisable
3:0	RW	0x0	grf_con_l1rstdisable cpu dbgl1 rstdisable

GRF CPU CON1
Address: Operational Base + offset (0x0504)

Bit	Attr	Reset Value	Description
31:16	WO	0×0000	write_enable When bit16=1, bit0 can be written by software. When bit16=0, bit 0 cannot be written by software; When bit 17=1, bit 1 can be written by software. When bit 17=0, bit 1 cannot be written by software; When bit 31=1, bit 15 can be written by software. When bit 31=0, bit 15 cannot be written by software;
15:8	RO	0x0	reserved
7	RW	0x1	grf_force_jtag force jtag bit control
6	RW	0×0	grf_con_cpu_ema_detect_en 1'b1: When grf_ema_l2d/grf_emaw_l2d/grf_ema_ra/grf_emaw_ra/grf_emas_ ra changed, hardware automaticly stops cpu and make it valiable to cpu; 1'b0: Disable
5	RW	0x0	grf_con_evento_clear pd_core evento_ack control bit

Bit	Attr	Reset Value	Description
4	RW	0x0	grf_con_eventi
4	KVV	UXU	pd_core eventi control bit
2	DW	0×1	grf_con_dbgselfaddrv
3	RW	0×1	cpu dbgselfaddrv bit control
2	D)A/	/ 0x1	grf_con_dbgromaddrv
2	RW		cpu dbgromaddrv bit control
1	DW	RW 0x0	grf_con_cfgsdisable
1	KVV		cpu cfgsdisbale bit control
0	RW	W 0×0	grf_con_clrexmonreq
0			cpu clrexmonreq bit control

GRF CPU CON2

Address: Operational Base + offset (0x0508)

Bit	Attr	Reset Value	Description
31:16	WO	0×0000	write_enable When bit16=1, bit0 can be written by software. When bit16=0, bit 0 cannot be written by software; When bit 17=1, bit 1 can be written by software. When bit 17=0, bit 1 cannot be written by software; When bit 31=1, bit 15 can be written by software. When bit 31=0, bit 15 cannot be written by software;
15:11	RO	0x0	reserved
10	WO	0×0	grf_emas_ra cpu sram emas
9:8	RW	0x0	grf_emaw_ra cpu sram emaw
7:5	RW	0x1	grf_ema_ra cpu sram ema
4:3	RW	0×0	grf_emaw_l2d cpu l2 data sram emaw
2:0	RW	0×1	grf_ema_l2d cpu l2 data sram ema

GRF CPU STATUSO

Address: Operational Base + offset (0x0520)

Bit	Attr	Reset Value	Description
31:22	RO	0x0	reserved
21:15	RO	0×00	grf_st_cpu_boost_fsm cpu boost module status
14	RO	0×0	grf_st_l2flushdone l2flushdone status
13	RO	0×0	grf_st_clrexmonack clrexmonack status

Bit	Attr	Reset Value	Description
12	RO	0×0	grf_st_jtagnsw
12	KO	UXU	jtagnsw_st status
11	DO	1(1)\(\nabla(1)	grf_st_jtagtop
111	RO		jtagtop_st status
10	DO	0x0	evento_rising_edge
10	RO		evento_rising_edge status
9:4	RO	0x0	reserved
2.0	DO	0x0	grf_st_smpnamp
3:0	RO		smpnamp status

GRF CPU STATUS1

Address: Operational Base + offset (0x0524)

	r		()
Bit	Attr	Reset Value	Description
31:13	RO	0x0	reserved
12	RO	0×0	grf_st_standbywfil2 standby wfi l2 status
11:8	RO	0x0	reserved
7:4	RO	0×0	grf_st_standbywfi standby wfi status
3:0	RO	0x0	grf_st_standbywfe standby wfe status

GRF SOC NOC CONO

Address: Operational Base + offset (0x0530)

Bit	Attr	Reset Value	Description
31:16	WO	0×0000	write_enable When bit16=1, bit0 can be written by software. When bit16=0, bit 0 cannot be written by software; When bit 17=1, bit 1 can be written by software. When bit 17=0, bit 1 cannot be written by software; When bit 31=1, bit 15 can be written by software. When bit 31=0, bit 15 cannot be written by software;
15	RO	0x0	reserved
14	RW	0x0	dtp_vpu_req_msch_pwrDiscTarg_Switch1PwrStall dtp_vpu_req_msch_pwrDiscTarg_Switch1PwrStall
13	RW	0x0	dtp_vo_req_msch_pwrDiscTarg_Switch1PwrStall dtp_vo_req_msch_pwrDiscTarg_Switch1PwrStall
12	RW	0×0	dtp_vo_fwd_vi_pwrDiscTarg_Switch47PwrStall dtp_vo_fwd_vi_pwrDiscTarg_Switch47PwrStall
11	RW	0×0	dtp_vi_req_msch_pwrDiscTarg_Switch1PwrStall dtp_vi_req_msch_pwrDiscTarg_Switch1PwrStall
10	RW	0×0	dtp_peri_req_msch_pwrDiscTarg_Switch8PwrStall dtp_peri_req_msch_pwrDiscTarg_Switch8PwrStall

Bit	Attr	Reset Value	Description
9	RW	0x0	dtp_gpu_req_msch_pwrDiscTarg_Switch29PwrStall
9	KVV	UXU	dtp_gpu_req_msch_pwrDiscTarg_Switch29PwrStall
8	RW	0×0	dtp_cpu_req_msch_pwrDiscTarg_Switch28PwrStall
8	KVV	UXU	dtp_cpu_req_msch_pwrDiscTarg_Switch28PwrStall
7	RW	0x0	dtp_cpu_fwd_bus_pwrDiscTarg_Switch18PwrStall
/	KVV	UXU	dtp_cpu_fwd_bus_pwrDiscTarg_Switch18PwrStall
6	RW	0x0	dtp_bus_fwd_vpu_pwrDiscTarg_Switch44PwrStall
G	KVV	UXU	dtp_bus_fwd_vpu_pwrDiscTarg_Switch44PwrStall
5	RW	V 0×0	dtp_bus_fwd_vio_pwrDiscTarg_Switch21PwrStall
5	KVV		dtp_bus_fwd_vio_pwrDiscTarg_Switch21PwrStall
4	RW	0x0	dtp_bus_fwd_srvmsch_pwrDiscTarg_service_msch_TPwrStall
7	KVV		dtp_bus_fwd_srvmsch_pwrDiscTarg_service_msch_TPwrStall
3	RW	W 0x0	dtp_bus_fwd_peri_pwrDiscTarg_Switch15PwrStall
3	KVV	UXU	dtp_bus_fwd_peri_pwrDiscTarg_Switch15PwrStall
2	RW	0x0	dtp_bus_fwd_gpu_pwrDiscTarg_Switch46PwrStall
	KVV	UXU	dtp_bus_fwd_gpu_pwrDiscTarg_Switch46PwrStall
1	RW	0x0	dtp_bus_fwd_ddrc_pwrDiscTarg_ddrc_apb_TPwrStall
_	KVV	UXU	dtp_bus_fwd_ddrc_pwrDiscTarg_ddrc_apb_TPwrStall
0	RW	0x0	dtp_Switch26_pwrDiscTarg_peri2msch_service_TPwrStall
U	LYVV	0.00	dtp_Switch26_pwrDiscTarg_peri2msch_service_TPwrStall

GRF SOC NOC CON1Address: Operational Base + offset (0x0534)

Bit		Reset Value	Description
Dit	Atti	Reset value	•
31:16	WO	0×0000	write_enable When bit16=1, bit0 can be written by software. When bit16=0, bit 0 cannot be written by software; When bit 17=1, bit 1 can be written by software. When bit 17=0, bit 1 cannot be written by software; When bit 31=1, bit 15 can be written by software. When bit 31=0, bit 15 cannot be written by software;
15:14	RW	0×0	msch_split_size This register will decide the splitting size of the interconnect for a transaction from a master and must be set to a proper value according to 'ddrConf' in memory scheduler reginster. 2'b00: Splitting size is 64 bytes. Must be set to this value when 'ddrConf' is 0~6 or 12~13. 2'b01: Splitting size is 32 bytes. Must be set to this value when 'ddrConf' is 9~10. 2'b10: Splitting size is 16 bytes. Must be set to this value when 'ddrConf' is 7~8 or 11. 2'b11: Reserved. Do not set to this value, otherwise, the system will crash

Bit	Attr	Reset Value	Description			
13	RW	00	dtp_usb_fwd_peri_pwrDiscTarg_Switch9PwrStall			
13	KVV	0x0	dtp_usb_fwd_peri_pwrDiscTarg_Switch9PwrStall			
12	RW	0x0	dtp_sdmmc_fwd_peri_pwrDiscTarg_Switch56PwrStall			
12	KVV	UXU	dtp_sdmmc_fwd_peri_pwrDiscTarg_Switch56PwrStall			
11	RW	0x0	dtp_peri_fwd_usb_pwrDiscTarg_Switch43PwrStall			
11	KVV	UXU	dtp_peri_fwd_usb_pwrDiscTarg_Switch43PwrStall			
10	RW	0x0	dtp_peri_fwd_nand_pwrDiscTarg_Switch42PwrStall			
10	KVV	UXU	dtp_peri_fwd_nand_pwrDiscTarg_Switch42PwrStall			
9	RW	0x0	dtp_peri_fwd_mmc_pwrDiscTarg_Switch41PwrStall			
9	KVV	UXU	dtp_peri_fwd_mmc_pwrDiscTarg_Switch41PwrStall			
8	RW	0x0	dtp_peri_fwd_gmac_pwrDiscTarg_Switch40PwrStall			
0	INV	0.00	dtp_peri_fwd_gmac_pwrDiscTarg_Switch40PwrStall			
7	RW	0x0	dtp_nand_fwd_peri_pwrDiscTarg_Switch56PwrStall			
/	KVV		dtp_nand_fwd_peri_pwrDiscTarg_Switch56PwrStall			
6	RW	0x0	dtp_mmc_fwd_peri_pwrDiscTarg_Switch55PwrStall			
0	IXVV		dtp_mmc_fwd_peri_pwrDiscTarg_Switch55PwrStall			
5	RW	0x0	dtp_gmac_fwd_peri_pwrDiscTarg_Switch55PwrStall			
J	IXVV	0.00	dtp_gmac_fwd_peri_pwrDiscTarg_Switch55PwrStall			
4	RW	0x0	dtp_crypto_fwd_bus_pwrDiscTarg_Switch11PwrStall			
	KVV	KVV	KVV	IXVV		dtp_crypto_fwd_bus_pwrDiscTarg_Switch11PwrStall
3	RW	0x0	dtp_bus_fwd_sdcard_pwrDiscTarg_SwitchPwrStall			
J	IXVV	0.00	dtp_bus_fwd_sdcard_pwrDiscTarg_SwitchPwrStall			
2	RW	0x0	dtp_bus_fwd_pmu_pwrDiscTarg_pmu_apb_TPwrStall			
	IXVV	0.00	dtp_bus_fwd_pmu_pwrDiscTarg_pmu_apb_TPwrStall			
1	RW	0x0	dtp_bus_fwd_peri_pwrDiscTarg_Switch16PwrStall			
	1244	0.7.0	dtp_bus_fwd_peri_pwrDiscTarg_Switch16PwrStall			
0	RW	0x0	dtp_bus_fwd_crypto_pwrDiscTarg_Switch45PwrStall			
	1244	0,70	dtp_bus_fwd_crypto_pwrDiscTarg_Switch45PwrStall			

GRF DDR BANKHASH CTRL

Address: Operational Base + offset (0x0550)

Bit	Attr	Reset Value	Description
31:7	RO	0x0	reserved
6:4	RW	0x0	bank_offset set the offset of the first bank bit. The real first bank offset bit is 10+bank_offset. For example, if you are using the follwoing ddrConf, set this register to 3: 'RRRRRRRRRRRRRRRRRRRRBBBCCCCCCCC'
3:1	RW	0×0	manicure_mask bank manicure mask bits 3'b000: when using 4 banks ddr, set to this value 3'b111: when using 8 banks ddr, set to this value others: reserved

Bit	Attr	Reset Value	Description
	RW	0x0	hash_en
			bank hash enable control
U			1'b0: disable
			1'b1: enable

GRF DDR BANK MASKO

Address: Operational Base + offset (0x0554)

Bit	Attr	Reset Value	Description
			ddr_bank_mask0
			The MSB mask for the first bank bit
31:0	RW	0x00000000	The bits below R3(the third bit of row bits) must be set to 0 when
			using 8 banks device. The bits below R0 must be set to 0 when
			using 4 banks device.

GRF DDR BANK MASK1

Address: Operational Base + offset (0x0558)

Bit	Attr	Reset Value	Description				
			ddr_bank_mask1				
			The MSB mask for the second bank bit.				
31:0	RW	0x00000000	The bits below R3(the third bit of row bits) must be set to 0 when				
			using 8 banks device. The bits below R0 must be set to 0 when				
			using 4 banks device.				

GRF DDR BANK MASK2

Address: Operational Base + offset (0x055c)

Bit	Attr	Reset Value	Description			
			ddr_bank_mask2			
			The MSB mask for the third bank bit.			
31:0	RW	0x00000000	The bits below R3(the third bit of row bits) must be set to 0 when			
			using 8 banks device. The bits below R0 must be set to 0 when			
			using 4 banks device.			

GRF HOSTO CONO

Address: Operational Base + offset (0x0700)

Bit	Attr	Reset Value	Description					
31:16	WO	0×0000	write_enable When bit16=1, bit0 can be written by software. When bit16=0, bit 0 cannot be written by software; When bit 17=1, bit 1 can be written by software. When bit 17=0, bit 1 cannot be written by software; When bit 31=1, bit 15 can be written by software. When bit 31=0, bit 15 cannot be written by software;					
15:12	RO	0x0	reserved					

Bit	Attr	Reset Value	Description			
11:6	DW	W 10x20	grf_con_host0_fladj_val_common			
11.0	KVV		USB HOST0 fladj_val_common bit control			
F.0	DW	0.20	grf_con_host0_fladj_val			
5:0	RW	0x20	USB HOST0 fladj bit control			

GRF HOSTO CON1
Address: Operational Base + offset (0x0704)

Bit		Reset Value	+ offset (0x0/04) Description						
			write_enable						
			When bit16=1, bit0 can be written by software.						
			When bit16=0, bit 0 cannot be written by software;						
			When bit 17=1, bit 1 can be written by software.						
31:16	WO	0x0000	When bit 17=0, bit 1 cannot be written by software;						
			When bit 31=1, bit 15 can be written by software.						
			When bit 31=0, bit 15 cannot be written by software;						
15:14	RO	0x0	reserved						
	5147	0.0	grf_con_host0_arb_pause						
13	RW	0x0	host0 ehci/ohci arbiter pause control						
12	DW	00	grf_con_host0_ohci_susp_lgcy						
12	RW	0x0	USB HOST0 ohci_susp_lgcy bit control						
	DW	00	grf_con_host0_ohci_cntsel						
11	RW	0x0	USB HOST0 ohci_cntsel bit control						
10	RW	/ 01	grf_con_host0_ohci_clkcktrst						
10	KVV	0x1	USB HOSTO ohci_clkcktrst bit control						
9	RW	/ 0x0	grf_con_host0_app_prt_ovrcur						
9	IXVV		USB HOST0 app_prt_ovrcur bit control						
8	RW	0×0	grf_con_host0_autoppd_on_overcur_en						
0	1200		USB HOST0 autoppd_on_overcur_en bit control						
7	RW	0×1	grf_con_host0_word_if						
	1244	OXI	USB HOST0 word_if bit control						
6	RW	0×0	grf_con_host0_sim_mode						
			1244	1200	IXVV	100			O X O
5	RW	0×1	grf_con_host0_incrx_en						
			USB HOST0 incrx_en bit control						
4	RW	0×1	grf_con_host0_incr8_en						
			USB HOST0 incr8_en bit control						
3	RW	0×1	grf_con_host0_incr4_en						
			USB HOST0 incr4_en bit control						
2	RW	0×1	grf_con_host0_incr16_en						
			USB HOST0 incr16_en bit control						
1	RW	0×0	grf_con_host0_hubsetup_min						
		•	USB HOST0 bubsetup_min bit control						

Bit	Attr	Reset Value	Description			
0	RW	/ 1()X()	grf_con_host0_app_start_clk			
0	U KVV		USB HOST0 app_start_clk bit control			

GRF OTG CON3

Address: Operational Base + offset (0x0880)

Bit	Attr	Reset Value	Description
31:16	WO	0x0000	write_enable When bit16=1, bit0 can be written by software. When bit16=0, bit 0 cannot be written by software; When bit 17=1, bit 1 can be written by software. When bit 17=0, bit 1 cannot be written by software; When bit 31=1, bit 15 can be written by software. When bit 31=0, bit 15 cannot be written by software;
15:3	RO	0x0 reserved	
2	RW	0x0	otg_dbnce_fltr_bypass OTG dbnce_fltr_bypass bit control
1:0	RW	0x0	otg_scaledown_mode OTG scaledown_mode bit control

GRF HOSTO STATUS4

Address: Operational Base + offset (0x0890)

Bit	Attr	Reset Value	Description								
31	RO	0x0	reserved								
30	RO	0x0	host0_ehci_power_state_ack								
30	KO	0.00	host0_ehci_power_state_ack bit status								
29	RO	0×0	host0_ehci_pme_status								
2.9	NO	0.00	host0_ehci_pme_status bit status								
28	RO	0x0	grf_stat_host0_ehci_bufacc								
20	KO	0.00	host0_ehci_bufacc bit status								
27	RO	0x0	grf_stat_host0_ehci_xfer_prdc								
27	KO	0.00	host0_ehci_xfer_prdc bit status								
26	RO	0×0	grf_stat_host0_ohci_ccs								
20	NO		host0_ohci_ccs bit status								
25	RO	0×0	grf_stat_host0_ohci_rwe								
23	NO .	0.00	host0_ohci_rwe bit status								
24	RO	0x0	grf_stat_host0_ohci_drwe								
27		INO .	KO	IXO	IXO	IXO	IXO	INO	IXO		0.00
23	RO	0×0	grf_stat_host0_ohci_globalsuspend								
23	NO	0.00	host0_ohci_globalsuspend bit status								
22	RO	0x0	grf_stat_host0_ohci_bufacc								
~~	100	0.00	host0_ohci_bufacc bit status								
21	RO	0x0	grf_stat_host0_ohci_rmtwkp								
~ 1		0.00	host0_ohci_rmtwkp bit status								

Bit	Attr	Reset Value Description			
20.17	0	I(IX(I)	grf_stat_host0_ehci_lpsmc_state		
20:17 RO	R		host0_ehci_lpsmc_state bit status		
16.11	D.O.	10x00	grf_stat_host0_ehci_usbsts		
16:11	KU		host0_ehci_usbsts bit status		
10.0	DO	0,4000	grf_stat_host0_ehci_xfer_cnt		
10:0	RO	RO 0x000	host0_ehci_xfer_cnt bit status		

GRF MAC CON1

Address: Operational Base + offset (0x0904)

Bit	Attr	Reset Value	Description				
31:16		0x0000	write_enable When bit16=1, bit0 can be written by software. When bit16=0, bit 0 cannot be written by software; When bit 17=1, bit 1 can be written by software. When bit 17=0, bit 1 cannot be written by software; When bit 31=1, bit 15 can be written by software. When bit 31=0, bit 15 cannot be written by software;				
15:7	RO	0x0	reserved				
6:4	RW	0×0	gmac2io_phy_intf_sel PHY interface select 3'b001:RGMII 3'b100:RMII All others:Reserved				
3	RW	0×0	gmac2io_flowctrl GMAC transmit flow control When set high, instructs the GMAC to transmit PAUSE Control frame in Full-duplex mode. In Half-duplex mode, the GMAC enables the Back-pressure function until this signal is made low again				
2	RW	0×0	gmac2io_mac_speed MAC speed 1'b1:100-Mbps 1'b0:10-Mbps				
1:0	RO	0x0	reserved				

3.4 PMUGRF Register Description

3.4.1 Internal Address Mapping

Slave address can be divided into different length for different usage, which is shown as follows.

3.4.2 Registers Summary

Name	Offset	Size	Reset Value	Description
PMUGRF_GPIO0A_IOMUX	0x0000	W	0x00001040	GPIO0A iomux control bits
PMUGRF GPIOOB IOMUX	0x0004	W	0x00001000	GPIO0B iomux control bits
PMUGRF GPIOOC IOMUX	0x0008	W	0x00000000	GPIOOC iomux control bits
PMUGRF GPIO0A P	0x0010	W	0x0000466a	GPIO0A PU/PD control
PMUGRF GPIOOB P	0x0014	W	0x000095a5	GPIO0B PU/PD control
PMUGRF_GPIOOC_P	0x0018	W	0x000000aa	GPIOOC PU/PD control
PMUGRF GPIOOA E	0x0020	W	0x0000001	GPIO0A driver strengh control
PMUGRF GPIO0B E	0x0024	W	0x00000000	GPIO0B driver strengh control
PMUGRF GPIOOC E	0x0028	W	0x00000000	GPIO0C driver strengh control
PMUGRF GPIOOL SR	0x0030	W	0x00000000	GPIO0 slow rate control low bits
PMUGRF GPIO0H SR	0x0034	W	0x00000000	GPIO0 slow rate control high bits
PMUGRF_GPIOOL_SMT	0x0038	W	0x00000000	GPIO0 smitter control low bits
PMUGRF GPIO0H SMT	0x003c	W	0x00000000	GPIO0 smitter control high bits
PMUGRF_SOC_CONO	0x0100	W	0x00000000	PMU SOC control register0
PMUGRF SOC CON1	0x0104	W	0x00000000	PMU SOC control register1
PMUGRF SOC CON2	0x0108	W	0x00000800	PMU SOC control register2
PMUGRF_FAILSAFE_CON	0x010c	W	0x00000048	FailSafe module configuation
PMUGRF PVTM CONO	0x0180	W	0x0000003	PVTM control register0
PMUGRF PVTM CON1	0x0184	W	0x00000100	PVTM control register1
PMUGRF PVTM STATUSO	0x0190	W	0x00000000	PVTM status register0
PMUGRF PVTM STATUS1	0x0194	W	0x00000000	PVTM status register1
PMUGRF_OS_REGO	0x0200	W	0x00000000	pmu grf os register0
PMUGRF OS REG1	0x0204	W	0x00000000	pmu grf os register1
PMUGRF OS REG2	0x0208	W	0x00000000	pmu grf os register2
PMUGRF_OS_REG3	0x020c	W	0x00000000	pmu grf os register3
PMUGRF OS REG4	0x0210	W	0x00000000	pmu grf os register4
PMUGRF OS REG5	0x0214	W	0x00000000	pmu grf os register5
PMUGRF OS REG6	0x0218	W	0x00000000	pmu grf os register6
PMUGRF OS REG7	0x021c	W	0x00000000	pmu grf os register7
PMUGRF OS REG8	0x0220	W	0x00000000	pmu grf os register8
PMUGRF OS REG9	0x0224	W	0x00000000	pmu grf os register9
PMUGRF OS REG10	0x0228	W	0x00000000	pmu grf os register10
PMUGRF_OS_REG11	0x022c	W	0x00000000	pmu grf os register11
PMUGRF RESET FUNCTIO	0x0230	W	0x00000000	system reset status register
<u>N STATUS</u>	0.0230	VV	0x00000000	system reset status register
PMUGRF SIG DETECT C	0x0380	W	0x00000000	sdmmc detect control reg
<u>ON</u>	0.000	**	000000000	summe detect control reg
PMUGRF_SIG_DETECT_ST	0x0390	W	0x00000000	sdmmc detect status reg
<u>ATUS</u>	3,0330	"		Janime decest status reg
PMUGRF_SIG_DETECT_ST	0x03a0	W	0x00000000	sdmmc irq clear reg
ATUS CLEAR	2,0000	ļ <u>.</u>		
PMUGRF SDMMC DET C	0x03b0	W	0x00030100	sdmmc detect counter reg
<u>OUNTER</u>	-			

Notes: Size: **B**- Byte (8 bits) access, **HW**- Half WORD (16 bits) access, **W**-WORD (32 bits) access

3.4.3 Detail Register Description

PMUGRF GPIO0A IOMUX

Address: Operational Base + offset (0x0000)

Bit	Attr	Reset Value	Description
			write_enable
			When bit16=1, bit0 can be written by software.
			When bit16=0, bit 0 cannot be written by software;
31:16	WO.	0x0000	When bit $17=1$, bit 1 can be written by software.
31.10	WO	00000	When bit 17=0, bit 1 cannot be written by software;
			When bit 31=1, bit 15 can be written by software.
			When bit 31=0, bit 15 cannot be written by software;
15:14	RW	0×0	gpio0a7_sel
13.11	100	OXO .	2'h0: gpio
			gpio0a6_sel
13:12	RW	0×1	2'h0: gpio
13.12			2'h1: tsadc_shutm0
			2'h2: tsadc_shut_orignal
11:10	RW	0×0	gpio0a5_sel
			2'h0: gpio
	RW	0×0	gpio0a4_sel
9:8			2'h0: gpio
			2'h1: pmic_sleep
			2'h2: tsadc_shutm1
7.6	DW	01	gpio0a3_sel
7:6	RW	0x1	2'h0: gpio
			2'h1: sdmmc_detn
5:4	RW	0x0	gpio0a2_sel
			2'h0: gpio
3:2	RW	0x0	gpio0a1_sel
			2'h0: gpio
1:0	RW	0×0	gpio0a0_sel 2'h0: gpio
1:0	KVV	0x0	
			2'h1: clk_out_wifi

PMUGRF GPIOOB IOMUX

Address: Operational Base + offset (0x0004)

Bit	Attr	Reset Value	Description
			write_enable When bit16=1, bit0 can be written by software.
			When bit16=0, bit 0 cannot be written by software;
			When bit 17=1, bit 1 can be written by software.
31:16	WO	0x0000	When bit 17=1, bit 1 can be written by software;
			When bit 17-0, bit I cannot be written by software,
			When bit 31=1, bit 15 can be written by software.
			When bit 31=0, bit 15 cannot be written by software;
			gpio0b7_sel
			2'h0: gpio
15:14	RW	0x0	2'h1: pwm_0
			2'h2: otg_drv
			gpio0b6_sel
13:12	DW	0x1	2'h0: gpio
13.12	FCVV	UXI	2 No. gpto 2'h1: flash_vol_sel
			gpio0b5_sel
		0×0	2'h0: gpio
11:10	RW		2'h1: uart0_rts
			2'h2: test_clk1
			gpio0b4_sel
	RW	V 0×0	2'h0: gpio
9:8			2'h1: uart0_cts
			2'h2: pmu_debug2
			2'h3: pmu_debug_sout
			gpio0b3_sel
			2'h0: gpio
7:6	RW	0x0	2'h1: uart0 rx
			2'h2: pmu_debug1
			gpio0b2_sel
_ ,	D.4.		2'h0: gpio
5:4	RW	0×0	2'h1: uart0_tx
			2'h2: pmu_debug0
			gpio0b1_sel
3:2	RW	0x0	2'h0: gpio
			2'h1: i2c0_sda
			gpio0b0_sel
1:0	RW	0x0	2'h0: gpio
			2'h1: i2c0_scl

PMUGRF GPIOOC IOMUX

Address: Operational Base + offset (0x0008)

Bit	Attr	Reset Value	Description
			write_enable
			When bit16=1, bit0 can be written by software.
			When bit16=0, bit 0 cannot be written by software;
21.16	W/O	0000	When bit $17=1$, bit 1 can be written by software.
31:16	WO	0x0000	When bit 17=0, bit 1 cannot be written by software;
			When bit 31=1, bit 15 can be written by software.
			When bit 31=0, bit 15 cannot be written by software;
15:14	DW	0x0	gpio0c7_sel
13.14	KVV	UXU	2'h0: gpio
13:12	DW	0x0	gpio0c6_sel
13.12	KVV	UXU	2'h0: gpio
			gpio0c5_sel
11:10	RW	0x0	2'h0: gpio
			2'h1: osc_gpo
		V 0×0	gpio0c4_sel
9:8	RW		2'h0: gpio
			2'h1: clk_inout_32k
	RW		gpio0c3_sel
7:6		0x0	2'h0: gpio
7.0		W OXO	2'h1: i2c1_sda
			2'h2: uart3_rtsm0
			gpio0c2_sel
			2'h0: gpio
5:4	RW	0x0	2'h1: i2c1_scl
			2'h2: uart3_ctsm0
			2'h3: pmu_debug5
			gpio0c1_sel
			2'h0: gpio
3:2	RW	0x0	2'h1: pwm_3
			2'h2: uart3_rxm0
			2'h3: pmu_debug4
			gpio0c0_sel
1.0	D)4/	00	2'h0: gpio
1:0	RW	0×0	2'h1: pwm_1
			2'h2: uart3_txm0
			2'h3: pmu_debug3

PMUGRF_GPIO0A_P
Address: Operational Base + offset (0x0010)

Bit	Attr	Reset Value	Description
			write_enable
			When bit16=1, bit0 can be written by software.
			When bit16=0, bit 0 cannot be written by software;
24.46		0.000	When bit 17=1, bit 1 can be written by software.
31:16	WO	0x0000	When bit 17=0, bit 1 cannot be written by software;
			When bit 31=1, bit 15 can be written by software.
			When bit 31=0, bit 15 cannot be written by software;
			gpio0a7_p
			2'b00: Z(Normal operation);
15:14	RW	0x1	2'b01: weak 1(pull-up);
			2'b10: weak 0(pull_down);
			2'b11: Repeater(Bus keeper)
			gpio0a6_p
			2'b00: Z(Normal operation);
13:12	RW	0x0	2'b01: weak 1(pull-up);
			2'b10: weak 0(pull_down);
			2'b11: Repeater(Bus keeper)
			gpio0a5_p
11.10	DW	01	2'b00: Z(Normal operation);
11:10	KVV	0x1	2'b01: weak 1(pull-up);
			2'b10: weak 0(pull_down);
			2'b11: Repeater(Bus keeper) gpio0a4_p
			2'b00: Z(Normal operation);
9:8	RW	0x2	2'b01: weak 1(pull-up);
3.0	I VV	OXZ	2'b10: weak 0(pull_down);
			2'b11: Repeater(Bus keeper)
			gpio0a3_p
			2'b00: Z(Normal operation);
7:6	RW	0x1	2'b01: weak 1(pull-up);
			2'b10: weak 0(pull_down);
			2'b11: Repeater(Bus keeper)
			gpio0a2_p
			2'b00: Z(Normal operation);
5:4	RW	0x2	2'b01: weak 1(pull-up);
			2'b10: weak 0(pull_down);
			2'b11: Repeater(Bus keeper)
			gpio0a1_p
			2'b00: Z(Normal operation);
3:2	RW	0x2	2'b01: weak 1(pull-up);
			2'b10: weak 0(pull_down);
			2'b11: Repeater(Bus keeper)

Bit	Attr	Reset Value	Description
			gpio0a0_p
			2'b00: Z(Normal operation);
1:0	RW	0x2	2'b01: weak 1(pull-up);
			2'b10: weak 0(pull_down);
			2'b11: Repeater(Bus keeper)

PMUGRF_GPIO0B_P Address: Operational Base + offset (0x0014)

Bit		Reset Value	Description
			write_enable
			When bit16=1, bit0 can be written by software.
			When bit16=0, bit 0 cannot be written by software;
31:16	WO	0x0000	When bit 17=1, bit 1 can be written by software.
31:16	WO	00000	When bit 17=0, bit 1 cannot be written by software;
			When bit 31=1, bit 15 can be written by software.
			When bit 31=0, bit 15 cannot be written by software;
			gpio0b7_p
			2'b00: Z(Normal operation);
15:14	RW	0x2	2'b01: weak 1(pull-up);
			2'b10: weak 0(pull_down);
			2'b11: Repeater(Bus keeper)
			gpio0b6_p
			2'b00: Z(Normal operation);
13:12	RW	0x1	2'b01: weak 1(pull-up);
			2'b10: weak 0(pull_down);
			2'b11: Repeater(Bus keeper)
			gpio0b5_p
			2'b00: Z(Normal operation);
11:10	RW	0x1	2'b01: weak 1(pull-up);
			2'b10: weak 0(pull_down);
			2'b11: Repeater(Bus keeper)
			gpio0b4_p
0.0	DW	0.41	2'b00: Z(Normal operation);
9:8	RW	0x1	2'b01: weak 1(pull-up);
ı			2'b10: weak 0(pull_down); 2'b11: Repeater(Bus keeper)
			gpio0b3_p 2'b00: Z(Normal operation);
7:6	RW	0x2	2'b01: weak 1(pull-up);
7.0	1200	0,72	2'b10: weak 1(pull-up); 2'b10: weak 0(pull_down);
			2'b11: Repeater(Bus keeper)
			2 DII. Vehearei (Das keehei)

Bit	Attr	Reset Value	Description
			gpio0b2_p
			2'b00: Z(Normal operation);
5:4	RW	0x2	2'b01: weak 1(pull-up);
			2'b10: weak 0(pull_down);
			2'b11: Repeater(Bus keeper)
			gpio0b1_p
			2'b00: Z(Normal operation);
3:2	RW	0x1	2'b01: weak 1(pull-up);
			2'b10: weak 0(pull_down);
			2'b11: Repeater(Bus keeper)
			gpio0b0_p
			2'b00: Z(Normal operation);
1:0	RW	0x1	2'b01: weak 1(pull-up);
			2'b10: weak 0(pull_down);
			2'b11: Repeater(Bus keeper)

PMUGRF GPIOOC P Address: Operational Base + offset (0x0018)

Bit	Attr	Reset Value	Description
			write_enable
			When bit16=1, bit0 can be written by software.
			When bit16=0, bit 0 cannot be written by software;
31:16	WO	0x0000	When bit 17=1, bit 1 can be written by software.
31.10	VVO	00000	When bit 17=0, bit 1 cannot be written by software;
			When bit 31=1, bit 15 can be written by software.
			When bit 31=0, bit 15 cannot be written by software;
			gpio0c7_p
			2'b00: Z(Normal operation);
15:14	RW	0x0	2'b01: weak 1(pull-up);
			2'b10: weak 0(pull_down);
			2'b11: Repeater(Bus keeper)
			gpio0c6_p
			2'b00: Z(Normal operation);
13:12	RW	0x0	2'b01: weak 1(pull-up);
			2'b10: weak 0(pull_down);
			2'b11: Repeater(Bus keeper)
			gpio0c5_p
			2'b00: Z(Normal operation);
11:10	RW	W 0x0	2'b01: weak 1(pull-up);
			2'b10: weak 0(pull_down);
			2'b11: Repeater(Bus keeper)

Bit	Attr	Reset Value	Description
			gpio0c4_p
			2'b00: Z(Normal operation);
9:8	RW	0x0	2'b01: weak 1(pull-up);
			2'b10: weak 0(pull_down);
			2'b11: Repeater(Bus keeper)
			gpio0c3_p
			2'b00: Z(Normal operation);
7:6	RW	0x2	2'b01: weak 1(pull-up);
			2'b10: weak 0(pull_down);
			2'b11: Repeater(Bus keeper)
			gpio0c2_p
			2'b00: Z(Normal operation);
5:4	RW	0x2	2'b01: weak 1(pull-up);
			2'b10: weak 0(pull_down);
			2'b11: Repeater(Bus keeper)
			gpio0c1_p
			2'b00: Z(Normal operation);
3:2	RW	0x2	2'b01: weak 1(pull-up);
			2'b10: weak 0(pull_down);
			2'b11: Repeater(Bus keeper)
			gpio0c0_p
			2'b00: Z(Normal operation);
1:0	RW	0x2	2'b01: weak 1(pull-up);
			2'b10: weak 0(pull_down);
			2'b11: Repeater(Bus keeper)

PMUGRF GPIOOA E

Address: Operational Base + offset (0x0020)

Bit	Attr	Reset Value	Description
31:16	WO	0×0000	write_enable When bit16=1, bit0 can be written by software. When bit16=0, bit 0 cannot be written by software; When bit 17=1, bit 1 can be written by software. When bit 17=0, bit 1 cannot be written by software; When bit 31=1, bit 15 can be written by software. When bit 31=0, bit 15 cannot be written by software;
15:14	RW	0×0	gpio0a7_e 2'b00: 2mA 2'b01: 4mA 2'b10: 8mA 2'b11: 12mA

Bit	Attr	Reset Value	Description
			gpio0a6_e
			2'b00: 2mA
13:12	RW	0x0	2'b01: 4mA
			2'b10: 8mA
			2'b11: 12mA
			gpio0a5_e
			2'b00: 2mA
11:10	RW	0x0	2'b01: 4mA
			2'b10: 8mA
			2'b11: 12mA
			gpio0a4_e
			2'b00: 2mA
9:8	RW	0x0	2'b01: 4mA
			2'b10: 8mA
			2'b11: 12mA
			gpio0a3_e
			2'b00: 2mA
7:6	RW	0x0	2'b01: 4mA
			2'b10: 8mA
			2'b11: 12mA
			gpio0a2_e
			2'b00: 2mA
5:4	RW	0x0	2'b01: 4mA
			2'b10: 8mA
			2'b11: 12mA
			gpio0a1_e
			2'b00: 2mA
3:2	RW	0x0	2'b01: 4mA
			2'b10: 8mA
			2'b11: 12mA
			gpio0a0_e
			2'b00: 2mA
1:0	RW	0x1	2'b01: 4mA
			2'b10: 8mA
			2'b11: 12mA

PMUGRF GPIO0B E
Address: Operational Base + offset (0x0024)

		write enable
		write_enable
		When bit16=1, bit0 can be written by software.
		When bit16=0, bit 0 cannot be written by software;
	0.0000	When bit 17=1, bit 1 can be written by software.
NO	0x0000	When bit 17=0, bit 1 cannot be written by software;
		When bit 31=1, bit 15 can be written by software.
		When bit 31=0, bit 15 cannot be written by software;
		gpio0b7_e
		2'b00: 2mA
₹W	0x0	2'b01: 4mA
		2'b10: 8mA
		2'b11: 12mA
		gpio0b6_e
		2'b00: 2mA
RW	0x0	2'b01: 4mA
		2'b10: 8mA
		2'b11: 12mA
		gpio0b5_e
		2'b00: 2mA
RW	0x0	2'b01: 4mA
		2'b10: 8mA
		2'b11: 12mA
		gpio0b4_e
	00	2'b00: 2mA
<vv td="" <=""><td>UXU</td><td>2'b01: 4mA</td></vv>	UXU	2'b01: 4mA
		2'b10: 8mA 2'b11: 12mA
		gpio0b3_e 2'b00: 2mA
21//	0×0	2'b01: 4mA
\vv	0.00	2'b10: 8mA
		2'b11: 12mA
		gpio0b2_e
		2'b00: 2mA
RW	0x0	2'b01: 4mA
```	O/C	2'b10: 8mA
		2'b11: 12mA
		gpio0b1_e
		2'b00: 2mA
RW	0x0	2'b01: 4mA
		2'b10: 8mA
		2'b11: 12mA
- र - र	www.w	0x0 0x0 0x0 0x0 0x0 0x0 0x0 0x0

Bit	Attr	<b>Reset Value</b>	Description
			gpio0b0_e
			2'b00: 2mA
1:0	RW	0x0	2'b01: 4mA
			2'b10: 8mA
			2'b11: 12mA

PMUGRF GPIOOC E
Address: Operational Base + offset (0x0028)

Bit		Reset Value	Description
			write_enable
			When bit16=1, bit0 can be written by software.
			When bit16=0, bit 0 cannot be written by software;
24.46			When bit 17=1, bit 1 can be written by software.
31:16	WO	0×0000	When bit 17=0, bit 1 cannot be written by software;
			······
			When bit $31=1$ , bit $15$ can be written by software.
			When bit 31=0, bit 15 cannot be written by software;
			gpio0c7_e
			2'b00: 2mA
15:14	RW	0x0	2'b01: 4mA
			2'b10: 8mA
			2'b11: 12mA
			gpio0c6_e
			2'b00: 2mA
13:12	RW	0x0	2'b01: 4mA
			2'b10: 8mA
			2'b11: 12mA
			gpio0c5_e
			2'b00: 2mA
11:10	RW	0x0	2'b01: 4mA
			2'b10: 8mA
			2'b11: 12mA
			gpio0c4_e
			2'b00: 2mA
9:8	RW	0x0	2'b01: 4mA
			2'b10: 8mA
			2'b11: 12mA
			gpio0c3_e
	D		2'b00: 2mA
7:6	RW	0x0	2'b01: 4mA
			2'b10: 8mA
			2'b11: 12mA

Bit	Attr	<b>Reset Value</b>	Description
			gpio0c2_e
			2'b00: 2mA
5:4	RW	0x0	2'b01: 4mA
			2'b10: 8mA
			2'b11: 12mA
			gpio0c1_e
			2'b00: 2mA
3:2	RW		2'b01: 4mA
			2'b10: 8mA
			2'b11: 12mA
			gpio0c0_e
			2'b00: 2mA
1:0	RW		2'b01: 4mA
			2'b10: 8mA
			2'b11: 12mA

PMUGRF GPIOOL SR Address: Operational Base + offset (0x0030)

Bit	Attr	<b>Reset Value</b>	Description
31:16	WO	0×0000	write_enable When bit16=1, bit0 can be written by software. When bit16=0, bit 0 cannot be written by software; When bit 17=1, bit 1 can be written by software. When bit 17=0, bit 1 cannot be written by software; When bit 31=1, bit 15 can be written by software. When bit 31=0, bit 15 cannot be written by software;
15	RW	0×0	gpio0b7_sr 1'b0: slow(half frequency) 1'b1: fast
14	RW	0×0	<pre>gpio0b6_sr 1'b0: slow(half frequency) 1'b1: fast</pre>
13	RW	0×0	gpio0b5_sr 1'b0: slow(half frequency) 1'b1: fast
12	RW	0×0	gpio0b4_sr 1'b0: slow(half frequency) 1'b1: fast
11	RW	0×0	gpio0b3_sr 1'b0: slow(half frequency) 1'b1: fast
10	RW	0×0	gpio0b2_sr 1'b0: slow(half frequency) 1'b1: fast

Bit	Attr	Reset Value	Description
			gpio0b1_sr
9	RW	0x0	1'b0: slow(half frequency)
			1'b1: fast
			gpio0b0_sr
8	RW	0x0	1'b0: slow(half frequency)
			1'b1: fast
			gpio0a7_sr
7	RW	0x0	1'b0: slow(half frequency)
			1'b1: fast
			gpio0a6_sr
6	RW	0x0	1'b0: slow(half frequency)
			1'b1: fast
			gpio0a5_sr
5	RW	0x0	1'b0: slow(half frequency)
			1'b1: fast
			gpio0a4_sr
4	RW	0x0	1'b0: slow(half frequency)
			1'b1: fast
			gpio0a3_sr
3	RW	0x0	1'b0: slow(half frequency)
			1'b1: fast
			gpio0a2_sr
2	RW	0x0	1'b0: slow(half frequency)
			1'b1: fast
			gpio0a1_sr
1	RW	0x0	1'b0: slow(half frequency)
			1'b1: fast
			gpio0a0_sr
0	RW	0x0	1'b0: slow(half frequency)
			1'b1: fast

## PMUGRF GPIO0H SR

Address: Operational Base + offset (0x0034)

Bit	Attr	<b>Reset Value</b>	Description
31:16	WO	0×0000	write_enable When bit16=1, bit0 can be written by software. When bit16=0, bit 0 cannot be written by software; When bit 17=1, bit 1 can be written by software. When bit 17=0, bit 1 cannot be written by software; When bit 31=1, bit 15 can be written by software.
			When bit 31=0, bit 15 cannot be written by software;
15:8	RO	0x0	reserved

Bit	Attr	Reset Value	Description
			gpio0c7_sr
7	RW	0x0	1'b0: slow(half frequency)
			1'b1: fast
			gpio0c6_sr
6	RW	0x0	1'b0: slow(half frequency)
			1'b1: fast
			gpio0c5_sr
5	RW	0x0	1'b0: slow(half frequency)
			1'b1: fast
			gpio0c4_sr
4	RW	0x0	1'b0: slow(half frequency)
			1'b1: fast
			gpio0c3_sr
3	RW	0x0	1'b0: slow(half frequency)
			1'b1: fast
			gpio0c2_sr
2	RW	0x0	1'b0: slow(half frequency)
			1'b1: fast
			gpio0c1_sr
1	RW	0x0	1'b0: slow(half frequency)
			1'b1: fast
			gpio0c0_sr
0	RW	0x0	1'b0: slow(half frequency)
			1'b1: fast

## PMUGRF GPIOOL SMT

Address: Operational Base + offset (0x0038)

Bit	Attr	<b>Reset Value</b>	Description
			write_enable
			When bit16=1, bit0 can be written by software.
			When bit16=0, bit 0 cannot be written by software;
21.16	WO.	0×0000	When bit 17=1, bit 1 can be written by software.
31:16	WO	0x0000	When bit 17=0, bit 1 cannot be written by software;
			When bit 31=1, bit 15 can be written by software.
			When bit 31=0, bit 15 cannot be written by software;
			gpio0b7_smt
15	RW	0x0	0: No hysteresis
			1: Schmitt trigger enabled
			gpio0b6_smt
14	RW	0x0	0: No hysteresis
			1: Schmitt trigger enabled
			gpio0b5_smt
13	RW	V 0x0	0: No hysteresis
			1: Schmitt trigger enabled

Bit	Attr	Reset Value	Description
			gpio0b4_smt
12	RW	0x0	0: No hysteresis
			1: Schmitt trigger enabled
			gpio0b3_smt
11	RW	0x0	0: No hysteresis
			1: Schmitt trigger enabled
			gpio0b2_smt
10	RW	0x0	0: No hysteresis
			1: Schmitt trigger enabled
			gpio0b1_smt
9	RW	0x0	0: No hysteresis
			1: Schmitt trigger enabled
			gpio0b0_smt
8	RW	0x0	0: No hysteresis
			1: Schmitt trigger enabled
			gpio0a7_smt
7	RW	0x0	0: No hysteresis
			1: Schmitt trigger enabled
			gpio0a6_smt
6	RW	0x0	0: No hysteresis
			1: Schmitt trigger enabled
			gpio0a5_smt
5	RW	0x0	0: No hysteresis
			1: Schmitt trigger enabled
			gpio0a4_smt
4	RW	0x0	0: No hysteresis
			1: Schmitt trigger enabled
			gpio0a3_smt
3	RW	0x0	0: No hysteresis
			1: Schmitt trigger enabled
			gpio0a2_smt
2	RW	0x0	0: No hysteresis
			1: Schmitt trigger enabled
			gpio0a1_smt
1	RW	0x0	0: No hysteresis
			1: Schmitt trigger enabled
			gpio0a0_smt
0	RW	0×0	0: No hysteresis
			1: Schmitt trigger enabled

# PMUGRF_GPIO0H_SMT

Address: Operational Base + offset (0x003c)

Bit	Attr	Reset Value	Description
			write_enable
			When bit16=1, bit0 can be written by software.
			When bit16=0, bit 0 cannot be written by software;
			When bit 17=1, bit 1 can be written by software.
31:16	wo	0×0000	When bit 17=0, bit 1 cannot be written by software;
			When bit 31=1, bit 15 can be written by software.
			When bit 31=0, bit 15 cannot be written by software;
15:8	RO	0x0	reserved
			gpio0c7_smt
7	RW	0x0	0: No hysteresis
			1: Schmitt trigger enabled
			gpio0c6_smt
6	RW	0x0	0: No hysteresis
			1: Schmitt trigger enabled
			gpio0c5_smt
5	RW	0x0	0: No hysteresis
			1: Schmitt trigger enabled
			gpio0c4_smt
4	RW	0x0	0: No hysteresis
			1: Schmitt trigger enabled
			gpio0c3_smt
3	RW	0x0	0: No hysteresis
			1: Schmitt trigger enabled
			gpio0c2_smt
2	RW	0x0	0: No hysteresis
			1: Schmitt trigger enabled
			gpio0c1_smt
1	RW	0x0	0: No hysteresis
			1: Schmitt trigger enabled
			gpio0c0_smt
0	RW	0x0	0: No hysteresis
			1: Schmitt trigger enabled

## PMUGRF SOC CONO

Address: Operational Base + offset (0x0100)

Bit	Attr	<b>Reset Value</b>	Description
31:16	WO		write_enable When bit 16=1, bit0 can be written by software. When bit 16=0, bit 0 cannot be written by software; When bit 17=1, bit 1 can be written by software. When bit 17=0, bit 1 cannot be written by software; When bit 31=1, bit 15 can be written by software. When bit 31=0, bit 15 cannot be written by software;

Bit	Attr	<b>Reset Value</b>	Description
			poc_pmuio2_sel18
15	RW	0×0	PMU VCCIO2 voltage select
	1200	0.00	1'b0: 3.3V
			1'b1: 1.8V
			poc_pmuio1_sel18
14	RW	0×0	PMU VCCIO1 voltage select
14	IXVV	0.00	1'b0: 3.3V
			1'b1: 1.8V
		0x0	ddrphy_bufferen_core
13	RW		1'b0: enable ddrphy io retention;
			1'b1: disable ddrphy io retention;
		0×0	ddrphy_bufferen_sel
12	RW		1'b1: ddrphy_bufferen from ddrphy_bufferen_core;
			1'b0: ddrphy_bufferen from pmu and ddr_fail_safe
11:7	RO	0x0	reserved
6	DW	0x0	uart0_cts_sel
6	RW	UXU	1'b1: reverse polarity of cts;
_	RW	0.40	uart0_rts_sel
5	KVV	0x0	1'b1: reverse polarity of rts;
4:1	RO	0x0	reserved
			con_32k_ioe
0	RW	0x0	1'b1: input mode;
			1'b0: output mode

## PMUGRF SOC CON1

Address: Operational Base + offset (0x0104)

Bit	Attr	<b>Reset Value</b>	Description
31:16	WO	0x0000	write_enable When bit16=1, bit0 can be written by software. When bit16=0, bit 0 cannot be written by software; When bit 17=1, bit 1 can be written by software. When bit 17=0, bit 1 cannot be written by software; When bit 31=1, bit 15 can be written by software. When bit 31=0, bit 15 cannot be written by software;
15:13	RO	0x0	reserved
12	RW	0×0	hold_the_ddrfailsafe hold ddrfailsafe reset
11:0	RW	0×000	resetn_hold Please refer to cru_softrst6_con. Each bit has a hold

PMUGRF SOC CON2
Address: Operational Base + offset (0x0108)

Bit	Attr	<b>Reset Value</b>	Description
31:13	RO	0x0	reserved
			npor_out2chip_pulse_width
12:0	RW	0x0000	Pulse width of triggered Npor output. Multipled with XIN_OSC
			clock period

PMUGRF FAILSAFE CON
Address: Operational Base + offset (0x010c)

Bit	Attr	<b>Reset Value</b>	Description
31:9	RO	0x0	reserved
8	RW	0x0	upctl_c_sysreq_cfg 1'b1: always enable requesting DDR controller to enter low power state, when ddr failsafe module is working. 1'b0: After ddr failsafe module enters selfrefresh status, then
			request DDR controller to enter low power state
7	RO	0x0	reserved
6	RW	0×1	ddr_io_ret_cfg 1'b0: disable ddr io retention during system failure; 1'b1: enable ddr io retention during system failure
5	RW	0×0	ddr_io_ret_de_req 1'b1: request to enter retention, during system failure
4	RW	0x0	ddrc_gating_en 1'b1: enable ddr clock gating during system failure
3	RW	0x1	sref_enter_en 1'b1: enable ddr selfrefresh enter when system is failed
2	RW	0×0	ddrio_ret_en 1'b1: enable ddr io retension when system is failed 1'b0: remain ddr io status when system is failed
1	RW	0×0	wdt_shut_reset_trigger_en Enable failsafe wdt input 1'b1: enable; 1'b0: disable;
0	RW	0×0	tsadc_shut_reset_trigger_en Enable failsafe tsadc input 1'b1: enable; 1'b0: disable;

PMUGRF PVTM CON0
Address: Operational Base + offset (0x0180)

Bit	Attr	<b>Reset Value</b>	Description
31:16	WO	0×0000	write_enable When bit16=1, bit0 can be written by software. When bit16=0, bit 0 cannot be written by software; When bit 17=1, bit 1 can be written by software. When bit 17=0, bit 1 cannot be written by software; When bit 31=1, bit 15 can be written by software. When bit 31=0, bit 15 cannot be written by software;
15:8	RO	0x0	reserved
7:2	RW	0x00	pvtm_clkout_div pvtm_clkout_div
1	RW	0x1	pvtm_pmu_osc_en pvtm_pmu_osc_en 1'b1: enable osc ring in PVTM
0	RW	0x1	pvtm_pmu_start pvtm_pmu_start 1'b1: start pvtm

### PMUGRF PVTM CON1

Address: Operational Base + offset (0x0184)

Bit	Attr	<b>Reset Value</b>	Description
31:0	RW	0x00000000	pvtm_pmu_cal_cnt
31.0	SI:U KW	w oxoooooo	pvtm_pmu_cal_cnt

### **PMUGRF PVTM STATUSO**

Address: Operational Base + offset (0x0190)

Bit	Attr	<b>Reset Value</b>	Description
31:1	RO	0x0	reserved
0	RW	(()x()	pvtm_pmu_freq_done
0	IK VV		pvtm_pmu_freq_done

## **PMUGRF PVTM STATUS1**

Address: Operational Base + offset (0x0194)

Bit	Attr	<b>Reset Value</b>	Description
31:0	RW	10x00000000	pvtm_pmu_freq_cnt
31.0			pvtm_pmu_freq_cnt

#### **PMUGRF OS REGO**

Address: Operational Base + offset (0x0200)

Bit	Attr	<b>Reset Value</b>	Description
31:0	DW	RW  0x00000000	pmu_os_reg0
31.0	IX VV		reserved

#### PMUGRF_OS_REG1

Address: Operational Base + offset (0x0204)

Bit	Attr	<b>Reset Value</b>	Description
31:0	RW	UXUUUUUUUU	omu_os_reg1 reserved

#### **PMUGRF OS REG2**

Address: Operational Base + offset (0x0208)

Bit	Attr	<b>Reset Value</b>	Description
31:0	RW	0×00000000	pmu_os_reg2 reserved

#### **PMUGRF_OS_REG3**

Address: Operational Base + offset (0x020c)

Bit	Attr	<b>Reset Value</b>	Description
31:0	RW	0x00000000	pmu_os_reg3 reserved

#### **PMUGRF OS REG4**

Address: Operational Base + offset (0x0210)

Bit	Attr	<b>Reset Value</b>	Description
31:0	RW	UXUUUUUUUU	pmu_os_reg4 reserved

#### **PMUGRF OS REG5**

Address: Operational Base + offset (0x0214)

Bit	Attr	<b>Reset Value</b>	Description
31:0	RW	0x00000000	pmu_os_reg5 reserved

#### **PMUGRF OS REG6**

Address: Operational Base + offset (0x0218)

Bit	Attr	<b>Reset Value</b>	Description		
31:0	RW	UXUUUUUUUU	pmu_os_reg6 reserved		

#### **PMUGRF OS REG7**

Address: Operational Base + offset (0x021c)

Bit	Attr	<b>Reset Value</b>	Description		
31:0	RW	0x00000000	omu_os_reg7		
31.0	IXVV		reserved		

#### **PMUGRF OS REG8**

Address: Operational Base + offset (0x0220)

Bit	Attr	<b>Reset Value</b>	Description			
31:0	RW	101211011011111111111	pmu_os_reg8 Reserved. Once this reg is wrotten, it can't be reset			

#### **PMUGRF OS REG9**

Address: Operational Base + offset (0x0224)

Bit	Attr	<b>Reset Value</b>	Description				
31:0	RW	102000000000	pmu_os_reg9 reserved. once this reg is wrotten, it can't be reset				

## **PMUGRF OS REG10**

Address: Operational Base + offset (0x0228)

Bit	Attr	<b>Reset Value</b>	Description				
31:0	RW	10×000000000	pmu_os_reg10 reserved. once this reg is wrotten, it can't be reset				

#### **PMUGRF OS REG11**

Address: Operational Base + offset (0x022c)

Bit	Attr	<b>Reset Value</b>	Description			
31:0	RW	10×00000000	pmu_os_reg11 reserved. once this reg is wrotten, it can't be reset			

#### **PMUGRF RESET FUNCTION STATUS**

Address: Operational Base + offset (0x0230)

Bit	Attr	<b>Reset Value</b>	Description				
	RO	0x00000000	st_rstfunc_status				
31:0			32'H12345678: WDT RESET				
31.0			32'H23456789: TSADC RESET				
			32'H3456789A: SOFTWARE RESET				

### **PMUGRF SIG DETECT CON**

Address: Operational Base + offset (0x0380)

Bit	Attr	<b>Reset Value</b>	Description			
31:2	RO	0x0	reserved			
			sdmmc_detectn_neg_irq_msk			
1	RW	0×0	Enable sdmmc detectn negedge irq			
1	KW		1'b1: enable			
			1'b0: disable			
			sdmmc_detectn_pos_irq_msk			
	DW		Enable sdmmc detectn posedge irq			
0	RW		1'b1: enable			
			1'b0: disable			

## **PMUGRF SIG DETECT STATUS**

Address: Operational Base + offset (0x0390)

Bit	Attr	Reset Value	Description			
31:2	RO	0x0	reserved			
			sdmmc_detectn_neg_irq			
1	RW	0x0	1'b1: irq asserted;			
			1'b0: no irq			
			sdmmc_detectn_pos_irq			
0	RW	0x0	1'b1: irq asserted;			
			1'b0: no irq			

### PMUGRF SIG DETECT STATUS CLEAR

Address: Operational Base + offset (0x03a0)

Bit	Attr	<b>Reset Value</b>	Description				
31:2	RO	0x0	reserved				
1	WO	0×0	sdmmc_detectn_neg_irq_clr 1'b1: clear irq				
0	WO	0×0	sdmmc_detectn_pos_irq_clr 1'b1: clear irq				

### PMUGRF SDMMC DET COUNTER

Address: Operational Base + offset (0x03b0)

Bit	Attr	<b>Reset Value</b>	Description				
31:20	RO	0x0	reserved				
19:0	DW	RW 10x30100	sdmmc_detectn_count				
19.0	KVV		sdmmc_detectn_count bit register				

# 3.5 COREGRF Register Description

## 3.5.1 Internal Address Mapping

Slave address can be divided into different length for different usage, which is shown as follows.

#### **3.5.2 Registers Summary**

Name	Offset	Size	Reset Value	Description
COREGRE CA35 PEFF CO	0x0000	W	0x00000000	CA35 performance monitor
<u>NO</u>	0.0000	VV	0.00000000	control register0
COREGRE CA35 PEFF CO	0x0004	W	0x00000000	CA35 performance monitor
<u>N1</u>	00004	\vv	0x00000000	control register1
COREGRE CA35 PEFF CO	0,0000	۱۸/	0x00000000	CA35 performance monitor
<u>N2</u>	0x0008	W	000000000	control register2
COREGRE CA35 PEFF CO	0,0000	W	0,00000000	CA35 performance monitor
<u>N3</u>	0x000c	VV	0x00000000	control register3

Name	Offset	Size	Reset Value	Description
COREGRE CA35 PEFF CO	0x0010	W	0x00000000	CA35 performance monitor
<u>N4</u>	0.0010	VV	0.00000000	control register4
COREGRE CA35 PEFF CO	0x0014	W	0x00000000	CA35 performance monitor
<u>N5</u>	00014	VV	0x00000000	control register5
COREGRE CA35 PEFF CO	0x0018	W	0x00000000	CA35 performance monitor
<u>N6</u>	00010	VV	0x00000000	control register6
COREGRE CA35 PEFF CO	0x001c	W	0x00000000	CA35 performance monitor
<u>N7</u>	UXUUIC	VV	0x00000000	control register7
COREGRE CA35 PEFF CO	0x0020	W	0x00000000	CA35 performance monitor
<u>N8</u>	UXUU2U	VV	0x00000000	control register8
COREGRE A35 PERF RD	0,,0020	١٨/	0×0000000	CA35 performance monitor status
MAX LATENCY NUM	0x0030	W	0x00000000	register
COREGRE A35 PERF RD	00024	\A/	000000000	CA35 performance monitor status
LATENCY SAMP NUM	0x0034	W	0x00000000	register
COREGRE A35 PERF RD	00020	\A/	00000000	CA35 performance monitor status
LATENCY ACC NUM	0x0038	W	0x00000000	register
COREGRE A35 PERF RD	0,002	١٨/	0×0000000	CA35 performance monitor status
AXI TOTAL BYTE	0x003c	W	0x00000000	register
COREGRE A35 PERF WR	0x0040	W	0x00000000	CA35 performance monitor status
AXI TOTAL BYTE				register
COREGRE A35 PERF WO	0,0044	W	0x00000000	CA35 performance monitor status
RKING CNT	0x0044			register
COREGRE A35 PERF INT	00040	W	00000000	CA35 performance monitor status
<u>STATUS</u>	ATUS   0x0048		0x00000000	register
COREGRE COREPVTM CO	0000	\A/	00000000	CODE DVTM combined in mintour
NO	0x0080	W	UXUUUUUUUU	CORE PVTM control register0
COREGRE COREPVTM CO	00004	\A/	000000000	CODE DIVIN and the land in the stand
<u>N1</u>	0x0084	W	0x00000000	CORE PVTM control register1
COREGRE COREPVTM ST	OREGRE COREPVTM ST		0.0000000	CODE DISTANTA DE LA CO
ATUS0	0x0088	W	0x00000000	CORE PVTM status register0
COREGRE COREPVTM ST	0000-	\A.	000000000	CODE DISTM status assistant
ATUS1	0x008c	W	0×00000000	CORE PVTM status register1

Notes: Size: **B**- Byte (8 bits) access, **HW**- Half WORD (16 bits) access, **W**-WORD (32 bits) access

## 3.5.3 Detail Register Description

### **COREGRE CA35 PEFF CON0**

Address: Operational Base + offset (0x0000)

Bit	Attr	Reset Value	Description
			write_enable
			When bit16=1, bit0 can be written by software.
			When bit16=0, bit 0 cannot be written by software;
			When bit 17=1, bit 1 can be written by software.
31:16	wo	0x0000	When bit 17=0, bit 1 cannot be written by software;
			When bit 31=1, bit 15 can be written by software.
			When bit 31=0, bit 15 cannot be written by software;
			ca35_sw_rd_latency_id_range_e
15	RW	0x0	Axi read channel id for latency AXI_PERFormance test
14	RO	0x0	reserved
			ca35_sw_rd_latency_id
			0: 16-Byte align
13:8	RW	0x00	1: 32-Byte align
			2: 64-Byte align
			3: 128-Byte align
			ca35_sw_ddr_align_type
			axi_perf counter id control
7:6	RW	0x0	0: count all write channel id
			1: count sw_ar_count_id write channel only
			ca35_sw_aw_cnt_id_type
			axi_perf counter id control
5	RW	0x0	0: count all write channel id
			1: count sw_aw_count_id read channel only
			ca35_sw_ar_cnt_id_type
			axi_perf counter id control
4	RW	0x0	0: count all read channel id
			1: count sw_ar_count_id read channel only
			ca35_sw_axi_cnt_type_wrap
			axi_perf counter type wrap
3	RW	0x0	0: no wrap test
			1: wrap test
			ca35_sw_axi_cnt_type
			axi_perf counter type
2	RW	0x0	0: axi transfer test
			1: ddr align transfer test
			ca35_sw_axi_perf_clr
	_,		axi_perf clear bit
1 RW	KW	0x0	0: disable
			1: enable
			ca35_sw_axi_perf_work
			axi_perf enable bit
0	RW	W 0x0	0: disable
			1: enable
			1: enable

### **COREGRF CA35 PEFF CON1**

Address: Operational Base + offset (0x0004)

Bit	Attr	<b>Reset Value</b>	Description
31:16	WO	0×0000	write_enable When bit16=1, bit0 can be written by software. When bit16=0, bit 0 cannot be written by software; When bit 17=1, bit 1 can be written by software. When bit 17=0, bit 1 cannot be written by software; When bit 31=1, bit 15 can be written by software. When bit 31=0, bit 15 cannot be written by software;
15:12	RO	0x0	reserved
11:0	RW	0×000	ca35_sw_rd_latency_thr Axi read channel id for latency AXI_PERFormance test

COREGRE CA35 PEFF CON2

Address: Operational Base + offset (0x0008)

Bit			+ offset (UXUUU8)
BIT	Attr	Reset Value	Description
			write_enable
			When bit16=1, bit0 can be written by software.
			When bit16=0, bit 0 cannot be written by software;
31:16	WO.	0×0000	When bit 17=1, bit 1 can be written by software.
31.10	***	00000	When bit 17=0, bit 1 cannot be written by software;
			When bit 31=1, bit 15 can be written by software.
			When bit 31=0, bit 15 cannot be written by software;
			ca35_sw_axi_perf_int_clr
15	RW	0.40	interrupt clear
13	KVV	0×0	1'b1: clear
			1'b0: no op
		0x0	ca35_sw_axi_perf_int_e
14	RW		interrupt enable
14	IK VV		1'b1: enable
			1'b0: disable
13	RO	0x0	reserved
			ca35_sw_aw_count_id
			When bit16=1, bit0 can be written by software.
			When bit16=0, bit 0 cannot be written by software;
12:8	RW	0×00	When bit 17=1, bit 1 can be written by software.
12:0	KVV	UXUU	When bit 17=0, bit 1 cannot be written by software;
			When bit 31=1, bit 15 can be written by software.
			When bit 31=0, bit 15 cannot be written by software;
7:6	RO	0x0	reserved

Bit	Attr	<b>Reset Value</b>	Description
5:0	RW	0×00	ca35_sw_ar_count_id When bit16=1, bit0 can be written by software. When bit16=0, bit 0 cannot be written by software; When bit 17=1, bit 1 can be written by software. When bit 17=0, bit 1 cannot be written by software; When bit 31=1, bit 15 can be written by software. When bit 31=0, bit 15 cannot be written by software;

### **COREGRF CA35 PEFF CON3**

Address: Operational Base + offset (0x000c)

Bit		Reset Value	+ onset (0x000c)  Description
31:16	WO	0×0000	write_enable When bit16=1, bit0 can be written by software. When bit16=0, bit 0 cannot be written by software; When bit 17=1, bit 1 can be written by software. When bit 17=0, bit 1 cannot be written by software; When bit 31=1, bit 15 can be written by software. When bit 31=0, bit 15 cannot be written by software;
15	RW	0x0	ca35_sw_ar_mon_id mon_id_bmsk bit control
14	RW	0×0	ca35_sw_ar_mon_id_bmsk mon_id_bmsk bit control
13	RO	0x0	reserved
12:8	RW	0x00	ca35_sw_ar_mon_id_type mon_id_type bit control
7:6	RO	0x0	reserved
5:0	RW	0×00	ca35_sw_ar_mon_id_msk mon_id_msk bit control

## **COREGRE CA35 PEFF CON4**

Address: Operational Base + offset (0x0010)

Bit	Attr	<b>Reset Value</b>	Description
31:16	WO	0×0000	write_enable When bit16=1, bit0 can be written by software. When bit16=0, bit 0 cannot be written by software; When bit 17=1, bit 1 can be written by software. When bit 17=0, bit 1 cannot be written by software; When bit 31=1, bit 15 can be written by software. When bit 31=0, bit 15 cannot be written by software.
15	.5 RW	/ 0×0	When bit 31=0, bit 15 cannot be written by software; ca35_sw_aw_mon_id
			mon_id_bmsk bit control

Bit	Attr	<b>Reset Value</b>	Description
14	1.4	0x0	ca35_sw_aw_mon_id_bmsk
14	RW	UXU	mon_id_bmsk bit control
13	RO	0x0	reserved
12.0	DW	(0)X $(0)$	ca35_sw_aw_mon_id_type
12.0	12:8 RW		mon_id_type bit control
7:6	RO	0x0	reserved
F.0	5:0 RW	$W = (0 \times 0)$	ca35_sw_aw_mon_id_msk
5:0			mon_id_msk bit control

#### **COREGRE CA35 PEFF CON5**

Address: Operational Base + offset (0x0014)

Bit	Attr	<b>Reset Value</b>	Description
31:0	RW 0x00000000	ca35_sw_araddr_mon_st	
31.0	IK VV	000000000	monitor read start address

#### **COREGRF CA35 PEFF CON6**

Address: Operational Base + offset (0x0018)

Bit	Attr	<b>Reset Value</b>	Description
21.0	81:0 IRW 10x000000000 I	0×00000000	ca35_sw_araddr_mon_end
31.0		monitor read end address	

#### **COREGRF CA35 PEFF CON7**

Address: Operational Base + offset (0x001c)

Bit	Attr	<b>Reset Value</b>	Description
31:0	31:0 RW 0x000000	0x00000000	ca35_sw_awaddr_mon_st
31.0	I V V	0.00000000	monitor write start address

#### **COREGRF CA35 PEFF CON8**

Address: Operational Base + offset (0x0020)

Bit	Attr	<b>Reset Value</b>	Description
31:0	0 RW 0x00000000	ca35_sw_awaddr_mon_end	
31.0	IK VV	0.000000000	monitor write end address

#### **COREGRE A35 PERF RD MAX LATENCY NUM**

Address: Operational Base + offset (0x0030)

radiose operational base i onset (excess)					
Bit	Attr	<b>Reset Value</b>	Description		
31:13	RO	0x0	reserved		
12:0	RO	D 10x0000 1	rd_max_latency_r		
			axi read max latency output		

## **COREGRE A35 PERF RD LATENCY SAMP NUM**

Address: Operational Base + offset (0x0034)

Bit	Attr	<b>Reset Value</b>	Description	
31:27	RO	0x0	reserved	
26:0	RO	10×0000000	rd_latency_samp_r	
20.0			AXI read latency total sample number	

## **COREGRE A35 PERF RD LATENCY ACC NUM**

Address: Operational Base + offset (0x0038)

Bit	Attr	<b>Reset Value</b>	Description	
31:0	D.C	10x00000000	rd_latency_acc_cnt_r	
31:0	KO		AXI read latency (>sw_rd_latency_thr) total number	

#### **COREGRE A35 PERF RD AXI TOTAL BYTE**

Address: Operational Base + offset (0x003c)

Bit	Attr	<b>Reset Value</b>	Description	
31:0	RO	10200000000	rd_axi_total_byte AXI active total read bytes/ddr align read bytes	

#### **COREGRE A35 PERF WR AXI TOTAL BYTE**

Address: Operational Base + offset (0x0040)

Bit	Attr	<b>Reset Value</b>	Description	
31:0 RO	PΩ	10×000000000	wr_axi_total_byte	
	IXO		AXI active total write bytes/ddr align write bytes	

#### **COREGRF A35 PERF WORKING CNT**

Address: Operational Base + offset (0x0044)

Bit	Attr	<b>Reset Value</b>		Description	
31:0 RC	PΩ	0x00000000	working_cnt_r		
	KO	0.00000000	working counter		

#### **COREGRF A35 PERF INT STATUS**

Address: Operational Base + offset (0x0048)

Bit	Attr	<b>Reset Value</b>	Description		
31	RO	0x0	reserved		
30:24	RO	0x00	a35_aw_mon_axi_id_status The ID be monitored read from the specific addr area		
23:17	RO	0x0	reserved		
16	RO	0x0	a35_aw_mon_axi_hit_flag Write from the specific addr area interrupt status		
15	RO	0x0	reserved		
14:8	RO	0x00	a35_ar_mon_axi_id_status The ID be monitored read from the specific addr area		
7:1	RO	0x0	reserved		
0	RO	0x0	a35_ar_mon_axi_hit_flag Read from the specific addr area interrupt status		

## **COREGRF COREPVTM CONO**

Address: Operational Base + offset (0x0080)

Bit	Attr	<b>Reset Value</b>	Description
31:16	WO	0×0000	write_enable When bit16=1, bit0 can be written by software. When bit16=0, bit 0 cannot be written by software; When bit 17=1, bit 1 can be written by software. When bit 17=0, bit 1 cannot be written by software; When bit 31=1, bit 15 can be written by software. When bit 31=0, bit 15 cannot be written by software;
15:4	RO	0x0	reserved
3:2	RW	0×0	corepvtm_osc_sel osc_ring selection
1	RW	0×0	corepvtm_osc_en corepvtm_osc_en
0	RW	0x0	corepvtm_start corepvtm_start

### **COREGRE COREPVTM CON1**

Address: Operational Base + offset (0x0084)

Bit	Attr	<b>Reset Value</b>	Description
31:0	DW	0×0000000	corepvtm_cal_cnt
31.0	RW 0x00000000	corepvtm_cal_cnt	

## **COREGRE COREPVTM STATUSO**

Address: Operational Base + offset (0x0088)

Bit	Attr	Reset Value	Description
31:1	RO	0x0	reserved
0	RW	W IUXU I	corepvtm_freq_done
0	J KW		corepvtm_freq_done

## **COREGRF COREPVTM STATUS1**

Address: Operational Base + offset (0x008c)

Bit	Attr	<b>Reset Value</b>	Description
21.0	DW	RW 10x000000000 1	corepvtm_freq_cnt
31.0	KW		corepvtm_freq_cnt

## 3.6 GPUGRF Register Description

## 3.6.1 Internal Address Mapping

Slave address can be divided into different length for different usage, which is shown as follows.

## 3.6.2 Registers Summary

Name	Offset	Size	Reset Value	Description
GPUGRF PEFF CONO	0x0000	W	0x00000000	GPU performance monitor control0
GPUGRF PEFF CON1	0x0004	W	0×00000000	GPU performance monitor control0
GPUGRF PEFF CON2	0x0008	W	0×00000000	GPU performance monitor control2
GPUGRF PERF RD MAX LATENCY NUM	0x0030	w	0×00000000	GPU performance monitor status
GPUGRF PERF RD LATEN CY SAMP NUM	0x0034	W	0x00000000	GPU performance monitor status
GPUGRF PERF RD LATEN CY ACC NUM	0x0038	W	0x00000000	GPU performance monitor status
GPUGRF PERF RD AXI T OTAL BYTE	0x003c	W	0×00000000	GPU performance monitor status
GPUGRF PERF WR AXI T OTAL BYTE	0x0040	W	0×00000000	GPU performance monitor status
GPUGRF PERF WORKING CNT	0x0044	W	0x00000000	GPU performance monitor status
GPUGRF GPU CONO	0x0060	W	0x00000040	GPU GRF control

Notes: Size: **B**- Byte (8 bits) access, **HW**- Half WORD (16 bits) access, **W**-WORD (32 bits) access

## 3.6.3 Detail Register Description

## **GPUGRF PEFF CONO**

Address: Operational Base + offset (0x0000)

Bit	Attr	<b>Reset Value</b>	Description
31:16	WO	0×0000	write_enable Bit0~15 write enable When bit16=1, bit0 can be written by software. When bit16=0, bit 0 cannot be written by software; When bit 17=1, bit 1 can be written by software. When bit 17=0, bit 1 cannot be written by software; When bit 31=1, bit 15 can be written by software. When bit 31=0, bit 15 cannot be written by software;
15	RW	0x0	gpu_sw_rd_latency_id_range_e gpu_sw_rd_latency_id_range_e Axi read channel id for latency AXI_PERFormance test
14	RO	0x0	reserved

Bit	Attr	Reset Value	Description
			gpu_sw_rd_latency_id
			gpu_sw_rd_latency_id
12.0	DW	0.400	0: 16-Byte align
13:8	RW	0x00	1: 32-Byte align
			2: 64-Byte align
			3: 128-Byte align
			gpu_sw_ddr_align_type
			gpu_sw_ddr_align_type
7:6	RW	0x0	axi_perf counter id control
			0: count all write channel id
			1: count sw_ar_count_id write channel only
			gpu_sw_aw_cnt_id_type
			gpu_sw_aw_cnt_id_type
5	RW	0x0	axi_perf counter id control
			0: count all write channel id
			1: count sw_aw_count_id read channel only
			gpu_sw_ar_cnt_id_type
			gpu_sw_ar_cnt_id_type
4	RW	0x0	axi_perf counter id control
			0: count all read channel id
			1: count sw_ar_count_id read channel only
			gpu_sw_axi_cnt_type_wrap
			gpu_sw_axi_cnt_type_wrap
3	RW	0x0	axi_perf counter type wrap
			0: no wrap test
			1: wrap test
			gpu_sw_axi_cnt_type
			gpu_sw_axi_cnt_type
2	RW	0x0	axi_perf counter type
			0: axi transfer test
			1: ddr align transfer test
			gpu_sw_axi_perf_clr
			gpu_sw_axi_perf_clr
1	RW	0x0	axi_perf clear bit
			0: disable
			1: enable
			gpu_sw_axi_perf_work
			gpu_sw_axi_perf_work
0	RW	0x0	axi_perf enable bit
			0: disable
			1: enable

## **GPUGRF PEFF CON1**

Address: Operational Base + offset (0x0004)

Bit	Attr	<b>Reset Value</b>	Description
31:16	WO	0×0000	write_enable Bit0~15 write enable When bit16=1, bit0 can be written by software. When bit16=0, bit 0 cannot be written by software; When bit 17=1, bit 1 can be written by software. When bit 17=0, bit 1 cannot be written by software; When bit 31=1, bit 15 can be written by software. When bit 31=0, bit 15 cannot be written by software;
15:12	RO	0x0	reserved
11:0	RW	0×000	gpu_sw_rd_latency_thr gpu_sw_rd_latency_thr Axi read channel id for latency AXI_PERFormance test

## **GPUGRF_PEFF_CON2**

Address: Operational Base + offset (0x0008)

Bit	Attr	<b>Reset Value</b>	Description
31:16	WO	0x0000	write_enable Bit0~15 write enable When bit16=1, bit0 can be written by software. When bit16=0, bit 0 cannot be written by software; When bit 17=1, bit 1 can be written by software. When bit 17=0, bit 1 cannot be written by software; When bit 31=1, bit 15 can be written by software. When bit 31=0, bit 15 cannot be written by software;
15	RW	0×0	gpu_sw_axi_perf_int_clr gpu_sw_axi_perf_int_clr interrupt clear 1'b1: clear 1'b0: no op
14	RW	0x0	gpu_sw_axi_perf_int_e gpu_sw_axi_perf_int_e interrupt enable 1'b1: enable 1'b0: disable
13	RO	0x0	reserved

Bit	Attr	Reset Value	Description
			gpu_sw_aw_count_id
			gpu_sw_aw_count_id
			When bit16=1, bit0 can be written by software.
			When bit16=0, bit 0 cannot be written by software;
12:8	RW	0x00	When bit 17=1, bit 1 can be written by software.
			When bit 17=0, bit 1 cannot be written by software;
			When bit 31=1, bit 15 can be written by software.
			When bit 31=0, bit 15 cannot be written by software;
7:6	RO	0x0	reserved
			gpu_sw_ar_count_id
			gpu_sw_ar_count_id
			When bit16=1, bit0 can be written by software.
			When bit16=0, bit 0 cannot be written by software;
5:0	RW	0x00	When bit 17=1, bit 1 can be written by software.
			When bit 17=0, bit 1 cannot be written by software;
			When bit 31=1, bit 15 can be written by software.
			When bit 31=0, bit 15 cannot be written by software;

## **GPUGRF PERF RD MAX LATENCY NUM**

Address: Operational Base + offset (0x0030)

Bit	Attr	<b>Reset Value</b>	Description
31:13	RO	0x0	reserved
			rd_max_latency_r
12:0	RO	0x0000	rd_max_latency_r
			axi read max latency output

## **GPUGRF PERF RD LATENCY SAMP NUM**

Address: Operational Base + offset (0x0034)

Bit	Attr	<b>Reset Value</b>	Description
31:27	RO	0x0	reserved
			rd_latency_samp_r
26:0	RO	0x0000000	rd_latency_samp_r
			AXI read latency total sample number

## **GPUGRF PERF RD LATENCY ACC NUM**

Address: Operational Base + offset (0x0038)

Bit	Attr	<b>Reset Value</b>	Description			
			rd_latency_acc_cnt_r			
31:0	RO	0x00000000	rd_latency_acc_cnt_r			
			AXI read latency (>sw_rd_latency_thr) total number			

## **GPUGRF PERF RD AXI TOTAL BYTE**

Address: Operational Base + offset (0x003c)

Bit	Attr	<b>Reset Value</b>	Description		
			rd_axi_total_byte		
31:0	RO	0x00000000	rd_axi_total_byte		
			AXI active total read bytes/ddr align read bytes		

### **GPUGRF PERF WR AXI TOTAL BYTE**

Address: Operational Base + offset (0x0040)

Bit	Attr	<b>Reset Value</b>	Description
			wr_axi_total_byte
31:0	RO	0x00000000	wr_axi_total_byte
			AXI active total write bytes/ddr align write bytes

### **GPUGRF PERF WORKING CNT**

Address: Operational Base + offset (0x0044)

Bit	Attr	<b>Reset Value</b>	Description		
31:0	RO		working_cnt_r working_cnt_r		
			working counter		

#### **GPUGRF GPU CONO**

Address: Operational Base + offset (0x0060)

Bit	Attr	<b>Reset Value</b>	Description
31:7	RO	0x0	reserved
			grf_gpu_emaa
6:4	RW	0x4	grf_gpu_emaa
			SRAM EMAA control
3	RO	0x0	reserved
			grf_con_dvalin_striping_granule
			grf_con_dvalin_striping_granule
			memory striping in level two cache
			3'b000: 4KB Select L2C #0, if PA[12] == 0.
			3'b001: 128 bytes Select L2C #0, if PA[7]==0.
2:0	RW	0x0	3'b010: 256 bytes Select L2C #0, if PA[8] == 0.
			3'b011: 512 bytes Select L2C #0, if PA[9] == 0.
			3'b100: 1KB Select L2C #0, if PA[10] == 0.
			3'b101: 2KB Select L2C #0, if PA[11] == 0.
			3'b110: This value is reserved.
			3'b111: 256B An address hash function is used for striping

## 3.7 USB PHY GRF Register Description

## 3.7.1 Internal Address Mapping

Slave address can be divided into different length for different usage, which is shown as follows.

## **3.7.2 Registers Summary**

USBPHY GRF INT STATU S USBPHY GRF INT STATU S USBPHY GRF INT STATU S USBPHY GRF STATUS USBPHY GRF STATUS USBPHY GRF LS CON USBPHY GRF DIS CON USBPHY GRF DIS CON USBPHY GRF BVALID CO N USBPHY GRF BVALID CO N USBPHY GRF INT STATU Ox0118 W 0x00000000 USB2PHY interrupt status clear register USB2PHY interrupt status clear register USB2PHY status register USB2PHY linestate control register USB2PHY disconnect control register USB2PHY GRF DIS CON USB2PHY disconnect control register	Name	Offset	Size	Reset Value	Description
USBPHY GRF REG2         0x0008         W         0x000002e7         USB PHY Register2           USBPHY GRF REG3         0x0000         W         0x00000200         USB PHY Register3           USBPHY GRF REG4         0x0010         W         0x000005556         USB PHY Register4           USBPHY GRF REG6         0x0018         W         0x00000055         USB PHY Register5           USBPHY GRF REG6         0x0016         W         0x00000005         USB PHY Register6           USBPHY GRF REG8         0x0020         W         0x00000000         USB PHY Register7           USBPHY GRF REG9         0x0024         W         0x00000000         USB PHY Register9           USBPHY GRF REG10         0x0028         W         0x00000000         USB PHY Register10           USBPHY GRF REG11         0x002c         W         0x00000000         USB PHY Register11           USBPHY GRF REG12         0x0030         W         0x00000000         USB PHY Register12           USBPHY GRF REG13         0x0034         W         0x00000000         USB PHY Register13           USBPHY GRF REG15         0x0038         W         0x00000000         USB PHY Register13           USBPHY GRF REG15         0x0030         W         0x00000000         USB PHY Re	USBPHY GRF REGO	0x0000	W	0x00008518	USB PHY Register0
USBPHY GRF REG3         0x000c         W         0x00000200         USB PHY Register3           USBPHY GRF REG4         0x0010         W         0x00005556         USB PHY Register4           USBPHY GRF REG5         0x0014         W         0x000005556         USB PHY Register5           USBPHY GRF REG6         0x0016         W         0x00000000         USB PHY Register7           USBPHY GRF REG8         0x0020         W         0x00000000         USB PHY Register7           USBPHY GRF REG9         0x0024         W         0x00000000         USB PHY Register9           USBPHY GRF REG10         0x0028         W         0x00000000         USB PHY Register10           USBPHY GRF REG11         0x0020         W         0x00000000         USB PHY Register11           USBPHY GRF REG12         0x0030         W         0x00000000         USB PHY Register11           USBPHY GRF REG12         0x0034         W         0x00000000         USB PHY Register12           USBPHY GRF REG13         0x0034         W         0x00000000         USB PHY Register13           USBPHY GRF REG14         0x0038         W         0x00000000         USB PHY Register14           USBPHY GRF REG15         0x0044         W         0x0000000         USB PHY Re	USBPHY_GRF_REG1	0x0004	W	0x0000e007	USB PHY Register1
USBPHY GRF REG4         0x0010         W         0x00005556         USB PHY Register4           USBPHY GRF REG5         0x0014         W         0x00004555         USB PHY Register5           USBPHY GRF REG6         0x0018         W         0x00000000         USB PHY Register6           USBPHY GRF REG7         0x0010         W         0x00000000         USB PHY Register7           USBPHY GRF REG8         0x0020         W         0x00000000         USB PHY Register8           USBPHY GRF REG10         0x0028         W         0x00000000         USB PHY Register10           USBPHY GRF REG11         0x002c         W         0x00000000         USB PHY Register11           USBPHY GRF REG13         0x0034         W         0x00000000         USB PHY Register11           USBPHY GRF REG13         0x0034         W         0x00000000         USB PHY Register11           USBPHY GRF REG13         0x0034         W         0x00000000         USB PHY Register13           USBPHY GRF REG14         0x0038         W         0x00000000         USB PHY Register13           USBPHY GRF REG15         0x0034         W         0x00000000         USB PHY Register15           USBPHY GRF REG16         0x0044         W         0x0000000         USB PHY R	USBPHY GRF REG2	0x0008	W	0x000002e7	USB PHY Register2
USBPHY GRF REG5         0x0014         W         0x00004555         USB PHY Register5           USBPHY GRF REG6         0x0018         W         0x00000005         USB PHY Register6           USBPHY GRF REG2         0x0010         W         0x00000000         USB PHY Register7           USBPHY GRF REG8         0x0020         W         0x00000000         USB PHY Register8           USBPHY GRF REG10         0x0028         W         0x00000000         USB PHY Register10           USBPHY GRF REG11         0x002c         W         0x00000000         USB PHY Register11           USBPHY GRF REG12         0x0030         W         0x00000000         USB PHY Register12           USBPHY GRF REG14         0x0034         W         0x00000000         USB PHY Register13           USBPHY GRF REG14         0x0038         W         0x00000000         USB PHY Register13           USBPHY GRF REG15         0x0032         W         0x00000000         USB PHY Register14           USBPHY GRF REG16         0x0032         W         0x00000000         USB PHY Register15           USBPHY GRF REG18         0x0044         W         0x00000005         USB PHY Register14           USBPHY GRF REG18         0x0048         W         0x00000000         USB PH	USBPHY GRF REG3	0x000c	W	0x00000200	USB PHY Register3
USBPHY GRF REG6         0x0018         W         0x00000005         USB PHY Register6           USBPHY GRF REG7         0x001c         W         0x000068c0         USB PHY Register7           USBPHY GRF REG8         0x0020         W         0x00000000         USB PHY Register9           USBPHY GRF REG10         0x0024         W         0x00000000         USB PHY Register9           USBPHY GRF REG11         0x0022         W         0x00000000         USB PHY Register10           USBPHY GRF REG12         0x0030         W         0x00000000         USB PHY Register11           USBPHY GRF REG13         0x0034         W         0x00000007         USB PHY Register12           USBPHY GRF REG14         0x0038         W         0x00000007         USB PHY Register13           USBPHY GRF REG15         0x003c         W         0x00000007         USB PHY Register14           USBPHY GRF REG15         0x003c         W         0x00000000         USB PHY Register15           USBPHY GRF REG16         0x0040         W         0x00000005         USB PHY Register16           USBPHY GRF REG18         0x0044         W         0x00000005         USB PHY Register17           USBPHY GRF REG19         0x0045         W         0x00000000         USB P	USBPHY_GRF_REG4	0x0010	W	0x00005556	USB PHY Register4
USBPHY GRF REG7         0x001c         W         0x000068c0         USB PHY Register7           USBPHY GRF REG8         0x0020         W         0x00000000         USB PHY Register8           USBPHY GRF REG9         0x0024         W         0x00000000         USB PHY Register9           USBPHY GRF REG10         0x0028         W         0x00000000         USB PHY Register10           USBPHY GRF REG11         0x002c         W         0x00000000         USB PHY Register11           USBPHY GRF REG13         0x0034         W         0x00000007         USB PHY Register12           USBPHY GRF REG14         0x0038         W         0x00000207         USB PHY Register13           USBPHY GRF REG15         0x003c         W         0x00000200         USB PHY Register14           USBPHY GRF REG15         0x003c         W         0x00000200         USB PHY Register15           USBPHY GRF REG16         0x0040         W         0x00000555         USB PHY Register16           USBPHY GRF REG17         0x0044         W         0x00000555         USB PHY Register17           USBPHY GRF REG19         0x0046         W         0x0000000         USB PHY Register18           USBPHY GRF REG21         0x0045         W         0x0000000         USB PH	USBPHY GRF REG5	0x0014	W	0x00004555	USB PHY Register5
USBPHY GRF REG8         0x0020         W         0x00000000         USB PHY Register8           USBPHY GRF REG9         0x0024         W         0x00000000         USB PHY Register9           USBPHY GRF REG10         0x0028         W         0x00000000         USB PHY Register10           USBPHY GRF REG11         0x002c         W         0x00000000         USB PHY Register11           USBPHY GRF REG13         0x0034         W         0x00000007         USB PHY Register13           USBPHY GRF REG14         0x0038         W         0x00000207         USB PHY Register14           USBPHY GRF REG15         0x003c         W         0x00000200         USB PHY Register14           USBPHY GRF REG15         0x003c         W         0x00000200         USB PHY Register15           USBPHY GRF REG15         0x0040         W         0x00005556         USB PHY Register16           USBPHY GRF REG17         0x0044         W         0x00000005         USB PHY Register17           USBPHY GRF REG19         0x0042         W         0x00000000         USB PHY Register18           USBPHY GRF REG20         0x0050         W         0x00000000         USB PHY Register20           USBPHY GRF REG21         0x0054         W         0x00000000         US	USBPHY_GRF_REG6	0x0018	W	0x00000005	USB PHY Register6
USBPHY GRF REG9         0x0024         W         0x00000000         USB PHY Register9           USBPHY GRF REG10         0x0028         W         0x00000000         USB PHY Register10           USBPHY GRF REG11         0x002c         W         0x00000000         USB PHY Register11           USBPHY GRF REG12         0x0030         W         0x00000001         USB PHY Register12           USBPHY GRF REG13         0x0034         W         0x00000000         USB PHY Register13           USBPHY GRF REG14         0x0038         W         0x00000200         USB PHY Register14           USBPHY GRF REG15         0x003c         W         0x00000000         USB PHY Register15           USBPHY GRF REG16         0x0040         W         0x00000555         USB PHY Register16           USBPHY GRF REG17         0x0044         W         0x00000005         USB PHY Register18           USBPHY GRF REG19         0x004c         W         0x00000000         USB PHY Register19           USBPHY GRF REG21         0x0050         W         0x00000000         USB PHY Register20           USBPHY GRF REG21         0x0054         W         0x00000000         USB PHY Register21           USBPHY GRF REG22         0x0058         W         0x00000000	USBPHY GRF REG7	0x001c	W	0x000068c0	USB PHY Register7
USBPHY GRF REG10	USBPHY GRF REG8	0x0020	W	0x00000000	USB PHY Register8
USBPHY GRF REG11         0x002c         W 0x00000000         USB PHY Register11           USBPHY GRF REG12         0x0030         W 0x00008518         USB PHY Register12           USBPHY GRF REG13         0x0034         W 0x00000007         USB PHY Register13           USBPHY GRF REG14         0x0038         W 0x00000207         USB PHY Register14           USBPHY GRF REG15         0x003c         W 0x00000200         USB PHY Register15           USBPHY GRF REG16         0x0040         W 0x00005556         USB PHY Register16           USBPHY GRF REG17         0x0044         W 0x00000555         USB PHY Register17           USBPHY GRF REG18         0x0048         W 0x00000005         USB PHY Register17           USBPHY GRF REG19         0x004c         W 0x00000005         USB PHY Register18           USBPHY GRF REG20         0x0050         W 0x00000000         USB PHY Register20           USBPHY GRF REG21         0x0054         W 0x00000000         USB PHY Register21           USBPHY GRF REG22         0x0058         W 0x00000000         USB PHY Register22           USBPHY GRF REG23         0x0055         W 0x00000000         USB PHY Register23           USBPHY GRF CON1         0x0104         W 0x00000000         USB PHY Control register1           USBPHY GRF INT	USBPHY_GRF_REG9	0x0024	W	0x00000000	USB PHY Register9
USBPHY GRF REG12         0x0030         W         0x00008518         USB PHY Register12           USBPHY GRF REG13         0x0034         W         0x00000007         USB PHY Register13           USBPHY GRF REG14         0x0038         W         0x00000202         USB PHY Register14           USBPHY GRF REG15         0x003c         W         0x00000200         USB PHY Register15           USBPHY GRF REG16         0x0040         W         0x000005556         USB PHY Register16           USBPHY GRF REG18         0x0044         W         0x00000005         USB PHY Register17           USBPHY GRF REG19         0x0042         W         0x000000005         USB PHY Register18           USBPHY GRF REG210         0x0044         W         0x00000000         USB PHY Register19           USBPHY GRF REG201         0x0054         W         0x00000000         USB PHY Register20           USBPHY GRF REG21         0x0054         W         0x00000000         USB PHY Register21           USBPHY GRF REG22         0x0058         W         0x00000000         USB PHY Register22           USBPHY GRF REG23         0x0055         W         0x00000000         USB PHY Register23           USBPHY GRF CON0         0x0100         W         0x00000000	USBPHY GRF REG10	0x0028	W	0x00000000	USB PHY Register10
USBPHY GRF REG13         0x0034         W         0x0000e007         USB PHY Register13           USBPHY GRF REG14         0x0038         W         0x000002e7         USB PHY Register14           USBPHY GRF REG15         0x003c         W         0x00000200         USB PHY Register15           USBPHY GRF REG16         0x0040         W         0x00005556         USB PHY Register16           USBPHY GRF REG17         0x0044         W         0x0000005556         USB PHY Register17           USBPHY GRF REG18         0x0048         W         0x00000005         USB PHY Register18           USBPHY GRF REG19         0x004c         W         0x00000000         USB PHY Register19           USBPHY GRF REG20         0x0050         W         0x00000000         USB PHY Register20           USBPHY GRF REG21         0x0054         W         0x00000000         USB PHY Register21           USBPHY GRF REG22         0x0058         W         0x00000000         USB PHY Register22           USBPHY GRF CON0         0x0100         W         0x00000000         USB PHY Register23           USBPHY GRF CON1         0x0104         W         0x00000000         USB PHY Register21           USBPHY GRF CON2         0x0104         W         0x00000000 <th< td=""><td>USBPHY GRF REG11</td><td>0x002c</td><td>W</td><td>0x00000000</td><td>USB PHY Register11</td></th<>	USBPHY GRF REG11	0x002c	W	0x00000000	USB PHY Register11
USBPHY GRF REG14         0x0038         W         0x000002e7         USB PHY Register14           USBPHY GRF REG15         0x003c         W         0x00000200         USB PHY Register15           USBPHY GRF REG16         0x0040         W         0x000005556         USB PHY Register16           USBPHY GRF REG17         0x0044         W         0x000000555         USB PHY Register17           USBPHY GRF REG18         0x0048         W         0x00000005         USB PHY Register18           USBPHY GRF REG19         0x004c         W         0x00000000         USB PHY Register19           USBPHY GRF REG20         0x0050         W         0x00000000         USB PHY Register20           USBPHY GRF REG21         0x0054         W         0x00000000         USB PHY Register21           USBPHY GRF REG22         0x0058         W         0x00000000         USB PHY Register22           USBPHY GRF REG23         0x005c         W         0x00000000         USB PHY Register23           USBPHY GRF CON0         0x0100         W         0x00000000         USB PHY Register22           USBPHY GRF CON1         0x0104         W         0x00000012         USB PHY Register22           USBPHY GRF CON2         0x010         W         0x00000000	USBPHY_GRF_REG12	0x0030	W	0x00008518	USB PHY Register12
USBPHY GRF REG15         0x003c         W 0x00000200         USB PHY Register15           USBPHY GRF REG16         0x0040         W 0x00005556         USB PHY Register16           USBPHY GRF REG17         0x0044         W 0x00004555         USB PHY Register17           USBPHY GRF REG18         0x0048         W 0x00000005         USB PHY Register18           USBPHY GRF REG19         0x004c         W 0x00000000         USB PHY Register19           USBPHY GRF REG20         0x0050         W 0x00000000         USB PHY Register20           USBPHY GRF REG21         0x0054         W 0x00000000         USB PHY Register21           USBPHY GRF REG22         0x0058         W 0x00000000         USB PHY Register22           USBPHY GRF REG23         0x005c         W 0x00000000         USB PHY Register23           USBPHY GRF CON0         0x0100         W 0x00000000         USB PHY Control register0           USBPHY GRF CON1         0x0104         W 0x00000000         USB PHY control register1           USBPHY GRF CON2         0x0108         W 0x00000000         USB PHY control register3           USBPHY GRF INT MASK         0x0110         W 0x00000000         USB2PHY interrupt status register           USBPHY GRF INT STATU         0x0114         W 0x00000000         USB2PHY interrupt status register <td>USBPHY GRF REG13</td> <td>0x0034</td> <td>W</td> <td>0x0000e007</td> <td>USB PHY Register13</td>	USBPHY GRF REG13	0x0034	W	0x0000e007	USB PHY Register13
USBPHY GRF REG16         0x0040         W         0x00005556         USB PHY Register16           USBPHY GRF REG17         0x0044         W         0x00000055         USB PHY Register17           USBPHY GRF REG18         0x0048         W         0x00000005         USB PHY Register18           USBPHY GRF REG19         0x004c         W         0x00000000         USB PHY Register19           USBPHY GRF REG20         0x0050         W         0x00000000         USB PHY Register20           USBPHY GRF REG21         0x0054         W         0x00000000         USB PHY Register21           USBPHY GRF REG22         0x0058         W         0x00000000         USB PHY Register22           USBPHY GRF CON0         0x0100         W         0x00000000         USB PHY Register23           USBPHY GRF CON1         0x0104         W         0x00000000         USB PHY control register0           USBPHY GRF CON2         0x0108         W         0x00000000         USB PHY control register2           USBPHY GRF INT MASK         0x0110         W         0x00000000         USB PHY control register3           USBPHY GRF INT STATU         0x0114         W         0x00000000         USB2PHY interrupt status register           USBPHY GRF STATUS         0x0120         W <td>USBPHY_GRF_REG14</td> <td>0x0038</td> <td>W</td> <td>0x000002e7</td> <td>USB PHY Register14</td>	USBPHY_GRF_REG14	0x0038	W	0x000002e7	USB PHY Register14
USBPHY GRF REG17   0x0044   W 0x00004555   USB PHY Register17     USBPHY GRF REG18   0x0048   W 0x00000005   USB PHY Register18     USBPHY GRF REG19   0x004c   W 0x000068c0   USB PHY Register19     USBPHY GRF REG20   0x0050   W 0x00000000   USB PHY Register20     USBPHY GRF REG21   0x0054   W 0x00000000   USB PHY Register21     USBPHY GRF REG22   0x0058   W 0x00000000   USB PHY Register22     USBPHY GRF REG23   0x005c   W 0x00000000   USB PHY Register22     USBPHY GRF CON0   0x0100   W 0x00000000   USB PHY Register23     USBPHY GRF CON1   0x0104   W 0x000001d2   USB PHY control register0     USBPHY GRF CON2   0x0108   W 0x00000000   USB PHY control register1     USBPHY GRF CON3   0x010c   W 0x00000000   USB PHY control register2     USBPHY GRF INT MASK   0x0110   W 0x00000000   USB PHY control register3     USBPHY GRF INT STATU   S CLR   USBPHY GRF LS CON   0x0130   W 0x00000000   USB2PHY interrupt status register     USBPHY GRF DIS CON   0x0134   W 0x00030100   USB2PHY disconnect control register     USBPHY GRF DIS CON   0x0138   W 0x00030100   USB2PHY bvalid control register     USBPHY GRF BVALID CO   Nx0138   W 0x00030100   USB2PHY bvalid control register     USBPHY GRF BVALID CO   Nx0138   W 0x00030100   USB2PHY bvalid control register     USBPHY GRF BVALID CO   Nx0138   W 0x00030100   USB2PHY bvalid control register     USBPHY GRF BVALID CO   Nx0138   W 0x00030100   USB2PHY bvalid control register     USBPHY GRF BVALID CO   Nx0138   W 0x00030100   USB2PHY bvalid control register     USBPHY GRF BVALID CO   Nx0138   W 0x00030100   USB2PHY bvalid control register     USBPHY GRF BVALID CO   Nx0138   W 0x00030100   USB2PHY bvalid control register	USBPHY GRF REG15	0x003c	W	0x00000200	USB PHY Register15
USBPHY GRF REG18         0x0048         W         0x00000005         USB PHY Register18           USBPHY GRF REG19         0x004c         W         0x000068c0         USB PHY Register19           USBPHY GRF REG20         0x0050         W         0x00000000         USB PHY Register20           USBPHY GRF REG21         0x0054         W         0x00000000         USB PHY Register21           USBPHY GRF REG22         0x0058         W         0x00000000         USB PHY Register22           USBPHY GRF CON0         0x0100         W         0x00000000         USB PHY Register23           USBPHY GRF CON0         0x0100         W         0x000000452         USB PHY control register0           USBPHY GRF CON1         0x0104         W         0x00000000         USB PHY control register1           USBPHY GRF CON2         0x0108         W         0x00000000         USB PHY control register2           USBPHY GRF INT MASK         0x0110         W         0x00000000         USB2PHY interrupt mask register           USBPHY GRF INT STATU         0x0114         W         0x00000000         USB2PHY interrupt status clear register           USBPHY GRF STATUS         0x0130         W         0x00000000         USB2PHY status register           USBPHY GRF DIS CON         0x	USBPHY GRF REG16	0x0040	W	0x00005556	USB PHY Register16
USBPHY GRF REG19         0x004c         W         0x000068c0         USB PHY Register19           USBPHY GRF REG20         0x0050         W         0x00000000         USB PHY Register20           USBPHY GRF REG21         0x0054         W         0x00000000         USB PHY Register21           USBPHY GRF REG22         0x0058         W         0x00000000         USB PHY Register22           USBPHY GRF REG23         0x005c         W         0x00000000         USB PHY Register23           USBPHY GRF CON0         0x0100         W         0x00000000         USB PHY control register0           USBPHY GRF CON1         0x0104         W         0x00000000         USB PHY control register1           USBPHY GRF CON2         0x0108         W         0x00000000         USB PHY control register3           USBPHY GRF INT MASK         0x0110         W         0x00000000         USB2PHY interrupt mask register           USBPHY GRF INT STATU S         0x0114         W         0x00000000         USB2PHY interrupt status register           USBPHY GRF STATUS         0x0118         W         0x00000000         USB2PHY interrupt status register           USBPHY GRF DIS CON         0x0130         W         0x00030100         USB2PHY linestate control register           USBPHY GRF BVA	USBPHY_GRF_REG17	0x0044	W	0x00004555	USB PHY Register17
USBPHY GRF REG20         0x0050         W         0x00000000         USB PHY Register20           USBPHY GRF REG21         0x0054         W         0x00000000         USB PHY Register21           USBPHY GRF REG22         0x0058         W         0x00000000         USB PHY Register22           USBPHY GRF REG23         0x005c         W         0x00000000         USB PHY Register23           USBPHY GRF CON0         0x0100         W         0x000000452         USB PHY control register0           USBPHY GRF CON1         0x0104         W         0x0000001d2         USB PHY control register1           USBPHY GRF CON2         0x0108         W         0x00000000         USB PHY control register2           USBPHY GRF CON3         0x010c         W         0x00000000         USB PHY control register3           USBPHY GRF INT MASK         0x0110         W         0x00000000         USB2PHY interrupt mask register           USBPHY GRF INT STATU S CLR         0x0114         W         0x00000000         USB2PHY interrupt status register           USBPHY GRF STATUS         0x0120         W         0x00000000         USB2PHY status register           USBPHY GRF DIS CON         0x0134         W         0x00030100         USB2PHY disconnect control register           USBPHY	USBPHY GRF REG18	0x0048	W	0x00000005	USB PHY Register18
USBPHY GRF REG21         0x0054         W         0x00000000         USB PHY Register21           USBPHY GRF REG22         0x0058         W         0x00000000         USB PHY Register22           USBPHY GRF REG23         0x005c         W         0x00000000         USB PHY Register23           USBPHY GRF CON0         0x0100         W         0x00000452         USB PHY control register0           USBPHY GRF CON1         0x0104         W         0x0000001d2         USB PHY control register1           USBPHY GRF CON2         0x0108         W         0x00000000         USB PHY control register2           USBPHY GRF INT MASK         0x0110         W         0x00000000         USB2PHY interrupt mask register           USBPHY GRF INT STATU         0x0114         W         0x00000000         USB2PHY interrupt status register           USBPHY GRF INT STATUS         0x0118         W         0x00000000         USB2PHY status register           USBPHY GRF LS CON         0x0130         W         0x00030100         USB2PHY disconnect control register           USBPHY GRF BVALID CO         0x0138         W         0x00030100         USB2PHY bvalid control register	USBPHY GRF REG19	0x004c	W	0x000068c0	USB PHY Register19
USBPHY GRF REG22         0x0058         W         0x00000000         USB PHY Register22           USBPHY GRF REG23         0x005c         W         0x00000000         USB PHY Register23           USBPHY GRF CON0         0x0100         W         0x00000452         USB PHY control register0           USBPHY GRF CON1         0x0104         W         0x0000001d2         USB PHY control register1           USBPHY GRF CON2         0x0108         W         0x00000000         USB PHY control register2           USBPHY GRF INT MASK         0x0110         W         0x00000000         USB2PHY interrupt mask register           USBPHY GRF INT STATU S CLR         0x0114         W         0x00000000         USB2PHY interrupt status register           USBPHY GRF STATUS         0x0118         W         0x00000000         USB2PHY status register           USBPHY GRF LS CON         0x0130         W         0x00030100         USB2PHY linestate control register           USBPHY GRF DIS CON         0x0134         W         0x00030100         USB2PHY disconnect control register           USBPHY GRF BVALID CO         0x0138         W         0x00030100         USB2PHY bvalid control register	USBPHY_GRF_REG20	0x0050	W	0x00000000	USB PHY Register20
USBPHY GRF REG23         0x005c         W         0x00000000         USB PHY Register23           USBPHY GRF CON0         0x0100         W         0x00000452         USB PHY control register0           USBPHY GRF CON1         0x0104         W         0x0000001d2         USB PHY control register1           USBPHY GRF CON2         0x0108         W         0x00000000         USB PHY control register2           USBPHY GRF CON3         0x010c         W         0x00000001         USB PHY control register3           USBPHY GRF INT MASK         0x0110         W         0x00000000         USB2PHY interrupt mask register           USBPHY GRF INT STATU         0x0114         W         0x00000000         USB2PHY interrupt status register           USBPHY GRF STATUS         0x0118         W         0x00000000         USB2PHY status register           USBPHY GRF LS CON         0x0130         W         0x00030100         USB2PHY linestate control register           USBPHY GRF DIS CON         0x0134         W         0x00030100         USB2PHY disconnect control register           USBPHY GRF BVALID CO         0x0138         W         0x00030100         USB2PHY bvalid control register	USBPHY GRF REG21	0x0054	W	0x00000000	USB PHY Register21
USBPHY GRF CON00x0100W0x00000452USB PHY control register0USBPHY GRF CON10x0104W0x000001d2USB PHY control register1USBPHY GRF CON20x0108W0x00000000USB PHY control register2USBPHY GRF CON30x010cW0x000000019USB PHY control register3USBPHY GRF INT MASK0x0110W0x00000000USB2PHY interrupt mask registerUSBPHY GRF INT STATU S CLR0x0114W0x00000000USB2PHY interrupt status registerUSBPHY GRF STATUS0x0118W0x00000000USB2PHY interrupt status clear registerUSBPHY GRF LS CON0x0120W0x00000000USB2PHY linestate control registerUSBPHY GRF DIS CON0x0134W0x00030100USB2PHY disconnect control registerUSBPHY GRF BVALID CO N0x0138W0x00030100USB2PHY bvalid control register	USBPHY_GRF_REG22	0x0058	W	0x00000000	USB PHY Register22
USBPHY GRF CON10x0104W0x000001d2USB PHY control register1USBPHY GRF CON20x0108W0x00000000USB PHY control register2USBPHY GRF CON30x010cW0x000000019USB PHY control register3USBPHY GRF INT MASK0x0110W0x00000000USB2PHY interrupt mask registerUSBPHY GRF INT STATU S CLR0x0114W0x00000000USB2PHY interrupt status registerUSBPHY GRF STATUS0x0118W0x00000000USB2PHY interrupt status clear registerUSBPHY GRF STATUS0x0120W0x00000000USB2PHY status registerUSBPHY GRF LS CON0x0130W0x00030100USB2PHY linestate control registerUSBPHY GRF DIS CON0x0134W0x00030100USB2PHY disconnect control registerUSBPHY GRF BVALID CO N0x0138W0x00030100USB2PHY bvalid control register	USBPHY GRF REG23	0x005c	W	0x00000000	USB PHY Register23
USBPHY GRF CON2         0x0108         W         0x00000000         USB PHY control register 2           USBPHY GRF CON3         0x010c         W         0x000000019         USB PHY control register 3           USBPHY GRF INT MASK         0x0110         W         0x00000000         USB2PHY interrupt mask register           USBPHY GRF INT STATU S CLR         0x0114         W         0x00000000         USB2PHY interrupt status register           USBPHY GRF STATUS Ox0120         W         0x00000000         USB2PHY status register           USBPHY GRF LS CON Ox0130         W         0x00030100         USB2PHY linestate control register           USBPHY GRF DIS CON Ox0134         W         0x00030100         USB2PHY disconnect control register           USBPHY GRF BVALID CO N         0x0138         W         0x00030100         USB2PHY bvalid control register	USBPHY GRF CONO	0x0100	W	0x00000452	USB PHY control register0
USBPHY GRF CON30x010cW0x00000019USB PHY control register3USBPHY GRF INT MASK USBPHY GRF INT STATU S0x0110W0x00000000USB2PHY interrupt mask registerUSBPHY GRF INT STATU S CLR0x0114W0x00000000USB2PHY interrupt status registerUSBPHY GRF INT STATU S CLR0x0118W0x00000000USB2PHY interrupt status clear registerUSBPHY GRF STATUS USBPHY GRF LS CON USBPHY GRF DIS CON0x0120 0x0130W0x00000000 0x00030100USB2PHY linestate control registerUSBPHY GRF DIS CON N0x0134W0x00030100USB2PHY disconnect control registerUSBPHY GRF BVALID CO N0x0138W0x00030100USB2PHY bvalid control register	USBPHY GRF CON1	0x0104	W	0x000001d2	USB PHY control register1
USBPHY GRF INT MASK USBPHY GRF INT STATU S USBPHY GRF INT STATU S CLR0x0114 W USBPHY GRF INT STATU S CLRW 0x00000000 0x0118 W USBPHY GRF STATUS USBPHY GRF LS CON USBPHY GRF DIS CONW 0x01340x00000000 0x00000000 W 0x00000000 USB2PHY interrupt status clear register USB2PHY interrupt status clear register USB2PHY status register USB2PHY linestate control register USB2PHY disconnect control registerUSBPHY GRF DIS CON USBPHY GRF BVALID CON N0x0138W0x00030100 0x0030100USB2PHY bvalid control register	USBPHY GRF CON2	0x0108	W	0x00000000	USB PHY control register2
USBPHY GRF INT STATU S0x0114W0x00000000USB2PHY interrupt status registeUSBPHY GRF INT STATU S CLR0x0118W0x00000000USB2PHY interrupt status clear registerUSBPHY GRF STATUS USBPHY GRF LS CON USBPHY GRF DIS CON0x0120W0x00000000USB2PHY status registerUSBPHY GRF DIS CON N0x0130W0x00030100USB2PHY linestate control registerUSBPHY GRF BVALID CO N0x0138W0x00030100USB2PHY bvalid control register	USBPHY_GRF_CON3	0x010c	W	0x00000019	USB PHY control register3
S	USBPHY_GRF_INT_MASK	0x0110	W	0x00000000	USB2PHY interrupt mask register
USBPHY GRF INT STATU S CLR0x0118W0x00000000USB2PHY interrupt status clear registerUSBPHY GRF STATUS USBPHY GRF LS CON USBPHY GRF DIS CON N0x0120 0x0130 WW0x00000000 0x00030100 0x00030100USB2PHY status register USB2PHY linestate control registerUSBPHY GRF DIS CON N0x0134W0x00030100 0x00030100USB2PHY disconnect control registerUSBPHY GRF BVALID CO N0x0138W0x00030100USB2PHY bvalid control register		0x0114	W	0x00000000	USB2PHY interrupt status register
USBPHY GRF STATUS       0x0120       W       0x00000000       USB2PHY status register         USBPHY GRF LS CON       0x0130       W       0x00030100       USB2PHY linestate control register         USBPHY GRF DIS CON       0x0134       W       0x00030100       USB2PHY disconnect control register         USBPHY GRF BVALID CON       0x0138       W       0x00030100       USB2PHY bvalid control register	USBPHY GRF INT STATU	0x0118	W	0×00000000	•
USBPHY GRF DIS CON     0x0134     W     0x00030100     USB2PHY disconnect control register       USBPHY GRF BVALID CO N     0x0138     W     0x00030100     USB2PHY bvalid control register	USBPHY_GRF_STATUS	0x0120	W	0x00000000	USB2PHY status register
USBPHY GRF DIS CON     0x0134     W     0x00030100     USB2PHY disconnect control register       USBPHY GRF BVALID CO N     0x0138     W     0x00030100     USB2PHY bvalid control register		0x0130	W	0x00030100	USB2PHY linestate control register
USBPHY GRF BVALID CO N 0x0030100 USB2PHY bvalid control register			W		USB2PHY disconnect control
		0x0138	w	0x00030100	
USBPHY GRF ID CON   0x013c   W   0x00030100   USB2PHY id control register	USBPHY GRF ID CON	0x013c	W	0x00030100	USB2PHY id control register

Notes: Size: **B**- Byte (8 bits) access, **HW**- Half WORD (16 bits) access, **W**-WORD (32 bits) access

## 3.7.3 Detail Register Description

## **USBPHY_GRF_REGO**

Address: Operational Base + offset (0x0000)

Bit	Attr	<b>Reset Value</b>	Description
31:16	16 DW 0-0000	0×0000	write_enable
31:16	KVV	0x0000	Bit0~15 write enable
15.0	DW	≀W 10x8518 - I	usbphy_reg0
15:0	15.0 KW		usbcomb phy control reg. BIT15 to 0

#### **USBPHY GRF REG1**

Address: Operational Base + offset (0x0004)

Bit	Attr	<b>Reset Value</b>	Description
21.16	DW	/ 10x0000	write_enable
31.10	IK VV		Bit0~15 write enable
15:0	DW	0007	usbphy_reg1
15:0	RW	0xe007	usbcomb phy control reg. BIT31 to 16

### **USBPHY GRF REG2**

Address: Operational Base + offset (0x0008)

Bit	Attr	<b>Reset Value</b>	Description		
31:16	DW	() <b>x</b> ()()()	write_enable		
31.10	KVV		Bit0~15 write enable		
15.0	DW	(W 10x02e/ 1	usbphy_reg2		
15:0	KVV		usbcomb phy control reg. BIT47 to 32		

#### **USBPHY GRF REG3**

Address: Operational Base + offset (0x000c)

Bit	Attr	<b>Reset Value</b>	Description		
31:16	DW	0x0000	write_enable		
31:16	KVV	00000	Bit0~15 write enable		
15.0	DW	RW 10x0200 1	usbphy_reg3		
15:0	KVV		usbcomb phy control reg. BIT63 to 48		

### **USBPHY GRF REG4**

Address: Operational Base + offset (0x0010)

Bit	Attr	Reset Value	Description		
21.16	DW	0x0000	write_enable		
31.10	KVV	00000	Bit0~15 write enable		
15:0	DW	(W 10x5556	usbphy_reg4		
15.0	KVV		usbcomb phy control reg. BIT79 to 64		

## **USBPHY GRF REG5**

Address: Operational Base + offset (0x0014)

Bit	Attr	<b>Reset Value</b>	Description
31.16	DW	0x0000	write_enable
31.10	INV	00000	Bit0~15 write enable
15.0	DW	₹W 10x4555	usbphy_reg5
15:0	KVV		usbcomb phy control reg. BIT95 to 80

Address: Operational Base + offset (0x0018)

Bit	Attr	<b>Reset Value</b>	Description
21.16	RW	10x0000	write_enable
31:16			Bit0~15 write enable
15.0	RW	/ 0000F	usbphy_reg6
15:0		0x0005	usbcomb phy control reg. BIT111 to 96

## **USBPHY GRF REG7**

Address: Operational Base + offset (0x001c)

Bit	Attr	<b>Reset Value</b>	Description
21.16	RW	(() <b>x</b> ()()()()	write_enable
31:16			Bit0~15 write enable
15.0	RW	10x68c0	usbphy_reg7
15:0			usbcomb phy control reg. BIT127 to 112

### **USBPHY GRF REG8**

Address: Operational Base + offset (0x0020)

Bit	Attr	<b>Reset Value</b>	Description
21.16	RW	10x0000	write_enable
31.10			Bit0~15 write enable
15.0	RW	:W 10x0000 1	usbphy_reg8
15:0			usbcomb phy control reg. BIT143 to 128

### **USBPHY GRF REG9**

Address: Operational Base + offset (0x0024)

Bit	Attr	<b>Reset Value</b>	Description
21.16	RW	10x0000	write_enable
31:16			Bit0~15 write enable
15.0	DW	.W 10x0000 1	usbphy_reg9
15:0	KVV		usbcomb phy control reg. BIT159 to 144

### **USBPHY GRF REG10**

Address: Operational Base + offset (0x0028)

Bit	Attr	<b>Reset Value</b>	Description
21.16	RW	1() <b>x</b> ()()()	write_enable
31.10			Bit0~15 write enable
15.0	RW	N 10×0000 1	usbphy_reg10
15:0			usbcomb phy control reg. BIT175 to 160

Address: Operational Base + offset (0x002c)

Bit	Attr	<b>Reset Value</b>	Description
21.16	RW	10x0000	write_enable
31.10			Bit0~15 write enable
15:0	RW	W 10x0000 1	usbphy_reg11
15:0			usbcomb phy control reg. BIT191 to 176

## **USBPHY GRF REG12**

Address: Operational Base + offset (0x0030)

Bit	Attr	<b>Reset Value</b>	Description
21.16	RW	10x0000	write_enable
31:16			Bit0~15 write enable
15.0	RW	10x8518	usbphy_reg12
15:0			usbcomb phy control reg. BIT207 to 192

### **USBPHY GRF REG13**

Address: Operational Base + offset (0x0034)

Bit	Attr	<b>Reset Value</b>	Description
21.16	RW	10x0000	write_enable
31:16			Bit0~15 write enable
15.0	RW	W 1()xe()()/	usbphy_reg13
15:0			usbcomb phy control reg. BIT223 to 208

### **USBPHY GRF REG14**

Address: Operational Base + offset (0x0038)

Bit	Attr	<b>Reset Value</b>	Description
21.16	RW	10x0000	write_enable
31:16			Bit0~15 write enable
1 5 . 0	RW	(W 10x02e/ 1	usbphy_reg14
15:0			usbcomb phy control reg. BIT239 to 224

### **USBPHY GRF REG15**

Address: Operational Base + offset (0x003c)

Bit	Attr	<b>Reset Value</b>	Description
21.16	RW	1() <b>x</b> ()()()	write_enable
31.10			Bit0~15 write enable
15.0	RW	W 10x0200 1	usbphy_reg15
15:0			usbcomb phy control reg. BIT255 to 240

Address: Operational Base + offset (0x0040)

Bit	Attr	<b>Reset Value</b>	Description
21.16	RW	10x0000	write_enable
31:16			Bit0~15 write enable
15.0	RW	RW 10x5556	usbphy_reg16
15:0			usbcomb phy control reg. BIT271 to 256

## **USBPHY GRF REG17**

Address: Operational Base + offset (0x0044)

Bit	Attr	<b>Reset Value</b>	Description
21.16	RW	(() <b>x</b> ()()()()	write_enable
31:16			Bit0~15 write enable
15:0	RW	/ 10x4555	usbphy_reg17
15:0			usbcomb phy control reg. BIT287 to 272

### **USBPHY GRF REG18**

Address: Operational Base + offset (0x0048)

Bit	Attr	<b>Reset Value</b>	Description
21.16	RW	10×0000	write_enable
31.10			Bit0~15 write enable
15.0	RW	RW 10x0005 - 1	usbphy_reg18
15:0			usbcomb phy control reg. BIT303 to 288

### **USBPHY GRF REG19**

Address: Operational Base + offset (0x004c)

Bit	Attr	<b>Reset Value</b>	Description
21.16	DW	10x0000	write_enable
31:16	KVV		Bit0~15 write enable
15.0	DW	₹W_10x68c0	usbphy_reg19
15:0	KVV		usbcomb phy control reg. BIT319 to 304

### **USBPHY GRF REG20**

Address: Operational Base + offset (0x0050)

Bit	Attr	<b>Reset Value</b>	Description
21.16	RW	10x0000	write_enable
31.10			Bit0~15 write enable
15.0	RW	0000	usbphy_reg20
15:0		KW UXU	0x0000

Address: Operational Base + offset (0x0054)

Bit	Attr	<b>Reset Value</b>	Description
21.16	RW	10×0000	write_enable
31:16			Bit0~15 write enable
15.0	RW	W 0×0000	usbphy_reg21
15:0		UXUUUU	usbcomb phy control reg. BIT351 to 336

## **USBPHY GRF REG22**

Address: Operational Base + offset (0x0058)

Bit	Attr	<b>Reset Value</b>	Description
31:16	RW	10x0000	write_enable
			Bit0~15 write enable
15.0	RW	RW 10x0000 1	usbphy_reg22
15:0			usbcomb phy control reg. BIT367 to 352

## **USBPHY GRF REG23**

Address: Operational Base + offset (0x005c)

Bit	Attr	<b>Reset Value</b>	Description
21.16	RW	10×0000	write_enable
31.10			Bit0~15 write enable
15.0	RW	RW 10x0000	usbphy_reg23
15:0			usbcomb phy control reg. BIT383 to 368

### **USBPHY GRF CONO**

Address: Operational Base + offset (0x0100)

Bit	Attr	<b>Reset Value</b>	Description	
31:16		0x0000	write_enable	
31.10	KVV	00000	Bit0~15 write enable	
15:11	RO	0x0	reserved	
10	RW	0x1	usbotg_utmi_iddig	
10	KVV		GRF USB otg Plug iddig Indicator	
		W 0x0	usbotg_utmi_iddig_sel	
9	RW		USB otg plug indicator output selection	
9			1'b0:select phy iddig status to controller	
			1'b1: select grf plug iddig indicator to controller	
0	DW/	0.0	usbotg_utmi_dmpulldown	
8	ΚVV	RW	RW 0x0	GRF otg DM pulldown resistor

Bit	Attr	<b>Reset Value</b>	Description		
7	RW	00	usbotg_utmi_dppulldown		
/	KVV	0x0	GRF otg DP pulldown resistor		
6	DW	0.41	usbotg_utmi_termselect		
6	RW	0×1	GRF otg termination select between FS/LS/HS speed		
E. 1	DW	0.41	usbotg_utmi_xcvrselect		
5:4	RW	0x1	GRF otg transceiver select between FS/LS/HS speed		
2.2	DW	0x0	usbotg_utmi_opmode		
3:2	RW		GRF otg operational mode selection		
		NW 0.4	usbotg_utmi_suspend_n		
1	DW		GRF otg suspend mode		
1	RW	0×1	1'b0:suspend		
			1'b1:normal		
			usbotg_utmi_sel		
0	RW	RW 0x0	1'b0:select otg controller utmi interface to phy		
					1'b1:select GRF utmi interface to phy

## **USBPHY GRF CON1**

Address: Operational Base + offset (0x0104)

Bit	Attr	<b>Reset Value</b>	Description
31:16	D\M/	W 0×0000	write_enable
31.10	IX VV	00000	Bit0~15 write enable
15:9	RO	0x0	reserved
8	RW	0x1	usbhost_utmi_dmpulldown
6	KVV	OXI	GRF host DM pulldown resistor
7	RW	0x1	usbhost_utmi_dppulldown
/	KVV	OXI	GRF host DP pulldown resistor
6	D\\/	RW 0x1	usbhost_utmi_termselect
0	KVV		GRF host termination select between FS/LS/HS speed
5:4	RW	W 0x1	usbhost_utmi_xcvrselect
3.4			GRF host transceiver select between FS/LS/HS speed
3:2	DW	RW 0x0	usbhost_utmi_opmode
5.2	1744		GRF host operational mode selection
			usbhost_utmi_suspend_n
1	RW	0×1	GRF host suspend mode
-	1244	VAN OXI	1'b0: suspend
			1'b1: normal
			usbhost_utmi_sel
0	RW	W 0x0	1'b0: select host controller utmi interface to phy
			1'b1: select grf utmi interface to phy

## **USBPHY GRF CON2**

Address: Operational Base + offset (0x0108)

Bit	Attr	Reset Value	Description
31:16	DW	RW 0×0000	write_enable
31:16	) K VV	00000	Bit0~15 write enable
15:13	RO	0x0	reserved
12	RW	0x0	vdm_src_en_usbotg
12	KVV	UXU	open dm voltage source
11	RW	0x0	vdp_src_en_usbotg
11	KVV	UXU	open dp voltage source
10	RW	0x0	rdm_pdwn_en_usbotg
10	KVV	UXU	open dm pull down resistor
9	RW	0x0	idp_src_en_usbotg
9	KVV	UXU	open dm source current
8	RW	0x0	idm_sink_en_usbotg
0	KVV	0.00	open dm sink current
7	RW	0x0	idp_sink_en_usbotg
/	KVV	UXU	open dp sink current
6:5	RO	0x0	reserved
			usbphy_commononn
		W 0×0	configure PLL clock output in suspend mode
4	RW		0: 480MHz clock always on
_	1244		1: 480MHz clock will turn off when both ports suspend asserted.
			If the supsend of any port deassert, it will wait 1ms to make
			480MHz clock stable
3	RW	0×0	bypasssel_usbotg
		0.00	bypass select
2	RW	0×0	bypassdmen_usbotg
		0.00	bypass dm enable
1	RW	0×0	usbotg_disable_1
		3,0	bypass OTG function
0	RW	0×0	usbotg_disable_0
		0.00	bypass OTG function

## **USBPHY GRF CON3**

Address: Operational Base + offset (0x010c)

Bit	Attr	<b>Reset Value</b>	Description	
31:16	DW	W 0x0000	write_enable	
31.10	FCVV		Bit0~15 write enable	
15:12	RO	0x0	reserved	
1.1	RW	0x0	usbotg_utmi_drvvbus	
11			USB OTG grf utmi_drvvbus	
	DVV	W 0x0	usbotg_utmi_drvvbus_sel	
10			USB OTG utmi_drvvbus_sel bit control	
10	IK VV		0:select otg controller drvvbus to phy	
				1:select otg grf utmidrvvbus to phy

Bit	Attr	<b>Reset Value</b>	Description							
9	RW	0×0	usbotg_utmi_fs_se0							
9	KVV	UXU	USB OTG utmi_fs_se0 bit control							
8	RW	0x0	usbotg_utmi_fs_data							
0	KVV	UXU	USB OTG utmi_fs_data bit control							
7	RW	0×0	usbotg_utmi_fs_oe							
/	KVV	UXU	USB OTG utmi_fs_oe bit control							
6	RW	0×0	usbotg_utmi_fs_xver_own							
0	KVV	UXU	USB OTG utmi_fs_xver_own bit control							
5	RW	0x0	usbhost_utmi_idpullup							
	1200		USB HOST utmi_idpullup bit control							
4	RW	0×1	usbhost_utmi_dmpulldown							
	1200	VV OXI	Enable DMINUS Pull Down resistor							
3	RW	W 0x1	usbhost_utmi_dppulldown							
	KVV	1200	1744	IXVV	1 / V V	OXI	Enable DPLUS Pull Down resistor			
2	RW	0×0	usbhost_utmi_dischrgvbus							
	IVV	0.00	USB HOST utmi_dischrgvbus bit control							
1	RW	0x0	usbhost_utmi_chrgvbus							
1	17.00	0.00	USB HOST utmi_chrgvbus bit control							
0	DW	0×1	usbhost_utmi_drvvbus							
	KW	KVV	KVV	KW	KW	KW	KW	RW	RW 0×1	USB HOST utmi_drvvbus bit control

<u>USBPHY GRF INT MASK</u> Address: Operational Base + offset (0x0110)

Bit	Attr	<b>Reset Value</b>	Description					
31:16	RW	0x0000	write_enable					
31.10	1244	0,0000	Bit0~15 write enable					
15:10	RO	0x0	reserved					
			host0_disconnect_irq_en					
9:8	RW	0x0	host0_disconnect_irq edge status enable					
9.0	IK VV	UXU	x1: hostdisconnect rising edge irq status enable					
			1x: hostdisconnect falling edge irq status enable					
		/ 0x0	otg0_disconnect_irq_en					
7.6	RW		otg0_disconnect_irq edge status enable					
7:6	KVV		x1: hostdisconnect rising edge irq status enable					
			1x: hostdisconnect falling edge irq status enable					
		W 0x0	otg0_id_irq_en					
5:4	DW		otg0_id edge status enable					
3.4	IK VV		x1: id rising edge irq status enable					
			1x: id falling edge irq status enable					
			otg0_bvalid_irq_en					
3:2	DW	RW 0x0	otg0_bvalid edge status irq enable					
3.2	KW		x1: bvalid rising edge irq status enable					
			1x: bvalid falling edge irq status enable					

Bit	Attr	<b>Reset Value</b>	Description				
1	DW 0v0		RW 0x0 host0_linestate_irq_en		host0_linestate_irq_en		
-	KVV	UXU	host0_linestate change status irq enable				
	RW	00	otg0_linestate_irq_en				
U		RW 0x0	otg0_linestate change status irq enable				

## **USBPHY GRF INT STATUS**

Address: Operational Base + offset (0x0114)

Bit	Attr	<b>Reset Value</b>	Description			
31:10	RO	0x0	reserved			
			host0_disconnect_irq			
9:8	RO	0×0	host0_disconnect edge irq status			
9.0	KO	0.00	x1: hostdisconnect rising edge irq status			
			1x: hostdisconnect falling edge irq status			
			otg0_disconnect_irq			
7:6	RO	0×0	otg0_disconnect edge irq status			
7.0	KO	0.00	x1: hostdisconnect rising edge irq status			
			1x: hostdisconnect falling edge irq status			
	RO	0×0	otg0_id_irq			
5:4			otg0_id edge irq status			
3.4			x1: id rising edge irq status			
			1x: id falling edge irq status			
		0x0	otg0_bvalid_irq			
3:2	RO		otg0_bvalid edge irq status			
3.2	KO		x1: bvalid rising edge irq status			
			1x: bvalid falling edge irq status			
1	RO	0.40	host0_linestate_irq			
1	KU	0x0	host0_linestate change irq status			
	DO.	0.40	otg0_linestate_irq			
0	RO	0x0	otg0_linestate change irq status			

## **USBPHY GRF INT STATUS CLR**

Address: Operational Base + offset (0x0118)

Bit	Attr	<b>Reset Value</b>	Description			
31:10	RO	0x0	reserved			
			host0_disconnect_irq_clr			
9:8	WO	0×0	host0_disconnect_irq_clr irq status clear			
9.0			01: hostdisconnect rising edge irq status clear			
			10: hostdisconnect falling edge irq status clear			
			otg0_disconnect_irq_clr			
7:6	WO		otg0_disconnect_irq_clr irq status clear			
7.0	wo		01: hostdisconnect rising edge irq status clear			
			10: hostdisconnect falling edge irq status clear			

Bit	Attr	<b>Reset Value</b>	Description
			otg0_id_irq_clr
5:4	wo	0×0	otg0_id edge irq status clear
5.4	WO	UXU	01: id rising edge irq status clear
			10: id falling edge irq status clear
		0×0	otg0_bvalid_irq_clr
3:2	wo		otg0_bvalid edge irq status clear
3.2	WO		01: bvalid rising edge irq status clear
			10: bvalid falling edge irq status clear
1	WO	VO 0x0	host0_linestate_irq_clr
1	WO		host0_linestate change irq status clear, write 1 to clear irq status
0	WO	0×0	otg0_linestate_irq_clr
0	WO	/O  0x0	otg0_linestate change irq status clear, write 1 to clear irq status

<u>USBPHY GRF STATUS</u> Address: Operational Base + offset (0x0120)

Bit	Attr	<b>Reset Value</b>	Description
31:26	RO	0x0	reserved
25	RO	0x0	grf_stat_usbphy_dp_detected
25	KO	UXU	grf_stat_usbphy_dp_detected bit status
24	RO	0x0	grf_stat_usbphy_cp_detected
24	_N	UXU	grf_stat_usbphy_cp_detected bit status
23	RO	0x0	grf_stat_usbphy_dcp_detected
23	_N	UXU	grf_stat_usbphy_dcp_detected bit status
22	RO	0x0	usbhost_phy_ls_fs_rcv
22	20	UXU	host_phy_ls_fs_rcv status
21	RO	0.0	usbhost_utmi_avalid
21	20	0x0	host_utmi_avalid status
20	RO	0x0	usbhost_utmi_bvalid
20	20	UXU	host_utmi_bvalid status
19	RO	0x0	usbhost_utmi_hostdisconnect
19	KO		host_utmi_hostdisconnect status
18	RO	0×0	usbhost_utmi_iddig_o
10	KO	0.00	host_utmi_iddig status
17:16	P∩	O 0x0	usbhost_utmi_linestate
17.10	NO		host_utmi_linestate status
15	RO	0x0	usbhost_utmi_sessend
13	KO	UXU	host_utmi_sessend status
14	RO	0x0	usbhost_utmi_vbusvalid
14	KO	0.00	host_utmi_vbusvalid status
13	RO	0x0	usbhost_utmi_vmi
13	10	0.70	host_utmi_vmi status
12	RO	0x0	usbhost_utmi_vpi
14	)	0.00	host_utmi_vpi status

Bit	Attr	<b>Reset Value</b>	Description			
11	RO	00	usbotg_phy_ls_fs_rcv			
11	KU	0x0	utmi_phy_ls_fs_rcv_out status			
10	RO	0x0	usbotg_utmi_avalid			
10	KU	UXU	otg_utmi avalid bit status			
9	RO	0x0	usbotg_utmi_bvalid			
9	RO	UXU	otg_utmi bvalid bit status			
8	RO	0x0	usbotg_utmi_fs_xver_own			
0	KO	UXU	OTG utmi_fs_xver_own status			
7	RO	0x0	usbotg_utmi_hostdisconnect			
/	KO		otg_utmi_hostdisconnect status			
6	RO	0×0	usbotg_utmi_iddig			
0	IXO		usbotg_utmi_iddig status			
5:4	RO	0x0	usbotg_utmi_linestate			
J.4	KO		otg_utmi_linestate status			
3	RO	0x0	usbotg_utmi_sessend			
5	KO	UXU	otg_utmi_sessend bit status			
2	RO	0x0	usbotg_utmi_vbusvalid			
	KO	0.00	otg_utmi_vbusvalid bit status			
1	RO	0×0	usbotg_utmi_vmi			
1	100	0.00	otg_utmi_vmi bit status			
0	RO	0x0	usbotg_utmi_vpi			
١	NO	UXU	otg_utmi_vpi bit status			

## **USBPHY GRF LS CON**

Address: Operational Base + offset (0x0130)

Bit	Attr	<b>Reset Value</b>	Description				
31:20	RO	0x0	reserved				
			linestate_filter_con				
19:0	RW	0x30100	host/otg port linestate filter time control register. Unit: pclk(up to				
			100MHz)				

## **USBPHY GRF DIS CON**

Address: Operational Base + offset (0x0134)

Bit	Attr	<b>Reset Value</b>	Description					
31:20	RO	0x0	reserved					
			disconnect_filter_con					
19:0	RW	0x30100	host/otg port hostdisconnect filter time control register. Unit:					
			pclk(up to 100MHz)					

## **USBPHY GRF BVALID CON**

Address: Operational Base + offset (0x0138)

Bit	Attr	<b>Reset Value</b>	Description			
31:20	RO	0x0	reserved			
19:0	RW	0x30100	bvalid_filter_con otg port bvalid filter time control register. Unit: pclk(up to			
			100MHz)			

## **USBPHY GRF ID CON**

Address: Operational Base + offset (0x013c)

Bit	Attr	<b>Reset Value</b>	Description				
31:28	RO	0x0	reserved				
			id_filter_con				
27:0	RW	0x0030100	otg port linestate filter time control register. Unit: pclk(up to				
			100MHz)				

## 3.8 DDRGRF Register Description

## 3.8.1 Internal Address Mapping

Slave address can be divided into different length for different usage, which is shown as follows.

## 3.8.2 Registers Summary

Name	Offset	Size	Reset Value	Description
DDR GRF CON0	0x0000	W	0x00000000	DDR Control Register0
DDR GRF CON1	0x0004	W	0x00000600	DDR Control Register1
DDR GRF SPLIT CON	0x0008	W	0x0000010	DDR AXI SPLIT Control Register
DDR GRF LP CON	0x0020	W	0x00001101	DDR PHY Lower Power Control Register
DDR GRF MSC CTRL	0x0080	W	0x00000000	MSC_CTRL register
DDR GRF CPU IDLE TH	0x0084	W	0x00000000	cpu idle threshold register
DDR GRF READY LOW C YCLES	0x0088	W	0×00000000	read low cyclse register
DDR GRF READY HIGH CYCLES	0x008c	W	0×00000000	ready high cycles register
DDR GRF PRIORITY IDL E TH	0x0090	W	0×00000000	piriority idle threshold register
DDR GRF PRIORITY LEV LE TH	0x0094	W	0×00000000	priority level threshold register
DDR_GRF_STATUS0	0x0100	W	0x00000000	DDR Status Register0
DDR GRF STATUS1	0x0104	W	0x0000000	DDR Status Register1
DDR GRF STATUS2	0x0108	W	0x00000000	DDR Status Register2
DDR GRF STATUS3	0x010c	W	0x00000000	DDR Status Register3
DDR GRF STATUS4	0x0110	W	0x00000000	DDR Status Register4

Name	Offset	Size	Reset Value	Description
DDR GRF STATUS5	0x0114	W	0x00000000	DDR Status Register5
DDR GRF STATUS6	0x0118	W	0x00000000	DDR Status Register6
DDR GRF STATUS7	0x011c	W	0x00000000	DDR Status Register7
DDR GRF STATUS8	0x0120	W	0x00000000	DDR Status Register8
DDR GRF STATUS9	0x0124	W	0x00000000	DDR Status Register9

Notes: Size: **B**- Byte (8 bits) access, **HW**- Half WORD (16 bits) access, **W**-WORD (32 bits) access

## 3.8.3 Detail Register Description

## **DDR GRF CONO**

Address: Operational Base + offset (0x0000)

Bit		Reset Value	Description
21.16	WO	0x0000	write_enable
31:16	WO		Bit0~15 write enable
			grf_ddrbuf_en
15	RW	0x0	1: enable ddr_buffer, disable msch_ready_ctrl
			0: disable ddr_buffer, enable msch_ready_ctrl
14	RW	0x0	grf_awpoison
14	IXVV	0.00	AXI write poison
13	RW	0×0	grf_awurgent
13	1200	0.00	AXI write urgent
12	RW	0×0	grf_arpoison
12	1244	0.00	AXI read poison
11	RW	0×0	grf_arurgent
	1000	0.00	AXI read urgent
			grf_pa_wmask
10	RW	0x0	When asserted(active high), it will prevent the corresponding
			write to PA
		0x0	grf_pa_rmask
9:8	RW		When asserted(active high), it will prevent the corresponding
_			read to PA
7:6	RO	0x0	reserved
			grf_csysreq_upctl_ddrstdby
5	RW	0x0	0: disable stdby controls upctl csysreq_ddrc
			1: enable stdby control upctl csysreq_ddrc
			grf_csysreq_upctl_pmu
4	RW	0x0	0: disable pmu controls upctl csysreq_ddrc
			1: enable pmu controls upctl csysreq_ddrc
_	3 RW		grf_csysreq_aclk
3		0x0	0: request upctl aclk enter low power
			1: request upctl aclk exit low power
2	RW	W IUXU	grf_dfi_init_start
<del>-</del>			grf_dfi_init start value

Bit	Attr	<b>Reset Value</b>	Description
		W 0x0	grf_dfi_init_start_sel
1	RW		1: grf_dfi_init_start controls dfi_init_start
			0: upctl controls dfi_init_start
			grf_upctl_slverr_enable
0 R'	RW		0: disable upctl apb slverr response
			1: enable upcttl apb slverr response

## **DDR GRF CON1**

Address: Operational Base + offset (0x0004)

Bit		<b>Reset Value</b>	Description
31:16	WO	0×0000	write_enable When bit16=1, bit0 can be written by software. When bit16=0, bit 0 cannot be written by software; When bit 17=1, bit 1 can be written by software. When bit 17=0, bit 1 cannot be written by software; When bit 31=1, bit 15 can be written by software. When bit 31=0, bit 15 cannot be written by software;
15:12	RO	0x0	reserved
11:8	RW	0x6	grf_auto_sr_dly The delay of auto gated ddrc_core_clk. It should be to be 0x6
7:5	RO	0x0	reserved
4	RW	0×0	grf_upctl_syscreq_cg_en 0: disable force ddrc_core_clk ungating when external ddrc_csysreq asserted 1: enable force ddrc_core ungating when external ddrc_csysreq asserted
3	RW	0×0	grf_selfref_type2_en 0: disable ddrc_core_clk auto gating in type2 selfrefresh 1: enable ddrc_core_clk auto gating in type2 selfrefresh
2	RW	0×0	grf_upctl_core_cg_en 0: disable ddrc_core_clk auto gating 1: enable ddrc_core_clk auto gating
1	RW	0×0	grf_upctl_apb_cg_en 0: disable function of force aclk/ddrc_core_clk ungated when apb access is going 1: enable function of force aclk/ddrc_core_clk ungated when apb access is going
0	RW	0×0	grf_upctl_axi_cg_en 0: disable aclk auto gating 1: enable aclk auto gating

**DDR GRF SPLIT CON**Address: Operational Base + offset (0x0008)

Bit	Attr	<b>Reset Value</b>	Description
31:16	WO	0×0000	write_enable
31.10	WO	00000	Bit0~15 write enable
15:11	RO	0x0	reserved
			SPMODE
			Split mode select.
			2'b00:DDR controller and phy works at 32 bits mode. Low 16 bits
			are valid if access address is above split address.
10:9	RW	0×0	2'b01:DDR controller and phy works at 32 bits mode. High 16
10.9	IK VV	OXU	bits are valid if access address is above split address.
			2'b10:DDR controller and phy works at 16 bits mode. Low 8 bits
			are valid if access address is above split address.
			2'b11:DDR controller and phy works at 16 bits mode. High 8 bits
			are valid if access address is above split address
			BYPASS
8	RW	0x0	0: enable axi split
			1: bypass axi split
			SPADDR
			Split address high 8 bits of 32bit address. For example, if
7:0	RW	0x10	SPADDR=0x10, then the split address is 0x10000000. The
			axi_split module will be bypassed if reading or writing DDR below
			split address, otherwise axi burst will be split

DDR GRF LP CON
Address: Operational Base + offset (0x0020)

Bit	Attr	<b>Reset Value</b>	Description
31:16	WO	0×0000	write_enable
31.10	WO	00000	Bit0~15 write enable
15:14	RO	0x0	reserved
			sr_ctl_en
13	RW	0x0	0: disable sr exit/enter reload/inverse lpckdis_ini
			1: enable sr exit/eneter reload/inverse lpckdis_ini
			pd_ctl_en
12	RW	0x1	0: disable pd exit/enter reload/inverse lpckdis_ini
			1: enable pd exit/eneter reload/inverse lpckdis_ini
11:10	RO	0x0	reserved
		W 0x0	lpckdis_en
9	RW		0: disable ddr phy low power fuction
			1: enable ddr phy low power function
8	RW	NA 01	lpckdis_ini
8	IT VV	0x1	lpckdis intial value
7:3	RO	0x0	reserved
			lp23_mode
2	RW	W 0x0	1: enable LPDDR2/LPDDR3 mode

Bit	Attr	<b>Reset Value</b>	Description
		0×0	ddr4_mode
1	RW		1: enable DDR4 mode
			0: disable DDR4 mode
			ddr23_mode
0 F	RW		1: enable DDR2/DDR3 mode
			0: disable DDR2/DDR3 mode

### **DDR GRF MSC CTRL**

Address: Operational Base + offset (0x0080)

Bit	Attr	Reset Value	Description
31:20	RO	0x0	reserved
19:16	DW	0x0	write_enable
19.10	IK VV	UXU	Bit0~3 write enable
15:4	RO	0x0	reserved
			read_bypass_en
3	RW	0x0	1'b1: bypass all read traffics
			1'b0: not bypass
		0×0	priority_bypass_en
2	RW		1'b1: bypass traffics with priority higher than priority_level_th
			1'b0: not bypass
		0×0	cpu_bypass_en
1	RW		1'b1: bypass cpu traffics
			1'b0: not bypass
			global_en
			msch_ready_ctrl global enable
0	RW	W 0×0	1'b1: enable
			1'b0: disable
			note: msch_ready_ctrl only works when grf_ddrbuf_en in
			DDR_CON0 is set to 0

### **DDR GRF CPU IDLE TH**

Address: Operational Base + offset (0x0084)

Bit	Attr	<b>Reset Value</b>	Description
21.16	DW	0x0000	write_enable
31:16 RW	KVV		Bit0~15 write enable
		W 0x0000	cpu_idle_threshold
15:0	DW		Only when there is not any cpu traffics after cpu_idle_threshold
15.0 K	FC V V		memory scheduler clock cycles, the msch_ready_ctrl can drive
			ready low. Only used when cpu_bypass_en is 1'b1

## **DDR GRF READY LOW CYCLES**

Address: Operational Base + offset (0x0088)

Bit	Attr	<b>Reset Value</b>	Description
21.16	RW 0x0000	write_enable	
31.10	KVV	UXUUUU	Bit0~15 write enable
15.0	15:0 RW 0x0	W 1020000 1	ready_low_cycles
12:0			The total memory scheduler clock cycles to keep ready low

## **DDR GRF READY HIGH CYCLES**

Address: Operational Base + offset (0x008c)

Bit	Attr	<b>Reset Value</b>	Description
31:16	C DW 000	10x0000	write_enable
31:16	KVV		Bit0~15 write enable
15.0	DW	274 00000	ready_high_cycles
15:0 RW	W 0x0000	The total memory scheduler clock cycles to keep ready high	

## **DDR GRF PRIORITY IDLE TH**

Address: Operational Base + offset (0x0090)

Bit	Attr	<b>Reset Value</b>	Description
21.16	31:16 RW	0x0000	write_enable
31:16	KVV		Bit0~15 write enable
		W 0×0000	priority_idle_threshold
			Only when there is not any traffics with priority higher than
15:0	RW		PRIORITY_LEVEL_TH after priority_idle_threshold memory
			scheduler clock cycles, the msch_ready_ctrl can drive ready low.
			Only used when priority_bypass_en is 1'b1

### **DDR GRF PRIORITY LEVLE TH**

Address: Operational Base + offset (0x0094)

Bit	Attr	<b>Reset Value</b>	Description
31:16	DW	(() <b>x</b> ()()()()	write_enable
	KVV		Bit0~15 write enable
15:0	RW	W 0×0000	priority_level_threshold
			When priority is higher than this value, the traffics will be
			bypassed

### **DDR GRF STATUSO**

Address: Operational Base + offset (0x0100)

mrr_data0[31:0] DDR_STATUS0~DDR_STATUS7 are Mode Register Read Data. mrr_data0[31:0] data status. (LPDDR2/3/4): Mode register read data. (DDR4): Multi-purpose register (MPR) read data. Valid when hif_mrr_data_valid is high. Present only in designs configured to support LPDDR2/LPDDR3/LPDDR4 or DDR4 For DDR4, the width of this signal is equal to the width of the dfi_rddata signal. DDR4 MPR read data received on the DFI interface can be read on hif mrr_data when hif mrr_data_valid is	Bit	Attr	<b>Reset Value</b>	Description
asserted				mrr_data0[31:0] DDR_STATUS0~DDR_STATUS7 are Mode Register Read Data. mrr_data0[31:0] data status. (LPDDR2/3/4): Mode register read data. (DDR4): Multi-purpose register (MPR) read data. Valid when hif_mrr_data_valid is high. Present only in designs configured to support LPDDR2/LPDDR3/LPDDR4 or DDR4 For DDR4, the width of this signal is equal to the width of the dfi_rddata signal. DDR4 MPR read data received on the DFI interface can be read on hif_mrr_data_valid is

### **DDR GRF STATUS1**

Address: Operational Base + offset (0x0104)

Bit	Attr	<b>Reset Value</b>	Description
31:0	RO	10×00000000	mrr_data0[63:32]
31:0	KO		mrr_data0[63:32] data status. See DDR_STATUS0

## **DDR GRF STATUS2**

Address: Operational Base + offset (0x0108)

Bit	Attr	<b>Reset Value</b>	Description
31:0	RO	IOXOOOOOOOO	mrr_data0[95:64]
31.0	KO		mrr_data0[95:64] data status. See DDR_STATUS0

### **DDR GRF STATUS3**

Address: Operational Base + offset (0x010c)

Bit	Attr	<b>Reset Value</b>	Description
31.0	PC	)  0x00000000	mrr_data0[127:96]
31.0	31:0 RO		mrr_data0[127:96] data status. See DDR_STATUS0

### **DDR GRF STATUS4**

Address: Operational Base + offset (0x0110)

Bit	Attr	<b>Reset Value</b>	Description
31:0 RO	D.O.	0x00000000	mrr_data1[31:0]
	KU	000000000	mrr_data1[31:0] data status. See DDR_STATUS0

### **DDR GRF STATUS5**

Address: Operational Base + offset (0x0114)

Bit	Attr	<b>Reset Value</b>	Description
31:0	RO	10×00000000	mrr_data1[63:32] mrr_data1[63:32] data status. See DDR_STATUS0

## **DDR GRF STATUS6**

Address: Operational Base + offset (0x0118)

Bit	Attr	<b>Reset Value</b>	Description
31:0	RO	10×00000000	mrr_data1[95:64]
			mrr_data1[95:64] data status. See DDR_STATUS0

### **DDR GRF STATUS7**

Address: Operational Base + offset (0x011c)

Bit	Attr	<b>Reset Value</b>	Description
31:0	RO	$10 \times 000000000$	mrr_data1[127:96]
			mrr_data1[127:96] data status. See DDR_STATUS0

## **DDR GRF STATUS8**

Address: Operational Base + offset (0x0120)

Bit	Attr	<b>Reset Value</b>	Description
31:19	RO	0x0	reserved
18	RO	0x0	cpu_port_probe_mainStatAlarm
10	20	UXU	cpu_port_probe_mainStatAlarm
17	RO	0x0	cpu_port_probe_mainTraceAlarm
17	20	UXU	cpu_port_probe_mainTraceAlarm
16	RO	0x0	gpu_port_probe_mainStatAlarm
10	KO	0.00	gpu_port_probe_mainStatAlarm
15	RO	0x0	gpu_port_probe_mainTraceAlarm
13	KO	0.00	gpu_port_probe_mainTraceAlarm
14	RO	0x0	mmip_port_probe_mainStatAlarm
14	KO .	0.00	mmip_port_probe_mainStatAlarm
13	RO	0x0	mmip_port_probe_mainTraceAlarm
13	KO		mmip_port_probe_mainTraceAlarm
12	RO	0x0	peri_port_probe_mainStatAlarm
12	KO		peri_port_probe_mainStatAlarm
11	RW	0x0	peri_port_probe_mainTraceAlarm
11	1744		peri_port_probe_mainTraceAlarm
10	RW	V 0×0	dfi_scramble_read_of
10	KVV		dfi_scramble_read_of
9	RW	0x0	dfi_scramble_write_of
9	IXVV	0.00	dfi_scramble_write_of
8	RW	0x0	dfi_scramble_key_ready
0	IVV	W UXU	dfi_scramble_key_ready
7:6	RW	0x0	grf_st_ddrc_reg_selfref_type
7.0	IVV	0.00	grf_st_ddrc_reg_selfref_type
5	RW	0x0	grf_st_cactive_aclk
٦	1744	0.70	grf_st_cactive_aclk
4	RW	0x0	grf_st_csysaclk_aclk
7	KVV	W UXU	grf_st_csysaclk_aclk

Bit	Attr	<b>Reset Value</b>	Description
3	RO	111011	grf_con_csysreq_aclk
3	KU		grf_con_csysreq_aclk
2	DO	מצמו מ	cactive_ddrc
2	RO		external cactive_ddrc
1	DO	()  () <b>y</b> ()	csysack_ddrc
1	RO		external csysack_ddrc
0	DO	0 0	csysreq_ddrc
0	RO	0x0	external csysreq_ddrc

## **DDR_GRF_STATUS9**

Address: Operational Base + offset (0x0124)

Bit	Attr	<b>Reset Value</b>	Description	
31	RO	0.40	dfi_lp_ck_disable	
31	KO	0x0	status low power of ddr phy	
30	RO	0x0	reserved	
29:24	DO	0,400	grf_st_hif_refresh_req_bank	
29:24	KU	0x00	grf_st_hif_refresh_req_bank	
23	RO	0x0	reserved	
22.16	RO	0x00	grf_st_wr_credit_cnt	
22:16			grf_st_wr_credit_cnt	
15	RO	0x0	reserved	
14:8	DO	O 0x00	grf_st_hpr_credit_cnt	
14:0	KU		grf_st_hpr_credit_cnt	
7	RO	0x0	reserved	
6.0	DO.	0×00	grf_st_lpr_credit_cnt	
6:0	KU	RO	0x00	grf_st_lpr_credit_cnt

## **Chapter 4 Graphics Process Unit (GPU)**

### 4.1 Overview

The GPU is a hardware accelerator for 2D and 3D graphics systems.

The GPU supports these compute API standards:

OpenCL 2.0 Full Profile.

The GPU supports these graphics API standards:

- DirectX 11 FL9_3. OpenGLES 1.1, 2.0, and 3.2.
- Vülkan 1.0.

The GPU consists of:

- Job manager
- One double-pixel shader core, with one execution engine.
- Hierarchical tiler.
- Memory management unit.
- A singlé 64k LŽ cache slice.

The GPU contains 1128-bit AXI slave bus and 1128-bit AXI master bus. CPU configures GPU through AXIslave bus, GPU read and write data through AXI master bus.

## 4.2 Block Diagram

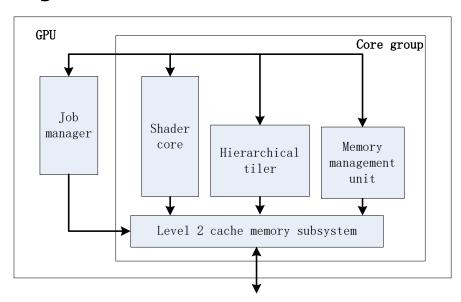



Fig. 4-1GPU block diagram

## 4.3 Register Description

The GPU base addressis 0XFF40 0000. Please refer to the document of "ARM_mali??_r0p0_00eac0_TechnicalReferenceManual.pdf"for the detailed register description

## Chapter 5 Cortex-A35

### 5.1 Overview

The PX30 has a quad-core Cortex-A35 cluster with 256K L2 memory. Cortex-A35 processor, which is a mid-range, low-power processor that implements the ARMv8-A architecture.

The Cortex-A35 processor includes following features:

Full implementation of the ARMv8-A A64, A32, and T32 instruction sets. Both the AArch32 and AArch64 execution states at all Exception levels (EL0 to EL3).

In-order pipeline with direct and indirect branch prediction.

Separate Level 1 (L1) data and instruction side memory systems with a Memory Management Unit(MMU).

Level 2 (L2) memory system that provides cluster memory coherency.

L2 cachè.

TrustZone.

Support data engine that implements the Advanced SIMD and floating-point architecture support.

Support Cryptographic Extension.

ARMv8 debug logic.

- Support Generic Interrupt Controller (GIC) CPU interface to connect to an external distributor.
- Generic Timers supporting 64-bit count input from an external system counter.

The configuration details are shown in following tables

Table 5-1 CPU Configuration

	1
Number of CPU	4
L1 I cache size	32K
L1 D cache size	32K
L2 cache size	256K
L2 data RAM output latency	3 cycles
L2 data RAM input latency	2 cycles
CPU cache protection	No
SCU L2 cache protection	No
BUS master interface	AXI4
NEON and floating point support	Yes
Cryptography extension	Yes

## 5.2 Block Diagram

The Cortex-A35 sub system is shown in Figure 1-1. As illustrated, quad-core Cortex-A35 connects to system bus through SCU-L2 which can handle with CDC(clock domain crossing) issue.

The Cortex-A35 is connected with system counter, which can run under a constant frequency clock, for PPI interrupt generation.

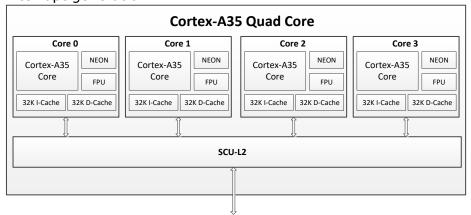



Fig. 5-1 Block Diagram

## 5.3 Function Description

Please refer to the document cortex_a35_r0p2_trm.pdf for the detail function description.

## **Chapter 6 Embedded SRAM**

#### 6.1 Overview

There are two embedded SRAMs, SYSTEM_SRAM and PMU_SRAM. the AXI slave device, which supports read and write access to provide system fast access data storage

## **6.1.1 Features supported**

- SYSTEM_SRAM
  - Provide 16KB access space
  - Support security and non-security access
  - Security or non-security space is software programmable
  - Security space is nx4KB(up to whole memory space)
- PMU SRAM
  - Provide 8KB access space
  - Support security access only

## 6.2 Block Diagram

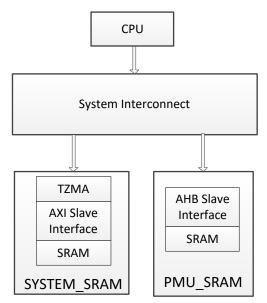



Fig. 6-1 Embedded SRAM block diagram

## **6.3 Function Description**

## 6.3.1 AXI slave interface of SYSTEM_SRAM

The AXI slave interface is bridge which translate AXI bus access to SRAM interface of SYSTEM_SRAM.

## 6.3.2 AXI slave interface of PMU_SRAM

The AHB slave interface is bridge which translate AHB bus access to SRAM interface of PMU_SRAM.

#### 6.3.3 Embedded SRAM access path

The SYSTEM_SRAM can only be accessed by CPU, DMAC_BUS, CRYPTO and NANDC. The PMU_SRAM can only accessed by CPU.

## Chapter 7 Nand Flash Controller (NandC)

### 7.1 Overview

Nand Flash Controller (NandC) is used to control data transmission from host to flash device or from flash device to host. NandC is connected to AHB BUS through an AHB Master and an AHB Slave. The data transmission between host and external memory can be done through AHB Master interface or AHB Slave interface.

NandC supports the following features:

- Software Interface Type

  Support directly mode
  Support LLP(Linked List Pointer) mode
- Flash Interface Type
  - Support Asynchronous Flash Interface with 8bits datawidth ("Asyn8x" for short)
    Support ONFI Synchronous Flash Interface ("ONFI Syn" for short)
    Support Toggle Flash Interface ("Toggle" for short)
    Support 2 flash devices at most

- - Support Managed NAND Flash(LBA) and Raw NAND Flash(NO-LBA)
     Support SLC/MLC/TLC Flash
    Flash Interface Timing
- - Asyn8x: configurable timing, one byte per two host clocks at the fastest speed ONFI Syn: configurable timing, two bytes per two host clocks at the fastest speed Toggle: configurable timing, two byte per two host clocks at the fastest speed
- Randomizer Ability
  - Supporttwo randomizer mode with different polynomial
- Support two randomizer mode with different polynomial
   Support two randomizer width, 8bit and 16bit parallel
   BCH/ECC Ability
   24bit/1KB BCH/ECC: support 24 bit BCH/ECC, which can detect and correct up to 24 error bits in every 1K bytes data
   40bit/1KB BCH/ECC: support 40bit BCH/ECC, which can detect and correct up to 40

  - 40bit/1KB BCH/ECC: support 40bit BCH/ECC, which can detect and correct up to 40 error bits in every 1K bytes data 60bit/1KB BCH/ECC: support 60bit BCH/ECC, which can detect and correct up to 60 error bits in every 1K bytes data 70bit/1KB BCH/ECC: support 70 bit BCH/ECC, which can detect and correct up to 70 error bits in every 1K bytes data 24bit/512B BCH/ECC: support 24 bit BCH/ECC, which can detect and correct up to 24 error bits in every 512 bytes data 40bit/512B BCH/ECC: support 40bit BCH/ECC, which can detect and correct up to 40 error bits in every 512 bytes data 60bit/512B BCH/ECC: support 60bit BCH/ECC, which can detect and correct up to 60 error bits in every 512 bytes data 70bit/512B BCH/ECC: support 70bit BCH/ECC, which can detect and correct up to 70 error bits in every 512 bytes data nsmission Ability
- Transmission Ability
  - Support 32K býtes data transmission at a time at most

  - Support two transfer working modes: Bypass or DMA
    Support two transfer codewords size for Managed NAND Flash: 1024 bytes/codeword or 512 bytes/codeword
- Internal Memory
  - 2 built-in srams, and the size is 1k bytes respectively Can be accessed by other masters

  - Can be operated in pingpong mode by other masters

## 7.2 Block Diagram

NandC comprises with:

- MIF: AHB Master Interface SIF: AHB Slave Interface SRIF: Sram Interface TRANSC: Transfer Controller

- LLPC: LLP Controller

- BCHENC: BCH Encoder
  BCHDEC: BCH Decoder
  RANDMZ: Randomizer
  FIF_GEN: Flash Interface Generation
  DLC: Delay Line Controller NAND_IO: Flash IO Interface

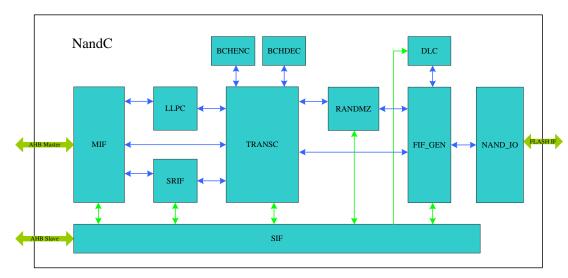



Fig.7-1NandC Block Diagram

## 7.3 Function Description

#### 7.3.1 AHB Interface

There is an AHB master interface in NandC, which is selectable and configurable. It is responsible for transferring data from external memory to internal memory when flash program, or inverse when flash read; and transferring LLP data from external memory to internal register file when LLP is active.

There is an AHB slave interface in NandC. It is responsible for accessing registers and internal memories. The addresses of these registers and memories are listed in 1.4.1.

## 7.3.2 Flash Type/Flash Interface

Flash device with different types of interfaces is supported. These interfaces include: asynchronous 8bits flash interface, ONFI synchronous flash interface, toggle flash interface, and so on. You can select one of them by software (configure FMCTL) to suit for these devices. Also you can configure their timing parameters by software (configure FMWAIT_ASYN/FMWAIT_SYN) to have your desired rate.

## 7.3.3 Linked List Pointer Mode (LLP)

To save the software resource and improve the performance, a LLP is add, which is selectable. When LLP is selected, the flash operation instructions stored in external memory with specific format should be loaded for flash working. The detailed format and working flow are referred to 15.7.8.

#### 7.3.4 BCH Encoder/BCH Decoder

The BCH Encoder is responsible for encoding data to be written into flash device. The max encoded length is 1152bytes, in which the data length is 1024bytes, system information is 4bytes, BCH code is 124bytes.

The BCH Decoder is responsible for decoding data read from flash device. The max decoded length is 1152bytes, in which the data length is 1024bytes, spare length is 128bytes.

#### 7.3.5 Randomizer

To improve device lifetime, a randomizer is added in NandC. It includes two parts: Scrambler and Descrambler, which is responsible for scrambling data to be written into flash after bch encoding, and descramblingdata read from flash before bch decoding.

#### 7.3.6 Delay Line Controller

For ONFI Synchronous Flash or Toggle Flash, the data read from flash follows with a strobe signal: DQS, where a skew between them exists. To remove the skew and improve the timing between data and DQS, a Delay Line Controller is needed. It is responsible for detecting the phase of the signal similar to DQS, determining the element number to be shifted, and then shifting the DQS with the determined number.

#### 7.3.7 NAND IO

Different Interface signals such as asynchronous, onfi and toggle interface are multiplexedand some related logic are included.

## 7.4 Register Description

## 7.4.1 Internal Address Mapping

Slave address can be divided into different length for different usage, which is shown as follows.

Name	Offset	Size	Reset Value	Description
NANDC_FMCTL	0x0000	W	0x00000a00	Flash Interface Control Register
NANDO EMMATE ACM	00004	W	0x3f3ff7ff	Flash Timing Control Register For
NANDC FMWAIT ASYN	0x0004			Asynchronous Timing
NANDC EMWAIT CVN	0x0008	W	0x00000000	Flash Timing Control Register For
NANDC_FMWAIT_SYN				Synchronous Timing
NANDC FLCTL	0x0010	W	0x00100000	Internal Transfer Control Register
NANDC FIFO ACCESS	0x0014	W	0x00000000	FIFO access Register
NANDC BCHCTL	0x0020	W	0x00000008	BCH Control Register
NANDC MTRANS CFG	0x0030	w	0x000001d0	Bus Transfer Configuration Register
NANDC MTRANS SADDR 0	0x0034	w	0x00000000	Start Address Register For Page Data Transmission
NANDC MTRANS SADDR	0x0038	W	0×00000000	Start Address Register For Spare Data Transmission
NANDC MTDANC CTAT	0,0040	14/	0,,000,000	
NANDO MERANO STAT	0x0040	W	0x00000000	Bus Transfer Status Register
NANDC MTRANS STAT2	0x0044	W	0x00000000	Bus Transfer Status Register2
NANDC DLL CTL REGO	0x0050	W	0x007f7f05	DLL Control Register 0
NANDC DLL CTL REG1	0x0054	W	0x00000022	DLL Control Register 1
NANDC DLL OBS REGO	0x0058	W	0x00000200	DLL Status Register
NANDC_NANDC_VER	0x0080	W	0x56393030	Nandc Version Register
NANDC LLP CTL	0x0090	W	0x00000000	LLP Control Register
NANDC_LLP_STAT	0x0094	W	0x0000001	LLP Status Register
NANDC_LLI_FOP7	0x00a0	W	0x0000000	LLI flash operation byte 7;
NANDC LLI FOP8	0x00a4	W		LLI flash operation byte 8;
NANDC_LLI_FOP9	0x00a8	W	0x00000000	LLI flash operation byte 9;
NANDC LLI FOP10	0x00ac	W	0x00000000	LLI flash operation byte 10;
NANDC LLI FOP11	0x00b0	W		LLI flash operation byte 11;
NANDC LLI FOP12	0x00b4	W	0x0000000	LLI flash operation byte 12;
NANDC LLI FOP13	0x00b8	W	0x0000000	LLI flash operation byte 13;
NANDC LLI FOP14	0x00bc	W	0x00000000	LLI flash operation byte 14;
NANDC_LLI_NXT_LLP	0x00c0	W	0x00000000	Next LLI
NANDC LLI FOPO	0x00c4	W	0x00000000	LLI flash operation byte 0;
NANDC LLI_FOP1	0x00c8	W	0x00000000	LLI flash operation byte 1;
NANDC LLI FOP2	0x00cc	W	0x00000000	LLI flash operation byte 2;
NANDC LLI FOP3	0x00d0	W	0x00000000	LLI flash operation byte 3;
NANDC_LLI_FOP4	0x00d4	W	0x00000000	LLI flash operation byte 4;
NANDC LLI FOP5	0x00d8	W	0x00000000	LLI flash operation byte 5;
NANDC_LLI_FOP6	0x00dc	W	0x00000000	LLI flash operation byte 6;

Name	Offset	Size	Reset Value	Description
NANDC_INTEN	0x0120	W	0x00000000	NandC Interrupt Enable Register
NANDC INTCLR	0x0124	W	0x00000000	NandC Interrupt Clear Register
NANDC INTST	0x0128	W	0x00000000	NandC Interrupt Status Register
NANDC BCHSTO	0×0150	W	0x80000000	BCH Status Register For
NANDE DELISTO				Codeword 0~1
NANDC BCHST1	0x0154	W	0×00000000	BCH Status Register For
NANDE BENSTI				Codeword 2~3
NANDC_BCHST2	0x0158	W	0x00000000	BCH Status Register For
TWIND C DONOTE	OXOISO	• •	OXCCCCCCCC	Codeword 4~5
NANDC BCHST3	0x015c	W	0x00000000	BCH Status Register For
	0,0250	'	one control of	Codeword 6~7
NANDC BCHST4	0x0160	W	0x0000000	BCH Status Register For
				Codeword 8~9
NANDC BCHST5	0x0164	W	0x0000000	BCH Status Register For
				Codeword 10~11
NANDC_BCHST6	0x0168	W	0x00000000	BCH Status Register For
				Codeword 12~13
NANDC BCHST7	0x016c	W	0x00000000	BCH Status Register For
				Codeword 14~15
NANDC BCHST8	0x0170	W	0x00000000	BCH Status Register For Codeword 16~17
	0x0174	W	0x00000000	BCH Status Register For
NANDC BCHST9				Codeword 18~19
	0x0178	w	0x00000000	BCH Status Register For
NANDC_BCHST10				Codeword 20~21
	0x017c	W	0x00000000	BCH Status Register For
NANDC BCHST11				Codeword 22~23
NAME C. DOUGTAR	0x0180		0×00000000	BCH Status Register For
NANDC BCHST12		W		Codeword 24~25
NANDO DOUCT12	00104	14/	0x00000000	BCH Status Register For
NANDC BCHST13	0x0184	W		Codeword 26~27
NANDO DOUCTIA	00100	W	00000000	BCH Status Register For
NANDC_BCHST14	0x0188	VV	0x00000000	Codeword 28~29
NANDC BCHST15	0x018c	W	0x00000000	BCH Status Register For
NANDE DELISTIS	OXOTOC	VV		Codeword 30~31
NANDC SPAREO 0	0x0200	W	0xfffffff	System Information for codeword
INANDE STARLO O				0
NANDC SPARE1 0	0x0204	W	0xfffffff	System Information for codeword
				1
NANDC RANDMZ CFG	0x0208	W	0x0000000	Randomizer Configure Register
NANDC_SEED_BCHST	0x020c	W	0x00000000	Bchst Seed

Notes: Size: **B-** Byte (8 bits) access, **HW-** Half WORD (16 bits) access, **W-**WORD (32 bits) access

# 7.4.2 Detail Register Description NANDC FMCTL

Address: Operational Base + offset (0x0000)

Bit		Reset Value	Description	
31:24		0x0	reserved	
31121		o x o	Data_mux_sel	
23			Used to select nandc pin function;	
	RW	0x0	0: dq0~7 pin used as "DQ[0]~[7]" function;	
			1: dq0~7 pin used as "DQ[7]~[0]" function;	
			Cmd mux sel	
		0×0	Used to select nandc pin function;	
			0: We pin used as "WE" function;	
			Ale pin used as "ALE" function;	
22	RW		,	
			Cle pin used as "CLE" function;	
			1: We pin used as "ALE" function;	
			Ale pin used as "WE" function;	
			Cle pin used as "WP" function;	
			Diff_mux_sel	
			Used to select nandc pin function;	
21	RW	0x0	0: rdn pin used as "RE" function;	
		e Au	dqs pin used as "DQS" function;	
			1: rdn pin used as "DQS" function	
			dqs pin used as "RE" function;	
20:18	RW	RW 0x0	sif_read_delay	
20110			Used to control the delay time when asynchronous mode	
			flash_abort_stat	
			Function1:	
		O 0x0	flash_abort_stat, RO.	
17	RO		Function2:	
			flash_abort_clear, RW, auto clear.	
			flash_abort_stat is set to 1 when flash abort if flash_abort_en=1,	
			set to 0 when flash_abort_clear=1.	
			flash_abort_en	
		0×0	Flash abort protect enable signal, 1 active.	
			0: Flash abort protect disable.	
			1: Flash abort protect enable.	
			Notes:	
			1. when in dma mode, if the time from last read operation start	
16	RW		to the last read valid exceeds 1024 cycles, flash_abort_stat is set	
			to high.	
			2. when in bypass mode, if the time from current read operation	
			start to the read valid exceed 1024 cycles, flash_abort_stat is set	
			to high.	
			3. when in IIp bypass read/read match mode, when the operation	
			is long than 1024 cycles, flash_abort_stat is set to high.	
L	İ	I		

Bit	Attr	Reset Value	Description
			syn_mode
15 RW	DVA	00	Toggle enable signal, 1 active.
	RW	0x0	0: ONFI synchronous flash.
		1: Toggle synchronous flash.	
			syn_clken
		0×0	Synchronous flash clock enable signal, 1 active.
14 RW	RW		Only available in Synchronous Mode.
			0: flash clock is disabled.
			1: flash clock is enabled.
			tm
13	RW	0×0	Timing mode indication.
		0.00	0: Asynchronous Mode.
			1: Synchronous Mode (Toggle or ONFI Synchronous).
12	RO	0x0	reserved
			Dma_f_flag
		0x1	Indication for the all f byte in the current
11	RO		DMA transmission.
			0: the transmission is not all f
			1: the transmission is all f
		0×0	fifo_empty
10	RO		fifo empty signal.
			1'b0: fifo is not empty;
			1'b1: fifo is emtpy;
		0x1	frdy
9	RO		Flash ready/busy indicate signal.  0: flash is busy.
9	KO		1: flash is ready.
			This bit is the sample of the pin of R/Bn.
8	RW	0x0	reserved
	1000	o no	fcs7
		0x0	Flash memory chip 7 select control.
7	RW		1: hold flash memory chip select activity.
			0: flash memory chip select activity free.
		N 0x0	fcs6
_	D)4/		Flash memory chip 6 select control.
6 RW	RW		1: hold flash memory chip select activity.
			0: flash memory chip select activity free.
5 RW			fcs5
	RW		Flash memory chip 5 select control.
			1: hold flash memory chip select activity.
			0: flash memory chip select activity free.
		0×0	fcs4
4 R	RW		Flash memory chip 4 select control.
	1244		1: hold flash memory chip select activity.
			0: flash memory chip select activity free.

Bit	Attr	Reset Value	Description
			fcs3
3	RW	0x0	Flash memory chip 3 select control.
3	KVV	UXU	1: hold flash memory chip select activity.
			0: flash memory chip select activity free.
			fcs2
2	RW	0x0	Flash memory chip 2 select control.
~			1: hold flash memory chip select activity.
			0: flash memory chip select activity free.
			fcs1
1	DW		Flash memory chip 1 select control.
1	RW		1: hold flash memory chip select activity.
			0: flash memory chip select activity free.
			fcs0
	DW	0×0	Flash memory chip 0 select control.
0	KW		1: hold flash memory chip select activity.
			0: flash memory chip select activity free.

### NANDC FMWAIT ASYN

Address: Operational Base + offset (0x0004)

Bit	Attr	<b>Reset Value</b>	Description	
31	RO	0x0	reserved	
30	RW	0x0	fmw_dly_en	
30	1200	0.00	fmw_dly enable signal,1 active.	
29:24	RW	0x3f	fmw_dly	
23.24	1244	0,731	The number of delay cycle between two codeword transmission.	
23	RO	0x0	reserved	
22:18	DW	0x0f	wait_frdy_dly	
22.10	KVV	OXOI	The number of delay cycle to accept the flash ready signal.	
			csrw	
		/ 0x3f	When in Asynchronous mode or Toggle address/command mode,	
17:12	RW		this field specifies the number of processor clock cycles from the	
			falling edge of CSn to the falling edge of RDn or WRn. The min	
			value of csrw is 0.	
			hard_rdy	
		W 0x0	Hardware handshaking controller bit.	
11	RW		When asserted, an external device asserts signal "RDY" to extend	
			a wait-state access and the rest bits in this register will be	
			ignored.	
			rwpw	
10:5	RW	RW 0x3f	When in Asynchronous mode or Toggle address/command mode,	
10.5	1200		this field specifies the width of RDn or WRn in processor clock	
				cycles, 0x0<=rwpw<=0x3f.

Bit	Attr	<b>Reset Value</b>	Description
4:0	RW	0x1f	rwcs When in Asynchronous mode or Toggle address/command mode, this field specifies the number of processor clock cycles from the rising edge of RDn or WRn to the rising edge of CSn, $0x0<=rwcs<=0x1f$ .

# NANDC_FMWAIT_SYN

Address: Operational Base + offset (0x0008)

Bit	Attr	<b>Reset Value</b>	Description
31:16	RO	0x0	reserved
15	RW	0x0	ssyn_xle_sel ALE/CLE selection signal for ONFI synchronous flash: 0: ALE/CLE aligned to the falling edge of WRN 1: ALE/CLE aligned to the center of WRN low level
14:9	RW	0×00	pst Write/Read Postamble time for ONFI synchronous mode or Toggle data mode. This field specifies the number of processor clock cycle for Postamb- le time.
8:3	RW	0x00	pre Write/Read Preamble time for ONFI synchronous mode or Toggle data mode. This field specifies the number of processor clock cycle for preamble time.
2:0	RW	0x0	fclk Half hclk cycle number for flash clock for ONFI synchronous mode or Toggle data mode

#### NANDC_FLCTL

Address: Operational Base + offset (0x0010)

Bit	Attr	<b>Reset Value</b>	Description
31	RO	0x0	reserved
30	RW	0x0	bypass_fifo_mode The enable sigal for bypass with fifo mode. 1'b0: disable; 1'b1: enable;
29	RW	0×0	async_tog_mix Nandc async mode and tog mode compatible control 0: async write data can't be read by tog read 1: async write data can be read by tog read
28	RW	0x0	low_power Nandc low power control 0: normal mode 1: low power mode

Bit	Attr	Reset Value	Description
27:22	RW	0×00	page_num Transmission codeword number in internal DMA mode when busmode is master-mode 1~32: 1~32 codeword. default: not support. Notes: a. Only active in internal DMA mode b. Only active when bus-mode is master-mode
21	RW	0×0	page_size Transmission codeword size in internal DMA mode 0: 1024bytes/codeword 1: 512bytes/codeword Note: only used when lba_en=1;
20	RO	0×1	tr_rdy Internal DMA transmission ready indication.  0: internal DMA transmission is busy 1: internal DMA transmission is ready When reading flash, tr_rdy should not be set to 1 until all data transmission and correct finished. When programing flash, tr_rdy should not be set to 1 until all data transmission finished. Notes: Only active in internal DMA mode.
19	RW	0×0	bchst_trans Transmission the status of BCH to external memory 0: not transmission 1: transmission
18:13	RO	0x0	reserved
12	RW	0×0	Iba_spare_sel Spare byte number selector when Iba_en=1. 0: spare size is 0; 1: spare size is 4bytes;

Bit	Attr	Reset Value	Description
			lba_en
			LBA mode indication, 1 active.
			0: NO-LBA mode, NandC should transfer both page data and
			spare data in every codeword, and the page size is 1024 bytes or
			512 bytes determined by BCHCTL[16](bchpage), spare size is
			46/74/109 bytes or 127 bytes determined by BCHCTL[27:25].
	DW	00	1: LBA mode, NandC should transfer both page data and spare
11	RW	0x0	data in every codeword, and the page size is 1024 bytes or 512
			bytes determined by FLCTL[21](page_size), spare size is
			determined by FLCTL[12](lba_spare_sel).
			Notes:
			a. When lba_en is active, BCH CODEC should be disabled,
			spare_size and page_size are configurable.
			b. When lba_en is active, cor_able is inactive.
			cor_able
			Auto correct enable indication, 1 active.
		0x0	0: auto correct disable
10	RW		1: auto correct enable
			Notes:
			a. Only active in internal DMA mode.
			b. lba_en is prior to cor_able. When lba_en=1, cor_able is
			ignored.
			trans_seed
9	RW	0x0	Transfer the randomizer seed to flash
			0: not transfer the seed to flash.
			1: transfer the seed to flash.
			not_trans_data Not Transfer the data
8	RW	0x0	0: transfer the data with spare.
			1: Not transfer the data.
			flash_st_mod
			Mode for NandC to start internal data transmission in internal
			DMA mode.
			0: busy mode: hardware should not start internal data
7	RW	0×0	transmission until flash is ready even flash_st is asserted.
			1: ready mode: hardware should start internal data transmission
			directly when flash_st is asserted.
			Notes:
			Only active in internal DMA mode.

Bit	Attr	Reset Value	Description
6:5	RW	0x0	tr_count Transmission codeword number in internal DMA mode when busmode is slave-mode 00: 0 codeword need transferred 01: 1 codeword need transferred 10: 2 codeword need transferred 11: not supported Notes: a. Only active in internal DMA mode. b. Only active when bus-mode is slave-mode.
4	RW	0×0	st_addr Start buffer address. 0: start transfer from sram0 1: start transfer from sram1 Notes: Only active in internal DMA mode.
3	RW	0×0	bypass NandC internal DMA bypass indication.  0: bypass the internal DMA, data are transferred to/from flash by direct path.  1: internal DMA active, data are transferred to/from flash by internal DMA.
2	R/W SC	0×0	flash_st Start signal for NandC to transfer data between flash and internal buffer in internal DMA mode. When asserted, it will auto cleared. 0: not start transmission 1: start transmission Notes: Only active in internal DMA mode
1	RW	0×0	flash_rdn Indicate data flow direction. 0: NandC read data from flash. 1: NandC write data to flash
0	R/W SC	0×0	flash_rst NandC software reset indication. When asserted, it will auto cleared. 0: not software reset 1: software reset Notes: flash_rst is prior to flash_st

### **NANDC FIFO ACCESS**

Address: Operational Base + offset (0x0014)

Bit	Attr	<b>Reset Value</b>	Description
			Fifo_cnt
			Indicate valid data number;
31:30	WO	0x0	2'b00: indicate byte0~2 are invalid;
31.30	WO	UXU	2'b01: indicate byte0 is valid;
			2'b10: indicate byte0~1 are valid;
			2'b11: indicate byte0~2 are valid;
			Byte2_attr
			Indicate byte2 attribute;
29:28	WO.	0×0	2'b00: data
29.20	VVO	0.00	2'b01: address
			2'b10: command
			2'b11: data
			Byte1_attr
			Indicate byte1 attribute;
27:26	WO	0x0	2'b00: data
27.20	VVO		2'b01: address
			2'b10: command
			2'b11: data
			byte0_attr
			Indicate byte0 attribute;
25:24	WΩ	0×0	2'b00: data
			2'b01: address
			2'b10: command
			2'b11: data
23:16	WΩ	0×00	Fifo_byte2
			Byte2 of transfer data
15:8	wo	0×00	Fifo_byte1
		0,100	Byte1 of transfer data
7:0	wo	0×00	fifo_byte0
, . 0	***	0.00	Byte0 of transfer data

# NANDC BCHCTL

Address: Operational Base + offset (0x0020)

Bit	Attr	<b>Reset Value</b>	Description
31:28	RO	0x0	reserved
			bchmode
		W  0×0	BCH mode selection;
27.25	RW		000: 70bitBCH
27:25			001: 24bitBCH
			010: 40bitBCH
			011: 60bitBCH
24.17	DW	RW 10x00 - 1	bchthres
24:17	KW		BCH error number threshold

Bit	Attr	Reset Value	Description
			bchpage
			The data size indication when BCH is active.
			0: 1024 bytes, all the 1024 bytes data in codeword are valid data
			to be transferred.
16	RW	0x0	1: 512 bytes, higher 512bytes are valid, and lower 512bytes are
			invalid and stuffed with 0xff.
			Notes:
			a. Only active when data transferred in internal DMA mode.
			b. Only active for asynchronous flash.
15:4	RO	0x0	reserved
			bchepd
3	RW	0×1	BCH encoder/decoder power down indication.
	IXVV	OXI	0: BCH encoder/decoder working.
			1: BCH encoder/decoder not working.
		W 0×0	bch_gate_en
2	RW		Bch decoder clock gating enable, high active.
_	KVV		"0": normal mode;
			"1": clock gating mode;
		W 0×0	wcnt_clear
			To clear the write counter of BCHST. When asserted, it will auto
1	RW		cleared.
			0: not clear the counter
			1: clear the counter
			bchrst
			BCH software reset indication, When asserted, it will auto
			cleared.
	R/W		0: not software reset
0	SC	0x0	1: software reset
			Notes:
			a. BCH Decoder should be software reset before decode begin.
			b. bch software reset should be used with nandc software reset at
			the same time.

#### **NANDC MTRANS CFG**

Address: Operational Base + offset (0x0030)

Bit	Attr	<b>Reset Value</b>	Description		
31:27	RO	0x0	reserved		
			redundance_size		
26:16	RW		The num of all f byte to write to flash, the maximum of the size is		
			2K -1		
4 =	R/W	0×0	ahb_rst		
15	SC		ahb master interface software reset, auto cleared		

Bit	Attr	Reset Value	Description
			fl_pwd
			Flash power down indication, 1 active.
			0: Flash power on, data transferred through master interface is
14	RW	0x0	data that to be written into or read from flash.
			1: Flash power down, data transferred through master interface
			is not data that to be written into or read from flash. NandC is
			just used as DMA for external memory and internal memory.
			incr_num
			AHB Master incr num indication.
13:9	RW	0x00	incr_num=1~16.
13.9	KVV	0000	When burst=001, software should configure incr_num.
			Notes:
			Only active for master-mode.
			burst
			AHB Master burst type indication:
			000 : Single transfer
			011 : 4-beat burst
8:6	RW	0x7	101 : 8-beat Burst
			111: 16-beat burst
			default : not supported
			Notes:
			Only active for master-mode. hsize
			AHB Master data size indication:
			000 : 8 bits
			001 : 16 bits
5:3	RW	0x2	010 : 32 bits
			default: not supported
			Notes:
			Only active for master-mode.
			bus_mode
			Bus interface selection.
2	RW	0x0	0: Slave interface, flash data is transferred through slave
_	IXVV	0.00	interface
			1: Master interface, flash data is transferred through master
			interface
			ahb_wr
			Data transfer direction through master interface.
			0: write direction(internal memory ->external memory)
1	RW	0x0	1: read direction(external memory->internal memory) Notes:
			a. Only active for master-mode.
			b. When read flash(flash_rdn=0), ahb_wr=1; when program
			flash(flash_rdn=1), ahb_wr=0.

Bit	Attr	Reset Value	Description
0	R/W SC	0×0	ahb_wr_st Start indication for loading data from external memory to internal memory or storing data from internal memory to external memory through master. When asserted, it will auto cleared. Notes: a. Only active for master-mode and fl_pwd=1. b. When fl_pwd=0, flash is active, NandC start to transfer data through master interface if flash_st=1 c. When fl_pwd=1, flash is not active, NandC start to transfer data through master interface if ahb_wr_st=1

# NANDC MTRANS SADDRO

Address: Operational Base + offset (0x0034)

Bit	Attr	<b>Reset Value</b>	Description
			saddr0
			Start address for page data transmision.
31:0	RW	0x00000000	Notes:
			a. Only active for master-mode.
			b. Should be aligned with hsize in MTRANS_CFG[5:3].

#### NANDC MTRANS SADDR1

Address: Operational Base + offset (0x0038)

Bit	Attr	<b>Reset Value</b>	Description
			saddr1
			Start address for spare data.
31:0	RW	0x00000000	Notes:
			a. Only active for master-mode.
			b. Should be aligned with hsize in MTRANS_CFG[5:3].

#### **NANDC MTRANS STAT**

Address: Operational Base + offset (0x0040)

Bit	Attr	<b>Reset Value</b>	Description
31:22	RO	0x0	reserved
21:16	RO	0×00	mtrans_cnt finished counter for codeword transmission through Master interface Notes: Only active for master-mode.

Bit	Attr	<b>Reset Value</b>	Description
15:0	RO	0x0000	bus_err Bus error indication for codeword0~15.  [0]: bus error for codeword 0  [15]: bus error for codeword 15  Notes: Only active for master-mode.

### **NANDC MTRANS STAT2**

Address: Operational Base + offset (0x0044)

Bit	Attr	Reset Value	Description
31:16	RO	0x0	reserved
			bus_err2
			Bus error indication for codeword16~31.
			[0] : bus error for codeword 16
15:0	RO	0x0000	
			[15] : bus error for codeword 31
			Notes:
			Only active for master-mode.

#### **NANDC DLL CTL REGO**

Address: Operational Base + offset (0x0050)

Bit	Attr	<b>Reset Value</b>	Description
31:24	RO	0x0	reserved
23:16	RW	0x7f	dll_dqs_dly_bypass Holds the read DQS delay setting when the DLL is operating in bypass mode.
15:8	RW	0x7f	dll_dqs_dly Holds the read DQS delay setting when the DLL is operating in normal mode. Typically, this value is 1/4 of a clock cycle. Each increment of this field represents 1/128th of a clock cycle.
7:0	RW	0x05	dll_start_point DLL Start Point Control. This value is loaded into the DLL at initialization and is the value at which the DLL will begin searching for a lock. Each increment of this field represents 1/128th of a clock cycle.

#### NANDC DLL CTL REG1

Address: Operational Base + offset (0x0054)

Bit	Attr	<b>Reset Value</b>	Description
31:12	RO	0x0	reserved

Bit	Attr	Reset Value	Description
11:4	RW	0x02	dll_incr DLL Increment Value. This sets the increment used by the DLL when searching for a lock. It is recommended keeping this field small (around 0x4) to keep the steps gradual
3:2	RW	0x0	dll_qtren Quarter flag of DLL, active in no-bypass mode. 01:1/4 fclk, dqs_dly=128. 10:1/8 fclk, dqs_dly=64. Default: dqs_dly=dll_dqs_dly(DLL_CTL_REG0[15:8]). When dll_qtr='b01 or 'b10, software not need to configure dll_dqs_dly, and hardware should delay the input signal for 1/4 or 1/8 fclk cycle time; When dll_qtr=0, software need to configure dll_dqs_dly.
1	RW	0x1	dll_bypass  DLL Bypass Control, 1active  0: dll not bypass, dll_dqs_dleay= dqs_dly  1: dll bypass, dll_dqs_dleay= dll_dqs_dly_bypass
0	RW	0x0	dll_start Start signal for DLL, 1 active. Notes: It will keep high until dll disabled.

#### NANDC DLL OBS REGO

Address: Operational Base + offset (0x0058)

Bit	Attr	<b>Reset Value</b>	Description
31:17	RO	0x0	reserved
16:9	D.O.	0x01	dll_dqs_delay_value
16.9	RO	UXUI	Report the delay value for the read DQS signal
	RO	0×00	dll_lock_value
8:1			Reports the DLL encoder value from the master DLL to the slave
0.1			DLL's. The slaves use this value to set up their delays for the
			clk_wr and read DQS signals.
	RO	0x0	dll_lock
0			DLL Lock indication:
0			0: DLL has not locked
			1: DLL is locked.

### **NANDC NANDC VER**

Address: Operational Base + offset (0x0080)

Bit	Attr	<b>Reset Value</b>	Description
31:0	RO	0x56393030	version
31.0	KU	0830393030	Version indication for NANDC

### NANDC_LLP_CTL

Address: Operational Base + offset (0x0090)

Bit	Attr	<b>Reset Value</b>	Description		
21.6	DW	0000000	Ilp_loc		
31:6	RW	0x0000000	Starting address for LLIO, 64byte align		
			llp_frdy		
			Working time for FOP_WAIT_FRDY for all FOP in first LLP group:		
5	RW	0x0	0: FOP_WAIT_FRDY begin working when started		
			1: FOP_WAIT_FRDY not begin working until 16 cycles later after		
			started		
4:3	RO	0x0	reserved		
	R/W SC	0×0	llp_rst		
2			Reset signal for LLP.		
			When asserted, it will auto cleared.		
			Ilp_mode		
1	RW	W 0x0	0- current LLI only has FOP		
			1-current LLI has both CFG and FOP		
		V 0x0	Ilp_en		
	DW		Enable signal for LLP		
0	RW		0-LLP disable		
					1-LLP enable

#### **NANDC LLP STAT**

Address: Operational Base + offset (0x0094)

Bit	Attr	<b>Reset Value</b>	Description
31:6	0	0000000	Ilp_stat
31.0	RO	0x0000000	latest LLI_LOC finished, 64byte align
5:2	RO	0x0	reserved
		0x0	llp_err
4	DO		error status for IIp load or execute
1	RO		0-Ilp is correct
			1-llp is error
		O 0x1	llp_rdy
0	DO		ready status for all llp load
0	RO		0-Ilp load is busy
			1-llp load is ready

# NANDC_LLI_FOP7

Address: Operational Base + offset (0x00a0)

Bit	Attr	Reset Value	Description
31:29	RO	0x0	Fop_type flash operation type: 000:nop operation 001:flash bypass write operation 010:flash bypass read operation 011:flash bypass read with match operation 100:flash DMA write/read operation
28	RO	0x0	Fop_matchmod when FOP_TYPE=3'b011, match operation is active, and the PATTERN is LLI_FOP[15:0]. When FOP_MATCHMOD=0, it is matched when "RDATA PATTERN=PATTERN" with FOP_MATCHMOD=0, or when "RDATA&PATTERN=PATTERN" with FOP_MATCHMOD=1.
27:24	RO	0x0	Fop_cs Flash chip select; "1" active "1000"~"1111" indicate select cs0~cs7;
23:20	RO	0×0	Fop_nxtid Next FOP ID;
19	RO	0×0	Fop_wait_frdy Indicate the current FOP will excute when flash ready; "1" active
18	RO	0x0	Fop_wait_trdy Indicate the current FOP will excute when DMA transfer ready; "1" active
17:16	RO	0x0	Fop_addr flash address type, FOP_ADDR[0]-ALE, FOP_ADDR[1]-CLE
15:0	RO	0×0000	Fop_inst flash write operation: indicate flash write data(command/address/data); flash read with match operation: indicate match pattern data

# NANDC LLI FOP8

Address: Operational Base + offset (0x00a4)

Bit	Attr	<b>Reset Value</b>	Description
31:29	RO	0×0	Fop_type flash operation type: 000:nop operation 001:flash bypass write operation 010:flash bypass read operation 011:flash bypass read with match operation 100:flash DMA write/read operation

Bit	Attr	Reset Value	Description
28	RO	0×0	Fop_matchmod when FOP_TYPE=3'b011, match operation is active, and the PATTERN is LLI_FOP[15:0]. When FOP_MATCHMOD=0, it is matched when "RDATA PATTERN=PATTERN" with FOP_MATCHMOD=0, or when "RDATA&PATTERN=PATTERN" with FOP_MATCHMOD=1.
27:24	RO	0×0	Fop_cs Flash chip select; "1" active "1000"~"1111" indicate select cs0~cs7;
23:20	RO	0×0	Fop_nxtid Next FOP ID;
19	RO	0×0	Fop_wait_frdy Indicate the current FOP will excute when flash ready; "1" active
18	RO	0×0	Fop_wait_trdy Indicate the current FOP will excute when DMA transfer ready; "1" active
17:16	RO	0x0	Fop_addr flash address type, FOP_ADDR[0]-ALE, FOP_ADDR[1]-CLE
15:0	RO	0×0000	Fop_inst flash write operation: indicate flash write data(command/address/data); flash read with match operation: indicate match pattern data

# NANDC_LLI_FOP9

Address: Operational Base + offset (0x00a8)

Bit	Attr	<b>Reset Value</b>	Description
			Fop_type
			flash operation type:
			000:nop operation
31:29	RO	0x0	001:flash bypass write operation
			010:flash bypass read operation
			011:flash bypass read with match operation
			100:flash DMA write/read operation
	RO	0x0	Fop_matchmod
			when FOP_TYPE=3'b011, match operation is active, and the
28			PATTERN is LLI_FOP[15:0]. When FOP_MATCHMOD=0, it is
20			matched when "RDATA PATTERN=PATTERN" with
			FOP_MATCHMOD=0, or when "RDATA&PATTERN=PATTERN" with
			FOP_MATCHMOD=1.
			Fop_cs
27:24	RO		Flash chip select; "1" active
			"1000"~"1111" indicate select cs0~cs7;

Bit	Attr	<b>Reset Value</b>	Description
23:20	RO	0x0	Fop_nxtid
			Next FOP ID;
			Fop_wait_frdy
19	RO	0x0	Indicate the current FOP will excute when
			flash ready; "1" active
			Fop_wait_trdy
18	RO	0x0	Indicate the current FOP will excute when DMA transfer ready;
			"1" active
17:16	DΟ	0x0	Fop_addr
17.10	KO	UXU	flash address type, FOP_ADDR[0]-ALE, FOP_ADDR[1]-CLE
			Fop_inst
			flash write operation:
15:0	RO	0x0000	indicate flash write data(command/address/data);
			flash read with match operation:
			indicate match pattern data

NANDC LLI FOP10
Address: Operational Base + offset (0x00ac)

Bit	Attr	<b>Reset Value</b>	Description
31:29	RO	0×0	Fop_type flash operation type: 000:nop operation 001:flash bypass write operation 010:flash bypass read operation 011:flash bypass read with match operation 100:flash DMA write/read operation
28	RO	0×0	Fop_matchmod when FOP_TYPE=3'b011, match operation is active, and the PATTERN is LLI_FOP[15:0]. When FOP_MATCHMOD=0, it is matched when "RDATA PATTERN=PATTERN" with FOP_MATCHMOD=0, or when "RDATA&PATTERN=PATTERN" with FOP_MATCHMOD=1.
27:24	RO	0×0	Fop_cs Flash chip select; "1" active "1000"~"1111" indicate select cs0~cs7;
23:20	RO	0x0	Fop_nxtid Next FOP ID;
19	RO	0×0	Fop_wait_frdy Indicate the current FOP will excute when flash ready; "1" active
18	RO	0x0	Fop_wait_trdy Indicate the current FOP will excute when DMA transfer ready; "1" active
17:16	RO	0×0	Fop_addr flash address type, FOP_ADDR[0]-ALE, FOP_ADDR[1]-CLE

Bit	Attr	<b>Reset Value</b>	Description
			Fop_inst
			flash write operation:
15:0	RO	0x0000	indicate flash write data(command/address/data);
			flash read with match operation:
			indicate match pattern data

# NANDC LLI FOP11

Address: Operational Base + offset (0x00b0)

Bit		<b>Reset Value</b>	Description
31:29	RO	0×0	Fop_type flash operation type: 000:nop operation 001:flash bypass write operation 010:flash bypass read operation 011:flash bypass read with match operation 100:flash DMA write/read operation
28	RO	0×0	Fop_matchmod when FOP_TYPE=3'b011, match operation is active, and the PATTERN is LLI_FOP[15:0]. When FOP_MATCHMOD=0, it is matched when "RDATA PATTERN=PATTERN" with FOP_MATCHMOD=0, or when "RDATA&PATTERN=PATTERN" with FOP_MATCHMOD=1.
27:24	RO	0x0	Fop_cs Flash chip select; "1" active "1000"~"1111" indicate select cs0~cs7;
23:20	RO	0x0	Fop_nxtid Next FOP ID;
19	RO	0×0	Fop_wait_frdy Indicate the current FOP will excute when flash ready; "1" active
18	RO	0×0	Fop_wait_trdy Indicate the current FOP will excute when DMA transfer ready; "1" active
17:16	RO	0x0	Fop_addr flash address type, FOP_ADDR[0]-ALE, FOP_ADDR[1]-CLE
15:0	RO	0×0000	Fop_inst flash write operation: indicate flash write data(command/address/data); flash read with match operation: indicate match pattern data

#### NANDC LLI FOP12

Address: Operational Base + offset (0x00b4)

Bit	Attr	Reset Value	Description
31:29	RO	0×0	Fop_type flash operation type: 000:nop operation 001:flash bypass write operation 010:flash bypass read operation 011:flash bypass read with match operation 100:flash DMA write/read operation
28	RO	0×0	Fop_matchmod when FOP_TYPE=3'b011, match operation is active, and the PATTERN is LLI_FOP[15:0]. When FOP_MATCHMOD=0, it is matched when "RDATA PATTERN=PATTERN" with FOP_MATCHMOD=0, or when "RDATA&PATTERN=PATTERN" with FOP_MATCHMOD=1.
27:24	RO	0x0	Fop_cs Flash chip select; "1" active "1000"~"1111" indicate select cs0~cs7;
23:20	RO	0x0	Fop_nxtid Next FOP ID;
19	RO	0×0	Fop_wait_frdy Indicate the current FOP will excute when flash ready; "1" active
18	RO	0x0	Fop_wait_trdy Indicate the current FOP will excute when DMA transfer ready; "1" active
17:16	RO	0x0	Fop_addr flash address type, FOP_ADDR[0]-ALE, FOP_ADDR[1]-CLE
15:0	RO	0×0000	Fop_inst flash write operation: indicate flash write data(command/address/data); flash read with match operation: indicate match pattern data

### NANDC LLI FOP13

Address: Operational Base + offset (0x00b8)

Bit	Attr	<b>Reset Value</b>	Description
31:29		0×0	Fop_type flash operation type: 000:nop operation 001:flash bypass write operation 010:flash bypass read operation 011:flash bypass read with match operation
			100:flash DMA write/read operation

Bit	Attr	Reset Value	Description
28	RO	0×0	Fop_matchmod when FOP_TYPE=3'b011, match operation is active, and the PATTERN is LLI_FOP[15:0]. When FOP_MATCHMOD=0, it is matched when "RDATA PATTERN=PATTERN" with FOP_MATCHMOD=0, or when "RDATA&PATTERN=PATTERN" with FOP_MATCHMOD=1.
27:24	RO	0×0	Fop_cs Flash chip select; "1" active "1000"~"1111" indicate select cs0~cs7;
23:20	RO	0×0	Fop_nxtid Next FOP ID;
19	RO	0×0	Fop_wait_frdy Indicate the current FOP will excute when flash ready; "1" active
18	RO	0×0	Fop_wait_trdy Indicate the current FOP will excute when DMA transfer ready; "1" active
17:16	RO	0x0	Fop_addr flash address type, FOP_ADDR[0]-ALE, FOP_ADDR[1]-CLE
15:0	RO	0×0000	Fop_inst flash write operation: indicate flash write data(command/address/data); flash read with match operation: indicate match pattern data

# NANDC_LLI_FOP14

Address: Operational Base + offset (0x00bc)

Bit	Attr	<b>Reset Value</b>	Description
			Fop_type
			flash operation type:
			000:nop operation
31:29	RO	0x0	001:flash bypass write operation
			010:flash bypass read operation
			011:flash bypass read with match operation
			100:flash DMA write/read operation
		0×0 O×0	Fop_matchmod
	RO		when FOP_TYPE=3'b011, match operation is active, and the
28			PATTERN is LLI_FOP[15:0]. When FOP_MATCHMOD=0, it is
20			matched when "RDATA PATTERN=PATTERN" with
			FOP_MATCHMOD=0, or when "RDATA&PATTERN=PATTERN" with
			FOP_MATCHMOD=1.
	RO	O 0x0	Fop_cs
27:24			Flash chip select; "1" active
			"1000"~"1111" indicate select cs0~cs7;

Bit	Attr	<b>Reset Value</b>	Description
23:20	RO	0x0	Fop_nxtid
			Next FOP ID;
			Fop_wait_frdy
19	RO	0x0	Indicate the current FOP will excute when
			flash ready; "1" active
			Fop_wait_trdy
18	RO	0x0	Indicate the current FOP will excute when DMA transfer ready;
			"1" active
17:16	DO.	0x0	Fop_addr
17.10	KU	UXU	flash address type, FOP_ADDR[0]-ALE, FOP_ADDR[1]-CLE
			Fop_inst
			flash write operation:
15:0	RO	0x0000	indicate flash write data(command/address/data);
			flash read with match operation:
			indicate match pattern data

### NANDC LLI NXT LLP

Address: Operational Base + offset (0x00c0)

Bit	Attr	<b>Reset Value</b>	Description
21.6	DO	0000000	loc
31:6	RO	0x0000000	Starting address for next LLI
			frdy
5	RW	0x0	Flash_rdy will not be used until 16 cycles after FOP_WAIT_FRDY
			start; "1" active
4:2	RO	0x0	reserved
			llp_mode
1	RO	0x0	0: next LLI only has FOP;
			1:next LLI has both FOP and CFG
0	DO.	0.0	en
0	RO	RO 0x0	Enable signal for next LLP

#### NANDC LLI FOPO

Address: Operational Base + offset (0x00c4)

Bit	Attr	<b>Reset Value</b>	Description
			Fop_type
			flash operation type:
			000:nop operation
31:29	RO	0x0	001:flash bypass write operation
			010:flash bypass read operation
			011:flash bypass read with match operation
			100:flash DMA write/read operation

Bit	Attr	Reset Value	Description
28	RO	0x0	Fop_matchmod when FOP_TYPE=3'b011, match operation is active, and the PATTERN is LLI_FOP[15:0]. When FOP_MATCHMOD=0, it is matched when "RDATA PATTERN=PATTERN" with FOP_MATCHMOD=0, or when "RDATA&PATTERN=PATTERN" with FOP_MATCHMOD=1.
27:24	RO	0×0	Fop_cs Flash chip select; "1" active "1000"~"1111" indicate select cs0~cs7;
23:20	RO	0×0	Fop_nxtid Next FOP ID;
19	RO	0×0	Fop_wait_frdy Indicate the current FOP will excute when flash ready; "1" active
18	RO	0x0	Fop_wait_trdy Indicate the current FOP will excute when DMA transfer ready; "1" active
17:16	RO	0x0	Fop_addr flash address type, FOP_ADDR[0]-ALE, FOP_ADDR[1]-CLE
15:0	RO	0×0000	Fop_inst flash write operation: indicate flash write data(command/address/data); flash read with match operation: indicate match pattern data

# NANDC_LLI_FOP1

Address: Operational Base + offset (0x00c8)

Bit	Attr	<b>Reset Value</b>	Description
			Fop_type
			flash operation type:
			000:nop operation
31:29	RO	0x0	001:flash bypass write operation
			010:flash bypass read operation
			011:flash bypass read with match operation
			100:flash DMA write/read operation
	RO	O 0×0	Fop_matchmod
			when FOP_TYPE=3'b011, match operation is active, and the
28			PATTERN is LLI_FOP[15:0]. When FOP_MATCHMOD=0, it is
20			matched when "RDATA PATTERN=PATTERN" with
			FOP_MATCHMOD=0, or when "RDATA&PATTERN=PATTERN" with
			FOP_MATCHMOD=1.
	RO		Fop_cs
27:24			Flash chip select; "1" active
			"1000"~"1111" indicate select cs0~cs7;

Bit	Attr	<b>Reset Value</b>	Description
23:20	RO	0×0	Fop_nxtid Next FOP ID;
19	RO	0×0	Fop_wait_frdy Indicate the current FOP will excute when flash ready; "1" active
18	RO	0x0	Fop_wait_trdy Indicate the current FOP will excute when DMA transfer ready; "1" active
17:16	RO	0×0	Fop_addr flash address type, FOP_ADDR[0]-ALE, FOP_ADDR[1]-CLE
15:0	RO	0x0000	Fop_inst flash write operation: indicate flash write data(command/address/data); flash read with match operation: indicate match pattern data

NANDC LLI FOP2
Address: Operational Base + offset (0x00cc)

Bit	Attr	<b>Reset Value</b>	Description
31:29	RO	0x0	Fop_type flash operation type: 000:nop operation 001:flash bypass write operation 010:flash bypass read operation 011:flash bypass read with match operation 100:flash DMA write/read operation
28	RO	0×0	Fop_matchmod when FOP_TYPE=3'b011, match operation is active, and the PATTERN is LLI_FOP[15:0]. When FOP_MATCHMOD=0, it is matched when "RDATA PATTERN=PATTERN" with FOP_MATCHMOD=0, or when "RDATA&PATTERN=PATTERN" with FOP_MATCHMOD=1.
27:24	RO	0×0	Fop_cs Flash chip select; "1" active "1000"~"1111" indicate select cs0~cs7;
23:20	RO	0×0	Fop_nxtid Next FOP ID;
19	RO	0x0	Fop_wait_frdy Indicate the current FOP will excute when flash ready; "1" active
18	RO	0×0	Fop_wait_trdy Indicate the current FOP will excute when DMA transfer ready; "1" active
17:16	RO	0x0	Fop_addr flash address type, FOP_ADDR[0]-ALE, FOP_ADDR[1]-CLE

Bit	Attr	<b>Reset Value</b>	Description
			Fop_inst
			flash write operation:
15:0	RO	0x0000	indicate flash write data(command/address/data);
			flash read with match operation:
			indicate match pattern data

### NANDC_LLI_FOP3

Address: Operational Base + offset (0x00d0)

Bit	Attr	<b>Reset Value</b>	Description
31:29	RO	0×0	Fop_type flash operation type: 000:nop operation 001:flash bypass write operation 010:flash bypass read operation 011:flash bypass read with match operation 100:flash DMA write/read operation
28	RO	0×0	Fop_matchmod when FOP_TYPE=3'b011, match operation is active, and the PATTERN is LLI_FOP[15:0]. When FOP_MATCHMOD=0, it is matched when "RDATA PATTERN=PATTERN" with FOP_MATCHMOD=0, or when "RDATA&PATTERN=PATTERN" with FOP_MATCHMOD=1.
27:24	RO	0x0	Fop_cs Flash chip select; "1" active "1000"~"1111" indicate select cs0~cs7;
23:20	RO	0x0	Fop_nxtid Next FOP ID;
19	RO	0x0	Fop_wait_frdy Indicate the current FOP will excute when flash ready; "1" active
18	RO	0x0	Fop_wait_trdy Indicate the current FOP will excute when DMA transfer ready; "1" active
17:16	RO	0x0	Fop_addr flash address type, FOP_ADDR[0]-ALE, FOP_ADDR[1]-CLE
15:0	RO	0×0000	Fop_inst flash write operation: indicate flash write data(command/address/data); flash read with match operation: indicate match pattern data

# NANDC LLI FOP4

Address: Operational Base + offset (0x00d4)

Bit	Attr	Reset Value	Description
31:29	RO	0×0	Fop_type flash operation type: 000:nop operation 001:flash bypass write operation 010:flash bypass read operation 011:flash bypass read with match operation 100:flash DMA write/read operation
28	RO	0×0	Fop_matchmod when FOP_TYPE=3'b011, match operation is active, and the PATTERN is LLI_FOP[15:0]. When FOP_MATCHMOD=0, it is matched when "RDATA PATTERN=PATTERN" with FOP_MATCHMOD=0, or when "RDATA&PATTERN=PATTERN" with FOP_MATCHMOD=1.
27:24	RO	0×0	Fop_cs Flash chip select; "1" active "1000"~"1111" indicate select cs0~cs7;
23:20	RO	0×0	Fop_nxtid Next FOP ID;
19	RO	0×0	Fop_wait_frdy Indicate the current FOP will excute when flash ready; "1" active
18	RO	0×0	Fop_wait_trdy Indicate the current FOP will excute when DMA transfer ready; "1" active
17:16	RO	0x0	Fop_addr flash address type, FOP_ADDR[0]-ALE, FOP_ADDR[1]-CLE
15:0	RO	0×0000	Fop_inst flash write operation: indicate flash write data(command/address/data); flash read with match operation: indicate match pattern data

# NANDC LLI FOP5

Address: Operational Base + offset (0x00d8)

Bit	Attr	<b>Reset Value</b>	Description
31:29	RO	0×0	Fop_type flash operation type: 000:nop operation 001:flash bypass write operation 010:flash bypass read operation 011:flash bypass read with match operation 100:flash DMA write/read operation

Bit	Attr	Reset Value	Description
28	RO	0×0	Fop_matchmod when FOP_TYPE=3'b011, match operation is active, and the PATTERN is LLI_FOP[15:0]. When FOP_MATCHMOD=0, it is matched when "RDATA PATTERN=PATTERN" with FOP_MATCHMOD=0, or when "RDATA&PATTERN=PATTERN" with FOP_MATCHMOD=1.
27:24	RO	0×0	Fop_cs Flash chip select; "1" active "1000"~"1111" indicate select cs0~cs7;
23:20	RO	0×0	Fop_nxtid Next FOP ID;
19	RO	0×0	Fop_wait_frdy Indicate the current FOP will excute when flash ready; "1" active
18	RO	0×0	Fop_wait_trdy Indicate the current FOP will excute when DMA transfer ready; "1" active
17:16	RO	0x0	Fop_addr flash address type, FOP_ADDR[0]-ALE, FOP_ADDR[1]-CLE
15:0	RO	0×0000	Fop_inst flash write operation: indicate flash write data(command/address/data); flash read with match operation: indicate match pattern data

# NANDC_LLI_FOP6

Address: Operational Base + offset (0x00dc)

Bit	Attr	<b>Reset Value</b>	Description
			Fop_type
			flash operation type:
			000:nop operation
31:29	RO	0x0	001:flash bypass write operation
			010:flash bypass read operation
			011:flash bypass read with match operation
			100:flash DMA write/read operation
	RO	O 0×0	Fop_matchmod
			when FOP_TYPE=3'b011, match operation is active, and the
28			PATTERN is LLI_FOP[15:0]. When FOP_MATCHMOD=0, it is
20			matched when "RDATA PATTERN=PATTERN" with
			FOP_MATCHMOD=0, or when "RDATA&PATTERN=PATTERN" with
			FOP_MATCHMOD=1.
			Fop_cs
27:24	RO	0x0	Flash chip select; "1" active
			"1000"~"1111" indicate select cs0~cs7;

Bit	Attr	<b>Reset Value</b>	Description
23:20	RO	0x0	Fop_nxtid Next FOP ID;
19	RO	0×0	Fop_wait_frdy Indicate the current FOP will excute when flash ready; "1" active
18	RO	0x0	Fop_wait_trdy Indicate the current FOP will excute when DMA transfer ready; "1" active
17:16	RO	0×0	Fop_addr flash address type, FOP_ADDR[0]-ALE, FOP_ADDR[1]-CLE
15:0	RO	0×0000	Fop_inst flash write operation: indicate flash write data(command/address/data); flash read with match operation: indicate match pattern data

NANDC INTEN
Address: Operational Base + offset (0x0120)

Bit		Reset Value	Description
31:10	RO	0x0	reserved
			Seed_bcherr_int_en
			Enable for seed bch error interrupt.
9	RW	0x0	0-interrupt disable
			1-interrupt enable
			When seed bcherr_int_en is active, an interrupt is generated.
			Seed_bchfail_int_en
			Enable for seed bch fail interrupt.
8	RW	0×0	0-interrupt disable
0	IXVV	0.00	1-interrupt enable
			When seed bchfail_int_en is active, an interrupt is generated if
			seed bch decode failed
			rd_1stpage_int_en
			Enable for the first page read interrupt.
7	RW	W 0×0	0: interrupt disable
	1277		1: interrupt enable
			When sif_bus_wr is active, an interrupt is generated if the first
			page read operation is finished
			master_idle_int_en
			Enable for master idle interrupt
6	RW	0x0	0-interrupt disable
			1-interrupt enable
			When master_idle_int_en is active, an interrupt is generated if
			posedge of master idle happen

Bit	Attr	Reset Value	Description
			flash_abort_int_en
			Enable for flash read abort interrupt.
			0: interrupt disable
			1: interrupt enable
_	D)4/		When flash_abort_int_en is active, an interrupt is generated if
5	RW	0×0	DQS input is abort.
			Available when flash interface is ONFI synchronous or toggle.
			When read data number is out of range of flash page size, dqs
			input is abort. An interrupt is generated if flash_abort_int_en is
			enable
			llp_int_en
			Enable for LLP finished interrupt.
_	DVA		0: interrupt disable
4	RW	0x0	1: interrupt enable
			When Ilp_en_en is active, an interrupt is generated if LLP
			operation is finished
			bchfail_int_en
		0×0	Enable for bch fail interrupt.
2	RW		0-interrupt disable
3	KVV		1-interrupt enable
			When bchfail_int_en is active, an interrupt is generated if bch
			decode failed
			bcherr_int_en
			Enable for bch error interrupt.
2	RW	0×0	0-interrupt disable
_		UXU	1-interrupt enable
			When bcherr_int_en is active, an interrupt is generated if bch
			decode error bit is larger than bchthres(BCHCTL[26:19])
			frdy_int_en
			Enable for flash_rdy interrupt
1	RW	0×0	0-interrupt disable
_		o x o	1-interrupt enable
			When frdy_int_en is active, an interrupt is generated if flash
			R/B# changes from 0 to 1
			dma_int_en
			Enable for internal DMA transfer finished interrupt
			0-interrupt disable
0	RW	0x0	1-interrupt enable
			When dma_int_en is active, an interrupt is generated if
			page_num(FLCTL[27:22]) of flash data transfer in DMA mode is
			finished

# **NANDC INTCLR**

Address: Operational Base + offset (0x0124)

Bit	Attr	Reset Value	Description
31:10	RO	0x0	reserved
			Seed_bcherr_int_clr
			Clear for seed bch error interrupt. When asserted, this bit will be
9	R/W	0x0	auto cleared.
	SC		0-interrupt cleared
			1-interrupt not cleared
			Seed_bchfail_int_clr
			Clear for seed bch decode fail interrupt. When asserted, this bit
8	R/W	0x0	will be auto cleared.
	SC		0-interrupt cleared
			1-interrupt not cleared
			rd_1stpage_int_clr
	D /\\/		Clear for first page read interrupt. When asserted, this bit will be
7	R/W	0x0	auto cleared.
	SC		0: interrupt not cleared
			1: interrupt cleared
			master_idle_int_clr
	R/W		Clear for master idle interrupt. When asserted, this bit will be
6	SC	0×0	auto cleared.
	30		0: interrupt not cleared
			1: interrupt cleared
			flash_abort_int_clr
			Clear for flash abort interrupt. When asserted, this bit will be auto
5	R/W	0×0	cleared.
	SC	OXO	0: interrupt not cleared
			1: interrupt cleared
			Available when flash interface is ONFI synchronous or toggle
			llp_int_clr
	R/W		Clear for LLP finished interrupt. When asserted, this bit will be
4	SC	0x0	auto cleared.
			0: interrupt not cleared
			1: interrupt cleared
			bchfail_int_clr
	R/W		Clear for bch decode fail interrupt. When asserted, this bit will be
3	SC	0x0	auto cleared.
			0-interrupt cleared
			1-interrupt not cleared
			bcherr_int_clr
2	R/W	00	Clear for bch error interrupt. When asserted, this bit will be auto
2	SC	(() <b>y</b> ()	cleared.
			0-interrupt cleared
			1-interrupt not cleared

Bit	Attr	<b>Reset Value</b>	Description
1	R/W SC	N 0×0	frdy_int_clr Clear for flash_rdy interrupt. When asserted, this bit will be auto cleared. 0-interrupt cleared
			1-interrupt not cleared
0	R/W SC	0×0	dma_int_clr Clear for internal DMA transfer finished interrupt. When asserted, this bit will be auto cleared. 0-interrupt cleared 1-interrupt not cleared

# **NANDC INTST**

Address: Operational Base + offset (0x0128)

Bit	Attr	<b>Reset Value</b>	Description			
31:10	RO	0x0	reserved			
9	RO	0x0	Seed_bcherr_int_stat			
9	RO	UXU	Staus for seed bch decode error interrupt, high active			
8	RO	0x0	Seed_bchfail_int_stat			
0	KO	UXU	Staus for seed bch decode fail interrupt, high active			
7	RO	0x0	rd_1stpage_int_stat			
/	KO	UXU	Status for first page read interrupt, high active			
6	RO	0x0	master_idle_int_stat			
6	RO	UXU	Status for master idle interrupt, high active			
		Ox0	flash_abort_int_stat			
5	RO		Status for flash abort, high active			
			Available when flash interface is ONFI synchronous or toggle			
4	RO	0x0	llp_int_stat			
4	KU		Status for LLP finished interrupt, high active			
3	RO	.O 0x0	bchfail_int_stat			
3	KU	KU	KU	KU	0.00	Status for bch decode fail interrupt, high active
2	RO	0x0	bcherr_int_stat			
2	KU	UXU	Status for bch error interrupt, high active			
1	DO.	0.40	frdy_int_stat			
1	RO	0x0	Status for flash_rdy interrupt, high active			
0	DO.	0.40	dma_int_stat			
0	RO	0x0	Status for internal DMA transfer finished interrupt, high active			

#### **NANDC_BCHST0**

Address: Operational Base + offset (0x0150)

Bit	Attr	<b>Reset Value</b>	Description
	RO	0x1	bchst_bchrdy
31			Ready indication for bch encoder/decoder, 1 active.
31			0: bch encoder/decoder is busy
			1: bch encoder/decoder is ready

Bit	Attr	Reset Value	Description
30	RC	0x0	decode_done_rdy Indication for finishing decoding the current backup codeword. 0: not finished 1: finished
29:27	RO	0x0	reserved
26	RO	0x0	all_f_flag1 Indication for the all f byte in the current codeword. 0: the current codeword is not all f 1: the current codeword is all f
25:19	RO	0×00	err_tnum1 Indication for the number of error in current backup codeword
18	RO	0×0	decode_fail1 Indication for the 1st backup codeword decoded failed or not. 0: decode successfully 1: decode fail
17	RO	0×0	decode_done1 Indication for finishing decoding the 1st backup codeword 0: not finished 1: finished
16	RO	0×0	errf1 Indication for error found in 1st backup codeword. 0: no error 1: error found
15:11	RO	0x0	reserved
10	RO	0×0	all_f_flag0 Indication for the all f byte in the current codeword. 0: the current codeword is not all f 1: the current codeword is all f
9:3	RO	0×00	err_tnum0 Indication for the number of error in current backup codeword
2	RO	0×0	decode_fail0 Indication for current backup codeword decode failed or not 0: decode successfully 1: decode fail
1	RO	0×0	decode_done0 Indication for finishing decoding the current backup codeword. 0: not finished 1: finished
0	RO	0×0	errf0 Indication for error found in current backup codeword. 0: no error 1: error found

# NANDC_BCHST1

Address: Operational Base + offset (0x0154)

Bit	Attr	Reset Value	Description
31:27	RO	0x0	reserved
26	RO	0x0	all_f_flag3 Indication for the all f byte in the current codeword. 0: the current codeword is not all f 1: the current codeword is all f
25:19	RO	0×00	err_tnum3 Indication for the number of error in current backup codeword
18	RO	0×0	decode_fail3 Indication for the 1st backup codeword decoded failed or not. 0: decode successfully 1: decode fail
17	RO	0×0	decode_done3 Indication for finishing decoding the 1st backup codeword 0: not finished 1: finished
16	RO	0×0	errf3 Indication for error found in 1st backup codeword.  0: no error  1: error found
15:11	RO	0x0	reserved
10	RO	0×0	all_f_flag2 Indication for the all f byte in the current codeword. 0: the current codeword is not all f 1: the current codeword is all f
9:3	RO	0×00	err_tnum2 Indication for the number of error in current backup codeword
2	RO	0×0	decode_fail2 Indication for current backup codeword decode failed or not 0: decode successfully 1: decode fail
1	RO	0x0	decode_done2 Indication for finishing decoding the current backup codeword. 0: not finished 1: finished
0	RO	0×0	errf2 Indication for error found in current backup codeword. 0: no error 1: error found

# NANDC BCHST2

Address: Operational Base + offset (0x0158)

Bit	Attr	<b>Reset Value</b>	Description
31:27	RO	0x0	reserved

Bit	Attr	Reset Value	Description
			all_f_flag5
26	D.O.	00	Indication for the all f byte in the current codeword.
26	RO	0x0	0: the current codeword is not all f
			1: the current codeword is all f
25.10	RO 0x00		err_tnum5
25:19	KO	UXUU	Indication for the number of error in current backup codeword
			decode_fail5
1.0	D.O.	0.40	Indication for the 1st backup codeword decoded failed or not.
18	RO	0x0	0: decode successfully
			1: decode fail
			decode_done5
17	RO	0x0	Indication for finishing decoding the 1st backup codeword
17	KU	UXU	0: not finished
			1: finished
		0x0	errf5
16	RO		Indication for error found in 1st backup codeword.
	KO		0: no error
			1: error found
15:11	RO	0x0	reserved
			all_f_flag4
10	RO	0×0	Indication for the all f byte in the current codeword.
			0: the current codeword is not all f
			1: the current codeword is all f
9:3	RO	0x00	err_tnum4
			Indication for the number of error in current backup codeword
			decode_fail4
2	RO	0×0	Indication for current backup codeword decode failed or not
_		o x o	0: decode successfully
			1: decode fail
			decode_done4
1	RO	0×0	Indication for finishing decoding the current backup codeword.
_			0: not finished
			1: finished
			errf4
0	RO	0×0	Indication for error found in current backup codeword.
			0: no error
			1: error found

NANDC BCHST3
Address: Operational Base + offset (0x015c)

Bit	Attr	<b>Reset Value</b>		Description	on
31:27	RO	0x0	reserved		

Bit	Attr	Reset Value	Description
			all_f_flag7
26	D.O.	00	Indication for the all f byte in the current codeword.
26	RO	0x0	0: the current codeword is not all f
			1: the current codeword is all f
25.10	RO 0x00		err_tnum7
25:19	KO	UXUU	Indication for the number of error in current backup codeword
			decode_fail7
1.0	D ()	0.40	Indication for the 1st backup codeword decoded failed or not.
18	RO	0x0	0: decode successfully
			1: decode fail
			decode_done7
17	RO	0x0	Indication for finishing decoding the 1st backup codeword
17	KU	UXU	0: not finished
			1: finished
		0x0	errf7
16	RO		Indication for error found in 1st backup codeword.
	KO		0: no error
			1: error found
15:11	RO	0x0	reserved
			all_f_flag6
10	RO	0×0	Indication for the all f byte in the current codeword.
		UXU	0: the current codeword is not all f
			1: the current codeword is all f
9:3	RO	00x00	err_tnum6
			Indication for the number of error in current backup codeword
			decode_fail6
2	RO	0×0	Indication for current backup codeword decode failed or not
_		o x o	0: decode successfully
			1: decode fail
			decode_done6
1	RO	0×0	Indication for finishing decoding the current backup codeword.
_			0: not finished
			1: finished
			errf0
0	RO	0×0	Indication for error found in current backup codeword.
			0: no error
			1: error found

NANDC BCHST4
Address: Operational Base + offset (0x0160)

Bit	Attr	<b>Reset Value</b>		Description	
31:27	RO	0x0	reserved		

Bit	Attr	Reset Value	Description	
			all_f_flag9	
26	RO	0.40	Indication for the all f byte in the current codeword.	
26	KU	0x0	0: the current codeword is not all f	
			1: the current codeword is all f	
25,10	D.O.	0,400	err_tnum9	
25:19	KU	Indication for the number of error in current backup co		
			decode_fail9	
18	RO	0x0	Indication for the 1st backup codeword decoded failed or not.	
10	KU	UXU	0: decode successfully	
			1: decode fail	
			decode_done9	
17	RO	0×0	Indication for finishing decoding the 1st backup codeword	
17	INO	0.00	0: not finished	
			1: finished	
		0×0	errf9	
16	RO		Indication for error found in 1st backup codeword.	
			0: no error	
			1: error found	
15:11	RO	0x0	reserved	
			all_f_flag8	
10	RO	0×0	Indication for the all f byte in the current codeword.	
		0.00	0: the current codeword is not all f	
			1: the current codeword is all f	
9:3	RO	0x00	err_tnum8	
			Indication for the number of error in current backup codeword	
			decode_fail8	
2	RO	0x0	Indication for current backup codeword decode failed or not	
			0: decode successfully	
			1: decode fail	
			decode_done8	
1	RO	0x0	Indication for finishing decoding the current backup codeword.	
			0: not finished	
			1: finished	
			errf8	
0	RO	0x0	Indication for error found in current backup codeword.	
			0: no error	
			1: error found	

NANDC BCHST5
Address: Operational Base + offset (0x0164)

Bit	Attr	<b>Reset Value</b>		Description	
31:27	RO	0x0	reserved		

Bit	Attr	Reset Value	Description		
			all_f_flag11		
26	RO	0x0	Indication for the all f byte in the current codeword.		
26	KU	UXU	0: the current codeword is not all f		
			1: the current codeword is all f		
25:10	PRO 0x00 err_tnum11		err_tnum11		
23.19	KO	Indication for the number of error in current backup codewo			
			decode_fail11		
18	RO	0x0	Indication for the 1st backup codeword decoded failed or not.		
10	KO	UXU	0: decode successfully		
			1: decode fail		
			decode_done11		
17	RO	0×0	Indication for finishing decoding the 1st backup codeword		
17	IXO	0.00	0: not finished		
			1: finished		
		0x0	errf11		
16	RO		Indication for error found in 1st backup codeword.		
	KO		0: no error		
			1: error found		
15:11	RO	0x0	reserved		
			all_f_flag10		
10	RO	0×0	Indication for the all f byte in the current codeword.		
			0: the current codeword is not all f		
			1: the current codeword is all f		
9:3	RO	0×00	err_tnum10		
			Indication for the number of error in current backup codeword		
			decode_fail10		
2	RO	0×0	Indication for current backup codeword decode failed or not		
			0: decode successfully		
			1: decode fail		
			decode_done10		
1	RO	0×0	Indication for finishing decoding the current backup codeword.		
			0: not finished		
			1: finished		
			errf10		
0	RO	0×0	Indication for error found in current backup codeword.		
			0: no error		
			1: error found		

NANDC BCHST6
Address: Operational Base + offset (0x0168)

Bit	Attr	<b>Reset Value</b>		Description	
31:27	RO	0x0	reserved		

Bit	Attr	Reset Value	Description
			all_f_flag13
26	DO.	0.40	Indication for the all f byte in the current codeword.
26	RO	0x0	0: the current codeword is not all f
			1: the current codeword is all f
25.10	RO 0x00		err_tnum13
25:19	KU	UXUU	Indication for the number of error in current backup codeword
			decode_fail13
10	DO.	0.40	Indication for the 1st backup codeword decoded failed or not.
18	RO	0x0	0: decode successfully
			1: decode fail
			decode_done13
17	RO	0x0	Indication for finishing decoding the 1st backup codeword
17	KU	UXU	0: not finished
			1: finished
		0x0	errf13
16	RO		Indication for error found in 1st backup codeword.
10	KU		0: no error
			1: error found
15:11	RO	0x0	reserved
			all_f_flag12
10	RO	0×0	Indication for the all f byte in the current codeword.
		UXU	0: the current codeword is not all f
			1: the current codeword is all f
9:3	RO	0×00	err_tnum12
9.5	NO		Indication for the number of error in current backup codeword
			decode_fail12
2	RO	0×0	Indication for current backup codeword decode failed or not
_	KO	0.00	0: decode successfully
			1: decode fail
			decode_done12
1	RO	0×0	Indication for finishing decoding the current backup codeword.
1		0.00	0: not finished
			1: finished
			errf12
0	RO	0x0	Indication for error found in current backup codeword.
	ΚU	U UXU	0: no error
			1: error found

NANDC BCHST7
Address: Operational Base + offset (0x016c)

Bit	Attr	<b>Reset Value</b>		Description	on
31:27	RO	0x0	reserved		

Bit	Attr	Reset Value	Description
			all_f_flag15
26	DO	0.40	Indication for the all f byte in the current codeword.
26	RO	0x0	0: the current codeword is not all f
			1: the current codeword is all f
25.10	RO 0x00		err_tnum15
25:19	KU	UXUU	Indication for the number of error in current backup codeword
			decode_fail15
10	DO.	0.40	Indication for the 1st backup codeword decoded failed or not.
18	RO	0x0	0: decode successfully
			1: decode fail
			decode_done15
17	RO	0x0	Indication for finishing decoding the 1st backup codeword
17	RU	UXU	0: not finished
			1: finished
		0x0	errf15
16	RO		Indication for error found in 1st backup codeword.
10	KU		0: no error
			1: error found
15:11	RO	0x0	reserved
			all_f_flag14
10	RO	0×0	Indication for the all f byte in the current codeword.
	IXO	UXU	0: the current codeword is not all f
			1: the current codeword is all f
9:3	RO	Ox00	err_tnum14
9.5	KO		Indication for the number of error in current backup codeword
			decode_fail14
2	RO	0×0	Indication for current backup codeword decode failed or not
_	KO	0.00	0: decode successfully
			1: decode fail
			decode_done14
1	RO	0×0	Indication for finishing decoding the current backup codeword.
1	IXO	0.00	0: not finished
			1: finished
			errf14
0	RO	0x0	Indication for error found in current backup codeword.
	KU	UXU	0: no error
			1: error found

NANDC BCHST8
Address: Operational Base + offset (0x0170)

Bit	Attr	<b>Reset Value</b>		Description	
31:27	RO	0x0	reserved		

Bit	Attr	Reset Value	Description
			all_f_flag17
26	DO	0.40	Indication for the all f byte in the current codeword.
26	RO	0x0	0: the current codeword is not all f
			1: the current codeword is all f
25.10	DO 0200		err_tnum17
25:19	KU	0x00	Indication for the number of error in current backup codeword
			decode_fail17
10	DO.	0.40	Indication for the 1st backup codeword decoded failed or not.
18	RO	0x0	0: decode successfully
			1: decode fail
			decode_done17
17	RO	0x0	Indication for finishing decoding the 1st backup codeword
17	RU	UXU	0: not finished
			1: finished
			errf17
16	RO	0.0	Indication for error found in 1st backup codeword.
10	RU	0x0	0: no error
			1: error found
15:11	RO	0x0	reserved
			all_f_flag16
10	RO	0×0	Indication for the all f byte in the current codeword.
	IXO	UXU	0: the current codeword is not all f
			1: the current codeword is all f
9:3	RO	0×00	err_tnum16
9.5	KO	0,000	Indication for the number of error in current backup codeword
			decode_fail16
2	RO	0×0	Indication for current backup codeword decode failed or not
_	KO	0.00	0: decode successfully
			1: decode fail
			decode_done16
1	RO	0×0	Indication for finishing decoding the current backup codeword.
-	IXO	0.00	0: not finished
			1: finished
			errf16
0	RO	0×0	Indication for error found in current backup codeword.
	ΚU		0: no error
			1: error found

NANDC BCHST9
Address: Operational Base + offset (0x0174)

Bit	Attr	<b>Reset Value</b>		Description	
31:27	RO	0x0	reserved		

Bit	Attr	Reset Value	Description
			all_f_flag19
26	DO	0.40	Indication for the all f byte in the current codeword.
26	RO	0x0	0: the current codeword is not all f
			1: the current codeword is all f
25.10	DO 0200		err_tnum19
25:19	KU	0x00	Indication for the number of error in current backup codeword
			decode_fail19
10	DO.	0.40	Indication for the 1st backup codeword decoded failed or not.
18	RO	0x0	0: decode successfully
			1: decode fail
			decode_done19
17	RO	0x0	Indication for finishing decoding the 1st backup codeword
17	RU	UXU	0: not finished
			1: finished
			errf19
16	RO	0.0	Indication for error found in 1st backup codeword.
10	KU	0x0	0: no error
			1: error found
15:11	RO	0x0	reserved
			all_f_flag18
10	RO	0×0	Indication for the all f byte in the current codeword.
	IXO	UXU	0: the current codeword is not all f
			1: the current codeword is all f
9:3	RO	0×00	err_tnum18
9.5	KO	0,000	Indication for the number of error in current backup codeword
			decode_fail18
2	RO	0×0	Indication for current backup codeword decode failed or not
_	IXO	0.00	0: decode successfully
			1: decode fail
			decode_done18
1	RO	0×0	Indication for finishing decoding the current backup codeword.
•	IXO	0.00	0: not finished
			1: finished
			errf18
0	RO	0×0	Indication for error found in current backup codeword.
	KU	RO 0x0	0: no error
			1: error found

NANDC BCHST10
Address: Operational Base + offset (0x0178)

Bit	Attr	<b>Reset Value</b>		Description	
31:27	RO	0x0	reserved		

Bit	Attr	Reset Value	Description
			all_f_flag21
26	DO	0.40	Indication for the all f byte in the current codeword.
26	RO	0x0	0: the current codeword is not all f
			1: the current codeword is all f
25.10	DO 0-00		err_tnum21
25:19	KU	0x00	Indication for the number of error in current backup codeword
			decode_fail21
1.0	D.O.	0.40	Indication for the 1st backup codeword decoded failed or not.
18	RO	0x0	0: decode successfully
			1: decode fail
			decode_done21
17	RO	0x0	Indication for finishing decoding the 1st backup codeword
17	KU	UXU	0: not finished
			1: finished
			errf21
16	RO	0.0	Indication for error found in 1st backup codeword.
10	KU	0x0	0: no error
			1: error found
15:11	RO	0x0	reserved
			all_f_flag20
10	RO	0×0	Indication for the all f byte in the current codeword.
	IXO	UXU	0: the current codeword is not all f
			1: the current codeword is all f
9:3	RO	0×00	err_tnum20
9.5	IXO	0,000	Indication for the number of error in current backup codeword
			decode_fail20
2	RO	0×0	Indication for current backup codeword decode failed or not
_	IXO	0.00	0: decode successfully
			1: decode fail
			decode_done20
1	RO	0×0	Indication for finishing decoding the current backup codeword.
-	IXO	0.00	0: not finished
			1: finished
			errf20
0	RO	0×0	Indication for error found in current backup codeword.
	KU		0: no error
			1: error found

NANDC BCHST11
Address: Operational Base + offset (0x017c)

Bit	Attr	<b>Reset Value</b>		Description	on
31:27	RO	0x0	reserved		

Bit	Attr	Reset Value	Description
			all_f_flag23
26	RO	00	Indication for the all f byte in the current codeword.
26	KU	0x0	0: the current codeword is not all f
			1: the current codeword is all f
25,10	D.O.	0,400	err_tnum23
25:19	KU	0x00	Indication for the number of error in current backup codeword
			decode_fail23
18	RO	0x0	Indication for the 1st backup codeword decoded failed or not.
10	KU	UXU	0: decode successfully
			1: decode fail
			decode_done23
17	RO	0×0	Indication for finishing decoding the 1st backup codeword
17	INO	0.00	0: not finished
			1: finished
			errf23
16	RO	O 0x0	Indication for error found in 1st backup codeword.
			0: no error
			1: error found
15:11	RO	0x0	reserved
			all_f_flag22
10	RO	0×0	Indication for the all f byte in the current codeword.
			0: the current codeword is not all f
			1: the current codeword is all f
9:3	RO	0x00	err_tnum22
			Indication for the number of error in current backup codeword
			decode_fail22
2	RO	0x0	Indication for current backup codeword decode failed or not
			0: decode successfully
			1: decode fail
			decode_done22
1	RO	0x0	Indication for finishing decoding the current backup codeword.
			0: not finished 1: finished
			errf22
0	RO	0x0	Indication for error found in current backup codeword.
			0: no error
			1: error found

NANDC BCHST12
Address: Operational Base + offset (0x0180)

Bit	Attr	<b>Reset Value</b>		Description	
31:27	RO	0x0	reserved		

Bit	Attr	Reset Value	Description		
			all_f_flag25		
26	RO	0×0	Indication for the all f byte in the current codeword.		
26	KU		0: the current codeword is not all f		
			1: the current codeword is all f		
25:19	RO 0x00		err_tnum25		
25.19	KU	0000	Indication for the number of error in current backup codeword		
			decode_fail25		
18	RO	0x0	Indication for the 1st backup codeword decoded failed or not.		
10	KO	UXU	0: decode successfully		
			1: decode fail		
			decode_done25		
17	RO	0×0	Indication for finishing decoding the 1st backup codeword		
1 /		0.00	0: not finished		
			1: finished		
			errf25		
16	RO	0×0	Indication for error found in 1st backup codeword.		
	1.0		0: no error		
			1: error found		
15:11	RO	0x0	reserved		
			all_f_flag24		
10	RO	0x0	Indication for the all f byte in the current codeword.		
			0: the current codeword is not all f		
			1: the current codeword is all f		
9:3	RO	0x00	err_tnum24		
			Indication for the number of error in current backup codeword		
			decode_fail24		
2	RO	0x0	Indication for current backup codeword decode failed or not		
			0: decode successfully		
			1: decode fail		
			decode_done24		
1	RO	0x0	Indication for finishing decoding the current backup codeword.		
			0: not finished 1: finished		
			errf24		
0	RO	0x0	Indication for error found in current backup codeword.		
			0: no error		
			1: error found		

NANDC BCHST13
Address: Operational Base + offset (0x0184)

Bit	Attr	<b>Reset Value</b>		Description	
31:27	RO	0x0	reserved		

Bit	Attr	Reset Value	Description
			all_f_flag27
26	DO	00	Indication for the all f byte in the current codeword.
26	RO	0x0	0: the current codeword is not all f
			1: the current codeword is all f
25.10	DO 0::00		err_tnum27
25:19	KU	0x00	Indication for the number of error in current backup codeword
			decode_fail27
10	DO.	0.40	Indication for the 1st backup codeword decoded failed or not.
18	RO	0x0	0: decode successfully
			1: decode fail
			decode_done27
17	RO	0x0	Indication for finishing decoding the 1st backup codeword
17	RU	UXU	0: not finished
			1: finished
			errf27
16	RO	0.0	Indication for error found in 1st backup codeword.
10	RU	0x0	0: no error
			1: error found
15:11	RO	0x0	reserved
			all_f_flag26
10	RO	0×0	Indication for the all f byte in the current codeword.
	IXO	0x0	0: the current codeword is not all f
			1: the current codeword is all f
9:3	RO	0×00	err_tnum26
9.5	KO	0,000	Indication for the number of error in current backup codeword
			decode_fail26
2	RO	0×0	Indication for current backup codeword decode failed or not
_	IXO	0.00	0: decode successfully
			1: decode fail
			decode_done26
1	RO	0×0	Indication for finishing decoding the current backup codeword.
•	IXO	0.00	0: not finished
			1: finished
			errf26
0	RO	0×0	Indication for error found in current backup codeword.
	KU	RO 0x0	0: no error
			1: error found

NANDC BCHST14
Address: Operational Base + offset (0x0188)

Bit	Attr	<b>Reset Value</b>		Description	
31:27	RO	0x0	reserved		

Bit	Attr	Reset Value	Description	
			all_f_flag29	
26	RO		Indication for the all f byte in the current codeword.	
26	KU	0x0	0: the current codeword is not all f	
			1: the current codeword is all f	
25,10	D.O.	0,400	err_tnum29	
25:19	KU	0x00	Indication for the number of error in current backup codeword	
			decode_fail29	
18	RO	0x0	Indication for the 1st backup codeword decoded failed or not.	
10	KU	UXU	0: decode successfully	
			1: decode fail	
			decode_done29	
17	RO	0×0	Indication for finishing decoding the 1st backup codeword	
		0.00	0: not finished	
			1: finished	
			errf29	
16	RO		Indication for error found in 1st backup codeword.	
			0: no error	
			1: error found	
15:11	RO	0x0	reserved	
			all_f_flag28	
10	RO	0×0	Indication for the all f byte in the current codeword.	
			0: the current codeword is not all f	
			1: the current codeword is all f	
9:3	RO	0x00	err_tnum28	
				Indication for the number of error in current backup codeword
			decode_fail28	
2	RO	0x0	Indication for current backup codeword decode failed or not	
			0: decode successfully	
			1: decode fail	
			decode_done28	
1	RO	0x0	Indication for finishing decoding the current backup codeword.	
			0: not finished 1: finished	
			errf28	
0	RO	0x0	Indication for error found in current backup codeword.	
			0: no error	
			1: error found	

NANDC BCHST15
Address: Operational Base + offset (0x018c)

Bit	Attr	<b>Reset Value</b>		Description	on
31:27	RO	0x0	reserved		

Bit	Attr	Reset Value	Description	
			all_f_flag31	
26	RO		Indication for the all f byte in the current codeword.	
26	RU	0x0	0: the current codeword is not all f	
			1: the current codeword is all f	
25,10	DO.	0,400	err_tnum31	
25:19	RU	0x00	Indication for the number of error in current backup codeword	
			decode_fail31	
18	RO	0x0	Indication for the 1st backup codeword decoded failed or not.	
10	RU	UXU	0: decode successfully	
			1: decode fail	
			decode_done31	
17	RO	0×0	Indication for finishing decoding the 1st backup codeword	
17	IXO	UXU	0: not finished	
			1: finished	
			errf31	
16	RO		Indication for error found in 1st backup codeword.	
	IXO		0: no error	
			1: error found	
15:11	RO	0x0	reserved	
			all_f_flag30	
10	RO	0×0	Indication for the all f byte in the current codeword.	
			0: the current codeword is not all f	
			1: the current codeword is all f	
9:3	RO	0x00	err_tnum30	
			Indication for the number of error in current backup codeword	
			decode_fail30	
2	RO	0x0	Indication for current backup codeword decode failed or not	
			0: decode successfully	
			1: decode fail	
			decode_done30	
1	RO	0x0	Indication for finishing decoding the current backup codeword.	
			0: not finished 1: finished	
			errf30	
0	RO	O 0x0	Indication for error found in current backup codeword.	
			0: no error	
			1: error found	

NANDC SPAREO 0
Address: Operational Base + offset (0x0200)

Bit	Attr	<b>Reset Value</b>	Description	
31:24	DW/	W I()xff	system_3	
31.24	IX VV		the 4th system byte of codeword 0	
23:16	DW	/  ()xff	system_2	
23:16	KVV		the 3rd system byte of codeword 0	
15.0	DW	/  ()xtt	system_1	
15:8	RW		the 2nd system byte of codeword 0	
7.0	DW/	)	system_0	
7:0	KW	RW	0xff	the 1st system byte of codeword 0

### NANDC_SPARE1_0

Address: Operational Base + offset (0x0204)

Bit	Attr	<b>Reset Value</b>	Description
31:24	DW	Over	system_3
31:24	KVV	0xff	the 4th system byte of codeword 1
23:16	DW	N Over	system_2
23:16	KVV	0xff	the 3rd system byte of codeword 1
1 5 . 0	DW	ZW (Oxtt I	system_1
15:8	KVV		the 2nd system byte of codeword 1
7.0	RW	)	system_0
7:0		0xff	the 1st system byte of codeword 1

### NANDC RANDMZ CFG

Address: Operational Base + offset (0x0208)

Bit	Attr	Reset Value	Description
31	RW 0x0		randmz_en Randomizer enable indication, 1 active. 0: Randomizer not active 1: Randomizer active
			Notes:  a. Not active when data transmission in bypass mode.  b. Just active for data, but not for address and command.  c. Not active when BchPage=1.
30:29	RW	randmz_mode Randomizer mode: 0x0 00- Samsung randomizer Polynomial=1+x+x^15 10- Samsung randomizer Polynomial=1+x^14+x^15	
28:20	RO	0x0	reserved
19:0	RW	randmz_seed when Samsung randomizer:  0x00000 The seed for randomizer(initial value); when Toshiba randomizer: Seed Agitation Register.	

## **NANDC SEED BCHST**

Address: Operational Base + offset (0x020c)

Bit	Attr	<b>Reset Value</b>	Description
31:6	RO	0x0	reserved
			Seed_bchst_rdy
5	RW	0x0	Indication for randmz seed bchst is ready or not
3	KVV	UXU	0: bchst is not ready
			1: bchst is ready
4:3	RW	0x0	Seed_err_tnum
4.3	KVV	UXU	Indication for the number of error in randmz seed
		0x0	Seed_decode_fail
2	RO		Indication for randmz seed decode failed or not
_	KO		0: decode successfully
			1: decode fail
		O 0x0	Seed_decode_done
1	RO		Indication for finishing decoding the randmz seed.
*	KO		0: not finished
			1: finished
		O 0x0	seed_errf
0	DO.		Indication for error found in randmz seed.
U	NO		0: no error
			1: error found

# **7.5 Interface Description**

Table 7-1NandC Interface Description

Module Pin	Direction	Pad Name	IOMUX Setting
flash_ale	0	IO_FLASHale_EMMCrstn_GPIO1B3vccio0	GRF_GPIO1B_IOMUX_L[14: 12]=3'b001
flash_cle	0	IO_FLASHcle_UART3ctsm1_SPI0mosi_I2 C3sda_GPIO1B4vccio0	GRF_GPIO1B_IOMUX_H [2:0]= 3'b001
flash_wrn	0	IO_FLASHwrn_UART3rtsm1_SPI0miso_I 2C3scl_GPIO1B5vccio0	GRF_GPIO1B_IOMUX_H [6:4]= 3'b001
flash_rdn	0	IO_FLASHrdn_UART3rxm1_SPI0clk_GPI O1B7vccio0	GRF_GPIO1B_IOMUX_H [14:12]=3'b001
flash_data[0]	I/O	IO_FLASHd0_EMMCd0_SFCsio0_GPIO1A 0vccio0	GRF_GPIO1A_IOMUX_L [2:0]= 3'b001
flash_data[1]	I/O	IO_FLASHd1_EMMCd1_SFCsio1_GPIO1A 1vccio0	GRF_GPIO1A_IOMUX_L [6:4]= 3'b001
flash_data[2]	I/O	IO_FLASHd2_EMMCd2_SFCsio2_GPIO1A 2vccio0	GRF_GPIO1A_IOMUX_L [10:8]= 3'b001
flash_data[3]	I/O	IO_FLASHd3_EMMCd3_SFCsio3_GPIO1A 3vccio0	GRF_GPIO1A_IOMUX_L [14:12]=3'b001
flash_data[4]	I/O	IO_FLASHd4_EMMCd4_SFCcsn0_GPIO1A 4vccio0	GRF_GPIO1A_IOMUX_H [2:0]= 3'b001
flash_data[5]	I/O	IO_FLASHd5_EMMCd5_GPIO1A5vccio0	GRF_GPIO1A_IOMUX_H [6:4]= 3'b001
flash_data[6]	I/O	IO_FLASHd6_EMMCd6_GPIO1A6vccio0	GRF_GPIO1A_IOMUX_H [10:8]= 3'b001
flash_data[7]	I/O	IO_FLASHd7_EMMCd7_GPIO1A7vccio0	GRF_GPIO1A_IOMUX_H [14:12]=3'b001
flash_dqs	I/O	IO_FLASHdqs_EMMCcmd_GPIO1B2vccio 0	GRF_GPIO1B_IOMUX_L [10:8]= 3'b001
flash_rdy	I	IO_FLASHrdy_EMMCclkout_SFCclk_GPIO 1B1vccio0	GRF_GPIO1B_IOMUX_L [6:4]= 3'b001

flash_csn0	0	IO_FLASHcs0_EMMCpwren_GPIO1B0vcci	GRF_GPIO1B_IOMUX_L
		00	[2:0]=1
flash_csn1	0	IO_FLASHcs1_UART3txm1_SPI0csn_GPI	GRF_GPIO1B_IOMUX_H
		O1B6vccio0	[10:8]=3'b001

Notes: I=input, O=output, I/O=input/output, bidirectional

Furthermore, different IOs are selected and connected to different flash interface, which is shown as follows.

Table 7-2NandC Interface Connection

Module Pin	Direction	Flash Interface		
		Asyn8x	ONFI	Toggle
flash_csni(i=0~1)	0	$\checkmark$	$\checkmark$	$\checkmark$
flash_ale	0	$\checkmark$	$\checkmark$	$\checkmark$
flash_cle	0	$\checkmark$	$\checkmark$	$\checkmark$
flash_wrn	0	$\checkmark$	$\checkmark$	$\checkmark$
flash_rdn	0	$\checkmark$	$\checkmark$	$\checkmark$
flash_data[7:0]	I/O	$\checkmark$	$\checkmark$	$\checkmark$
flash_dqs	I/O	-	$\checkmark$	$\checkmark$
flash_rdy	I	$\checkmark$	$\checkmark$	$\checkmark$

## 7.6 Application Notes

# 7.6.1 BCHST/SPARE Application 7.6.1.1 BCHST

There are 16 BCHST-registers in NandC to store 32 codeword's BCH decode status(bchst) information. Every register stores 2 codeword's bchst information except BCHST0, which not only includes bchst information, but also includes one bit for *bchrdy*.

Letbchst_cwd0~bchst_cwd31 be the bchst information for 32 codewords. NandC support bchst transfer function. Software can enable the function by FLCTL[19]. When FLCTL[19]=1, Nandc will transmit the status of BCH to external memory, and software need configure spare step to 8. Detailed format for spare data and BCH status in every unit is shown in figures1.3.

#### 7.6.1.2 **SPARE**

SPARE includes two register-groups, SPARE0 and SPARE1. Each group has 1 register: SPARE0 0 and SPARE1 0.

When in bch encoding, SPAREO_0 stores system information for codeword in sram0; SPARE1 0 stores system information for codeword in sram1.

When in bch decoding, SPAREO_0 stores the spare data read from flash for codeword in sram0; SPARE1_0 stores the spare data read from flash for codeword in sram1.

#### 7.6.2 Bus Mode Application

MTRANS_CFG[2] determines whether the data load/store between internal memory and external memory is through slave interface or master interface.

#### **7.6.2.1 Slave Mode**

When MTRANS_CFG[2]=0, slave is selected. i. e. , flash data load/store between internal memory and external memory is through slave interface by cpu or external DMA. In this mode, software should store page data into internal memory and spare data into SPARE registers before starting flash program operation; and should load page data from internal memory and spare data from SPARE registers after finishing flash read operation. In this mode, MTRANS_CFG, MTRANS_SADDR0 and MTRANS_SADDR1 are unused. The transfer codeword number is determined by FLCTL[6:5], and the maximum number is 2. The judgment condition for finishing data transfer is FLCTL[20]. When FLCTL[20] is high, it means that data transfer is finished.

#### 7.6.2.2 Master Mode

When MTRANS_CFG[2]=1, master is selected. i. e. , flash data load/store between internal memory and external memory is through master interface.

In this mode, software should initialize page data and spare data into external memory, and

set their addresses in MTRANS SADDR0 and MTRANS SADDR1 respectively before starting flash program operation. Similarly, software should configure MTRANS SADDRO and MTRANS SADDR1 respectively before starting flash read operation and could read data from addresses in MTRANS_SADDR0 and MTRANS_SADDR1 after NandC transfer finish. In this mode, MTRANS_CFG, MTRANS_SADDR0 and MTRANS_SADDR1 are used. The transfer codeword number is determined by FLCTL[27:22], and the maximum number is 32. The judgment condition for finishing data transfer is FLCTL[20]. When FLCTL[20] is high, it means that data transmission is finished.

When MTRANS CFG[2]=1, page data and spare data are stored in the continuous space of external memory respectively.

For page data, source address is named Saddr0, specified in MTRANS_SADDR0. The space can be divided into many continuous units, and the unit size(named PUnit) is 1024 bytes or 512 bytes determined by FLCTL[21] and FLCTL[11]:

a. when FLCTL[11]=0, PUnit is always equal to 1024 bytes

b. when FLCTL[11]=1 and FLCTL[21]=0, PUnit is equal to 1024 bytes

c. when FLCTL[11]=1 and FLCTL[21]=1, PUnit is equal to 512 bytes

For spare data, source address is named Saddr1, specified in MTRANS_SADDR1. The space can be divided into many continuous units, and the unit size(named SUnit) is 4 bytes or 8 bytes determined by FLCTL[19]:
 a. When FLCTL[19]=0 , SUnit is equal to 4 bytes
 b. When FLCTL[19]=1 , SUnit is equal to 8 bytes



Fig.7-2NandC Address Assignment

The detailed format for page data and spare data in every unit is shown in following figures.

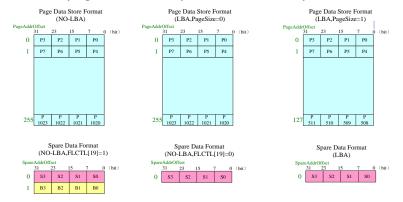



Fig.7-3NandC DataFormat

## 7.6.3 BchPage Application

BCHCTL[16] determines whether codeword size for page data is 1024 bytes or 512 bytes when FLCTL[11] is 0.

#### 7.6.3.1 1024bytes

When BCHCTL[16]=0, BchPage=0, hardware needs to write 1024 bytes page data and spare data into flash or read 1024 bytes page data and spare data from flash. All the 1024 bytes page data and spare data are encoded when writing or decoded when reading.

### 7.6.3.2 512bytes

When BCHCTL[16]=1, BchPage=1, hardware needs to write 512 bytes page data and spare data into flash or read 512 bytes page data and spare data from flash.

In this mode, the page data unit size for BCH encoder and BCH decoder is still 1024byte. So to support BCH encoder and decoder, software should configure page data as follows:1th~512th bytes are invalid data which must be stuffed with 0xff, 513th~1024th

bytes arevalid page data.

However, Randomizer function is not supported under this condition.

### 7.6.4 PageSize/SpareSize Application

FLCTL[21] determines whether the codeword size is 1024 bytes or 512 bytes when FLCTL[11] is 1.

#### 7.6.4.1 Big Page

When FLCTL[11]=0(LbaEn=0), the flash to be operated is Raw NAND Flash. Every codeword size is 1024 bytes and FLCTL[21] should always be set to 0, and the PageStep in external memory is 1024 bytes if bus mode is master mode.

At this mode, the spare size and SpareStep in external memory are determined by FLCTL[19] as follows:

FLCTL[19]=0: spare size=4bytes , SpareStep=4bytes

FLCTL[19]=1: spare size=4bytes , SpareStep=8bytes

#### **7.6.4.2 Small Page**

When FLCTL[11]=1, LbaEn=1, the flash to be operated is Managed NAND Flash. Every codeword size could be 1024 bytes or 512 bytes according to FLCTL[21]. If FLCTL[21]=0, codeword size is 1024 bytes, PageStep in external memory is 1024 bytes, and SpareStep is 4bytes. If FLCTL[21]=1, codeword size is 512 bytes, PageStep in external memory is 512 bytes, and SpareStep is 4 bytes.

At this mode, the spare size is configured in FLCTL[12], and the max available number is 4. In the summary, the total data size in every codeword for flash or for software including page data and spare data, is determined by BCHCTL[27:25], FLCTL[11], FLCTL[21], BCHCTL[4]. Their relationship is shown as follows.

Table 7-3NandC Page/Spare size for flash

Page/s	spare size for software	Page size/codeword	Spare size/codeword
FLCTL[11]=0	24bit ECC	1024 byte	(4+42)byte
	40 bit ECC	1024 byte	(4+70)byte
	60 bit ECC	1024 byte	(4+105)byte
	70 bit ECC	1024 byte	(4+123)byte
FLCTL[11]=1	FLCTL[21]=0	1024 byte	FLCTL[12]
	FLCTL[21]=1	512 byte	FLCTL[12]

Notes: that "page/spare size for flash" means that hardware should transfer these numbers of bytes in every codeword to or from flash.

#### 7.6.5 Randomizer Application

RANDMZ_CFG[31] determines whether randomizer is enable or not. When

RANDMZ_CFG[31] equals to 1, randomizer is active. Data should be scrambled before written into flash, and descrambled after read from flash.

RANDMZ_CFG[30] determines the randomizer polynomial.

When RANDMZ_CFG[30]=0, Polynomial= $1+x+x^15$ 

When RANDMZ CFG[30]=1, Polynomial= $1+x^14+x^15$ 

RANDMZ_CFG[19:0] is the seed for randomizer. It should be ensured that data in the same page should have the same randomizer polynomial and randomizer seed when in flash program or flash read operation.

The data unit for randomizer is one codeword(data+spare).

However, Randomizer is just available for data transfer by internal DMA mode, but not by for bypass mode. Furthermore, it should not be enable if BCHCTL[16]=0 (BchPage=512bytes).

#### 7.6.6 DLL Application

When Toggle Flashor ONFI Synchronous Flash interface is active, DLL should be used to adjust DQS input with DQ when reading flash.

There are 2 registers for DLL configuration(DLL_CFG_REG0 and DLL_CFG_REG1), and 1 register for DLL status(DLL_OBS_REG0).

The usage guide is as follows:

If bypass mode is used, you should set *dll_bypass* in DLL_CFG_REG1[1] to 1, and set *dll_dqs_dly_bypass* in DLL_CFG_REG0[23:16] to determine the dll element number needed. And then set *dll_start* in DLL_CFG_REG1[0] to 1 to start the DLL.

If auto adjusting is used, you should set <code>dll_bypass</code> in DLL_CFG_REG1[1] to 0, and set the <code>dll_start_point</code> in DLL_CFG_REG0[7:0] and <code>dll_incr</code> in DLL_CFG_REG1[11:4]. You also should set the adjusting mode <code>dll_qtren</code> in DLL_CFG_REG1[3:2] to compute the dll element number needed. If <code>dll_qtren=2'b00</code>, the dll element number is determined by <code>dll_dqs_dly</code> in DLL_CFG_REG0[15:8]; otherwise, it is 1/4 or 1/8 of the total number of dll elements used for <code>dll_qtren=2'b01</code> or <code>dll_qtren=2'b10</code> separately. The last step is to set <code>dll_start</code> in DLL_CFG_REG1[0] to 1 to start the DLL.

If you want to monitor the dll working status, you could read DLL_OBS_REGO. If DLL_OBS_REGO[0]=0, it means that DLL is not locked, and still in detecting status. Otherwise, it means that DLL is locked, and dll_lock_value in DLL_OBS_REGO[8:1] is the total number of dll elements used, dll_dqs_delay_value in DLL_OBS_REGO[16:9] is the total number of DQS delay used.

#### 7.6.7 NandC Interrupt Application

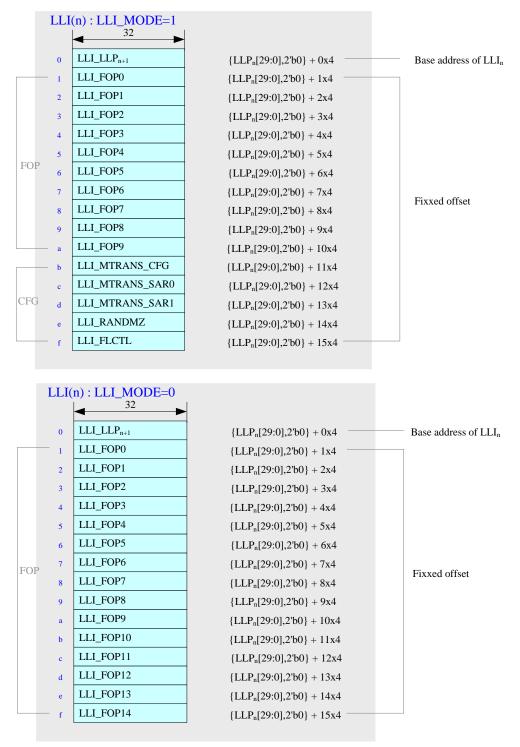
NandC has 1 interrupt output signal and 10 interrupt sources: seed bch error interrupt source, seed bch fail interrupt source, read first page interrupt source, master idle interrupt source, flash abort interrupt source, LLP interrupt source, dma finish interrupt source, flash ready interrupt source, bch error interrupt source, bchfail interrupt source. When one or more of these interrupt source are enabled, NandC interrupt is asserted if one or more interrupt source is high. Software can determine the interrupt source by reading INTST and clear interrupt by writing corresponding bit in INTCLR.

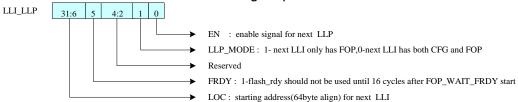
#### 7.6.8 LLP Application

LLP is used in NandC to store and execute instruction groups configured in external memory by software. When LLPCTL[0]=1, LLP is active, NandC will load instruction groups stored in {LLPCTL[31:6], 6'h0} and execute them. Next instruction groups should not be loaded until current instruction execution finished.

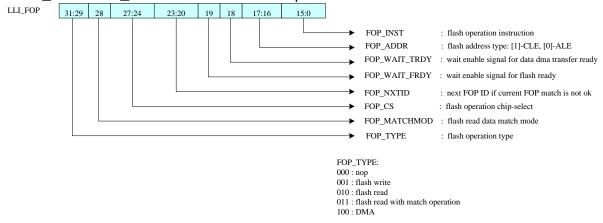
#### 7.6.8.1 LLP Structure

The structure of LLP is shown as follows:





Fig.7-4NandC LLP Data Format

LLI_MODE is determined by LLPCTL[1]. If current operation is flash program or flash read, then LLI_MODE=1 is need; otherwise, LLI_MODE=0 is workable.


In addition, you could do more than one flash operation in one LLP group, but you should not separate one flash operation into two LLI groups.

#### 7.6.8.2 LLI Format

a. LLI_LLP_{n+1} stores the address for next LLI group data



#### b. LLI FOP0~LLI FOP14 store the flash operation instruction



When

FOP_TYPE=3'b011, match operation is active, and the PATTERN is LLI_FOP[15:0]. It is matched when "RDATA|PATTERN=PATTERN" with FOP_MATCHMOD=0, or when "RDATA&PATTERN" with FOP_MATCHMOD=1.

c. LLI_MTRANS_CFG/LLI_MTRANS_SADDR0/LLI_MTRANS_SADDR1/ LLI_RANDMZ/LLI_FLCTL store the configuration for MTRANS_CFG/MTRANS_SADDR0/MTRANS_SADDR1/RANDMZ/FLCTL.

#### 7.6.8.3 LLP Working Mode

There are two working modes for LLP:

- a. Normal mode: LLPCTL[0] is kept to 1 until all LLP loading and executing finished. Software can monitor the progress by LLPSTAT[31:6], LLPSTAT[0].
- b. Pause mode: LLPCTL[0] is changed from 1 to 0 during LLP loading or LLP executing. NandC should not stop working until current LLP executing finished. Software can monitor the progress by LLPSTAT[31:6], LLPSTAT[0].

### 7.6.9 Seed Application

Nandc supports randomizer seed transmission. When FLCTL[9]=1 and

RANDMZ_CFG[31]=1,Nandc will transmit seed to flash before page data transmission and receive seed before page data receiving.

Seed has BCH encoder/decoder separately and support 1bit BCH. Software can query seed BCH result by accessing SEED_BCHST.

#### 7.6.10 Redundance Application

Nandc supports write "FF" to flash as redundance. Software can configure redundance size by NANDC_MTRANS_CFG[26:16].

#### 7.6.11 IOMUX Application

Nandc support IOMUX. Software can change pin function by FMCTL[23:21].

## **Chapter 8 Power Management Unit (PMU)**

#### 8.1 Overview

In order to meet low power requirements, a power management unit (PMU) is designed for controlling power resources in PX30. The PX30 PMU is dedicated for managing the power of the whole chip.

#### 8.1.1 Features

- Support 3 voltage domains: VD CORE, VD LOGIC, VD PMU
- Support power off VD_CORE only
- 4 Power domains in VD CORE:PD CPU 0/1/2/3
- PD_CPU_0/1/2/3 support cpu auto power down, support SCU auto power down
- power domains in VD_LOGIC include PD_GPU, PD_VPU, PD_VI, PD_VO, PD_MMC_NAND, PD_SDIO, PD_MAC, PD_DDR
- Support DDR self-refresh, auto-gating and retention
- Support wakeup source
  - Timer
  - Usb detect
  - Sdmmc detect
  - Sdio
  - Interrupt of Gpio0
  - Timeout
  - GPIO0A[7:0], GPIO0B[7:0], GPIO0C[4:0]
  - Uart0
  - Interrupt output from GIC
- Support Flush L2 by software and hardware
- Support NIU idle interface(idle request, ack and status)

## 8.2 Block Diagram

#### 8.2.1 Voltage partition

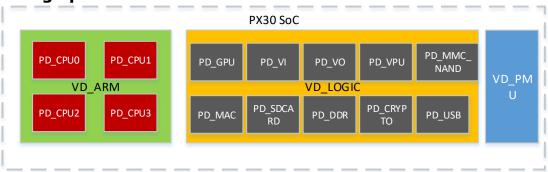



Fig. 8-1PX30 Power Domain Partition

The above diagram describes voltage domain partition.

Table 8-1PX30 Power Domain and Voltage Domain Summary

Voltage Domain	Blocks (not real power domain)	Description
	PD_CPU0	CPU Core 0 with NEON and FPU
	PD_CPU1	CPU Core 1 with NEON and FPU
VD ARM	PD_CPU2	CPU Core 2 with NEON and FPU
VD_ARM	PD_CPU3	CPU Core 3 with NEON and FPU
	PD_SCU(AL	DAP Lite, SCU and 256KB L2
	IVE)	
VD_LOGIC	PD_GPU	GPU

Voltage Domain	Blocks (not real power domain)	Description
	PD_VI	ISP and VIP
	PD_VO	VOP_M, VOP_S, RGA and DSI
	PD_VPU	VCODEC
	PD_DDR	DDR_CTRL, DDR_GRF, DDR_STDBY and DDR_MONITOR
	PD_MAC	MAC
	PD_MMC_N AND	SFC, EMMC, NAND and SDIO
	PD_SDCAR D	SDCARD
	PD_USB	USB_OTG and USB_HOST
	PD_CRYPTO	CRYPTO
	PD_BUS(AL IVE)	DCF, DMAC, GIC, I2S0/1/2, PDM, INTMEM, ROM, OTP_S, KEYREADER, USB_GRF, CRU, CPU_BOOST,GRF,I2C,WDT_S/NS, TIMER_S/NS, TSADC,SARADC, OTP_NS, SPI, PWM, GPIO1/2/3, UART1/2/3/4/5, DCF, PLL and ANALOG PHYS
VD_PMU	PD_PMU	PMU, UARTO, GPIOO, PMU_GRF, PMU_INTMEM and SGRF

#### 8.2.2 PMU block diagram

The following figure is the PMU block diagram. The PMU includes the 3 following sections:

- APB interface and register, which can accept the system configuration
- Low Power State Control, which generate low power control signals. Power Switch Control, which control all power domain switch

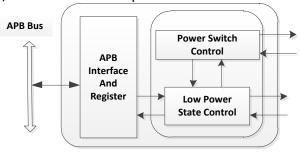



Fig. 8-2PMU Bock Diagram

## 8.3 Function Description

First of all, we define two operation modes of PMU, normal mode and low power mode. When operating at normal mode, that means software can manage power sources directly by accessing PMU register.

For example, Cortex-A35 CPU can write PMU_PWRDN_CON register to determine that power off/on which power domain independently.

When operating at low power mode, software manages power sources indirectly through FSM (Finite States Machine) in PMU and those settings always not take effect immediately. That means software also can configure PMU registers to power down/up some power resources, but these setting will not be executed immediately after configuration. They will delay to execute after FSM running in particular phase.

To entering low power mode, after setting some power configurations, the PMU POWER MODE[0] bit must be set 1 to enable PMU FSM. Then Cortex-A35 CPU needs to execute a WFI command to perform ready signal. After PMU detects all Cortex-A35 CPUs in WFI status, then the FSM will be fetched. And the specific power sources will be controlled during specific status in FSM. So the low power mode is a "delay affect" way to handle power sources inside the PX30 chip.

# 8.4 Register Description

## **8.4.1 Registers Summary**

Name	Offset	Size	Reset Value	Description
PMU WAKEUP CFG0 LO	0x0000	W	0x00000000	Wakeup source config 0 low 16 bit
PMU WAKEUP CFG0 HI	0x0004	w	0×00000000	Wakeup source config 0 high 16 bit
PMU WAKEUP CFG1 LO	0x0008	W	0x00000000	Wakeup source config 1 low 16 bit
PMU WAKEUP CFG1 HI	0x000c	W	0×00000000	Wakeup source config 1 high 16 bit
PMU WAKEUP CFG2 LO	0x0010	W	0x00000000	Wakeup source config 0 low 16 bit
PMU_PWRDN_CON_LO	0x0018	W	0x00000000	power down control register
PMU PWRDN ST	0x0020	W	0x00000000	power status register(read only)
PMU PWRMODE CORE C ON LO	0x0024	w	0×00000000	power mode control register for core low 16 bit
PMU PWRMODE CORE C ON HI	0x0028	W	0×00000000	power mode control register for core high 16 bit
PMU PWRMODE COMMO N CON LO	0x002c	W	0×00000000	power mode control register for chip low 16 bit
PMU PWRMODE COMMO N CON HI	0x0030	W	0×00000000	power mode control register for chip high 16 bit
PMU_SFT_CON_LO	0x0034	W	0x00000000	software configure register
PMU BUS IDLE REQ LO	0x0064	W	0x00000000	bus idle request register
PMU BUS IDLE ST	0x006c	W	0x00000000	bus idle status register
PMU_OSC_CNT_LO	0x0074	W	0x00005dc0	osc count low 16 bit
PMU OSC CNT HI	0x0078	W	0x00000000	osc count high 16 bit
PMU PLLLOCK CNT LO	0x007c	W	0x00005dc0	plllock count low 16 bit
PMU_PLLLOCK_CNT_HI	0x0080	W	0x00000000	plllock count low high bit
PMU PLLRST CNT LO	0x0084	W	0x00005dc0	pll reset count low 16 bit
PMU_PLLRST_CNT_HI	0x0088	W	0x00000000	pll reset count high 16 bit
PMU_STABLE_CNT_LO	0x008c	W	0x00005dc0	PMU stable count low 16 bit
PMU STABLE CNT HI	0x0090	W	0x00000000	PMU stable count high 16 bit
PMU WAKEUP RST CLR CNT LO	0x009c	w	0x00005dc0	wakeup reset count low 16 bit
PMU WAKEUP RST CLR CNT HI	0x00a0	W	0×00000000	wakeup reset count high 16 bit
PMU DDR SREF ST	0x00a4	W	0x00000000	ddr self-refresh status
PMU SYS REGO LO	0x00a8	W	0x00000000	system register0 low 16 bit
PMU SYS REGO HI	0x00ac	W	0x00000000	system register0 high 16 bit
PMU SYS REG1 LO	0x00b0	W	0x00000000	system register1 low 16 bit
PMU_SYS_REG1_HI	0x00b4	W	0x00000000	system register1 high 16 bit
PMU SYS REG2 LO	0x00b8	W	0x00000000	system register2 low 16 bit
PMU SYS REG2 HI	0x00bc	W	0x00000000	system register2 high 16 bit
PMU SYS REG3 LO	0x00c0	W	0x00000000	system register3 low 16 bit

Name	Offset	Size	Reset Value	Description
PMU_SYS_REG3_HI	0x00c4	W	0x00000000	system register3 high 16 bit
PMU SCU PWRDN CNT L O	0x00c8	w	0x00005dc0	scu power down count low 16 bit
PMU SCU PWRDN CNT HI	0x00cc	W	0×00000000	scu power down count high 16 bit
PMU SCU PWRUP CNT L O	0x00d0	W	0x00005dc0	scu power up count low 16 bit
PMU SCU PWRUP CNT H I	0x00d4	W	0x00000000	scu power up count low 16 bit
PMU TIMEOUT CNT LO	0x00d8	W	0x00005dc0	time out count low 16 bit
PMU TIMEOUT CNT HI	0x00dc	W	0x00000000	time out count high 16 bit
PMU CPU0APM CON	0x00e0	W	0x00000000	cpu0 apm control register
PMU CPU1APM CON	0x00e4	W	0x00000000	cpu1 apm control register
PMU_CPU2APM_CON	0x00e8	W	0x00000000	cpu2 apm control register
PMU CPU3APM CON	0x00ec	W	0x00000000	cpu3 apm control register

Notes: Size: B- Byte (8 bits) access, HW- Half WORD (16 bits) access, W-WORD (32 bits) access

### 8.4.2 Detail Register Description

### PMU WAKEUP CFG0 LO

Address: Operational Base + offset (0x0000)

Bit	Attr	<b>Reset Value</b>	Description
21.16	RW 0x0000	write_mask	
31:16 KW	KVV	00000	16 bit write mask for lsb 15-0
15.0	DW	W 0×0000	wakeup_gpio_pos_en_lo
15:0 RW	V 0x0000	wakeup posedge enable for gpio 0 [15:0]	

#### PMU WAKEUP CFG0 HI

Address: Operational Base + offset (0x0004)

Bit	Attr	<b>Reset Value</b>	Description
31:16	RW 0x0000	write_mask	
31.10	KVV	UXUUUU	16 bit write mask for lsb 15-0
15.0	DW 0,0000	0,000	wakeup_gpio_pos_en_hi
15:0 RW	W 0x0000	wakeup posedge enable for gpio 0 [31:16]	

## PMU WAKEUP CFG1 LO

Address: Operational Base + offset (0x0008)

Bit	Attr	<b>Reset Value</b>	Description
31:16	RW	(0x()()()	write_mask  16 bit write mask for lsb 15-0
15:0	RW	0×0000	wakeup_gpio_neg_en_lo wakeup posedge enable for gpio 0 [15:0]

#### PMU WAKEUP CFG1 HI

Address: Operational Base + offset (0x000c)

Bit	Attr	<b>Reset Value</b>	Description
21.16	31:16 RW 0x0000	write_mask	
31.10		UXUUUU	16 bit write mask for lsb 15-0
15.0	DW	NW 0×0000	wakeup_gpio_neg_en_hi
15:0 RW	V 0x0000	wakeup posedge enable for gpio 0 [31:16]	

#### PMU WAKEUP CFG2 LO

Address: Operational Base + offset (0x0010)

Bit	Attr	<b>Reset Value</b>	Description
21.16	DW	0x0000	write_mask
31.10	31:16 RW	00000	16 bit write mask for lsb 15-0
15:11	RO	0x0	reserved
10	RW	0x0	wakeup_timeout_en
10	IK VV	UXU	timeout wakeup enable
9	RO	0x0	reserved
8	RW	0x0	wakeup_sft_en
0	KVV	UXU	software wakeup enable
7	RW	0.40	wakeup_usbdev_en
/	KVV	0×0	usb wakeup enable
6	RW	0×0	wakeup_timer_en
6	IT VV		timer wakeup enable
5	RW	0x0	wakeup_uart0_en
3	IT VV		uart0 wakeup enable
4	DW	RW 0x0	wakeup_sdmmc_en
4	KVV		sdmmc wakeup enable
3	RW	0.0	wakeup_sdio_en
3	IT VV	W 0×0	sdio wakeup enable
2	RW	0x0	wakeup_gpio0_int_en
	Z KW	UXU	gpio0 interrupt wakeup enable
1	RO	0x0	reserved
0	DW/	0×0	wakeup_int_cluster_en
U	0 RW	0x0	cluster interrupt wakeup enable

### **PMU PWRDN CON LO**

Address: Operational Base + offset (0x0018)

Bit	Attr	<b>Reset Value</b>	Description
21.16	31:16 RW	0x0000	write_mask
31:16	KVV		16 bit write mask for lsb 15-0
1 5	DW	V 1()X()	pd_gpu_pwrdwn_en
15	RW		pd_gpu power down enable
1.4	DW	'  () <b>y</b> ()	pd_vi_pwrdwn_en
14	14 RW		pd_vi power down enable
1.2	13 RW	V (()x()	pd_vo_pwrdwn_en
13			pd_vo power down enable

Bit	Attr	Reset Value	Description							
12	RW	0x0	pd_vpu_pwrdwn_en							
12		UXU	pd_vpu power down enable							
11	RW	0x0	pd_mmc_nand_pwrdwn_en							
11	KVV	UXU	pd_mmc_nand power down enable							
10	RW	0x0	pd_MAC_pwrdwn_en							
10	KVV	UXU	pd_MAC power down enable							
9	RW	0x0	pd_crypto_pwrdwn_en							
9	FCVV	UXU	pd_crypto power down enable							
8	RW	0x0	pd_sdcard_pwrdwn_en							
0	FCVV	UXU	pd_sdcard power down enable							
7	RO	0x0	reserved							
6	RW	0x0	pd_ddr_pwrdwn_en							
O	KVV		pd_ddr power down enable							
5	RW	0x0	pd_usb_pwrdwn_en							
כ	KVV		pd_usb power down enable							
4	DW	0x0	pd_scu_pwrdwn_en							
4	RW	KW	KVV	KVV	FCVV	IXVV	IXVV	KVV	UXU	pd_scu power down enable
3	RW	0x0	pd_a35_3_pwrdwn_en							
3	FCVV	UXU	pd_a35_3 power down enable							
2	RW	0x0	pd_a35_2_pwrdwn_en							
2	FCVV	UXU	pd_a35_2 power down enable							
1	DV4	0x0	pd_a35_1_pwrdwn_en							
	RW	UXU	pd_a35_1 power down enable							
0	RW	0x0	pd_a35_0_pwrdwn_en							
0	KW	UXU	pd_a35_0 power down enable							

### PMU_PWRDN_ST

Address: Operational Base + offset (0x0020)

Bit	Attr	<b>Reset Value</b>	Description
31:16	RO	0x0	reserved
15	RW	0×0	pd_gpu_pwr_status 1: pd_gpu is power down 0: pd_gpu is power up
14	RW	0×0	pd_vi_pwr_status  1: pd_vi is power down  0:pd_vi is power up
13	RW	0×0	pd_vo_pwr_status 1: pd_vo is power down 0: pd_vi is power up
12	RW	0x0	pd_vpu_pwr_status  1: pd_vpu is power down  0: pd_vpu is power up

Bit	Attr	Reset Value	Description
			pd_mmc_nand_pwr_status
11	RW	0x0	1: pd_mmc_nand is power down
			0: pd_mmc_nand is power up
			pd_MAC_pwr_status
10	RW	0x0	1: pd_MAC is power down
			0: pd_MAC is power up
			pd_crypto_pwr_status
9	RW	0x0	1: pd_crypto is power down
			0: pd_crypto is power up
			pd_sdcard_pwr_status
8	RW	0x0	1: pd_sdcard is power down
			0: pd_sdcard is power up
7	RO	0x0	reserved
			pd_ddr_pwr_status
6	RW	0x0	1: pd_ddr is power down
			0: pd_ddr is power up
			pd_usb_pwr_status
5	RW	0x0	1: pd_usb is power down
			0: pd_usb is power up
			pd_scu_pwr_status
4	RW	0x0	1: pd_scu is power down
			0: pd_scu is power up
			pd_a35_3_pwr_status
3	RW	0x0	1: pd_a35_3 is power down
			0: pd_a35_3 is power up
			pd_a35_2_pwr_status
2	RW	0x0	1: pd_a35_2 is power down
			0: pd_a35_2 is power up
			pd_a35_1_pwr_status
1	RW	0x0	1: pd_a35_1 is power down
			0: pd_a35_1 is power up
			pd_a35_0_pwr_status
0	RO	0x0	1: pd_a35_0 is power down
			0: pd_a35_0 is power up

PMU PWRMODE CORE CON LO
Address: Operational Base + offset (0x0024)

Bit	Attr	<b>Reset Value</b>	Description
21.16	RW	0x0000	write_mask
31:10			16 bit write mask for lsb 15-0
15:12	RO	0x0	reserved
1.1	RW	W 10x0	clr_peri2msch
11			clear peri2msch niu when power down

Bit	Attr	<b>Reset Value</b>	Description
10	RW	0x0	clr_bus2main
10	KVV	UXU	clr bus2main niu when power down
9	RW	0x0	I2_flush_en
9	KVV	UXU	1: flush L2 when in power mode
8	RW	0x0	I2_idle_en
0	KVV	UXU	1: wait for L2 idle when in power mode
7	RO	0x0	reserved
6	RW	0x0	scu_pd_en
6	KVV		1: power down scu(vd_core) when power mode
5	RW	0x0	clr_core
3	KVV		1: clear core niu when power mode
4	RO	0x0	reserved
3	RW	0x0	cpu0_pd_en
3	KVV		1: power down cpu0 when power mode
2	RO	0x0	reserved
1	RW	0x0	clk_core_src_gate_en
1	KVV	UXU	1: core clock gating when power mode
			global_int_disable_cfg
0	RW	/ 0x0	1:global interrupt disable
			0:global interrupt enable

## PMU PWRMODE CORE CON HI

Address: Operational Base + offset (0x0028)

Bit	Attr	Reset Value	Description
31:16	RW	0x0000	write_mask
			16 bit write mask for lsb 15-0
15:8	RO	0x0	reserved
7	RW	0×0	npll_pd_en
/	INV	UXU	1: power down npll when power mode
6	RW	0x0	gpll_pd_en
O	IK VV		1: power down gpll when power mode
5	DW	W 0x0	cpll_pd_en
5	I VV		1: power down cpll when power mode
4	RW	0×0	dpll_pd_en
4	IK VV	UXU	1: power down dpll when power mode
3	RW	N 0×0	apll_pd_en
ر	IK VV	0x0	1: power down apll when in power mode
2:0	RO	0x0	reserved

### PMU PWRMODE COMMON CON LO

Address: Operational Base + offset (0x002c)

Bit	Attr	Reset Value	Description	
21.16	DW	0×0000	write_mask	
31:16	K W	0x0000	16 bit write mask for lsb 15-0	
15	RW	0x0	clr_peri_pmu	
15	KVV	UXU	1: clear peri mid niu when in power mode	
14	RW	0x0	clr_pmu	
14	KVV	UXU	1:clear pmu niu when in power mode	
13	RW	0x0	ddr_ret_de_req	
13	KVV	UXU	de-request for ddr retention bit	
12	RW	0x0	ddr_ret_en	
12	KVV	0.00	ddr retention when in power mode	
11	RW	0×0	ddrc_gating_en	
11	IXVV	0.00	gating ddrc clock when in power mode	
10	RW	0×0	sref_enter_en	
10	IVV	0.00	ddr enter self-refresh when power mode	
9	RW	0×0	input_clamp_en	
,	IVV		1: clamp pmu input when in power mode	
8	RW	W 0×0	osc_24m_dis	
0	1244	OXO	1: disable 24M osc when power mode	
7	RW	0x0	alive_use_lf	
,	IX V V	17.44	0.00	1: alive switch to low freqency clock when power mode
6	RW	0x0	pmu_use_lf	
0				OXO
5	RO	0x0	reserved	
4	RW	0×0	pll_pd_en	
•	1244	OXO	1: power down pll when in power mode	
3	RW	0×0	wakeup_reset_en	
3	1244	OXO	1: wake up resetn when in power mode	
2	RO	0x0	reserved	
1	RW	0×0	ddr_pd_en	
	1 \ V V		1: power down pd_ddr when power mode	
0	RW	0×0	power_mode_en	
J	KVV	IZ V V	0.00	1: power mode enable

## PMU PWRMODE COMMON CON HI

Address: Operational Base + offset (0x0030)

Bit	Attr	<b>Reset Value</b>	Description
31:16	DW	0x0000	write_mask
31:16	KVV		16 bit write mask for lsb 15-0
15:14	RO	0x0	reserved
12	DW	(W 1()X()	pd_bus_clk_src_gate_en
13	KW		clock gating bus niu when in power mode
1.7	DW	₹W 1()X()	pd_peri_clk_src_gate_en
12	KVV		clock gating peri niu when in power mode

Bit	Attr	<b>Reset Value</b>	Description						
11	RW	0x0	wait_wakeup_begin_cfg						
11	KVV	UXU	start to oberserve wakeup source						
10	RW	0x0	clr_crypto						
10	KVV	UXU	clear crypto niu when in power mode						
9	RW	0x0	clr_vpu						
9	KVV	UXU	clear vpu niu when in power mode						
8	RW	0x0	clr_usb						
6	IXVV	0.00	clear usb niu when in power mode						
7	RW	0×0	clr_gpu						
,	IXVV	UXU	clear gpu niu when in power mode						
6	RW	0×0	clr_vi						
<u> </u>	IXVV		clear vi niu when in power mode						
5	RW	0x0	clr_vo						
3	IXVV		clear vo when in power mode						
4	RW	0×0	clr_MAC						
	KVV	KVV	KVV	IXVV	KVV	IXVV	1244		clear MAC niu when in power mode
3	RW	0×0	clr_nandc						
3	IXVV	0.00	clear nandc niu when in power mode						
2	RW	0x0	clr_msch						
	IXVV	0.00	clear msch niu when in power mode						
1	RW	0×0	clr_mmc						
	LVV	0×0	clear mmc niu when in power mode						
0	DW	0x0	clr_bus						
U	KW	RW	UXU	1: clear bus niu when in power mode					

PMU SFT CON LO
Address: Operational Base + offset (0x0034)

Bit	Attr	<b>Reset Value</b>	Description							
31:16	DW	0x0000	write_mask							
31.10	1244	00000	16 bit write mask for lsb 15-0							
15:11	RO	0x0	reserved							
10	RW	0x0	upctl_c_sysreq_cfg							
10	KVV	UXU	software config upctl for idle							
9:7	RO	0x0	reserved							
c	DW	W 0x0	I2flushreq_cluster_cfg							
6	KVV		software flush L2 config							
5	RW	W 0x0	gpll_pd_cfg							
3	KVV		software config gpll power down							
4	RW	0.0	cpll_pd_cfg							
4		KW	KW	0×0	software config cpll power down					
3	DW	RW 0×0	dpll_pd_cfg							
J	L. AA		software config dpll power down							
2	DW	0x0	apll_pd_cfg							
_	RW	KW	KW	KW	ΚW	KW	KW	RW	UXU	software config apll power down

Bit	Attr	<b>Reset Value</b>	Description
1	RW	I()X()	npll_pd_cfg
1			software config npll power down
			wakeup_sft
0	RW	0x0	software wake up , a 0 to 1 posedge make it work(no use for
			gemini project)

### PMU BUS IDLE REQ LO

Address: Operational Base + offset (0x0064)

Bit		Reset Value	Description		
			write_mask		
31:16	19 KM	0×0000	16 bit write mask for lsb 15-0		
1 [	DW	00	idle_req_peri2msch_cfg		
15	RW	0x0	software configperi2msch niu idle request		
1./	DW	0.40	idle_req_vpu_cfg		
14	RW	0x0	software config vpu niu idle request		
13	RW	0x0	idle_req_pmu_cfg		
13	FCVV	UXU	software config pmu niu idle request		
12	RW	0x0	idle_req_peri_mid_cfg		
12	KVV	UXU	software config peri_mid niu idle request		
11	RW	0x0	idle_req_msch_cfg		
11	KVV	UXU	software config msch niu idle request		
10	RW	0x0	idle_req_usb_cfg		
10	KVV	KVV	0.00	software config usb niu idle request	
9	RW	0×0	idle_req_sdcard_cfg		
9	IVV	0.00	software config sdcard niu idle request		
8	RW	0×0	idle_req_vi_cfg		
0	1244		software config vi niu idle request		
7	RW	W 0×0	idle_req_vo_cfg		
,	1244	OXO	software config vo niu idle request		
6	RW	0×0	idle_req_MAC_cfg		
0	IXVV	IVV		O X O	software config MAC niu idle request
5	RW	RW	/ 0×0	idle_req_mmc_nand_cfg	
J			1244	0.00	software config mmc_nand niu idle request
4	RW	0×0	idle_req_crypto_cfg		
•			software config crypto niu idle request		
3	RW	0×0	idle_req_core_cfg		
			software config core niu idle request		
2	RW	0×0	idle_req_gpu_cfg		
			software config bus niu idle request		
1	RW	0×0	idle_req_bus2main_cfg		
_			software config bus2main niu idle request		
0	RW	0×0	idle_req_bus_cfg		
)	IXVV	VV UXU	software config bus niu idle request		

#### PMU BUS IDLE ST

Address: Operational Base + offset (0x006c)

Bit		Reset Value	+ offset (0x006c)  Description		
Dic	766	Reset value	idle_peri2msch		
31	. RW	0×0	peri2msch niu idle status		
30	RW	0x0	idle_vpu		
			vpu niu idle status		
29	RW	0x0	idle_pmu		
			pmu niu idle status		
28	RW	0x0	idle_peri_mid		
			peri_mid niu idle status		
27	RW	0x0	idle_msch		
			msch niu idle status		
26	RW	0×0	idle_usb		
			usb niu idle status		
25	RW	0×0	idle_sdcard		
			sdcard niu idle status		
24	RW	0×0	idle_vi		
			vi niu idle status		
23	RW	0x0	idle_vo		
			vo niu idle status		
22	RW	0x0	idle_MAC		
		0.00	MAC niu idle status		
21	RW	0x0	mmc_nand_idle		
			bus niu idle status		
20	RW	0x0	idle_crypto		
			crypto niu idle status		
19	RW	0x0	idle_core		
			core niu idle status		
18	RW	0x0	idle_gpu		
			gpu niu idle status		
17	RW	0x0	idle_bus2main		
16	RW	0x0	idle_bus		
			bus niu idle status		
15	RO	0x0	idle_ack_peri2msch		
	_		peri2msch niu idle ack status		
14	RO	0x0	idle_ack_vpu		
	-		vpu niu idle ack status		
13	RO	0×0	idle_ack_pmu		
			pmu niu idle ack status		
12	RO	0×0	idle_ack_peri_mid		
			peri_mid niu idle ack status		
11	RO	0×0	idle_ack_msch		
	-		msch niu idle ack status		
10	RO	0x0	idle_ack_usb		
	.5	=	usb niu idle ack status		

Bit	Attr	<b>Reset Value</b>	Description
9	RO	0x0	idle_ack_sdcard
9	KO	UXU	sdcard niu idle ack status
8	RO	0x0	idle_ack_vi
0	KO	UXU	vi niu idle ack status
7	RO	0×0	idle_ack_vo
/	KO	UXU	vo niu idle ack status
6	RO	0.0	idle_ack_MAC
0	KO	0x0	MAC niu idle ack status
5	RO	0x0	idle_ack_mmc_nand
J	KO		mmc_nand niu idle ack status
4	RO	0x0	idle_ack_crypto
4	KO		crypto niu idle ack status
3	RO	0x0	idle_ack_core
3	KO		core niu idle ack status
2	RO	0x0	idle_ack_gpu
2	KU	UXU	gpu niu idle ack status
1	RO	0×0	idle_ack_bus2main
1	KU	0x0	bus2main niu idle ack status
0	RO	0x0	idle_ack_bus
0	KU	UXU	bus niu idle ack status

### PMU OSC CNT LO

Address: Operational Base + offset (0x0074)

Bit	Attr	<b>Reset Value</b>	Description
31:16 RW	/ 0×0000	write_mask	
31.10	KVV	00000	16 bit write mask for lsb 15-0
15:0	RW	0x5dc0	pmu_osc_cnt_lo
15.0	15.0   KW	W UXJUCU	osc_cnt[15:0]

PMU OSC CNT HI
Address: Operational Base + offset (0x0078)

Bit	Attr	<b>Reset Value</b>	Description
21.16	RW	0×0000	write_mask
31:10			16 bit write mask for lsb 15-0
15:4	RO	0x0	reserved
2.0	RW	(W 10x0 1	pmu_osc_cnt_hi
3:0			osc_cnt[19:16]

### PMU PLLLOCK CNT LO

Address: Operational Base + offset (0x007c)

Bit	Attr	<b>Reset Value</b>	Description
21.16	RW	10x0000	write_mask
31.10			16 bit write mask for lsb 15-0
15.0	RW	2W 10x5dc0	pmu_plllock_cnt_lo
15:0			plllock_cnt[15:0]

### PMU PLLLOCK CNT HI

Address: Operational Base + offset (0x0080)

Bit	Attr	<b>Reset Value</b>	Description
21.16	RW	0x0000	write_mask
31:16			16 bit write mask for lsb 15-0
15:4	RO	0x0	reserved
2.0	RW		pmu_plllock_cnt_hi
3:0		0×0	plllock_cnt[19:16]

#### PMU PLLRST CNT LO

Address: Operational Base + offset (0x0084)

Bit	Attr	<b>Reset Value</b>	Description		
21.16	RW	10x0000	write_mask		
31:16			16 bit write mask for lsb 15-0		
15.0	RW	W 0Ed-0	pmu_pllrst_cnt_lo		
15:0		RW	RW 0x5dc0	pllrst_cnt[15:0]	

#### PMU PLLRST CNT HI

Address: Operational Base + offset (0x0088)

Bit	Attr	<b>Reset Value</b>	Description
31:16	RW	0x0000	write_mask
			16 bit write mask for lsb 15-0
15:4	RO	0x0	reserved
3:0	RW	W (()X()	pmu_pllrst_cnt_hi
			pllrst_cnt[19:16]

#### **PMU STABLE CNT LO**

Address: Operational Base + offset (0x008c)

Bit	Attr	<b>Reset Value</b>	Description
31:16	DW	/ 10x0000	write_mask
31:16	KVV		16 bit write mask for lsb 15-0
15.0	DW	W 10x5dc0 1	pmu_stable_cnt_lo
15:0	RW		stable_cnt[15:0]

#### PMU STABLE CNT HI

Address: Operational Base + offset (0x0090)

Bit	Attr	<b>Reset Value</b>	Description
21.16	RW	0x0000	write_mask
31:16			16 bit write mask for lsb 15-0
15:4	RO	0x0	reserved
2.0	RW	W 1() <b>x</b> ()	pmu_stable_cnt_hi
3:0			stable_cnt[19:16]

### PMU WAKEUP RST CLR CNT HI

Address: Operational Base + offset (0x0098)

Bit	Attr	<b>Reset Value</b>	Description
21.16	RW	0x0000	write_mask
31:16			16 bit write mask for lsb 15-0
15:4	RO	0x0	reserved
2.0	RW		pmu_wakeup_rst_cnt_hi
3:0		0x0	wakeuprst_cnt[19:16]

#### PMU WAKEUP RST CLR CNT LO

Address: Operational Base + offset (0x00a0)

			( )
Bit	Attr	<b>Reset Value</b>	Description
31:16 RW	DW	/ 10×0000	write_mask
31:16	KVV		16 bit write mask for lsb 15-0
15.0	DW	เพาเมรรสะเมา	pmu_wakeup_rst_cnt_lo
15:0	KVV		wakeuprst_cnt[15:0]

#### PMU DDR SREF ST

Address: Operational Base + offset (0x00a4)

Bit	Attr	<b>Reset Value</b>	Description
31:2	RO	0x0	reserved
1	RO	l() <b>y</b> ()	upctl_c_sysack upctl c_sysack status
0	RO	l()x()	upctl_c_active upctl c_active status

### PMU SYS REGO LO

Address: Operational Base + offset (0x00a8)

Bit	Attr	<b>Reset Value</b>	Description
31:16 RW	D/W	W 10x0000	write_mask
51.10	IXVV		16bit write mask for lsb
15:0	RW	(0x()()()	pmu_sys_reg0_lo
			sysreg0[15:0]

#### PMU SYS REGO HI

Address: Operational Base + offset (0x00ac)

Bit	Attr	<b>Reset Value</b>	Description
31:16	DW/	0x0000	write_mask
31.10	KVV	00000	16bit write mask for Isb
15.0	DW	W 10x0000	pmu_sys_reg0_hi
15:0	RW		sysreg0[31:16]

#### PMU SYS REG1 LO

Address: Operational Base + offset (0x00b0)

Bit	Attr	<b>Reset Value</b>	Description
21.16	RW	10×0000	write_mask
31:16			16bit write mask for Isb
15.0	RW	W 0000	pmu_sys_reg1_lo
15:0		RW UX	0x0000

### PMU SYS REG1 HI

Address: Operational Base + offset (0x00b4)

Bit	Attr	<b>Reset Value</b>	Description
21.16	RW	0×0000	write_mask
31:16			16bit write mask for Isb
15.0	RW	W IUXUUUU I	pmu_sys_reg1_hi
15:0			sysreg1[31:16]

#### PMU SYS REG2 LO

Address: Operational Base + offset (0x00b8)

Bit	Attr	<b>Reset Value</b>	Description
31:16	DW	0×0000	write_mask
31.10	KVV		16bit write mask for Isb
15.0	DW	(W 10X0000 1	pmu_sys_reg2_lo
15:0	RW		sysreg2[15:0]

#### PMU SYS REG2 HI

Address: Operational Base + offset (0x00bc)

Bit	Attr	<b>Reset Value</b>	Description
21.16	RW	10×0000	write_mask
31:16			16bit write mask for Isb
15.0	RW	W 0000	pmu_sys_reg2_hi
15:0		RW UX	0x0000

#### PMU SYS REG3 LO

Address: Operational Base + offset (0x00c0)

Bit	Attr	<b>Reset Value</b>	Description
21.16	RW	0x0000	write_mask
31.10			16bit write mask for Isb
15.0	DW	W IOXOOOO	pmu_sys_reg3_lo
15:0	RW		sysreg3[15:0]

### PMU SYS REG3 HI

Address: Operational Base + offset (0x00c4)

Bit	Attr	<b>Reset Value</b>	Description
21.16	RW	10×0000	write_mask
31.10			16bit write mask for Isb
15.0	RW	V 0×0000	pmu_sys_reg3_hi
15:0		UXUUUU	sysreg3[31:16]

### PMU SCU PWRDN CNT LO

Address: Operational Base + offset (0x00c8)

Bit	Attr	<b>Reset Value</b>	Description
21.16	RW	10x0000	write_mask
31:16			16 bit write mask for lsb 15-0
15.0	RW	M 0	pmu_scu_pwrdn_cnt_lo
15:0		0x5dc0	scu_pwrdn_cnt[15:0]

#### PMU SCU PWRDN CNT HI

Address: Operational Base + offset (0x00cc)

Bit	Attr	<b>Reset Value</b>	Description
21.16	RW	0x0000	write_mask
31:16			16 bit write mask for lsb 15-0
15:4	RO	0x0	reserved
2.0	RW	₹W 10x0	pmu_scu_pwrdn_cnt_hi
3:0			scu_pwrdn_cnt[19:16]

#### PMU SCU PWRUP CNT LO

Address: Operational Base + offset (0x00d0)

Bit	Attr	<b>Reset Value</b>	Description
31:16	RW	(0x()()()	write_mask 16 bit write mask for lsb 15-0
15:0	RW	เมชรสดบ	pmu_scu_pwrdn_cnt_lo scu_pwrdn_cnt[15:0]

### PMU SCU PWRUP CNT HI

Address: Operational Base + offset (0x00d4)

Bit	Attr	<b>Reset Value</b>	Description
21.16	RW	0x0000	write_mask
31:16			16 bit write mask for lsb 15-0
15:4	RO	0x0	reserved
3:0	RW	(()X()	pmu_scu_pwrdn_cnt_hi scu_pwrdn_cnt[19:16]

### PMU TIMEOUT CNT LO

Address: Operational Base + offset (0x00d8)

Bit	Attr	<b>Reset Value</b>	Description
21.16	RW	0x0000	write_mask
31.10			16 bit write mask for lsb 15-0
15:0	RW	$W = (0 \times 5 dc)$	pmu_timeout_cnt_lo
			timeout_cnt[15:0]

#### PMU TIMEOUT CNT HI

Address: Operational Base + offset (0x00dc)

Bit	Attr	<b>Reset Value</b>	Description
31:16	RW	0×0000	write_mask
			16 bit write mask for lsb 15-0
15:4	RO	0x0	reserved
3:0	RW	₹W 1()x()	pmu_timeout_cnt_hi
			timeout_cnt[19:16]

#### PMU CPU0APM CON

Address: Operational Base + offset (0x00e0)

Bit	Attr	<b>Reset Value</b>	Description	
31:16	RW	0x0000	write_mask	
			16 bit write mask for lsb 15-0	
15:4	RO	0x0	reserved	
3	RW	0x0	cpu0_sft_wakeup	
3	IK VV		software wakeup cpu0 when auto power down mode	
2	DW	0×0	global_int_disable0_cfg	
2	RW		disable interrupt to cpu0	
1	RW	0x0	cpu0_int_wakeup_en	
1			1: cpu0 auto power down interrupt wakeup enable	
0	RW	0x0	cpu0_wfi_pwrdn_en	
			1: enable cpu0 wfi auto power down	

#### PMU CPU1APM CON

Address: Operational Base + offset (0x00e4)

Bit	Attr	<b>Reset Value</b>	Description	
31:16	RW	0×0000	write_mask	
			16 bit write mask for lsb 15-0	
15:4	RO	0x0	reserved	
3	RW	0.40	cpu1_sft_wakeup	
3	KVV	0×0	software wakeup cpu1 when auto power down mode	
2	DW	0x0	global_int_disable1_cfg	
2	RW		disable interrupt to cpu1	
1	DW	0x0	cpu1_int_wakeup_en	
1	RW		1: cpu1 auto power down interrupt wakeup enable	
	RW	0x0	cpu1_wfi_pwrdn_en	
0			1: enable cpu1 wfi auto power down	

### PMU CPU2APM CON

Address: Operational Base + offset (0x00e8)

Bit	Attr	<b>Reset Value</b>	Description	
31:16	RW	0x0000	write_mask	
			16 bit write mask for lsb 15-0	
15:4	RO	0x0	reserved	
2	DW	0x0	cpu2_sft_wakeup	
3	RW		software wakeup cpu2 when auto power down mode	
2	DW	0×0	global_int_disable2_cfg	
2	RW		disable interrupt to cpu2	
1	RW	0x0	cpu2_int_wakeup_en	
1			1: cpu2 auto power down interrupt wakeup enable	
0	RW	0x0	cpu2_wfi_pwrdn_en	
			1: enable cpu2 wfi auto power down	

### PMU CPU3APM CON

Address: Operational Base + offset (0x00ec)

Bit	Attr	<b>Reset Value</b>	Description	
31:16	RW	0x0000	write_mask	
			16 bit write mask for lsb 15-0	
15:4	RO	0x0	reserved	
2	DVV	0x0	cpu3_sft_wakeup	
3	RW		software wakeup cpu3 when auto power down mode	
2	DW	0x0	global_int_disable3_cfg	
2	RW		disable interrupt to cpu3	
1	RW	0x0	cpu3_int_wakeup_en	
1			1: cpu3 auto power down interrupt wakeup enable	
0	RW	0×0	cpu3_wfi_pwrdn_en	
0			1: enable cpu0 wfi auto power down	

# 8.5 Timing Diagram

#### 8.5.1 Each domain power switch timing

The following figure is the each domain power down and power up timing.

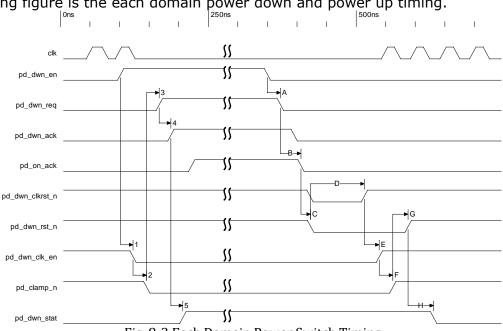



Fig. 8-3 Each Domain Power Switch Timing

### 8.5.2 External wakeup PAD timing

The PMU supports a lot of external wakeup sources, such as SD/MMDC, USBDEV, SIM detect wakeup, GPIO0 wakeup source and so on. All these external wakeup sources must meet the timing requirement (at least 200us) when the wakeup event is asserted. The following figure gives the timing information.

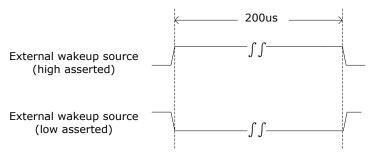



Fig. 4-6 External Wakeup Source PAD Timing

## 8.6 Application Note

#### 8.6.1 **Debug IO**

PX30 provide PMU Debug IO for FSM observation. Each IO corresponding with a bit of PMU power states [4:0].

Module Pin	Direct	Pad Name	IOMUX Setting
Module Fill	l <u>.</u>	rau Name	TOMOX Setting
	ion		
power_sta te[0]	0	IO_UART0tx_PMUdebug0_GPIO0B2pmuio2	PMUGRF_GPIO0B_IOMUX[ 5:4]=2'b10
power_sta te[1]	0	IO_UART0rx_PMUdebug1_GPIO0B3pmuio2	PMUGRF_GPIO0B_IOMUX[ 7:6]=2'b10
power_sta te[2]	0	IO_UART0cts_PMUdebug2_PMUdebug_sou t_GPIO0B4pmuio2	PMUGRF_GPIO0B_IOMUX[ 9:8]=2'b10
power_sta te[3]	0	IO_PWM1_UART3txm0_PMUdebug3_GPIO 0C0pmuio2	PMUGRF_GPIOOC_IOMUX[ 1:0]=2'b11

т-Ы-0 Э I

## PX30 TRM-Part1

Module Pin	Direct ion	Pad Name	IOMUX Setting
power_sta te[4]	0	IO_PWM3_UART3rxm0_PMUdebug4_GPIO 0C1pmuio2	PMUGRF_GPIOOC_IOMUX[ 3:2]=2'b11
power_sta te[4]	0	IO_I2C1scl_UART3ctsm0_PMUdebug5_GPI O0C2pmuio2	PMUGRF_GPIOOC_IOMUX[ 5:4]=2'b11
debug_So ut	0	IO_UART0cts_PMUdebug2_PMUdebug_sou t_GPIO0B4pmuio2	PMUGRF_GPIO0B_IOMUX[ 9:8]=2'b11

## **Chapter 9 Pulse Width Modulation (PWM)**

#### 9.1 Overview

The pulse-width modulator (PWM) feature is very common in embedded systems. It provides a way to generate a pulse periodic waveform for motor control or can act as a digital-to-analog converter with some external components.

The PWM Module supports the following features:

- 4-built-in PWM channels
- Configurable to operate in capture mode
  - Measures the high/low polarity effective cycles of this input waveform
  - Generates a single interrupt at the transition of input waveform polarity
  - 32-bit high polarity capture register
  - 32-bit low polarity capture register
  - 32-bit current value register
  - The capture result can be stored in a FIFO, and the depth of FIFO is 8. The data of FIFO can be read by CPU or DMA
  - Support 32-bit power key capture mode
  - Support a input filter to remove glitch
- Configurable to operate in continuous mode or one-shot mode
  - 32-bit period counter
  - 32-bit duty register
  - 32-bit current value register
  - Configurable PWM output polarity in inactive state and duty period pulse polarity
  - Period and duty cycle are shadow buffered. Change takes effect when the end of the effective period is reached or when the channel is disabled
  - Programmable center or left aligned outputs, and change takes effect when the end of the effective period is reached or when the channel is disabled
  - 8-bit repeat counter for one-shot operation. One-shot operation will produce N + 1 periods of the waveform, where N is the repeat counter value, and generates a single interrupt at the end of operation
  - Continuous mode generates the waveform continuously, and does not generates any interrupts
- pre-scaled operation to clk pwm and then further scaled
- Available low-power mode to reduce power consumption when the channel is inactive.

# 9.2 Block Diagram

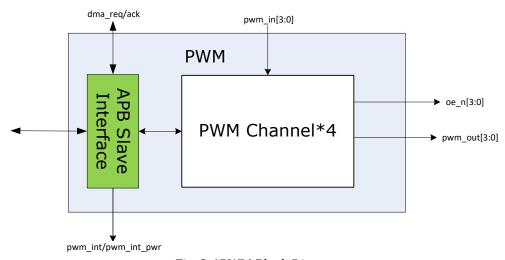



Fig. 9-1PWM Block Diagram

The host processor gets access to PWM Register Block through the APB slave interface with 32-bit bus width, and asserts the active-high level interrupt. PWM only supports one interrupt output, please refer to interrupt register to know the raw interrupt status when an

interrupt is asserted.

PWM Channel is the control logic of PWM module, and controls the operation of PWM module according to the configured working mode.

## 9.3 Function Description

The PWM supports three operation modes: capture mode, one-shot mode and continuous mode. For the one-shot mode and the continuous mode, the PWM output can be configured as the left-aligned mode or the center-aligned mode.

#### 9.3.1 Capture mode

The capture mode is used to measure the PWM channel input waveform high/low effective cycles with the PWM channel clock, and asserts an interrupt when the polarity of the input waveform changes. The number of the high effective cycles is recorded in the PWMx_PERIOD_HPC register, while the number of the low effective cycles is recorded in the PWMx_DUTY_LPC register.

Notes: the PWM input waveform is doubled buffered when the PWM channel isworking in order to filter unexpected shot-time polarity transition, and therefore the interrupt is asserted several cycles after the input waveform polarity changes, and so does the change of the values of PWMx_PERIOD_HPC and PWMx_DUTY_LPC.

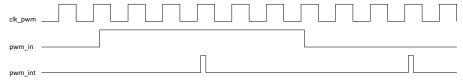



Fig. 9-2PWMCapture Mode

The capture result also can be stored in a FIFO. The FIFO has an almost full indicator. The indicator can chose to use as an interrupt or DMA request. When it is used as an interrupt, the data in FIFO can be read by CPU. When it is used as a DMA request, the data in FIFO can be read through DMA. It also supports timeout interrupt when the data in FIFO has not been read in a time threshold.

The PWM support 32-bit power key capture mode. User can set 10 power key to match, the interrupt will be asserted when the capture value match any one.

#### 9.3.2 Continuous mode

The PWM channel generates a series of the pulses continuously as expected once the channel is enabled with continuous mode.

In the continuous mode, the PWM output waveforms can be in one form of the two output mode: left-aligned mode or center-aligned mode.

For the left-aligned output mode, the PWM channel firstly starts the duty cycle with the configured duty polarity (PWMx_CTRL.duty_pol). Once duty cycle number (PWMx_DUTY_LPC) is reached, the output is switched to the opposite polarity. After the period number (PWMx_PERIOD_HPC) is reached, the output is again switched to the opposite polarity to start another period of desired pulse.

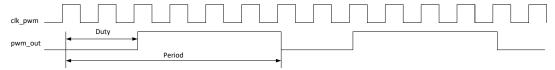



Fig. 9-3PWM Continuous Left-aligned Output Mode

For the center-aligned output mode, the PWM channel firstly starts the duty cycle with the configured duty polarity (PWMx_CTRL.duty_pol). Once one half of duty cycle number (PWMx_DUTY_LPC) is reached, the output is switched to the opposite polarity. Then if there is one half of duty cycle left for the whole period,the output is again switched to the opposite polarity. Finally after the period number (PWMx_PERIOD_HPC) is reached, the output starts another period of desired pulse.

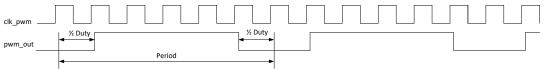



Fig. 9-4PWM Continuous Center-aligned Output Mode

Once disable the PWM channel, the channel stops generating the output waveforms and output polarity is fixed as the configured inactive polarity (PWMx_CTRL.inactive_pol).

#### 9.3.3 One-shot mode

Unlike the continuous mode, the PWM channel generates the output waveforms within the configured periods ( $PWM_CTRL.rpt + 1$ ), and then stops. At the same times, an interrupt is asserted to inform that the operation has been finished.

There are also two output modes for the one-shot mode: the left-aligned mode and the center-aligned mode.

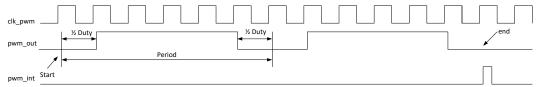



Fig. 9-5PWM One-shot Center-aligned Output Mode

## 9.4 Register Description

### 9.4.1 Registers Summary

Name	Offset	Size	Reset Value	Description
PWM_PWM0_CNT	0x0000	W	0x00000000	PWM Channel 0 Counter Register.
				PWM Channel 0 Period
PWM PWM0 PERIOD HPR	0x0004	W	0×00000000	Register/High Polarity Capture
				Register.
DIAMA DIAMAG DIJEV I DD	0.000			PWM Channel 0 Duty
PWM PWM0 DUTY LPR	0x0008	W	0×00000000	Register/Low Polarity Capture
				Register
PWM PWM0 CTRL	0x000c	W	0x00000000	PWM Channel 0 Control Register
PWM PWM1 CNT	0x0010	W	0x00000000	PWM Channel 1 Counter Register
				PWM Channel 1 Period
PWM PWM1 PERIOD HPR	0x0014	W	0x00000000	Register/High Polarity Capture
				Register
				PWM Channel 1 Duty
PWM PWM1 DUTY LPR	0x0018	W	0x00000000	Register/Low Polarity Capture
				Register.
PWM PWM1 CTRL	0x001c	W	0x00000000	PWM Channel 1 Control Register
PWM PWM2 CNT	0x0020	W	0x00000000	PWM Channel 2 Counter Register
				PWM Channel 2 Period
PWM PWM2 PERIOD HPR	0x0024	W	0x00000000	Register/High Polarity Capture
				Register
				PWM Channel 2 Duty
PWM PWM2 DUTY LPR	0x0028	W	0x00000000	Register/Low Polarity Capture
				Register
PWM PWM2 CTRL	0x002c	W	0x00000000	PWM Channel 2 Control Register
PWM_PWM3_CNT	0x0030	W	0x00000000	PWM Channel 3 Counter Register

Name	Offset	Size	Reset Value	Description
PWM PWM3 PERIOD HPR	0x0034	W	0x00000000	PWM Channel 3 Period Register/High Polarity Capture Register
PWM PWM3 DUTY LPR	0x0038	W	0x00000000	PWM Channel 3 Duty Register/Low Polarity Capture Register
PWM PWM3 CTRL	0x003c	W	0x00000000	PWM Channel 3 Control Register
PWM INTSTS	0x0040	W	0x00000000	Interrupt Status Register
PWM INT EN	0x0044	W	0x00000000	Interrupt Enable Register
PWM FIFO CTRL	0x0050	W	0x00000000	PWM Channel 3 FIFO Mode Control Register
PWM_FIFO_INTSTS	0x0054	W	0x0000010	FIFO Interrupts Status register
PWM FIFO TOUTTHR	0x0058	W	0x00000000	FIFO Timeout Threshold Register
PWM_FIFO	0x0060	W	0x00000000	FIFO Register
PWM PWRMATCH CTRL	0x0080	W	0x00000000	PWM power key match control
PWM PWRMATCH LPRE	0x0084	w	0x238c22c4	PWM power key match of low preload
PWM PWRMATCH HPRE	0x0088	W	0x11f81130	PWM power key match of high preload
PWM PWRMATCH LD	0x008c	W	0x029401cc	PWM power key match of low data
PWM PWRMATCH HD ZE RO	0x0090	W	0x029401cc	PWM power key match of high data for zero
PWM PWRMATCH HD ON E	0x0094	w	0x06fe0636	PWM power key match of high data for one
PWM PWRMATCH VALUE  0	0x0098	W	0×00000000	PWM power key match value 0
PWM PWRMATCH VALUE  1	0x009c	w	0×00000000	PWM power key match value 1
PWM PWRMATCH VALUE 2	0x00a0	w	0×00000000	PWM power key match value 2
PWM PWRMATCH VALUE 3	0x00a4	w	0×00000000	PWM power key match value 3
PWM PWRMATCH VALUE 4	0x00a8	w	0×00000000	PWM power key match value 4
PWM PWRMATCH VALUE 5	0x00ac	w	0×00000000	PWM power key match value 5
PWM PWRMATCH VALUE 6	0x00b0	w	0x00000000	PWM power key match value 6
PWM PWRMATCH VALUE 7	0x00b4	w	0x00000000	PWM power key match value 7
PWM PWRMATCH VALUE 8	0x00b8	W	0x00000000	PWM power key match value 8

Name	Offset	Size	Reset Value	Description
PWM_PWRMATCH_VALUE 9	0x00bc	W	0×00000000	PWM power key match value 9
PWM_PWM0_PWRCAPTUR	0x00c0	W	0x00000000	PWM Channel 0 power key
<u>E_VALUE</u>	0,10000		one court	capture value
PWM PWM1 PWRCAPTUR	CAPTUR 0x00c4		0x00000000	PWM channel 1 power key capture
<u>E_VALUE</u>	00000	W	0.000000000	value
PWM PWM2 PWRCAPTUR	0x00c8	W	0x00000000	PWM channel 2 power key capture
E VALUE	00000	VV	0x00000000	value
PWM PWM3 PWRCAPTUR	0,000	W	0x00000000	PWM channel 3 power key capture
E VALUE	0x00cc	VV	0x00000000	value
PWM_FILTER_CTRL	0x00d0	W	0x00000000	PWM input filter control

Notes: Size: B- Byte (8 bits) access, HW- Half WORD (16 bits) access, W-WORD (32 bits) access

## 9.4.2 Detail Register Description

#### **PWM PWM0 CNT**

Address: Operational Base + offset (0x0000)

Bit	Attr	<b>Reset Value</b>	Description
			CNT
			Timer Counter.
31:0	RO	0x00000000	The 32-bit indicates current value of PWM Channel 0 counter. The
			counter runs at the rate of PWM clock.
			The value ranges from 0 to (2^32-1)

#### PWM PWM0 PERIOD HPR

Address: Operational Base + offset (0x0004)

Bit	Attr	<b>Reset Value</b>	Description
31:0	RW	0x00000000	PERIOD_HPR Output Waveform Period/Input Waveform High Polarity Cycle. If PWM is operated at the continuous mode or one-shot mode, this value defines the period of the output waveform. Note that, if the PWM is operated at the center-aligned mode, the period should be an even one, and therefore only the bit [31:1] is taken into account and bit [0] always considered as 0. If PWM is operated at the capture mode, this value indicates the effective high polarity cycles of input waveform. This value is based on the PWM clock. The value ranges from 0 to (2^32-1)

### PWM PWM0 DUTY LPR

Address: Operational Base + offset (0x0008)

Bit	Attr	<b>Reset Value</b>	Description
31:0		0x00000000	DUTY_LPR Output Waveform Duty Cycle/Input Waveform Low Polarity Cycle. If PWM is operated at the continuous mode or one-shot mode, this value defines the duty cycle of the output waveform. The PWM starts the output waveform with duty cycle. Note that, if the PWM is operated at the center-aligned mode, the period should be an even one, and therefore only the [31:1] is taken into account. If PWM is operated at the capture mode, this value indicates the effective low polarity cycles of input waveform. This value is based on the PWM clock. The value ranges from 0 to (2^32-1)

PWM PWM0 CTRL
Address: Operational Base + offset (0x000c)

Bit	Attr	<b>Reset Value</b>	Description
31:24	RW	0×00	rpt Repeat Counter. This field defines the repeated effective periods of output waveform in one-shot mode. The value N means N+1 repeated effective periods
23:16	RW	0×00	scale Scale Factor. This field defines the scale factor applied to prescaled clock. The value N means the clock is divided by 2*N. If N is 0, it means that the clock is divided by 512(2*256)
15	RO	0x0	reserved
14:12	RW	0×0	prescale Prescale Factor. This field defines the prescale factor applied to input clock. The value N means that the input clock is divided by 2^N
11:10	RO	0x0	reserved
9	RW	0×0	clk_sel Clock Source Select. 1'b0: non-scaled clock is selected as PWM clock source. It means that the prescale clock is directly used as the PWM clock source 1'b1: scaled clock is selected as PWM clock source
8	RW	0×0	force_clk_en Force clock Enable 0: disabled, when PWM channel is inactive state, the clk_pwm to PWM Clock prescale module is blocked to reduce power consumption. 1: enabled, the clk_pwm to PWM Clock prescale module is always enable.

Bit	Attr	Reset Value	Description
7	RW	0×0	ch_cnt_en Enable to read PWM Channel Counter Register 0: disabled 1: enabled
6	RW	0×0	conlock PWM configure lock. PWM period and duty lock to previous configuration. 1'b0: disable lock 1'b1: enable lock
5	RW	0x0	output_mode PWM Output Mode. 1'b0: left aligned mode 1'b1: center aligned mode
4	RW	0×0	inactive_pol Inactive State Output Polarity. This defines the output waveform polarity when PWM channel is in inactive state. The inactive state means that PWM finishes the complete waveform in one-shot mode or PWM channel is disabled. 1'b0: negative 1'b1: positive
3	RW	0×0	duty_pol Duty Cycle Output Polarity. This defines the polarity for duty cycle. PWM starts the output waveform with duty cycle. 1'b0: negative 1'b1: positive
2:1	RW	0×0	pwm_mode PWM Operation Mode. 2'b00: One shot mode. PWM produces the waveform within the repeated times defined by PWMx_CTRL_rpt . 2'b01: Continuous mode. PWM produces the waveform continuously 2'b10: Capture mode. PWM measures the cycles of high/low polarity of input waveform. 2'b11: reserved
0	RW	0×0	pwm_en PWM channel enable. 1'b0: disabled 1'b1: enabled. If the PWM is worked in the one-shot mode, this bit will be cleared at the end of operation

**PWM PWM1 CNT**Address: Operational Base + offset (0x0010)

Bit	Attr	<b>Reset Value</b>	Description
31:0	RW	0x00000000	CNT Timer Counter. The 32-bit indicates current value of PWM Channel 1 counter. The counter runs at the rate of PWM clock. The value ranges from 0 to (2^32-1)

# PWM_PWM1_PERIOD_HPR

Address: Operational Base + offset (0x0014)

Bit A	tr Reset Value	Bit A	Description
			PERIOD_HPR Output Waveform Period/Input Waveform High Polarity Cycle. If PWM is operated at the continuous mode or one-shot mode, this value defines the period of the output waveform. Note that, if the PWM is operated at the center-aligned mode, the period should be an even one, and therefore only the bit [31:1] is taken into account and bit [0] always considered as 0. If PWM is operated at the capture mode, this value indicates the effective high polarity cycles of input waveform. This value is based on the PWM clock. The value ranges from 0 to (2^32-1)

#### PWM PWM1 DUTY LPR

Address: Operational Base + offset (0x0018)

Bit	Attr	<b>Reset Value</b>	Description
31:0	RW	0×00000000	DUTY_LPR Output Waveform Duty Cycle/Input Waveform Low Polarity Cycle. If PWM is operated at the continuous mode or one-shot mode, this value defines the duty cycle of the output waveform. The PWM starts the output waveform with duty cycle. Note that, if the PWM is operated at the center-aligned mode, the period should be an even one, and therefore only the [31:1] is taken into account.  If PWM is operated at the capture mode, this value indicates the effective low polarity cycles of input waveform.  This value is based on the PWM clock. The value ranges from 0 to (2^32-1)

## PWM_PWM1_CTRL

Address: Operational Base + offset (0x001c)

Bit	Attr	Reset Value	Description
31:24	RW	0×00	rpt Repeat Counter. This field defines the repeated effective periods of output waveform in one-shot mode. The value N means N+1 repeated effective periods
23:16	RW	0x00	scale Scale Factor. This field defines the scale factor applied to prescaled clock. The value N means the clock is divided by 2*N. If N is 0, it means that the clock is divided by 512(2*256)
15	RO	0x0	reserved
14:12	RW	0×0	prescale Prescale Factor. This field defines the prescale factor applied to input clock. The value N means that the input clock is divided by 2^N
11:10	RO	0x0	reserved
9	RW	0×0	clk_sel Clock Source Select. 1'b0: non-scaled clock is selected as PWM clock source. It means that the prescale clock is directly used as the PWM clock source 1'b1: scaled clock is selected as PWM clock source
8	RW	0×0	force_clk_en Force clock Enable 0: disabled, when PWM channel is inactive state, the clk_pwm to PWM Clock prescale module is blocked to reduce power consumption. 1: enabled, the clk_pwm to PWM Clock prescale module is always enable.
7	RW	0×0	ch_cnt_en Enable to read PWM Channel Counter Register 0: disabled 1: enabled
6	RW	0×0	conlock PWM configure lock. pwm period and duty lock to previous configuration 1'b0: disable lock 1'b1: enable lock
5	RW	0x0	output_mode PWM Output Mode. 1'b0: left aligned mode 1'b1: center aligned mode

Bit	Attr	Reset Value	Description
4	RW	0x0	inactive_pol Inactive State Output Polarity. This defines the output waveform polarity when PWM channel is in inactive state. The inactive state means that PWM finishes the complete waveform in one-shot mode or PWM channel is disabled. 1'b0: negative 1'b1: positive
3	RW	0×0	duty_pol Duty Cycle Output Polarity. This defines the polarity for duty cycle. PWM starts the output waveform with duty cycle. 1'b0: negative 1'b1: positive
2:1	RW	0×0	pwm_mode PWM Operation Mode. 2'b00: One shot mode. PWM produces the waveform within the repeated times defined by PWMx_CTRL_rpt 2'b01: Continuous mode. PWM produces the waveform continuously 2'b10: Capture mode. PWM measures the cycles of high/low polarity of input waveform. 2'b11: reserved
0	RW	0×0	pwm_en PWM channel enable. 1'b0: disabled 1'b1: enabled. If the PWM is worked in the one-shot mode, this bit will be cleared at the end of operation

### PWM_PWM2_CNT

Address: Operational Base + offset (0x0020)

Bit	Attr	<b>Reset Value</b>	Description
			CNT
			Timer Counter.
31:0	RO	0x00000000	The 32-bit indicates current value of PWM Channel 2 counter. The
			counter runs at the rate of PWM clock.
			The value ranges from 0 to (2^32-1)

## **PWM PWM2 PERIOD HPR**

Address: Operational Base + offset (0x0024)

Bit	Attr	<b>Reset Value</b>	Description
31:0	RW	0×00000000	PERIOD_HPR Output Waveform Period/Input Waveform High Polarity Cycle. If PWM is operated at the continuous mode or one-shot mode, this value defines the period of the output waveform. Note that, if the PWM is operated at the center-aligned mode, the period should be an even one, and therefore only the bit [31:1] is taken into account and bit [0] always considered as 0. If PWM is operated at the capture mode, this value indicates the effective high polarity cycles of input waveform. This value is based on the PWM clock. The value ranges from 0 to (2^32-1)

## PWM PWM2 DUTY LPR

Address: Operational Base + offset (0x0028)

If PWM is operated at the continuous mode or one-shot mode, this value defines the duty cycle of the output waveform. The PWM starts the output waveform with duty cycle. Note that, if the PWM is operated at the center-aligned mode, the period should be an even one, and therefore only the [31:1] is taken into account.  If PWM is operated at the capture mode, this value indicates the effective low polarity cycles of input waveform.	Bit	Attr	<b>Reset Value</b>	Description
This value is based on the PWM clock. The value ranges from 0 to (2^32-1)				DUTY_LPR Output Waveform Duty Cycle/Input Waveform Low Polarity Cycle. If PWM is operated at the continuous mode or one-shot mode, this value defines the duty cycle of the output waveform. The PWM starts the output waveform with duty cycle. Note that, if the PWM is operated at the center-aligned mode, the period should be an even one, and therefore only the [31:1] is taken into account.  If PWM is operated at the capture mode, this value indicates the effective low polarity cycles of input waveform.  This value is based on the PWM clock. The value ranges from 0 to

### PWM_PWM2_CTRL

Address: Operational Base + offset (0x002c)

Bit	Attr	<b>Reset Value</b>	Description
31:24	RW	0×00	rpt Repeat Counter. This field defines the repeated effective periods of output waveform in one-shot mode. The value N means N+1 repeated effective periods
23:16	RW	0×00	scale Scale Factor. This fields defines the scale factor applied to prescaled clock. The value N means the clock is divided by 2*N. If N is 0, it means that the clock is divided by 512(2*256)
15	RO	0x0	reserved

Bit	Attr	Reset Value	Description
14:12	RW	0×0	prescale Prescale Factor. This field defines the prescale factor applied to input clock. The value N means that the input clock is divided by 2^N
11:10	RO	0x0	reserved
9	RW	0×0	clk_sel Clock Source Select. 1'b0: non-scaled clock is selected as PWM clock source. It means that the prescale clock is directly used as the PWM clock source 1'b1: scaled clock is selected as PWM clock source
8	RW	0×0	force_clk_en Force clock Enable 0: disabled, when PWM channel is inactive state, the clk_pwm to PWM Clock prescale module is blocked to reduce power consumption. 1: enabled, the clk_pwm to PWM Clock prescale module is always enable.
7	RW	0×0	ch_cnt_en Enable to read PWM Channel Counter Register 0: disabled 1: enabled
6	RW	0×0	conlock pwm period and duty lock to previous configuration 1'b0: disable lock 1'b1: enable lock
5	RW	0×0	output_mode PWM Output mode. 1'b0: left aligned mode 1'b1: center aligned mode
4	RW	0×0	inactive_pol Inactive State Output Polarity. This defines the output waveform polarity when PWM channel is in inactive state. The inactive state means that PWM finishes the complete waveform in one-shot mode or PWM channel is disabled. 1'b0: negative 1'b1: positive
3	RW	0×0	duty_pol Duty Cycle Output Polarity. This defines the polarity for duty cycle. PWM starts the output waveform with duty cycle. 1'b0: negative 1'b1: positive

Bit	Attr	<b>Reset Value</b>	Description
			pwm_mode
			PWM Operation Mode
			2'b00: One shot mode. PWM produces the waveform within the
			repeated times defined by PWMx_CTRL_rpt.
2:1	RW	0×0	2'b01: Continuous mode. PWM produces the waveform
			continuously
			2'b10: Capture mode. PWM measures the cycles of high/low
			polarity of input waveform.
			2'b11: reserved
			pwm_en
	RW	0×0	PWM channel enable
0			1'b0: disabled
			1'b1: enabled. If the PWM is worked in the one-shot mode, this
			bit will be cleared at the end of operation

#### PWM PWM3 CNT

Address: Operational Base + offset (0x0030)

Bit	Attr	<b>Reset Value</b>	Description
			CNT
			Timer Counter.
31:0	RW	0x00000000	The 32-bit indicates current value of PWM Channel 3 counter. The
			counter runs at the rate of PWM clock.
			The value ranges from 0 to (2^32-1)

#### PWM PWM3 PERIOD HPR

Address: Operational Base + offset (0x0034)

Bit	Attr	<b>Reset Value</b>	Description
31:0	RW	0x00000000	PERIOD_HPR Output Waveform Period/Input Waveform High Polarity Cycle. If PWM is operated at the continuous mode or one-shot mode, this value defines the period of the output waveform. Note that, if the PWM is operated at the center-aligned mode, the period should be an even one, and therefore only the bit [31:1] is taken into account and bit [0] always considered as 0. If PWM is operated at the capture mode, this value indicates the effective high polarity cycles of input waveform. This value is based on the PWM clock. The value ranges from 0 to (2^32-1)

### PWM PWM3 DUTY LPR

Address: Operational Base + offset (0x0038)

Bit	Attr	<b>Reset Value</b>	Description
31:0	RW	0×00000000	DUTY_LPR Output Waveform Duty Cycle/Input Waveform Low Polarity Cycle. If PWM is operated at the continuous mode or one-shot mode, this value defines the duty cycle of the output waveform. The PWM starts the output waveform with duty cycle. Note that, if the PWM is operated at the center-aligned mode, the period should be an even one, and therefore only the [31:1] is taken into account. If PWM is operated at the capture mode, this value indicates the effective low polarity cycles of input waveform. This value is based on the PWM clock. The value ranges from 0 to (2^32-1)

**PWM PWM3 CTRL**Address: Operational Base + offset (0x003c)

Bit		Reset Value	+ offset (0x003c) <b>Description</b>
DIL	Attr	Reset value	-
31:24	RW	0×00	rpt Repeat Counter. This field defines the repeated effective periods of output waveform in one-shot mode. The value N means N+1 repeated effective periods
23:16	RW	0×00	scale Scale Factor. This field defines the scale factor applied to prescaled clock. The value N means the clock is divided by 2*N. If N is 0, it means that the clock is divided by 512(2*256)
15	RO	0x0	reserved
14:12	RW	0×0	prescale Prescale Factor. This field defines the prescale factor applied to input clock. The value N means that the input clock is divided by 2^N
11:10	RO	0x0	reserved
9	RW	0×0	clk_sel Clock Source Select. 1'b0: non-scaled clock is selected as PWM clock source. It means that the prescale clock is directly used as the PWM clock source 1'b1: scaled clock is selected as PWM clock source
8	RW	0×0	force_clk_en Force clock Enable 0: disabled, when PWM channel is inactive state, the clk_pwm to PWM Clock prescale module is blocked to reduce power consumption. 1: enabled, the clk_pwm to PWM Clock prescale module is always enable.

Bit	Attr	Reset Value	Description
7	RW	0×0	ch_cnt_en Enable to read PWM Channel Counter Register 0: disabled 1: enabled
6	RW	0×0	conlock PWM configure lock. PWM period and duty lock to previous configuration 1'b0: disable lock 1'b1: enable lock
5	RW	0×0	output_mode PWM Output mode. 1'b0: left aligned mode 1'b1: center aligned mode
4	RW	0×0	inactive_pol Inactive State Output Polarity. This defines the output waveform polarity when PWM channel is in inactive state. The inactive state means that PWM finishes the complete waveform in one-shot mode or PWM channel is disabled. 1'b0: negative 1'b1: positive
3	RW	0×0	duty_pol Duty Cycle Output Polarity. This defines the polarity for duty cycle. PWM starts the output waveform with duty cycle. 1'b0: negative 1'b1: positive
2:1	RW	0×0	pwm_mode PWM Operation Mode. 2'b00: One shot mode. PWM produces the waveform within the repeated times defined by PWMx_CTRL_rpt 2'b01: Continuous mode. PWM produces the waveform continuously 2'b10: Capture mode. PWM measures the cycles of high/low polarity of input waveform. 2'b11: reserved
0	RW	0×0	pwm_en PWM channel enable. 1'b0: disabled 1'b1: enabled. If the PWM is worked in the one-shot mode, this bit will be cleared at the end of operation

**PWM INTSTS**Address: Operational Base + offset (0x0040)

Bit	Attr	Reset Value	Description
31:12	RO	0x0	reserved
11	RO	0×0	CH3_Pol Channel 3 Interrupt Polarity Flag. This bit is used in capture mode in order to identify the transition of the input waveform when interrupt is generated. When bit is 1, please refer to PWM3_PERIOD_HPR to know the effective high cycle of Channel 3 input waveform. Otherwise, please refer to PWM3_PERIOD_LPR to know the effective low cycle of Channel 3 input waveform. Write 1 to CH3_IntSts will clear this bit
10	RO	0×0	CH2_Pol Channel 2 Interrupt Polarity Flag. This bit is used in capture mode in order to identify the transition of the input waveform when interrupt is generated. When bit is 1, please refer to PWM2_PERIOD_HPR to know the effective high cycle of Channel 2 input waveform. Otherwise, please refer to PWM2_PERIOD_LPR to know the effective low cycle of Channel 2 input waveform. Write 1 to CH2_IntSts will clear this bit
9	RO	0×0	CH1_Pol Channel 1 Interrupt Polarity Flag. This bit is used in capture mode in order to identify the transition of the input waveform when interrupt is generated. When bit is 1, please refer to PWM1_PERIOD_HPR to know the effective high cycle of Channel 1 input waveform. Otherwise, please refer to PWM1_PERIOD_LPR to know the effective low cycle of Channel 1 input waveform. Write 1 to CH1_IntSts will clear this bit
8	RO	0×0	CH0_Pol Channel 0 Interrupt Polarity Flag. This bit is used in capture mode in order to identify the transition of the input waveform when interrupt is generated. When bit is 1, please refer to PWM0_PERIOD_HPR to know the effective high cycle of Channel 0 input waveform. Otherwise, please refer to PWM0_PERIOD_LPR to know the effective low cycle of Channel 0 input waveform. Write 1 to CH0_IntSts will clear this bit
7	RW	0×0	CH3_pwr_IntSts Channel 3 Raw power key Interrupt Status 1'b0: Channel 3 power key Interrupt not generated 1'b1: Channel 3 power key Interrupt generated
6	W1 C	0x0	CH2_pwr_IntSts Channel 2 Raw power key Interrupt Status 1'b0: Channel 2 power key Interrupt not generated 1'b1: Channel 2 power key Interrupt generated

Bit	Attr	<b>Reset Value</b>	Description
			CH1_pwr_IntSts
5	W1	0×0	Channel 1 Raw power key Interrupt Status
	С	0.00	1'b0: Channel 1 power keyInterrupt not generated
			1'b1: Channel 1 power key Interrupt generated
			CH0_pwr_IntSts
4	W1	0×0	Channel 0 Raw power key Interrupt Status.
-	С	0.00	1'b0: Channel 0 power key Interrupt not generated
			1'b1: Channel 0 power key Interrupt generated
			CH3_IntSts
3	R/W	0×0	Channel 3 Raw Interrupt Status.
	SC	0.00	1'b0: Channel 3 Interrupt not generated
			1'b1: Channel 3 Interrupt generated
		1 0x0	CH2_IntSts
2	W1		Channel 2 Raw Interrupt Status.
_	С		1'b0: Channel 2 Interrupt not generated
			1'b1: Channel 2 Interrupt generated
			CH1_IntSts
1	W1	0×0	Channel 1 Raw Interrupt Status.
-	С	0.00	1'b0: Channel 1 Interrupt not generated
			1'b1: Channel 1 Interrupt generated
			CH0_IntSts
0	W1 C	1 0x0	Channel 0 Raw Interrupt Status.
			1'b0: Channel 0 Interrupt not generated

## **PWM INT EN**

Address: Operational Base + offset (0x0044)

Bit	Attr	<b>Reset Value</b>	Description
31:8	RO	0x0	reserved
			CH3_pwr_Int_en
7	RW	0x0	Channel 3 Power Key Interrupt Enable.
/	KVV	UXU	1'b0: Channel 3 power key Interrupt disabled
			1'b1: Channel 3 power key Interrupt enabled
			CH2_pwr_Int_en
6	RW	0x0	Channel 2 Power Key Interrupt Enable.
			1'b0: Channel 2 power key Interrupt disabled
			1'b1: Channel 2 power key Interrupt enabled
		W 0×0	CH1_pwr_Int_en
5	RW		Channel 1 Power Key Interrupt Enable.
	KVV		1'b0: Channel 1 power key Interrupt disabled
			1'b1: Channel 1 power key Interrupt enabled
			CH0_pwr_Int_en
4	RW	W OXO	Channel 0 Power Key Interrupt Enable.
-	KVV		1'b0: Channel 0 power key Interrupt disabled
			1'b1: Channel 0 power key Interrupt enabled

Bit	Attr	Reset Value	Description
			CH3_Int_en
3	RW	0x0	Channel 3 Interrupt Enable.
3	KVV	UXU	1'b0: Channel 3 Interrupt disabled
			1'b1: Channel 3 Interrupt enabled
			CH2_Int_en
2	RW	0x0	Channel 2 Interrupt Enable.
2	KW	Oxo	1'b0: Channel 2 Interrupt disabled
			1'b1: Channel 2 Interrupt enabled
		2W 0×0	CH1_Int_en
1	DW		Channel 1 Interrupt Enable.
1	KVV		1'b0: Channel 1 Interrupt disabled
			1'b1: Channel 1 Interrupt enabled
	RW		CH0_Int_en
		0x0	Channel 0 Interrupt Enable.
0			1'b0: Channel 0 Interrupt disabled

## PWM_FIFO_CTRL

Address: Operational Base + offset (0x0050)

Bit	Attr	<b>Reset Value</b>	Description			
31:14	RO	0x0	reserved			
			dma_ch_sel			
			DMA channel select.			
13:12	DW	0×0	2'b00: Select PWM0			
13.12	IK VV	0.00	2'b01: Select PWM1			
			2'b10: Select PWM2			
			2'b11: Select PWM3			
11	RO	0x0	reserved			
			dma_ch_sel_en			
		N 0x0	DMA channel select enable.			
10	RW		1'b1: Enable, use dma_ch_sel to select the channel to FIFO mode			
10	KVV		and DMA mode.			
			1'b0: Disable, select the channel PWM3 to FIFO mode and DMA			
			mode			
9	RW	W 0×0	timeout_en			
9	KVV	I VV	0.00	Fifo timeout enable		
			dma_mode_en			
8	RW	0×0	DMA mode enable.			
	1200	0.00	1'b1: enable			
			1'b0: disable			
7	RO	0x0	reserved			
6:4	RW	0x0	almost_full_watermark			
0.4	17.44	ΚVV	KVV	KVV	0.00	Almost full Watermark level

Bit	Attr	<b>Reset Value</b>	Description
2	DW	00	watermark_int_en
3	RW	0x0	Watermark full interrupt
			overflow_int_en
2	RW	0x0	FIFO Overflow Interrupt Enable.
			When high, an interrupt asserts when the fifo overflow
			full_int_en
1	RW	0x0	FIFO Full Interrupt Enable.
			When high, an interrupt asserts when the FIFO is full
			fifo_mode_sel
0	RW	/ 0x0	FIFO MODE Sel.
			When high, PWM FIFO mode is activated

#### **PWM FIFO INTSTS**

Address: Operational Base + offset (0x0054)

Bit	Attr	Reset Value	Description
31:5	RO	0x0	reserved
			fifo_empty_status
4	RO	0x1	FIFO empty Status.
			This bit indicates the FIFO is empty
2	W1	0.0	timieout_intsts
3	С	0x0	Timeout interrupt
	W1 C	1 0x0	fifo_watermark_full_intsts
2			FIFO Watermark Full Interrupt Status.
			This bit indicates the FIFO is Watermark Full
	W1	10x0	fifo_overflow_intsts
1			FIFO Overflow Interrupt Status.
	С		This bit indicates the FIFO is overflow
	W1 C		fifo_full_intsts
0		10x0	FIFO Full Interrupt Status.
		C	

#### **PWM_FIFO_TOUTTHR**

Address: Operational Base + offset (0x0058)

Bit	Attr	<b>Reset Value</b>	Description
31:20	RO	0x0	reserved
19:0	RW	RW 10x00000 1	timeout_threshold
19:0			FIFO Timeout value(unit pwm clock)

## **PWM_FIFO**

Address: Operational Base + offset (0x0060)

Bit	Attr	<b>Reset Value</b>	Description
		0x0	pol
31	RO		Polarity. This bit indicates the polarity of the lower 31-bit counter.
31	KO		1'b0: Low
			1'b1: High
		0×00000000	cycle_cnt
20.0	DO		High/Low Cycle Counter.
30:0	RO		This 31-bit counter indicates the effective cycles of high/low
			waveform

## **PWM PWRMATCH CTRL**

Address: Operational Base + offset (0x0080)

		<b>Reset Value</b>	+ offset (0x0080)  Description
31:16	RO	0x0	reserved
			CH3_pwrkey_int_ctrl
15	RW	0x0	1'b0: Assert interrupt after key capture with power key match
			1'b1: Assert interrupt after key capture without power key match
			CH2_pwrkey_int_ctrl
14	RW	0x0	1'b0: Assert interrupt after key capture with power key match
			1'b1: Assert interrupt after key capture without power key match
			CH1_pwrkey_int_ctrl
13	RW	0x0	1'b0: Assert interrupt after key capture with power key match
			1'b1: Assert interrupt after key capture without power key match
			CH0_pwrkey_int_ctrl
12	RW	0x0	1'b0: Assert interrupt after key capture with power key match
			1'b1: Assert interrupt after key capture without power key match
			CH3_pwrkey_capture_ctrl
11	RW	0x0	1'b0: Capture the value after interrupt
			1'b1: Capture the value directly
			CH2_pwrkey_capture_ctrl
10	RW	0x0	1'b0: Capture the value after interrupt
			1'b1: Capture the value directly
			CH1_pwrkey_capture_ctrl
9	RW	0x0	1'b0: Capture the value after interrupt
			1'b1: Capture the value directly
			CH0_pwrkey_capture_ctrl
8	RW	0x0	1'b0: Capture the value after interrupt
			1'b1: Capture the value directly
			CH3_pwrkey_polarity
7	RW	0x0	1'b0: pwm in polarity is positive
			1'b1: pwm in polarity is negative
			CH2_pwrkey_polarity
6	RW	0x0	1'b0: pwm in polarity is positive
			1'b1: pwm in polarity is negative

Bit	Attr	Reset Value	Description
			CH1_pwrkey_polarity
5	RW	0x0	1'b0: pwm in polarity is positive
			1'b1: pwm in polarity is negative
			CH0_pwrkey_polarity
4	RW	0x0	1'b0: pwm in polarity is positive
			1'b1: pwm in polarity is negative
			CH3_pwrkey_enable
3	RW	0x0	1'b0: Disabled
			1'b1: Enabled
			CH2_pwrkey_enable
2	RW	0x0	1'b0: Disabled
			1'b1: Enabled
			CH1_pwrkey_enable
1	RW	0x0	1'b0: Disabled
			1'b1: Enabled
			CH0_pwrkey_enable
0	RW	0x0	1'b0: Disabled
			1'b1: Enabled

#### **PWM PWRMATCH LPRE**

Address: Operational Base + offset (0x0084)

Bit	Attr	<b>Reset Value</b>	Description
31.16	D/W	0x238c	cnt_max
51.10	IK VV	0,2360	The maximum counter value
15.0	RW	W 10x22c4 1	cnt_min
15:0			The minimum counter value

#### **PWM_PWRMATCH_HPRE**

Address: Operational Base + offset (0x0088)

Bit	Attr	<b>Reset Value</b>	Description
31.16	D\M	V 10x11f8	cnt_max
31.10	IK VV		The maximum counter value
15.0	RW	W 10x1130	cnt_min
15:0			The minimum counter value

#### **PWM PWRMATCH LD**

Address: Operational Base + offset (0x008c)

Bit	Attr	<b>Reset Value</b>	Description
21.16	DW	10x0294	cnt_max
31:16	KVV		The maximum counter value
15:0	RW	RW 0x01cc	cnt_min
			The minimum counter value

#### PWM_PWRMATCH_HD_ZERO

Address: Operational Base + offset (0x0090)

Bit	Attr	<b>Reset Value</b>	Description
31.16	RW/	0x0294	cnt_max
31.10	IXVV	000254	The maximum counter value
15:0	RW	RW 0x01cc	cnt_min
			The minimum counter value

#### **PWM_PWRMATCH_HD_ONE**

Address: Operational Base + offset (0x0094)

Bit	Attr	<b>Reset Value</b>	Description
31:16 RW	D\M/	/ 10x06te	cnt_max
	KVV		The maximum counter value
15.0	DW	RW 10x0636 - 1	cnt_min
15:0	KW		The minimum counter value

#### PWM_PWRMATCH_VALUE0

Address: Operational Base + offset (0x0098)

Bit	Attr	<b>Reset Value</b>	Description
31:0	RW	0x00000000	pwrkey_match_value
31.0	ICVV	0x00000000	Power key match value

#### **PWM PWRMATCH VALUE1**

Address: Operational Base + offset (0x009c)

Bit	Attr	<b>Reset Value</b>	Description
31:0	RW	W 10x000000000 1	pwrkey_match_value
31.0			Power key match value

#### **PWM PWRMATCH VALUE2**

Address: Operational Base + offset (0x00a0)

Bit	Attr	<b>Reset Value</b>	Description
31:0	RW	0x00000000	pwrkey_match_value
31.0	I V V V	0.00000000	Power key match value

#### PWM_PWRMATCH_VALUE3

Address: Operational Base + offset (0x00a4)

Bit	Attr	<b>Reset Value</b>	Description
31:0	RW	10×000000000	pwrkey_match_value
31:0			Power key match value

#### **PWM_PWRMATCH_VALUE4**

Address: Operational Base + offset (0x00a8)

Bit	Attr	<b>Reset Value</b>	Description
31:0	RW	10×00000000	pwrkey_match_value
31.0			Power key match value

#### **PWM PWRMATCH VALUE5**

Address: Operational Base + offset (0x00ac)

Bit	Attr	<b>Reset Value</b>	Description
31:0	RW	- 10x00000000	pwrkey_match_value
31.0			Power key match value

### **PWM PWRMATCH VALUE6**

Address: Operational Base + offset (0x00b0)

Bit	Attr	<b>Reset Value</b>	Description
31:0	RW	' IUXUUUUUUUU I	pwrkey_match_value
31.0	IXVV		Power key match value

#### PWM_PWRMATCH_VALUE7

Address: Operational Base + offset (0x00b4)

Bit	Attr	<b>Reset Value</b>	Description	
31:0	RW	10x000000000	pwrkey_match_value Power key match value	

#### **PWM PWRMATCH_VALUE8**

Address: Operational Base + offset (0x00b8)

Bit	Attr	<b>Reset Value</b>	Description	
31:0	RW	/ 10x00000000	pwrkey_match_value	
31:0	KVV		Power key match value	

#### PWM_PWRMATCH_VALUE9

Address: Operational Base + offset (0x00bc)

Bit	Attr	<b>Reset Value</b>	Description	
31:0	DW	10×000000000	pwrkey_match_value	
31:0	ICVV		Power key match value	

#### PWM PWM0 PWRCAPTURE VALUE

Address: Operational Base + offset (0x00c0)

Bit	Attr	<b>Reset Value</b>	Description	
31:0	RO	10×000000000	pwrkey_capture_value	
31.0	KO		Power key capture value	

#### PWM PWM1 PWRCAPTURE VALUE

Address: Operational Base + offset (0x00c4)

Bit	Attr	<b>Reset Value</b>	Description	
31:0	RO	TOXOUUUUUU	pwrkey_capture_value	
31.0	KO		Power key capture value	

#### **PWM PWM2 PWRCAPTURE VALUE**

Address: Operational Base + offset (0x00c8)

Bit	Attr	<b>Reset Value</b>	Description	
31:0	RO	UXUUUUUUU	pwrkey_capture_value	
31.0	KU		Power key capture value	

#### **PWM PWM3 PWRCAPTURE VALUE**

Address: Operational Base + offset (0x00cc)

Bit	Attr	<b>Reset Value</b>	Description	
31:0	RO	TOXOOOOOO T	pwrkey_capture_value	
51.0	110		Power key capture value	

#### **PWM FILTER CTRL**

Address: Operational Base + offset (0x00d0)

Bit	Attr	<b>Reset Value</b>	Description
31:13	RO	0x0	reserved
12:4	RW	0x000	filter_number
12.4	KVV	0000	Filter window number
			CH3_input_filter_enable
3	RW	0x0	1'b0: Disabled
			1'b1: Enabled
			CH2_input_filter_enable
2	RW	0x0	1'b0: Disabled
			1'b1: Enabled
			CH1_input_filter_enable
1	RW	0x0	1'b0: Disabled
			1'b1: Enabled
			CH0_input_filter_enable
0	RW	0x0	1'b0: Disabled
			1'b1: Enabled

# **9.5 Interface Description**

Table 9-1PWM Interface Description

<b>Module Pin</b>	Direction	Pad Name	IOMUX Setting
PWM0	I/O	IO_PWM0_OTGdrv_GPIO0B7	PMUGRF_GPIO0B_IOMUX[15:14]=2'b1
PVVIVIO		pmuio2	
	I/O	IO_PWM1_UART3txm0_PMUd	PMUGRF_GPIO0C_IOMUX[1:0]=2'b1
PWM1		ebug3_GPIO0C0pmuio2	
PWM2	I/O	IO_PWM2_GPIO2B5vccio3	GRF_GPIO2B_IOMUX_H[6:4]=3'b1

Module Pin	Direction	Pad Name	IOMUX Setting
PWM3	1/0	IO_PWM3_UART3rxm0_PMUd	PMUGRF_GPIO0C_IOMUX[3:2]=2'b1
PWWIS	I/O	ebug4_GPIO0C1pmuio2	
PWM4	1/0	IO_LCDCd14_I2S08ch_lrcktx	GRF_GPIO3C_IOMUX_L[10:8]=3'b11
PVVI*14	I/O	_PWM4_GPIO3C2vccio4	
DW/ME	I/O	IO_LCDCd15_I2S08ch_sclktx	GRF_GPIO3C_IOMUX_L[14:12]=3'b11
PWM5		_PWM5_GPIO3C3vccio4	
PWM6	I/O	IO_LCDCd16_I2S08ch_sdo0_	GRF_GPIO3C_IOMUX_H[2:0]=3'b11
PVVIVIO		PWM6_GPIO3C4vccio4	
DW/M7	1/0	IO_LCDCd17_I2S08ch_sdi0_	GRF_GPIO3C_IOMUX_H[6:4]=3'b11
PWM7	I/O	PWM7_GPIO3C5vccio4	

*Notes: I=input, O=output, I/O=input/output.* 

## 9.6 Application Notes

## 9.6.1 PWM Capture Mode Standard Usage Flow

- 1. Set PWM PWMx CTRL.pwm en to '0' to disable the PWM channel.
- 2. Choose the prescale factor and the scale factor for clk_pwm by programming PWM_PWMx_CTRL.prescale and PWM_PWMx_CTRL.scale, and select the clock needed by setting PWM_PWMx_CTRL.clk_sel.
- 3. Configure the channel to work in the capture mode.
- 4. Enable the PWM_INT_EN.chx_int_en to enable the interrupt generation.
- 5. Set PWM_FILTER_CTRL.filter_number, then Enable the PWM FILTER CTRL.CHx input filter enable(Optional).
- 6. Enable the channel by writing '1' to PWM_PWMx_CTRL.pwm_en bit to start the channel.
- 7. When an interrupt is asserted, refer to INTSTS register to know the raw interrupt status. If the corresponding polarity flag is set, turn to PWM_PWMx_PERIOD_HPC register to know the effective high cycles of input waveforms, otherwise turn to PWM_PWMx_DUTY_LPC register to know the effective low cycles.
- 8. Write '0' to PWM_PWMx_CTRL.pwm_en to disable the channel.

## 9.6.2 PWM Capture DMA Mode Standard Usage Flow

- 1. Set PWM_PWMx_CTRL.pwm_en to '0' to disable the PWM channel.
- 2. Choose the prescale factor and the scale factor for clk_pwm by programming PWM_PWMx_CTRL.prescale and PWM_PWMx_CTRL.scale, and select the clock needed by setting PWM_PWMx_CTRL.clk_sel.
- 3. Configure the channel 3 to work in the capture mode.
- 4. Configure the PWM_FIFO_CTRL.dma_mode_enand PWM_FIFO_CTRL.fifo_mode_sel to enable the DMA mode.Configure PWM_FIFO_CTRL.almost_full_watermark at appropriate value.
- 5. Configure DMAC_BUS to tansfer data from PWM to DDR.
- 6. Set PWM_FILTER_CTRL.filter_number, then Enable the
- PWM_FILTER_CTRL.CHx_input_filter_enable(Optional).
- 7. Enable the channel by writing '1' to PWM_PWMx_CTRL.pwm_en bit to start the channel.
- 8. When a dma_req is asserted, DMAC_BUS transfer the data of effective high cycles and low cycles of input waveforms to DDR.
- 9. Write '0' to PWM_PWMx_CTRL.pwm_en to disable the channel.

## 9.6.3 PWM Power key Capture Mode Standard Usage Flow

- Set PWM_PWMx_CTRL.pwm_en to '0' to disable the PWM channel.
- 2. Choose the prescale factor and the scale factor for clk_pwm by programming PWM_PWMx_CTRL.prescale and PWM_PWMx_CTRL.scale, and select the clock needed by setting PWM_PWMx_CTRL.clk_sel. The clock should be 1 Mhz after division.
- 3. Configure the channel to work in the capture mode.
- 4. Enable the PWM_INT_EN.CHx_int_pwr to enable the interrupt generation.

- 5. Set the PWM_PWRMATCH_VALUE0~9 registers for the 10 power key match value.
- 6.Set max_cnt and min_cnt of follow register:
- PWM PWRMATCH LPRE, PWM PWRMATCH HPRE, PWM PWRMATCH LD,
- PWM_PWRMATCH_HD_ZERO, PWM_PWRMATCH_HD_ONE. It doesn't need to set these registers when the default value can meet the requirement.
- 7.Set PWM_PWRMATCH_CTRL.CHx_pwrkey_polarity for the polarity of power key signal, the default value is 0. Enable the PWM_PWRMATCH_CTRL.CHx_pwrkey_enable.
- 8. Set PWM_FILTER_CTRL.filter_number, then Enable the PWM_FILTER_CTRL.CHx_input_filter_enable(Optional).
- 9. Enable the channel by writing '1' to PWM PWMx CTRL.pwm en bit to start the channel.
- 10. When an interrupt is asserted, refer to INTSTS register to know the raw interrupt status, and refer to PWM_PWMx_PWRCAPTURE_VALUE to know the power key capture value.
- 11. Write '0' to PWM_PWMx_CTRL.pwm_en to disable the channel.

#### 9.6.4 PWM One-shot Mode/ContinuousStandard Usage Flow

- 1. Set PWM_PWMx_CTRL.pwm_en to '0' to disable the PWM channel.
- 2. Choose the prescale factor and the scale factor for pclk by programming PWM_PWMx_CTRL.prescale and PWM_PWMx_CTRL.scale, and select the clock needed by setting PWM_PWMx_CTRL.clk_sel.
- 3. Choose the output mode by setting PWM_PWMx_CTRL.output_mode, and set the duty polarity and inactive polarity by programming PWM_PWMx_CTRL.duty_pol and PWM_PWMx_CTRL.inactive_pol.
- 4. Set the PWM_PWMx_CTRL.rpt if the channel is desired to work in the one-shot mode.
- 5. Configure the channel to work in the one-shot mode or the continuous mode.
- 6. Enable the PWM_INT_EN.chx_int_en to enable the interrupt generation if if the channel is desired to work in the one-shot mode.
- 7. If the channel is working in the one-shot mode, an interrupt is asserted after the end of operation, and the PWM_PWMx_CTRL.pwm_en is automatically cleared. Whatever mode the channel is working in, write '0' to PWM_PWMx_CTRL.pwm_en bit to disable the PWM channel.

#### 9.6.5 Low-power UsageFlow

The default value of PWM_PWMx_CTRL.force_clk_en is '0' which make the channel enter the low-power mode. In low-power mode, When the PWM channel is inactive, the clk_pwm to the clock prescale module is gated in order to reduce the power consumption. User can set PWM_PWMx_CTRL.force_clk_en to '1' which will make the channel quit the low-power mode. After the setting, the clk_pwm to the clock prescale module is always enable.

#### 9.6.6 Other notes

When the channel is active to produce waveforms, it is free to program the PWM_PWMx_PERIOD_HPC and PWM_PWMx_DUTY_LPC register. User can use PWM_PWMx_CTRL.conlock to take period and duty effect at the same time. The usage flow is as follow:

- 1. Set PWM PWMx CTRL.conlock to '1'.
- 2. Set PWM PWMx PERIOD HPC and PWM PWMx DUTY LPC.
- 3. Set PWM_PWMx_CTRL.conlock to `0', the other bits in PWM_PWMx_CTRL should be appropriate.

After above configuration, the change will not take effect immediately until the current period ends.

An active channel can be changed to another operation mode without disable the PWM channel. However, during the transition of the operation mode there may be some irregular output waveforms. So does changing the clock division factor when the channel is active.

## **Chapter 10 Generic Interrupt Controller (GIC)**

#### 10.1 Overview

There is a generic interrupt controller(GIC400) in PX30which generates physical interrupts to Cortex-A35. It has two interfaces, the distributor interface connects to the interrupt source, and the CPU interface connects to Cortex-A35. The details of CPU interface connectivity are shown in the following table.

Table 10-1CPU interface connectivity

<b>CPU Interface Number</b>	Connectivity
CPU interface 0	CPU0
CPU interface 1	CPU1
CPU interface 2	CPU2
CPU interface 3	CPU3

- It supports the following features:
  Supports 128 hardware interrupt inputs
  Masking of any interrupts
  Prioritization of interrupts

- Distribution of the interrupts to the target Cortex-A35 processor(s) Generation of interrupts by software Supports Security Extensions

## 10.2 Block Diagram

The generic interrupt controller comprises with:

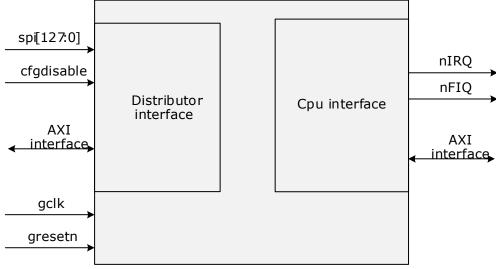



Fig. 10-1 Block Diagram

# 10.3 Function Description

Please refer to the document "IHI0048B_gic_architecture_specification.pdf" for the detailedfunction description.

## **Chapter 11 DMA Controller (DMAC)**

#### 11.1 Overview

This device supports 1 Direct Memory Access(DMA) Controllers.It (DMAC) supports transfers between memory and memory, peripheral and memory. DMACis under Non-secure state after reset, and the secure state can be changed by configurable SGRF module.

DMACsupports the following features:

- Supports Trustzone technology
  Supports 25 peripheral request
  Up to 64bits data size
  8 channel at the same time

- Up to burst 16
- 16 interrupts output and 1 abort output Supports 128 MFIFO depth

Following table shows the DMACrequest mapping scheme.

Table 11-1DMAC Request Mapping Table

Req number	Source	Polarity
0	UARTO_TX	High level
1	UARTO_RX	High level
2	UART1_TX	High level
3	UART1_RX	High level
4	UART2_TX	High level
5	UART2_RX	High level
6	UART3_TX	High level
7	UART3_RX	High level
8	UART4_TX	High level
9	UART4_RX	High level
10	UART5_TX	High level
11	UART5_RX	High level
12	SPI0_TX	High level
13	SPIO_RX	High level
14	SPI1_TX	High level
15	SPI1_RX	High level
16	I2S0_8CH_TX	High level
17	I2S0_8CH_RX	High level
18	I2S1_2CH_TX	High level
19	I2S1_2CH_RX	High level
20	I2S2_8CH_TX	High level
21	I2S2_8CH_RX	High level
22	PWM0_TX	High level
23	PWM1_TX	High level
24	PDM	High level

DMAC supportincrementing-address burst and fixed-address burst. But in the case of access SPI and UART at byte or halfword size, DMAC only support fixed-address burst and the address must be aligned to word.

# 11.2 Block Diagram

Following figure shows the block diagram of DMAC.

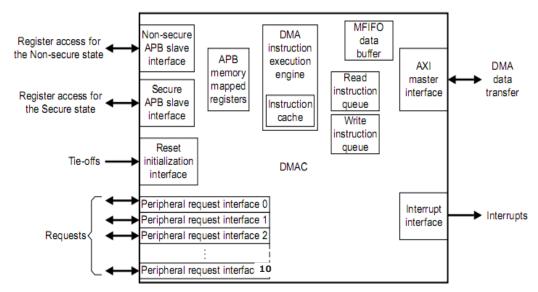



Fig. 11-1Block diagram of DMAC

As the DMAC supports Trustzone technology, so dual APB interfaces enable the operation of the DMAC to be partitioned into the secure state and Non-secure state. You can use the APB interfaces to access status registers and also directly execute instructions in the DMAC. The default interface after reset is Non-secure apb interface.

## 11.3 Function Description

#### 11.3.1 Introduction

The DMAC contains an instruction processing block that enables it to process program code that controls a DMA transfer. The program code is stored in a region of system memory that the DMAC accesses using its AXI interface. The DMAC stores instructions temporarily in a cache. It supports 8 channels, each channel capable of supporting a single concurrent thread of DMA operation. In addition, a single DMA manager thread exists, and you can use it to initialize the DMA channel threads. The DMAC executes up to one instruction for each AXI clock cycle. To ensure that it regularly executes each active thread, it alternates by processing the DMA manager thread and then a DMA channel thread. It uses a round-robin process when selecting the next active DMA channel thread to execute.

The DMAC uses variable-length instructions that consist of one to six bytes. It provides a separate Program Counter (PC) register for each DMA channel. When a thread requests an instruction from an address, the cache performs a look-up. If a cache hit occurs, then the cache immediately provides the data. Otherwise, the thread is stalled while the DMAC uses the AXI interface to perform a cache line fill. If an instruction is greater than 4 bytes, or spans the end of a cache line, the DMAC performs multiple cache accesses to fetch the instruction.

When a cache line fill is in progress, the DMAC enables other threads to access the cache, but if another cache miss occurs, this stalls the pipeline until the first line fill is complete. When a DMA channel thread executes a load or store instruction, the DMAC adds the instruction to the relevant read or write queue. The DMAC uses these queues as an instruction storage buffer prior to it issuing the instructions on the AXI bus. The DMAC also contains a Multi First-In-First-Out (MFIFO) data buffer that it uses to store data that it reads, or writes, during a DMA transfer.

#### 11.3.2 Operating states

Following figure shows the operating states for the DMA manager thread and DMA channel threads.

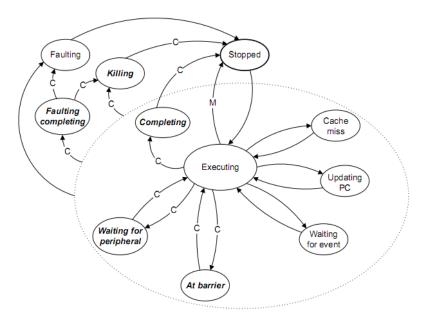



Fig. 11-2DMAC operation states

Notes: arcs with no letter designator indicate state transitions for the DMA manager and DMA channel threads, otherwise use is restricted as follows:

C DMA channel threads only.

M DMA manager thread only.

After the DMAC exits from reset, it sets all DMA channel threads to the stopped state, and DMA manager thread moves to the Stopped state.

# 11.4 Register Description

## 11.4.1 Internal Address Mapping

Slave address can be divided into different length for different usage, which is shown as follows.

#### 11.4.2 Registers Summary

Name	Offset	Size	Reset Value	Description
DMA_DSR	0x0000	W	0x00000000	DMA Manager Status Register
DMA_DPC	0x0004	W	0x00000000	DMA Program Counter Register
DMA INTEN	0x0020	W	0x00000000	Interrupt Enable Register
DMA EVENT RIS	0x0024	w	0×00000000	Event-Interrupt Raw Status Register
DMA INTMIS	0x0028	W	0x00000000	Interrupt Status Register
DMA_INTCLR	0x002c	W	0x00000000	Interrupt Clear Register
DMA FSRD	0x0030	w	0x00000000	Fault Status DMA Manager Register
DMA FSRC	0x0034	W	0x00000000	Fault Status DMA Channel Register
DMA_FTRD	0x0038	W	0x00000000	Fault Type DMA Manager Register
DMA_FTR0	0x0040	W	0x00000000	Fault Type DMA Channel Register
DMA FTR1	0x0044	W	0x00000000	Fault Type DMA Channel Register
DMA_FTR2	0x0048	W	0x0000000	Fault Type DMA Channel Register

			Reset	
Name	Offset	Size	Value	Description
DMA_FTR3	0x004c	W	0x00000000	Fault Type DMA Channel Register
DMA FTR4	0x0050	W	0x00000000	Fault Type DMA Channel Register
DMA FTR5	0x0054	W	0x00000000	Fault Type DMA Channel Register
DMA CSR0	0x0100	W	0x00000000	Channel Status Registers
DMA_CPC0	0x0104	w	0x00000000	Channel Program Counter
DMA_Cr Co	0.0104	VV	020000000	Registers
DMA CSR1	0x0108	W	0x0000000	Channel Status Registers
DMA CPC1	0x010c	W	0×00000000	Channel Program Counter Registers
DMA CSR2	0x0110	W	0x00000000	Channel Status Registers
DMA_CPC2	0x0114	w	0x00000000	Channel Program Counter
				Registers
DMA CSR3	0x0118	W	0x0000000	Channel Status Registers
DMA_CPC3	0x011c	W	0x00000000	Channel Program Counter Registers
DMA CSR4	0x0120	W	0x00000000	Channel Status Registers
DMA CDC4	0x0124	w	0x00000000	Channel Program Counter
DMA CPC4	0X0124	VV	0x00000000	Registers
DMA_CSR5	0x0128	W	0x00000000	Channel Status Registers
DMA CPC5	0x012c	w	0x00000000	Channel Program Counter
DMA CI CS	0.0120	VV	020000000	Registers
DMA_SAR0	0x0400	W	0x0000000	Source Address Registers
DMA DARO	0x0404	W	0x00000000	DestinationAddress Registers
DMA_CCR0	0x0408	W	0x00000000	Channel Control Registers
DMA_LC0_0	0x040c	W	0x00000000	Loop Counter 0 Registers
DMA LC1 0	0x0410	W		Loop Counter 1 Registers
DMA_SAR1	0x0420	W	0x0000000	Source Address Registers
DMA DAR1	0x0424	W	0x00000000	DestinationAddress Registers
DMA CCR1	0x0428	W	0x00000000	Channel Control Registers
DMA_LC0_1	0x042c	W	0x00000000	Loop Counter 0 Registers
DMA LC1 1	0x0430	W	0x0000000	Loop Counter 1 Registers
DMA_SAR2	0x0440	W	0x0000000	Source Address Registers
DMA_DAR2	0x0444	W	0x0000000	DestinationAddress Registers
DMA CCR2	0x0448	W	0x00000000	Channel Control Registers
DMA_LC0_2	0x044c	W	0x00000000	Loop Counter 0 Registers
DMA LC1 2	0x0450	W	0x0000000	Loop Counter 1 Registers
DMA SAR3	0x0460	W	0x00000000	Source Address Registers
DMA_DAR3	0x0464	W	0x0000000	DestinationAddress Registers
DMA CCR3	0x0468	W	0x0000000	Channel Control Registers
DMA_LC0_3	0x046c	W	0x0000000	Loop Counter 0 Registers
DMA_LC1_3	0x0470	W	0x0000000	Loop Counter 1 Registers
DMA SAR4	0x0480	W	0x0000000	Source Address Registers
DMA_DAR4	0x0484	W	0x00000000	DestinationAddress Registers

Name	Offset	Size	Reset Value	Description
DMA_CCR4	0x0488	W	0x00000000	Channel Control Registers
DMA LCO 4	0x048c	W	0x00000000	Loop Counter 0 Registers
DMA LC1 4	0x0490	W	0x00000000	Loop Counter 1 Registers
DMA SAR5	0x04a0	W	0x00000000	Source Address Registers
DMA DAR5	0x04a4	W	0x00000000	DestinationAddress Registers
DMA_CCR5	0x04a8	W	0x00000000	Channel Control Registers
DMA LCO 5	0x04ac	W	0x00000000	Loop Counter 0 Registers
DMA LC1 5	0x04b0	W	0x00000000	Register0000 Description
DMA DBGSTATUS	0x0d00	W	0x00000000	Debug Status Register
DMA DBGCMD	0x0d04	W	0x00000000	Debug Command Register
DMA DBGINSTO	0x0d08	W	0x00000000	Debug Instruction-0 Register
DMA_DBGINST1	0x0d0c	W	0x00000000	Debug Instruction-1 Register
DMA CRO	0x0e00	W	0x00047051	Configuration Register 0
DMA_CR1	0x0e04	W	0x00000057	Configuration Register 1
DMA CR2	0x0e08	W	0x00000000	Configuration Register 2
DMA CR3	0x0e0c	W	0x00000000	Configuration Register 3
DMA_CR4	0x0e10	W	0x0000006	Configuration Register 4
DMA CRDn	0x0e14	W	0x02094733	Configuration Register n
DMA WD	0x0e80	W	0x0000000	DMA Watchdog Register

Notes: Size: B- Byte (8 bits) access, HW- Half WORD (16 bits) access, W-WORD (32 bits) access

## 11.4.3 Detail Register Description

## **DMA_DSR**

Address: Operational Base + offset (0x0000)

Bit	Attr	<b>Reset Value</b>	Description
31:10	RO	0x0	reserved
9	RO	0x0	0 = DMA manager operates in the Secure state
9	KU	UXU	1 = DMA manager operates in the Non-secure state
			b00000 = event[0]
			b00001 = event[1]
8:4	RO	0x00	b00010 = event[2]
			b11111 = event[31]
			b0000 = Stopped
			b0001 = Executing
			b0010 = Cache miss
3:0	RO		b0011 = Updating PC
			b0100 = Waiting for event
			b0101-b1110 = reserved
			b1111 = Faulting

### **DMA_DPC**

Address: Operational Base + offset (0x0004)

Bit	Attr	<b>Reset Value</b>	Description
31:0	RO	0x00000000	Program counter for the DMA manager thread

#### **DMA_INTEN**

Address: Operational Base + offset (0x0020)

Bit	Attr	Reset Value	Description
31:0	RW	0×00000000	Bit [N] = 0 If the DMAC executes DMASEV for the event- interrupt resource N then the DMAC signals event N to all of the threads. Set bit [N] to 0 if your system design does not use irq[N] to signal an interrupt request. Bit [N] = 1 If the DMAC executes DMASEV for the event- interrupt resource N then the DMAC sets irq[N] HIGH. Set bit [N] to 1 if your system designer requires irq[N] to signal an interrupt request

#### **DMA EVENT RIS**

Address: Operational Base + offset (0x0024)

Bit	Attr	<b>Reset Value</b>	Description		
21.0	DО	2O 10x000000000 1	Bit $[N] = 0$ Event N is inactive or $irq[N]$ is LOW.		
31.0	31:0 RO		Bit [N] = 1 Event N is active or irq[N] is HIGH		

#### **DMA_INTMIS**

Address: Operational Base + offset (0x0028)

Bit	Attr	<b>Reset Value</b>	,	Description
31:0	RO	O 10x00000000	Bit [N] = 0 In	terrupt N is inactive and therefore irq[N] is LOW.
31.0	KU		Bit [N] = 1 In	terrupt N is active and therefore irq[N] is HIGH

#### **DMA_INTCLR**

Address: Operational Base + offset (0x002c)

Bit	Attr	<b>Reset Value</b>	Description
		0×00000000	Bit $[N] = 0$ The status of $irq[N]$ does not change.
21.0	1:0 WO 0×000000		Bit $[N] = 1$ The DMAC sets $irq[N]$ LOW if the INTEN Register
31.0			programs the DMAC to signal an interrupt.
			Otherwise, the status of irq[N] does not change

#### DMA_FSRD

Address: Operational Base + offset (0x0030)

Bit	Attr	<b>Reset Value</b>	Description
21.0	31:0 RO 0x00000	0×00000000	0 = the DMA manager thread is not in the Faulting state
31.0		0x00000000	1 = the DMA manager thread is in the Faulting state

#### **DMA_FSRC**

Address: Operational Base + offset (0x0034)

Bit	Attr	<b>Reset Value</b>	Description		
			Bit $[N] = 0$ No fault is present on DMA channel N.		
31:0	RO	0x00000000	Bit $[N] = 1$ DMA channel N is in the Faulting or Faulting		
			completing state		

#### **DMA_FTRD**

Address: Operational Base + offset (0x0038)

Bit		<b>Reset Value</b>	Description
31	RO	0x0	reserved
			memory or from the debug interface:
			0 = instruction that generated an abort was read from system
30	RO	0x0	memory
			1 = instruction that generated an abort was read from the debug
			interface
29:17	RO	0x0	reserved
			performs an instruction fetch:
16	RO	0x0	0 = OKAY response
			1 = EXOKAY, SLVERR, or DECERR response
15:6	RO	0x0	reserved
		0×0	0 = DMA manager has appropriate security to execute DMAWFE
			or DMASEV
5	RO		1 = a DMA manager thread in the Non-secure state attempted to
5	IXO		execute either:
			o DMAWFE to wait for a secure event
			o DMASEV to create a secure event or secure interrupt
			0 = DMA manager has appropriate security to execute DMAGO
4	RO	0×0	1 = a DMA manager thread in the Non-secure state attempted to
_			execute DMAGO to create a DMA channel
			operating in the Secure state
3:2	RO	0x0	reserved
			the configuration of the DMAC:
1	RO	0x0	0 = valid operand
			1 = invalid operand
0	RW	W 0x0	0 = defined instruction
	IX V V		1 = undefined instruction

### **DMA_FTR0**

Address: Operational Base + offset (0x0040)

Bit	Attr	<b>Reset Value</b>	Description
	31 RO	0x0	0 = DMA channel has adequate resources
31			1 = DMA channel has locked-up because of insufficient resources.
			This fault is an imprecise abort

Bit	Attr	Reset Value	Description
30	RO	0×0	memory or from the debug interface:
			0 = instruction that generated an abort was read from system
			memory
			1 = instruction that generated an abort was read from the debug
			interface.
			This fault is an imprecise abort but the bit is only valid when a
			precise abort occurs
29:19	RO	0x0	reserved
	RO	0×0	thread performs a data read:
18			0 = OKAY response
10			1 = EXOKAY, SLVERR, or DECERR response.
			This fault is an imprecise abort
	RO	0×0	thread performs a data write:
17			0 = OKAY response
17			1 = EXOKAY, SLVERR, or DECERR response.
			This fault is an imprecise abort
	RO	0×0	thread performs an instruction fetch:
16			0 = OKAY response
10			1 = EXOKAY, SLVERR, or DECERR response.
			This fault is a precise abort
15:14	RO	0x0	reserved
	RO	0x0	0 = MFIFO contains all the data to enable the DMAST to complete
13			1 = previous DMALDs have not put enough data in the MFIFO to
13			enable the DMAST to complete.
			This fault is a precise abort
	RO	0×0	DMALD 0 = MFIFO contains sufficient space
			1 = MFIFO is too small to hold the data that DMALD requires.
12			DMAST 0 = MFIFO contains sufficient data
12			1 = MFIFO is too small to store the data to enable DMAST to
			complete.
			This fault is an imprecise abort
11:8	RO	0x0	reserved
7	RO	0x0	to perform a secure read or secure write:
			0 = a DMA channel thread in the Non-secure state is not violating
			the security permissions
			1 = a DMA channel thread in the Non-secure state attempted to
			perform a secure read or secure write.
			This fault is a precise abort

Bit	Attr	<b>Reset Value</b>	Description
			DMASTP, or DMAFLUSHP with inappropriate security permissions: 0 = a DMA channel thread in the Non-secure state is not violating
			the security permissions
			1 = a DMA channel thread in the Non-secure state attempted to
6	RO	0x0	execute either:
			o DMAWFP to wait for a secure peripheral
			o DMALDP or DMASTP to notify a secure peripheral
			o DMAFLUSHP to flush a secure peripheral.
			This fault is a precise abort
			0 = a DMA channel thread in the Non-secure state is not violating
	RO	0x0	the security permissions
			1 = a DMA channel thread in the Non-secure state attempted to
5			execute either:
			o DMAWFE to wait for a secure event
			o DMASEV to create a secure event or secure interrupt.
			This fault is a precise abort
4:2	RO	0x0	reserved
			valid for the configuration of the DMAC:
1	RO	0×0	0 = valid operand
1	KU		1 = invalid operand.
			This fault is a precise abort
			0 = defined instruction
0	RO	0x0	1 = undefined instruction.
			This fault is a precise abort

**DMA FTR1**Address: Operational Base + offset (0x0044)

Bit	Attr	Reset Value	Description
			0 = DMA channel has adequate resources
31	RO	0x0	1 = DMA channel has locked-up because of insufficient resources.
			This fault is an imprecise abort
			memory or from the debug interface:
			0 = instruction that generated an abort was read from system
	RO	0x0	memory
30			1 = instruction that generated an abort was read from the debug
			interface.
			This fault is an imprecise abort but the bit is only valid when a
			precise abort occurs
29:19	RO	0x0	reserved
			thread performs a data read:
1.0	D.O.	0×0	0 = OKAY response
18	RO		1 = EXOKAY, SLVERR, or DECERR response.
			This fault is an imprecise abort

Bit	Attr	Reset Value	Description
			thread performs a data write:
			0 = OKAY response
17	RO	0x0	1 = EXOKAY, SLVERR, or DECERR response.
			This fault is an imprecise abort
			thread performs an instruction fetch:
1.0	D.O.	00	0 = OKAY response
16	RO	0x0	1 = EXOKAY, SLVERR, or DECERR response.
			This fault is a precise abort
15:14	RO	0x0	reserved
			0 = MFIFO contains all the data to enable the DMAST to complete
12	D.O.	0.40	1 = previous DMALDs have not put enough data in the MFIFO to
13	RO	0x0	enable the DMAST to complete.
			This fault is a precise abort
			DMALD 0 = MFIFO contains sufficient space
			1 = MFIFO is too small to hold the data that DMALD requires.
12	RO	0×0	DMAST 0 = MFIFO contains sufficient data
12	KO	0.00	1 = MFIFO is too small to store the data to enable DMAST to
			complete.
			This fault is an imprecise abort
11:8	RO	0x0	reserved
			to perform a secure read or secure write:
			0 = a DMA channel thread in the Non-secure state is not violating
7	RO	0×0	the security permissions
		one one	1 = a DMA channel thread in the Non-secure state attempted to
			perform a secure read or secure write.
			This fault is a precise abort
			DMASTP, or DMAFLUSHP with inappropriate security permissions:
			0 = a DMA channel thread in the Non-secure state is not violating
			the security permissions
	D 0	00	1 = a DMA channel thread in the Non-secure state attempted to
6	RO	0x0	execute either:
			o DMAWFP to wait for a secure peripheral
			o DMALUS III to flush a secure peripheral
			o DMAFLUSHP to flush a secure peripheral.
			This fault is a precise abort  0 = a DMA channel thread in the Non-secure state is not violating
			the security permissions
			1 = a DMA channel thread in the Non-secure state attempted to
5	RO	0×0	execute either:
			o DMAWFE to wait for a secure event
			o DMASEV to create a secure event or secure interrupt.
			This fault is a precise abort
4:2	RO	0×0	reserved
	10		11 6061 7 64

Bit	Attr	<b>Reset Value</b>	Description
	RO	0×0	valid for the configuration of the DMAC:
1			0 = valid operand
1			1 = invalid operand.
			This fault is a precise abort
	RO	O 0x0	0 = defined instruction
0			1 = undefined instruction.
			This fault is a precise abort

# DMA FTR2

Address: Operational Base + offset (0x0048)

Bit		<b>Reset Value</b>	Description
			0 = DMA channel has adequate resources
31	RO	0x0	1 = DMA channel has locked-up because of insufficient resources.
			This fault is an imprecise abort
			memory or from the debug interface:
			0 = instruction that generated an abort was read from system
			memory
30	RO	0x0	1 = instruction that generated an abort was read from the debug
			interface.
			This fault is an imprecise abort but the bit is only valid when a
			precise abort occurs
29:19	RO	0x0	reserved
			thread performs a data read:
18	RO	0x0	0 = OKAY response
10	IXO		1 = EXOKAY, SLVERR, or DECERR response.
			This fault is an imprecise abort
		O 0×0	thread performs a data write:
17	RO		0 = OKAY response
17	IXO		1 = EXOKAY, SLVERR, or DECERR response.
			This fault is an imprecise abort
			thread performs an instruction fetch:
16	RO	0×0	0 = OKAY response
		O X O	1 = EXOKAY, SLVERR, or DECERR response.
			This fault is a precise abort
15:14	RO	0x0	reserved
			0 = MFIFO contains all the data to enable the DMAST to complete
13	RO	0x0	1 = previous DMALDs have not put enough data in the MFIFO to
13			enable the DMAST to complete.
			This fault is a precise abort

Bit	Attr	Reset Value	Description
			DMALD 0 = MFIFO contains sufficient space
			1 = MFIFO is too small to hold the data that DMALD requires.
12	RO	0x0	DMAST 0 = MFIFO contains sufficient data
12	KU	UXU	1 = MFIFO is too small to store the data to enable DMAST to
			complete.
			This fault is an imprecise abort
11:8	RO	0x0	reserved
			to perform a secure read or secure write:
			0 = a DMA channel thread in the Non-secure state is not violating
7	RO	0×0	the security permissions
,		0.00	1 = a DMA channel thread in the Non-secure state attempted to
			perform a secure read or secure write.
			This fault is a precise abort
			DMASTP, or DMAFLUSHP with inappropriate security permissions:
			0 = a DMA channel thread in the Non-secure state is not violating
			the security permissions
		0x0	1 = a DMA channel thread in the Non-secure state attempted to
6	RO		execute either:
			o DMAWFP to wait for a secure peripheral
			o DMALDP or DMASTP to notify a secure peripheral
			o DMAFLUSHP to flush a secure peripheral.
			This fault is a precise abort
			0 = a DMA channel thread in the Non-secure state is not violating
			the security permissions
			1 = a DMA channel thread in the Non-secure state attempted to
5	RO	O 0x0	execute either:
			o DMAWFE to wait for a secure event
			o DMASEV to create a secure event or secure interrupt.
			This fault is a precise abort
4:2	RO	0x0	reserved
			valid for the configuration of the DMAC:
1	RO	0×0	0 = valid operand
			1 = invalid operand.
			This fault is a precise abort
			0 = defined instruction
0	RO	0x0	1 = undefined instruction.
			This fault is a precise abort

**DMA_FTR3**Address: Operational Base + offset (0x004c)

Bit	Attr	<b>Reset Value</b>	Description
			0 = DMA channel has adequate resources
31	RO	0x0	1 = DMA channel has locked-up because of insufficient resources.
			This fault is an imprecise abort

Bit	Attr	Reset Value	Description
			memory or from the debug interface:
			0 = instruction that generated an abort was read from system
			memory
30	RO	0x0	1 = instruction that generated an abort was read from the debug
			interface.
			This fault is an imprecise abort but the bit is only valid when a
			precise abort occurs
29:19	RO	0x0	reserved
			thread performs a data read:
18	RO	0×0	0 = OKAY response
		o x o	1 = EXOKAY, SLVERR, or DECERR response.
			This fault is an imprecise abort
			thread performs a data write:
17	RO	0x0	0 = OKAY response
			1 = EXOKAY, SLVERR, or DECERR response.
			This fault is an imprecise abort
	RO	0×0	thread performs an instruction fetch:
16			0 = OKAY response
			1 = EXOKAY, SLVERR, or DECERR response.
45.44	50		This fault is a precise abort
15:14	KO	0x0	reserved
			0 = MFIFO contains all the data to enable the DMAST to complete
13	RO	Ox0	1 = previous DMALDs have not put enough data in the MFIFO to
			enable the DMAST to complete.
			This fault is a precise abort
			DMALD 0 = MFIFO contains sufficient space
			1 = MFIFO is too small to hold the data that DMALD requires.  DMAST 0 = MFIFO contains sufficient data
12	RO	0x0	1 = MFIFO is too small to store the data to enable DMAST to
			complete.
			This fault is an imprecise abort
11:8	RO	0x0	reserved
11.0	KO	0.00	to perform a secure read or secure write:
			0 = a DMA channel thread in the Non-secure state is not violating
			the security permissions
7	RO	O×0	1 = a DMA channel thread in the Non-secure state attempted to
			perform a secure read or secure write.
			This fault is a precise abort
			This fault is a precise about

Bit	Attr	Reset Value	Description
			DMASTP, or DMAFLUSHP with inappropriate security permissions:
			0 = a DMA channel thread in the Non-secure state is not violating
			the security permissions
			1 = a DMA channel thread in the Non-secure state attempted to
6	RO	0x0	execute either:
			o DMAWFP to wait for a secure peripheral
			o DMALDP or DMASTP to notify a secure peripheral
			o DMAFLUSHP to flush a secure peripheral.
			This fault is a precise abort
			0 = a DMA channel thread in the Non-secure state is not violating
	RO	O 0x0	the security permissions
			1 = a DMA channel thread in the Non-secure state attempted to
5			execute either:
			o DMAWFE to wait for a secure event
			o DMASEV to create a secure event or secure interrupt.
			This fault is a precise abort
4:2	RO	0x0	reserved
			valid for the configuration of the DMAC:
1	RO	O 0×0	0 = valid operand
1	KU		1 = invalid operand.
			This fault is a precise abort
			0 = defined instruction
0	RO	RO 0x0	1 = undefined instruction.
			This fault is a precise abort

**DMA FTR4**Address: Operational Base + offset (0x0050)

Bit	Attr	Reset Value	Description
			0 = DMA channel has adequate resources
31	RO	0x0	1 = DMA channel has locked-up because of insufficient resources.
			This fault is an imprecise abort
			memory or from the debug interface:
			0 = instruction that generated an abort was read from system
	RO	0x0	memory
30			1 = instruction that generated an abort was read from the debug
			interface.
			This fault is an imprecise abort but the bit is only valid when a
			precise abort occurs
29:19	RO	0x0	reserved
			thread performs a data read:
1.0	D.O.	0×0	0 = OKAY response
18	RO		1 = EXOKAY, SLVERR, or DECERR response.
			This fault is an imprecise abort

Bit	Attr	Reset Value	Description
			thread performs a data write:
			0 = OKAY response
17	RO	0x0	1 = EXOKAY, SLVERR, or DECERR response.
			This fault is an imprecise abort
			thread performs an instruction fetch:
1.0	D 0	00	0 = OKAY response
16	RO	0x0	1 = EXOKAY, SLVERR, or DECERR response.
			This fault is a precise abort
15:14	RO	0x0	reserved
			0 = MFIFO contains all the data to enable the DMAST to complete
12	D.O.	0.40	1 = previous DMALDs have not put enough data in the MFIFO to
13	RO	0x0	enable the DMAST to complete.
			This fault is a precise abort
			DMALD 0 = MFIFO contains sufficient space
			1 = MFIFO is too small to hold the data that DMALD requires.
12	RO	0×0	DMAST 0 = MFIFO contains sufficient data
12	KO	0.00	1 = MFIFO is too small to store the data to enable DMAST to
			complete.
			This fault is an imprecise abort
11:8	RO	0x0	reserved
			to perform a secure read or secure write:
			0 = a DMA channel thread in the Non-secure state is not violating
7	RO	0×0	the security permissions
,			1 = a DMA channel thread in the Non-secure state attempted to
			perform a secure read or secure write.
			This fault is a precise abort
			DMASTP, or DMAFLUSHP with inappropriate security permissions:
			0 = a DMA channel thread in the Non-secure state is not violating
			the security permissions
_	D.O.	00	1 = a DMA channel thread in the Non-secure state attempted to
6	RO	0x0	execute either:
			o DMAWFP to wait for a secure peripheral
			o DMALDP or DMASTP to notify a secure peripheral
			o DMAFLUSHP to flush a secure peripheral.
			This fault is a precise abort  0 = a DMA channel thread in the Non-secure state is not violating
			the security permissions
			1 = a DMA channel thread in the Non-secure state attempted to
5	RO	0×0	execute either:
			o DMAWFE to wait for a secure event
			o DMASEV to create a secure event or secure interrupt.
			This fault is a precise abort
4:2	RO	0×0	reserved
	10		11 6061 7 64

Bit	Attr	<b>Reset Value</b>	Description
	RO	0x0	valid for the configuration of the DMAC:
1			0 = valid operand
1			1 = invalid operand.
			This fault is a precise abort
	RO	O 0x0	0 = defined instruction
0			1 = undefined instruction.
			This fault is a precise abort

## DMA_FTR5

Address: Operational Base + offset (0x0054)

Bit		<b>Reset Value</b>	Description
			0 = DMA channel has adequate resources
31	RO	0x0	1 = DMA channel has locked-up because of insufficient resources.
			This fault is an imprecise abort
			memory or from the debug interface:
			0 = instruction that generated an abort was read from system
			memory
30	RO	0x0	1 = instruction that generated an abort was read from the debug
			interface.
			This fault is an imprecise abort but the bit is only valid when a
			precise abort occurs
29:19	RO	0x0	reserved
			thread performs a data read:
18	RO	0x0	0 = OKAY response
10	KO	UXU	1 = EXOKAY, SLVERR, or DECERR response.
			This fault is an imprecise abort
		0×0	thread performs a data write:
17	RO		0 = OKAY response
1	IXO		1 = EXOKAY, SLVERR, or DECERR response.
			This fault is an imprecise abort
			thread performs an instruction fetch:
16	RO	0x0	0 = OKAY response
	1.0		1 = EXOKAY, SLVERR, or DECERR response.
			This fault is a precise abort
15:14	RO	0x0	reserved
			0 = MFIFO contains all the data to enable the DMAST to complete
13	RO	0×0	1 = previous DMALDs have not put enough data in the MFIFO to
	1.0	OXO .	enable the DMAST to complete.
			This fault is a precise abort
			DMALD 0 = MFIFO contains sufficient space
			1 = MFIFO is too small to hold the data that DMALD requires.
12	RO	0x0	DMAST 0 = MFIFO contains sufficient data
		0.00	1 = MFIFO is too small to store the data to enable DMAST to
			complete.
			This fault is an imprecise abort

Bit	Attr	Reset Value	Description
11:8	RO	0x0	reserved
7	RO	0×0	to perform a secure read or secure write:  0 = a DMA channel thread in the Non-secure state is not violating the security permissions  1 = a DMA channel thread in the Non-secure state attempted to perform a secure read or secure write.  This fault is a precise abort
6	RO	0×0	DMASTP, or DMAFLUSHP with inappropriate security permissions:  0 = a DMA channel thread in the Non-secure state is not violating the security permissions  1 = a DMA channel thread in the Non-secure state attempted to execute either:  0 DMAWFP to wait for a secure peripheral  0 DMALDP or DMASTP to notify a secure peripheral  0 DMAFLUSHP to flush a secure peripheral.  This fault is a precise abort
5	RO	0×0	<ul> <li>0 = a DMA channel thread in the Non-secure state is not violating the security permissions</li> <li>1 = a DMA channel thread in the Non-secure state attempted to execute either:</li> <li>o DMAWFE to wait for a secure event</li> <li>o DMASEV to create a secure event or secure interrupt.</li> <li>This fault is a precise abort</li> </ul>
4:2	RO	0x0	reserved
1	RO	0x0	<ul><li>valid for the configuration of the DMAC:</li><li>0 = valid operand</li><li>1 = invalid operand.</li><li>This fault is a precise abort</li></ul>
0	RO	0×0	<ul><li>0 = defined instruction</li><li>1 = undefined instruction.</li><li>This fault is a precise abort</li></ul>

# **DMA CSR0**

Address: Operational Base + offset (0x0100)

Bit	Attr	<b>Reset Value</b>	Description
31:22	RO	0x0	reserved
2.1	D.O.	0.40	0 = DMA channel operates in the Secure state
21	RO	0x0	1 = DMA channel operates in the Non-secure state
20:16	RO	0x0	reserved
15	D.O.	00	0 = DMAWFP executed with the periph operand not set
15	RO	0x0	1 = DMAWFP executed with the periph operand set
1.4	RO	0.40	0 = DMAWFP executed with the single operand set
14		0 0x0	1 = DMAWFP executed with the burst operand set
13:9	RO	0x0	reserved

Bit	Attr	<b>Reset Value</b>	Description
8:4	RO	0×00	indicate the event or peripheral number that the channel is waiting for:  b00000 = DMA channel is waiting for event, or peripheral, 0 b00001 = DMA channel is waiting for event, or peripheral, 1 b00010 = DMA channel is waiting for event, or peripheral, 2 b11111 = DMA channel is waiting for event, or peripheral, 31
3:0	RO	0×0	b0000 = Stopped b0001 = Executing b0010 = Cache miss b0011 = Updating PC b0100 = Waiting for event b0101 = At barrier b0110 = reserved b0111 = Waiting for peripheral b1000 = Killing b1001 = Completing b1010-b1101 = reserved b1110 = Faulting completing b1111 = Faulting

Address: Operational Base + offset (0x0104)

Bit	Attr	<b>Reset Value</b>	Description
31:0	RO	0x00000000	Program counter for the DMA channel 0 thread

# DMA CSR1

Address: Operational Base + offset (0x0108)

Bit	Attr	<b>Reset Value</b>	Description
31:22	RO	0x0	reserved
21	DО	0.40	0 = DMA channel operates in the Secure state
21	RO	0x0	1 = DMA channel operates in the Non-secure state
20:16	RO	0x0	reserved
15	D.O.	00	0 = DMAWFP executed with the periph operand not set
15	RO	0x0	1 = DMAWFP executed with the periph operand set
14	RO	0.40	0 = DMAWFP executed with the single operand set
14		0×0	1 = DMAWFP executed with the burst operand set
13:9	RO	0x0	reserved

Bit	Attr	<b>Reset Value</b>	Description
8:4	RO	0×00	indicate the event or peripheral number that the channel is waiting for:  b00000 = DMA channel is waiting for event, or peripheral, 0 b00001 = DMA channel is waiting for event, or peripheral, 1 b00010 = DMA channel is waiting for event, or peripheral, 2 b11111 = DMA channel is waiting for event, or peripheral, 31
3:0	RO	0×0	b0000 = Stopped b0001 = Executing b0010 = Cache miss b0011 = Updating PC b0100 = Waiting for event b0101 = At barrier b0110 = reserved b0111 = Waiting for peripheral b1000 = Killing b1001 = Completing b1010-b1101 = reserved b1110 = Faulting completing b1111 = Faulting

Address: Operational Base + offset (0x010c)

Bit	Attr	<b>Reset Value</b>	Description
31:0	RO	0x00000000	Program counter for the DMA channel 1 thread

# DMA CSR2

Address: Operational Base + offset (0x0110)

Bit	Attr	<b>Reset Value</b>	Description
31:22	RO	0x0	reserved
21	RO	0.40	0 = DMA channel operates in the Secure state
21	KU	0x0	1 = DMA channel operates in the Non-secure state
20:16	RO	0x0	reserved
1 5	D.O.	O 0x0	0 = DMAWFP executed with the periph operand not set
15	RO		1 = DMAWFP executed with the periph operand set
1.4	DO	0.40	0 = DMAWFP executed with the single operand set
14	RO	O  0x0	1 = DMAWFP executed with the burst operand set
13:9	RO	0x0	reserved

Bit	Attr	<b>Reset Value</b>	Description
8:4	RO	0×00	indicate the event or peripheral number that the channel is waiting for:  b00000 = DMA channel is waiting for event, or peripheral, 0 b00001 = DMA channel is waiting for event, or peripheral, 1 b00010 = DMA channel is waiting for event, or peripheral, 2 b11111 = DMA channel is waiting for event, or peripheral, 31
3:0	RO	0×0	b0000 = Stopped b0001 = Executing b0010 = Cache miss b0011 = Updating PC b0100 = Waiting for event b0101 = At barrier b0110 = reserved b0111 = Waiting for peripheral b1000 = Killing b1001 = Completing b1010-b1101 = reserved b1110 = Faulting completing b1111 = Faulting

Address: Operational Base + offset (0x0114)

Bit	Attr	<b>Reset Value</b>	Description
31:0	RO	0x00000000	Program counter for the DMA channel 2 thread

# DMA CSR3

Address: Operational Base + offset (0x0118)

Bit	Attr	<b>Reset Value</b>	Description
31:22	RO	0x0	reserved
21	D.O.	0.40	0 = DMA channel operates in the Secure state
21	RO	0x0	1 = DMA channel operates in the Non-secure state
20:16	RO	0x0	reserved
1 5	D.O.	00	0 = DMAWFP executed with the periph operand not set
15	RO	0x0	1 = DMAWFP executed with the periph operand set
1.4	D.O.	20 00	0 = DMAWFP executed with the single operand set
14	RO	0x0	1 = DMAWFP executed with the burst operand set
13:9	RO	0x0	reserved

Bit	Attr	<b>Reset Value</b>	Description
8:4	RO	0×00	indicate the event or peripheral number that the channel is waiting for:  b00000 = DMA channel is waiting for event, or peripheral, 0 b00001 = DMA channel is waiting for event, or peripheral, 1 b00010 = DMA channel is waiting for event, or peripheral, 2 b11111 = DMA channel is waiting for event, or peripheral, 31
3:0	RO	0×0	b0000 = Stopped b0001 = Executing b0010 = Cache miss b0011 = Updating PC b0100 = Waiting for event b0101 = At barrier b0110 = reserved b0111 = Waiting for peripheral b1000 = Killing b1001 = Completing b1010-b1101 = reserved b1110 = Faulting completing b1111 = Faulting

Address: Operational Base + offset (0x011c)

Bit	Attr	<b>Reset Value</b>	Description
31:0	RO	0x00000000	Program counter for the DMA channel 3 thread

# DMA CSR4

Address: Operational Base + offset (0x0120)

Bit	Attr	<b>Reset Value</b>	Description
31:22	RO	0x0	reserved
21	DО	0.40	0 = DMA channel operates in the Secure state
21	RO	0x0	1 = DMA channel operates in the Non-secure state
20:16	RO	0x0	reserved
15	D.O.	RO 0x0	0 = DMAWFP executed with the periph operand not set
15	KU		1 = DMAWFP executed with the periph operand set
1.4	RO	RO 0x0	0 = DMAWFP executed with the single operand set
14			1 = DMAWFP executed with the burst operand set
13:9	RO	0x0	reserved

Bit	Attr	<b>Reset Value</b>	Description
8:4	RO	0×00	indicate the event or peripheral number that the channel is waiting for:  b00000 = DMA channel is waiting for event, or peripheral, 0 b00001 = DMA channel is waiting for event, or peripheral, 1 b00010 = DMA channel is waiting for event, or peripheral, 2 b11111 = DMA channel is waiting for event, or peripheral, 31
3:0	RO	0×0	b0000 = Stopped b0001 = Executing b0010 = Cache miss b0011 = Updating PC b0100 = Waiting for event b0101 = At barrier b0110 = reserved b0111 = Waiting for peripheral b1000 = Killing b1001 = Completing b1010-b1101 = reserved b1110 = Faulting completing b1111 = Faulting

Address: Operational Base + offset (0x0124)

Bit	Attr	<b>Reset Value</b>	Description
31:0	RO	0x00000000	Program counter for the DMA channel 4 thread

# **DMA CSR5**

Address: Operational Base + offset (0x0128)

Bit	Attr	<b>Reset Value</b>	Description
31:22	RO	0x0	reserved
21	D.O.	0.40	0 = DMA channel operates in the Secure state
21	RO	0x0	1 = DMA channel operates in the Non-secure state
20:16	RO	0x0	reserved
1 5	D.O.	RO 0x0	0 = DMAWFP executed with the periph operand not set
15	KU		1 = DMAWFP executed with the periph operand set
1.4	RO	0.40	0 = DMAWFP executed with the single operand set
14		0x0	1 = DMAWFP executed with the burst operand set
13:9	RO	0x0	reserved

Bit	Attr	<b>Reset Value</b>	Description
8:4	RO	0×00	indicate the event or peripheral number that the channel is waiting for:  b00000 = DMA channel is waiting for event, or peripheral, 0  b00001 = DMA channel is waiting for event, or peripheral, 1  b00010 = DMA channel is waiting for event, or peripheral, 2  .
3:0	RO	0×0	b11111 = DMA channel is waiting for event, or peripheral, 31  b0000 = Stopped  b0001 = Executing  b0010 = Cache miss  b0011 = Updating PC  b0100 = Waiting for event  b0101 = At barrier  b0110 = reserved  b0111 = Waiting for peripheral  b1000 = Killing  b1001 = Completing  b1010-b1101 = reserved  b1110 = Faulting completing

Address: Operational Base + offset (0x012c)

Bit	Attr	<b>Reset Value</b>	Description
31:0	RO	0x00000000	Program counter for the DMA channel 5 thread

## **DMA SARO**

Address: Operational Base + offset (0x0400)

Bit	Attr	<b>Reset Value</b>	Description
31:0	RO	0x00000000	Address of the source data for DMA channel 0

## DMA_DARO

Address: Operational Base + offset (0x0404)

Bit	Attr	<b>Reset Value</b>	Description
31:0	RO	0x00000000	Address of the Destinationdata for DMA channel 0

## **DMA_CCR0**

Address: Operational Base + offset (0x0408)

Bit	Attr	<b>Reset Value</b>	Description
31:28	RO	0x0	reserved

Bit	Attr	Reset Value	Description
			Bit [27] 0 = AWCACHE[3] is LOW
			1 = AWCACHE[3] is HIGH.
27:25	RO	0x0	Bit [26] $0 = AWCACHE[1]$ is LOW
			1 = AWCACHE[1] is HIGH.
			Bit [25] 0 = AWCACHE[0] is LOW
			1 = AWCACHE[0] is HIGH
			Bit [24] 0 = AWPROT[2] is LOW
			1 = AWPROT[2] is HIGH.
24:22	RO	0x0	Bit [23] 0 = AWPROT[1] is LOW
			1 = AWPROT[1] is HIGH.
			Bit [22] 0 = AWPROT[0] is LOW
			1 = AWPROT[0] is HIGH
			the destination data:
			b0000 = 1 data transfer
			b0001 = 2 data transfers
			b0010 = 3 data transfers
21.10	D.O.	0.40	•
21:18	RU	0x0	•
			hilli 10 data tuamafaua
			b1111 = 16 data transfers.
			The total number of bytes that the DMAC writes out of the MFIFO when it executes a DMAST instruction
			is the product of dst_burst_len and dst_burst_size
			b000 = writes 1 byte per beat
			b001 = writes 2 bytes per beat
			b010 = writes 2 bytes per beat b010 = writes 4 bytes per beat
			b011 = writes 8 bytes per beat
17:15	RO	0×0	b100 = writes 16 bytes per beat
17.15	IXO	0.00	b101-b111 = reserved.
			The total number of bytes that the DMAC writes out of the MFIFO
			when it executes a DMAST instruction
			is the product of dst_burst_len and dst_burst_size
			0 = Fixed-address burst. The DMAC signals AWBURST[0] LOW.
14	RO	0×0	1 = Incrementing-address burst. The DMAC signals AWBURST[0]
ļ ·			HIGH
			Bit [13] 0 = ARCACHE[2] is LOW
			1 = ARCACHE[2] is HIGH.
			Bit [12] 0 = ARCACHE[1] is LOW
13:11	RO	0x0	1 = ARCACHE[1] is HIGH.
			Bit [11] $0 = ARCACHE[0]$ is LOW
			1 = ARCACHE[0] is HIGH

Bit	Attr	Reset Value	Description
			Bit [10] 0 = ARPROT[2] is LOW
			1 = ARPROT[2] is HIGH.
10.0	D.O.	00	Bit [9] 0 = ARPROT[1] is LOW
10:8	RO	0×0	1 = ARPROT[1] is HIGH.
			Bit [8] $0 = ARPROT[0]$ is LOW
			1 = ARPROT[0] is HIGH
			b0000 = 1 data transfer
			b0001 = 2 data transfers
			b0010 = 3 data transfers
7:4	RO	0x0	
7.4	RO		
			b1111 = 16 data transfers.
			The total number of bytes that the DMAC reads into the MFIFO
			when it executes a DMALD instruction
			is the product of src_burst_len and src_burst_size
			b000 = reads 1 byte per beat
			b001 = reads 2 bytes per beat
			b010 = reads 4 bytes per beat
			b011 = reads 8 bytes per beat
3:1	RO	0x0	b100 = reads 16 bytes per beat
			b101-b111 = reserved.
			The total number of bytes that the DMAC reads into the MFIFO
			when it executes a DMALD instruction
			is the product of src_burst_len and src_burst_size
			0 = Fixed-address burst. The DMAC signals ARBURST[0] LOW.
0	RO	0x0	1 = Incrementing-address burst. The DMAC signals ARBURST[0]
			HIGH

## DMA_LCO_0

Address: Operational Base + offset (0x040c)

Bit	Attr	<b>Reset Value</b>	Description			
31:8	RO	0x0	reserved			
7:0	RO	0x00	Loop counter 0 iterations			

# DMA LC1 0

Address: Operational Base + offset (0x0410)

Bit	Attr	<b>Reset Value</b>	Description			
31:8	RO	0x0	reserved			
7:0	RO	0x00	Loop counter 1 iterations			

## **DMA_SAR1**

Address: Operational Base + offset (0x0420)

Bit	Attr	<b>Reset Value</b>	Description	
31:0	RO	0x00000000	Address of the source data for DMA channel 1	

## DMA_DAR1

Address: Operational Base + offset (0x0424)

Bit	Attr	<b>Reset Value</b>	Description
31:0	RO	0x00000000	Address of the Destinationdata for DMA channel 1

# DMA_CCR1

Address: Operational Base + offset (0x0428)

Bit		Reset Value	Description				
31:28	RO	0x0	reserved				
			Bit [27] 0 = AWCACHE[3] is LOW				
			1 = AWCACHE[3] is HIGH.				
27:25	DO.	0x0	Bit [26] 0 = AWCACHE[1] is LOW				
27.23	KO	UXU	1 = AWCACHE[1] is HIGH.				
			Bit [25] 0 = AWCACHE[0] is LOW				
			1 = AWCACHE[0] is HIGH				
			Bit [24] 0 = AWPROT[2] is LOW				
			1 = AWPROT[2] is HIGH.				
24:22	RO	0×0	Bit [23] $0 = AWPROT[1]$ is LOW				
27.22		0.00	1 = AWPROT[1] is HIGH.				
			Bit $[22]$ 0 = AWPROT $[0]$ is LOW				
			1 = AWPROT[0] is HIGH				
			the destination data:				
			b0000 = 1 data transfer				
			b0001 = 2 data transfers				
			b0010 = 3 data transfers				
			•				
21:18	RO	0x0	•				
			b1111 = 16 data transfers.				
			The total number of bytes that the DMAC writes out of the MFIFO				
			when it executes a DMAST instruction				
			is the product of dst_burst_len and dst_burst_size				
			b000 = writes 1 byte per beat				
			b001 = writes 2 bytes per beat				
			b010 = writes 4 bytes per beat b011 = writes 8 bytes per beat				
17.15	DO.	0.0	•				
17:15	ΛŪ	0x0	b100 = writes 16 bytes per beat b101-b111 = reserved.				
			The total number of bytes that the DMAC writes out of the MFIFO when it executes a DMAST instruction				
			is the product of dst_burst_len and dst_burst_size				
			is the product of ust_burst_len and ust_burst_size				

Bit	Attr	Reset Value	Description				
			0 = Fixed-address burst. The DMAC signals AWBURST[0] LOW.				
14	RO	0x0	1 = Incrementing-address burst. The DMAC signals AWBURST[0]				
			HIGH				
			Bit [13] 0 = ARCACHE[2] is LOW				
			1 = ARCACHE[2] is HIGH.				
13:11	RO	0×0	Bit [12] 0 = ARCACHE[1] is LOW				
15.11		0.00	1 = ARCACHE[1] is HIGH.				
			Bit [11] $0 = ARCACHE[0]$ is LOW				
			1 = ARCACHE[0] is HIGH				
			Bit [10] 0 = ARPROT[2] is LOW				
			1 = ARPROT[2] is HIGH.				
10:8	RO	0×0	Bit $[9]$ 0 = ARPROT[1] is LOW				
			1 = ARPROT[1] is HIGH.				
			Bit [8] $0 = ARPROT[0]$ is LOW				
			1 = ARPROT[0] is HIGH				
			b0000 = 1 data transfer				
			b0001 = 2 data transfers				
			b0010 = 3 data transfers				
		0x0	•				
7:4	RO		•				
			b1111 = 16 data transfers.				
			The total number of bytes that the DMAC reads into the MFIFO				
			when it executes a DMALD instruction				
			is the product of src_burst_len and src_burst_size				
			b000 = reads 1 byte per beat				
			b001 = reads 2 bytes per beat				
			b010 = reads 4 bytes per beat b011 = reads 8 bytes per beat				
3:1	RO	0x0	b100 = reads 16 bytes per beat				
3.1	KU	UXU	b101-b111 = reserved.				
			The total number of bytes that the DMAC reads into the MFIFO				
			when it executes a DMALD instruction				
			is the product of src_burst_len and src_burst_size				
			0 = Fixed-address burst. The DMAC signals ARBURST[0] LOW.				
0	RO	0×0	1 = Incrementing-address burst. The DMAC signals ARBURST[0]				
			HIGH				
			1112011				

# DMA LCO 1

Address: Operational Base + offset (0x042c)

Bit	Attr	<b>Reset Value</b>	Description						
31:8	RO	0x0	reserved						
7:0	RO	0x00	Loop counter (	0 iter	rations				

## DMA_LC1_1

Address: Operational Base + offset (0x0430)

Bit	Attr	<b>Reset Value</b>	Description			
31:8	RO	0x0	reserved			
7:0	RO	0x00	Loop counter 1 iterations			

## **DMA SAR2**

Address: Operational Base + offset (0x0440)

Bit	Attr	<b>Reset Value</b>	Description		
31:0	RO	0x00000000	Address of the	e source data for DMA channel 2	

## DMA DAR2

Address: Operational Base + offset (0x0444)

Bit	Attr	<b>Reset Value</b>	Description
31:0	RO	0x00000000	Address of the Destinationdata for DMA channel 2

## **DMA_CCR2**

Address: Operational Base + offset (0x0448)

Bit		Reset Value	Description
31:28	RO	0x0	reserved
			Bit [27] 0 = AWCACHE[3] is LOW
			1 = AWCACHE[3] is HIGH.
27:25	DO.	0x0	Bit [26] 0 = AWCACHE[1] is LOW
27.23	KU	UXU	1 = AWCACHE[1] is HIGH.
			Bit [25] 0 = AWCACHE[0] is LOW
			1 = AWCACHE[0] is HIGH
			Bit [24] 0 = AWPROT[2] is LOW
			1 = AWPROT[2] is HIGH.
24:22	RO	0x0	Bit [23] $0 = AWPROT[1]$ is LOW
27.22	NO .		1 = AWPROT[1] is HIGH.
			Bit $[22]$ 0 = AWPROT $[0]$ is LOW
			1 = AWPROT[0] is HIGH
			the destination data:
			b0000 = 1 data transfer
			b0001 = 2 data transfers
			b0010 = 3 data transfers
21:18	RO	0x0	•
			•
			b1111 = 16 data transfers.
			The total number of bytes that the DMAC writes out of the MFIFO
			when it executes a DMAST instruction
			is the product of dst_burst_len and dst_burst_size

Bit	Attr	Reset Value	Description
			b000 = writes 1 byte per beat
			b001 = writes 2 bytes per beat
			b010 = writes 4 bytes per beat
			b011 = writes 8 bytes per beat
17:15	RO	0x0	b100 = writes 16 bytes per beat
			b101-b111 = reserved.
			The total number of bytes that the DMAC writes out of the MFIFO
			when it executes a DMAST instruction
			is the product of dst_burst_len and dst_burst_size
			0 = Fixed-address burst. The DMAC signals AWBURST[0] LOW.
14	RO	0x0	1 = Incrementing-address burst. The DMAC signals AWBURST[0]
			HIGH
			Bit [13] 0 = ARCACHE[2] is LOW
			1 = ARCACHE[2] is HIGH.
13:11	PΩ	0×0	Bit [12] 0 = ARCACHE[1] is LOW
13.11	KO	0.00	1 = ARCACHE[1] is HIGH.
			Bit [11] $0 = ARCACHE[0]$ is LOW
			1 = ARCACHE[0] is HIGH
			Bit $[10]$ 0 = ARPROT $[2]$ is LOW
			1 = ARPROT[2] is HIGH.
10:8	RO	0x0	Bit $[9]$ 0 = ARPROT $[1]$ is LOW
10.0		o no	1 = ARPROT[1] is HIGH.
			Bit [8] $0 = ARPROT[0]$ is LOW
			1 = ARPROT[0] is HIGH
			b0000 = 1 data transfer
			b0001 = 2 data transfers
			b0010 = 3 data transfers
			•
7:4	RO	0x0	•
			b1111 = 16 data transfers.
			The total number of bytes that the DMAC reads into the MFIFO
			when it executes a DMALD instruction
			is the product of src_burst_len and src_burst_size
			b000 = reads 1 byte per beat
			b001 = reads 2 bytes per beat
			b010 = reads 4 bytes per beat
3:1	RO	0x0	b011 = reads 8 bytes per beat
3.1	KU	UXU	b100 = reads 16 bytes per beat b101-b111 = reserved.
			The total number of bytes that the DMAC reads into the MFIFO
			when it executes a DMALD instruction
			is the product of src_burst_len and src_burst_size

Bit	Attr	<b>Reset Value</b>	Description
			0 = Fixed-address burst. The DMAC signals ARBURST[0] LOW.
0	RO	0x0	1 = Incrementing-address burst. The DMAC signals ARBURST[0]
			HIGH

## DMA_LC0_2

Address: Operational Base + offset (0x044c)

Bit	Attr	<b>Reset Value</b>	Description
31:8	RO	0x0	reserved
7:0	RO	0x00	Loop counter 0 iterations

#### DMA_LC1_2

Address: Operational Base + offset (0x0450)

Bit	Attr	<b>Reset Value</b>	Description
31:8	RO	0x0	reserved
7:0	RO	0x00	Loop counter 1 iterations

## **DMA SAR3**

Address: Operational Base + offset (0x0460)

Bit	Attr	<b>Reset Value</b>	Description
31:0	RO	0x00000000	Address of the source data for DMA channel 3

## **DMA_DAR3**

Address: Operational Base + offset (0x0464)

Bit	Attr	<b>Reset Value</b>	Description
31:0	RO	0x00000000	Address of the Destinationdata for DMA channel 3

## **DMA_CCR3**

Address: Operational Base + offset (0x0468)

Bit	Attr	<b>Reset Value</b>	Description
31:28	RO	0x0	reserved
			Bit [27] 0 = AWCACHE[3] is LOW
			1 = AWCACHE[3] is HIGH.
27:25	DO.	0.40	Bit [26] 0 = AWCACHE[1] is LOW
27.23	KU	0x0	1 = AWCACHE[1] is HIGH.
			Bit [25] 0 = AWCACHE[0] is LOW
			1 = AWCACHE[0] is HIGH
	RO	O 0x0	Bit [24] $0 = AWPROT[2]$ is LOW
			1 = AWPROT[2] is HIGH.
24.22			Bit [23] 0 = AWPROT[1] is LOW
24.22			1 = AWPROT[1] is HIGH.
			Bit [22] 0 = AWPROT[0] is LOW
			1 = AWPROT[0] is HIGH

Bit	Attr	Reset Value	Description
			the destination data:
			b0000 = 1 data transfer
			b0001 = 2 data transfers
			b0010 = 3 data transfers
21:18	RO	0x0	
			b1111 = 16 data transfers.
			The total number of bytes that the DMAC writes out of the MFIFO
			when it executes a DMAST instruction
			is the product of dst_burst_len and dst_burst_size
			b000 = writes 1 byte per beat
			b001 = writes 2 bytes per beat
			b010 = writes 4 bytes per beat
			b011 = writes 8 bytes per beat
17:15	RO	0x0	b100 = writes 16 bytes per beat
			b101-b111 = reserved.
			The total number of bytes that the DMAC writes out of the MFIFO
			when it executes a DMAST instruction
			is the product of dst_burst_len and dst_burst_size
			0 = Fixed-address burst. The DMAC signals AWBURST[0] LOW.
14	RO	0x0	1 = Incrementing-address burst. The DMAC signals AWBURST[0]
			HIGH
			Bit [13] 0 = ARCACHE[2] is LOW
			1 = ARCACHE[2] is HIGH.
13:11	RO	0×0	Bit [12] 0 = ARCACHE[1] is LOW
		o x o	1 = ARCACHE[1] is HIGH.
			Bit [11] $0 = ARCACHE[0]$ is LOW
			1 = ARCACHE[0] is HIGH
			Bit [10] $0 = ARPROT[2]$ is LOW
			1 = ARPROT[2] is HIGH.
10:8	RO	0x0	Bit [9] 0 = ARPROT[1] is LOW
			1 = ARPROT[1] is HIGH.
			Bit [8] 0 = ARPROT[0] is LOW
			1 = ARPROT[0] is HIGH
			b0000 = 1 data transfer
			b0001 = 2 data transfers
			b0010 = 3 data transfers
			•
7:4	RO	0x0	•
			b1111 = 16 data transfers.
			The total number of bytes that the DMAC reads into the MFIFO
			when it executes a DMALD instruction
			is the product of src_burst_len and src_burst_size
			lis the broduct or sic_burst_len and sic_burst_size

Bit	Attr	<b>Reset Value</b>	Description
			b000 = reads 1 byte per beat
			b001 = reads 2 bytes per beat
			b010 = reads 4 bytes per beat
			b011 = reads 8 bytes per beat
3:1	RO	0×0	b100 = reads 16 bytes per beat
			b101-b111 = reserved.
			The total number of bytes that the DMAC reads into the MFIFO
			when it executes a DMALD instruction
			is the product of src_burst_len and src_burst_size
		0x0	0 = Fixed-address burst. The DMAC signals ARBURST[0] LOW.
0	RO		1 = Incrementing-address burst. The DMAC signals ARBURST[0]
			HIGH

## DMA_LC0_3

Address: Operational Base + offset (0x046c)

Bit	Attr	<b>Reset Value</b>	Description
31:8	RO	0x0	reserved
7:0	RO	0x00	Loop counter 0 iterations

## DMA_LC1_3

Address: Operational Base + offset (0x0470)

Bit	Attr	<b>Reset Value</b>	Description
31:8	RO	0x0	reserved
7:0	RO	0x00	Loop counter 1 iterations

## DMA SAR4

Address: Operational Base + offset (0x0480)

	Bit	Attr	<b>Reset Value</b>	Description
('')	31:0	RO	0x00000000	Address of the source data for DMA channel 4

## DMA_DAR4

Address: Operational Base + offset (0x0484)

Bit	Attr	<b>Reset Value</b>	Description
31:0	RO	0x00000000	Address of the Destinationdata for DMA channel 4

## DMA_CCR4

Address: Operational Base + offset (0x0488)

Bit	Attr	<b>Reset Value</b>		Description	
31:28	RO	0x0	reserved		

Bit	Attr	Reset Value	Description
			Bit [27] 0 = AWCACHE[3] is LOW
			1 = AWCACHE[3] is HIGH.
27.25	D.O.	00	Bit [26] 0 = AWCACHE[1] is LOW
27:25	KU	0x0	1 = AWCACHE[1] is HIGH.
			Bit [25] 0 = AWCACHE[0] is LOW
			1 = AWCACHE[0] is HIGH
			Bit [24] $0 = AWPROT[2]$ is LOW
			1 = AWPROT[2] is HIGH.
24:22	PΩ	0×0	Bit [23] 0 = AWPROT[1] is LOW
24.22	KO	0.00	1 = AWPROT[1] is HIGH.
			Bit $[22]$ 0 = AWPROT $[0]$ is LOW
			1 = AWPROT[0] is HIGH
			the destination data:
			b0000 = 1 data transfer
			b0001 = 2 data transfers
			b0010 = 3 data transfers
21:18	RO	0x0	
			b1111 = 16 data transfers.
			The total number of bytes that the DMAC writes out of the MFIFO
			when it executes a DMAST instruction
			is the product of dst_burst_len and dst_burst_size
			b000 = writes 1 byte per beat
			b001 = writes 2 bytes per beat
			b010 = writes 4 bytes per beat
			b011 = writes 8 bytes per beat
17:15	RO	0x0	b100 = writes 16 bytes per beat
			b101-b111 = reserved.
			The total number of bytes that the DMAC writes out of the MFIFO
			when it executes a DMAST instruction
			is the product of dst_burst_len and dst_burst_size
	D.C.		0 = Fixed-address burst. The DMAC signals AWBURST[0] LOW.
14	RO	0x0	1 = Incrementing-address burst. The DMAC signals AWBURST[0]
			HIGH
			Bit [13] 0 = ARCACHE[2] is LOW
			1 = ARCACHE[2] is HIGH.
13:11	RO	0×0	Bit [12] 0 = ARCACHE[1] is LOW
			1 = ARCACHE[1] is HIGH.
			Bit [11] 0 = ARCACHE[0] is LOW
			1 = ARCACHE[0] is HIGH

Bit	Attr	Reset Value	Description
			Bit [10] 0 = ARPROT[2] is LOW
			1 = ARPROT[2] is HIGH.
10.0	D.O.	0.40	Bit [9] 0 = ARPROT[1] is LOW
10:8	RO	0x0	1 = ARPROT[1] is HIGH.
			Bit [8] $0 = ARPROT[0]$ is LOW
			1 = ARPROT[0] is HIGH
			b0000 = 1 data transfer
			b0001 = 2 data transfers
			b0010 = 3 data transfers
7:4	RO	0x0	
7.4	KO		
			b1111 = 16 data transfers.
			The total number of bytes that the DMAC reads into the MFIFO
			when it executes a DMALD instruction
			is the product of src_burst_len and src_burst_size
			b000 = reads 1 byte per beat
		0×0	b001 = reads 2 bytes per beat
			b010 = reads 4 bytes per beat
			b011 = reads 8 bytes per beat
3:1	RO		b100 = reads 16 bytes per beat
			b101-b111 = reserved.
			The total number of bytes that the DMAC reads into the MFIFO
			when it executes a DMALD instruction
			is the product of src_burst_len and src_burst_size
			0 = Fixed-address burst. The DMAC signals ARBURST[0] LOW.
0	RO	0x0	1 = Incrementing-address burst. The DMAC signals ARBURST[0]
			HIGH

## DMA_LCO_4

Address: Operational Base + offset (0x048c)

Bit	Attr	<b>Reset Value</b>	Description
31:8	RO	0x0	reserved
7:0	RO	0x00	Loop counter 0 iterations

# DMA LC1 4

Address: Operational Base + offset (0x0490)

Bit	Attr	<b>Reset Value</b>	Description
31:8	RO	0x0	reserved
7:0	RO	0x00	Loop counter 1 iterations

## **DMA_SAR5**

Address: Operational Base + offset (0x04a0)

Bit	Attr	<b>Reset Value</b>	Description
31:0	RO	0x00000000	Address of the source data for DMA channel 5

## **DMA_DAR5**

Address: Operational Base + offset (0x04a4)

Bit	Attr	<b>Reset Value</b>	Description
31:0	RO	0x00000000	Address of the Destinationdata for DMA channel 5

## **DMA_CCR5**

Address: Operational Base + offset (0x04a8)

Bit		Reset Value	Description
31:28	RO	0x0	reserved
			Bit [27] 0 = AWCACHE[3] is LOW
			1 = AWCACHE[3] is HIGH.
27:25	DO.	0.40	Bit [26] 0 = AWCACHE[1] is LOW
27:25	KU	0x0	1 = AWCACHE[1] is HIGH.
			Bit [25] 0 = AWCACHE[0] is LOW
			1 = AWCACHE[0] is HIGH
			Bit [24] 0 = AWPROT[2] is LOW
			1 = AWPROT[2] is HIGH.
24:22	PΩ	0×0	Bit [23] $0 = AWPROT[1]$ is LOW
24.22	KO	OXO	1 = AWPROT[1] is HIGH.
			Bit $[22]$ 0 = AWPROT $[0]$ is LOW
			1 = AWPROT[0] is HIGH
			the destination data:
			b0000 = 1 data transfer
			b0001 = 2 data transfers
			b0010 = 3 data transfers
21:18	RO	0x0	
			•
			b1111 = 16 data transfers.
			The total number of bytes that the DMAC writes out of the MFIFO
			when it executes a DMAST instruction
			is the product of dst_burst_len and dst_burst_size
			b000 = writes 1 byte per beat
			b001 = writes 2 bytes per beat
			b010 = writes 4 bytes per beat
			b011 = writes 8 bytes per beat
17:15	RO	0x0	b100 = writes 16 bytes per beat
			b101-b111 = reserved.
			The total number of bytes that the DMAC writes out of the MFIFO
			when it executes a DMAST instruction
			is the product of dst_burst_len and dst_burst_size

Bit	Attr	Reset Value	Description
			0 = Fixed-address burst. The DMAC signals AWBURST[0] LOW.
14	RO	0x0	1 = Incrementing-address burst. The DMAC signals AWBURST[0]
			HIGH
			Bit [13] 0 = ARCACHE[2] is LOW
			1 = ARCACHE[2] is HIGH.
13:11	DΟ	0×0	Bit [12] 0 = ARCACHE[1] is LOW
15.11	KO	0.00	1 = ARCACHE[1] is HIGH.
			Bit [11] $0 = ARCACHE[0]$ is LOW
			1 = ARCACHE[0] is HIGH
			Bit $[10]$ 0 = ARPROT $[2]$ is LOW
			1 = ARPROT[2] is HIGH.
10:8	RO	0×0	Bit $[9]$ 0 = ARPROT[1] is LOW
10.0		0.00	1 = ARPROT[1] is HIGH.
			Bit [8] $0 = ARPROT[0]$ is LOW
			1 = ARPROT[0] is HIGH
			b0000 = 1 data transfer
			b0001 = 2 data transfers
			b0010 = 3 data transfers
			•
7:4	RO	0x0	•
			b1111 = 16 data transfers.
			The total number of bytes that the DMAC reads into the MFIFO
			when it executes a DMALD instruction
			is the product of src_burst_len and src_burst_size
			b000 = reads 1 byte per beat
			b001 = reads 2 bytes per beat
			b010 = reads 4 bytes per beat
3:1	RO	0x0	b011 = reads 8 bytes per beat
3.1	KU	UXU	b100 = reads 16 bytes per beat b101-b111 = reserved.
			The total number of bytes that the DMAC reads into the MFIFO
			when it executes a DMALD instruction
			is the product of src_burst_len and src_burst_size
			0 = Fixed-address burst. The DMAC signals ARBURST[0] LOW.
0	RO	0×0	1 = Incrementing-address burst. The DMAC signals ARBURST[0]
			HIGH
			14011

# DMA LCO 5

Address: Operational Base + offset (0x04ac)

Bit	Attr	<b>Reset Value</b>	Description
31:8	RO	0x0	reserved
7:0	RO	0x00	oop counter 0 iterations

## DMA_LC1_5

Address: Operational Base + offset (0x04b0)

Bit	Attr	<b>Reset Value</b>	Description
31:8	RO	0x0	reserved
7:0	RO	0x00	Loop counter 1 iterations

## **DMA DBGSTATUS**

Address: Operational Base + offset (0x0d00)

Bit	Attr	Reset Value	Description	
31:2	RO	0x0	reserved	
1:0	RO	0×0	b00 = execute the instruction that the DBGINST [1:0] Registers contain b01 = reserved b10 = reserved b11 = reserved	

## DMA_DBGCMD

Address: Operational Base + offset (0x0d04)

Bit	Attr	<b>Reset Value</b>	Description			
31:2	RO	0x0	reserved			
1:0	WO	0x0	b00 = execute the instruction that the DBGINST [1:0] Registers contain b01 = reserved b10 = reserved b11 = reserved			

## **DMA_DBGINSTO**

Address: Operational Base + offset (0x0d08)

Bit	Attr	<b>Reset Value</b>	Description	
31:24	WO	0x00	Instruction byte 1	
23:16	WO	0x00	Instruction byte 0	
15:11	RO	0x0	reserved	
			b000 = DMA channel 0	
			b001 = DMA channel 1	
10:8	WO	0x0	b010 = DMA channel 2	
			b111 = DMA channel 7	
7:1	RO	0x0	reserved	
0	WO	0.40	0 = DMA manager thread	
U	WO	WO	O 0x0	1 = DMA channel

## **DMA_DBGINST1**

Address: Operational Base + offset (0x0d0c)

Bit	Attr	<b>Reset Value</b>	Description
31:24	WO	0x00	Instruction byte 5
23:16	WO	0x00	Instruction byte 4
15:8	WO	0x00	Instruction byte 3
7:0	WO	0x00	Instruction byte 2

## DMA CRO

Address: Operational Base + offset (0x0e00)

Bit		<b>Reset Value</b>	Description
31:22	RO	0x0	reserved
			b00000 = 1 interrupt output, irq[0]
			b00001 = 2 interrupt outputs, irq[1:0]
			b00010 = 3 interrupt outputs, irq[2:0]
21:17	RO	0x02	
			•
			b11111 = 32 interrupt outputs, irq[31:0]
			b00000 = 1 peripheral request interface
			b00001 = 2 peripheral request interfaces
			b00010 = 3 peripheral request interfaces
16:12	RO	0x07	•
			•
11.7	D.O.	00	b11111 = 32 peripheral request interfaces
11:7	RO	0x0	reserved
			b000 = 1 DMA channel
			b001 = 2 DMA channels b010 = 3 DMA channels
6:4	RO	0x5	DOTO = 5 DMA CHAIITIEIS
0.4	KU	UXS	•
			•
			b111 = 8 DMA channels
3	RO	0×0	reserved
			0 = boot_manager_ns was LOW
2	RO	0×0	1 = boot_manager_ns was HIGH
1	D.C.	0.40	0 = boot_from_pc was LOW
1	RO	0x0	1 = boot_from_pc was HIGH
			0 = the DMAC does not provide a peripheral request interface
0	RO	0x1	1 = the DMAC provides the number of peripheral request
			interfaces that the num_periph_req field specifies

# DMA CR1

Address: Operational Base + offset (0x0e04)

Bit	Attr	Reset Value	Description		
31:8	RO	0x0	reserved		
			b0000 = 1 i-cache line		
			b0001 = 2 i-cache lines		
7:4	RO	0x5	b0010 = 3 i-cache lines		
			b1111 = 16 i-cache lines		
3	RO	0x0	reserved		
			b000-b001 = reserved		
	D.O.	O 0x7	b010 = 4 bytes		
2:0			b011 = 8 bytes		
2.0	RO		b100 = 16 bytes		
			b101 = 32 bytes		
			b110-b111 = reserved		

## DMA CR2

Address: Operational Base + offset (0x0e08)

Bit	Attr	<b>Reset Value</b>	Description	
31:0	RO	10x00000000	Provides the value of boot_addr[31:0] when the DMAC exited	
			from reset	

# DMA CR3

Address: Operational Base + offset (0x0e0c)

Bit	Attr	<b>Reset Value</b>		Description
21.0	DΟ	() 10x00000000	Bit [N] = 0	Assigns event <n> or irq[N] to the Secure state.</n>
31.0	KU		Bit $[N] = 1$	Assigns event <n> or irq[N] to the Non-secure state</n>

## DMA_CR4

Address: Operational Base + offset (0x0e10)

			1 onset (oxocio)		
Bit	Attr	<b>Reset Value</b>	Description		
		0x0000006	Bit $[N] = 0$ Assigns peripheral request interface N to the Secure		
31:0	RO		state.		
31.0			Bit [N] = 1 Assigns peripheral request interface N to the Non-		
			secure state		

## **DMA_CRDn**

Address: Operational Base + offset (0x0e14)

Bit	Attr	<b>Reset Value</b>	Description			
31:30	RO	0x0	reserved			
29:20	RO	0x020	b000000000 = 1 line b000000001 = 2 lines  b111111111 = 1024 lines			

Attr	Reset Value	Description		
		b0000 = 1 line b0001 = 2 lines		
RO	0x9			
		b1111 = 16 lines		
RO	0x0	reserved		
		b000 = 1		
RO	0×4	b001 = 2		
NO.	JUXT	 b111 = 8		
RO	0x7	b0000 = 1 line b0001 = 2 lines 		
DO	0.40	b1111 = 16 lines		
RO	0x0	reserved		
RO	$\begin{array}{c} b000 = 1 \\ b001 = 2 \\ \\ b111 = 8 \end{array}$			
RO	0x0	reserved		
RO	b000 = reserved b001 = reserved b010 = 32-bit b011 = 64-bit b100 = 128-bit b101-b111 = reserved			
	RO RO RO RO	RO 0x0  RO 0x4  RO 0x7  RO 0x0  RO 0x3  RO 0x0		

## DMA_WD

Address: Operational Base + offset (0x0e80)

Bit	Attr	<b>Reset Value</b>	Description	
31:1	RO	0x0	reserved	
			0 = the DMAC aborts all of the contributing DMA channels and	
0	RW	0x0	sets irq_abort HIGH	
			1 = the DMAC sets irq_abort HIGH	

# 11.5 Timing Diagram

Following picture shows the relationship between dma_req and dma_ack.

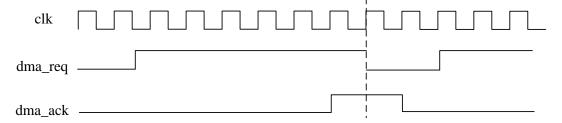



Fig.11-3DMAC request and acknowledge timing

# 11.6 Interface Description

DMAC has the following tie-off signals. It can be configured by SGRF register. (Please refer to the GRF chapter to find them)

Table 11-2DMAC boot interface

Interface	Reset	Control source
	value	
boot_manager_ns	0x1	sgrf_dmac_con3[0]
boot_irq_ns	0xFFFF	sgrf_dmac_con0[15:0]
boot_periph_ns	0xFFFFFFF	{sgrf_dmac_con2[15:0],sgrf_dmac_con1[15:0]}
grf_drtype_uart0_tx	0x1	sgrf_dmac_con4[1:0]
grf_drtype_uart0_rx	0x1	sgrf_dmac_con4[3:2]
grf_drtype_uart1_tx	0x1	sgrf_dmac_con4[5:4]
grf_drtype_uart1_rx	0x1	sgrf_dmac_con4[7:6]
grf_drtype_uart2_tx	0x1	sgrf_dmac_con4[9:8]
grf_drtype_uart2_rx	0x1	sgrf_dmac_con4[11:10]
grf_drtype_uart3_tx	0x1	sgrf_dmac_con4[13:12]
grf_drtype_uart3_rx	0x1	sgrf_dmac_con4[15:14]
grf_drtype_uart4_tx	0x1	sgrf_dmac_con5[1:0]
grf_drtype_uart4_rx	0x1	sgrf_dmac_con5[3:2]
grf_drtype_uart5_tx	0x1	sgrf_dmac_con5[5:4]
grf_drtype_uart5_rx	0x1	sgrf_dmac_con5[7:6]
grf_drtype_spi0_tx	0x1	sgrf_dmac_con5[9:8]
grf_drtype_spi0_rx	0x1	sgrf_dmac_con5[11:10]
grf_drtype_spi1_tx	0x1	sgrf_dmac_con5[13:12]
grf_drtype_spi1_rx	0x1	sgrf_dmac_con5[15:14]
grf_drtype_i2s0_8ch_tx	0x1	sgrf_dmac_con6[1:0]
grf_drtype_i2s0_8ch_rx	0x1	sgrf_dmac_con6[3:2]
grf_drtype_i2s1_2ch_tx	0x1	sgrf_dmac_con6[5:4]
grf_drtype_i2s1_2ch_rx	0x1	sgrf_dmac_con6[7:6]
grf_drtype_i2s2_8ch_tx	0x1	sgrf_dmac_con6[9:8]
grf_drtype_i2s2_8ch_rx	0x1	sgrf_dmac_con6[11:10]
grf_drtype_pwm0_tx	0x1	sgrf_dmac_con6[13:12]
grf_drtype_pwm1_tx	0x1	sgrf_dmac_con6[15:14]
grf_drtype_pdm	0x1	sgrf_dmac_con7[1:0]

#### boot_manager_ns

When the DMAC exits from reset, this signal controls the security state of the DMA manager thread:

0 = assigns DMA manager to the Secure state

1 = assigns DMA manager to the Non-secure state.

#### boot_irq_ns

Controls the security state of an event-interrupt resource, when the DMAC exits from reset: boot_irq_ns[x] is LOW

The DMAC assigns event<x> or irq[x] to the Secure state.

boot_irq_ns[x] is HIGH

The DMAC assigns event<x> or irq[x] to the Non-secure state.

#### boot_periph_ns

Controls the security state of a peripheral request interface, when the DMAC exits from reset:

boot_periph_ns[x] is LOW

The DMAC assigns peripheral request interface x to the Secure state.

boot periph ns[x] is HIGH

The DMAC assigns peripheral request interface x to the Non-secure state.

#### grf_drtype_<x>

The DMAC sets the state of the request type flag:

grf drtype  $\langle x \rangle [1:0] = b00$ : request type $\langle x \rangle = Single$ .

 $grf_drtype_<x>[1:0]=b01: request_type<x> = Burst.$ 

# 11.7 Application Notes

## 11.7.1 Using the APB slave interfaces

You must ensure that you use the appropriate APB interface, depending on the security state in which the boot_manager_ns initializes the DMAC to operate. For example, if the DMAC is in the secure state, you must issue the instruction using the secure APB interface, otherwise the DMAC ignores the instruction. You can use the secure APB interface, or the non-secure APB interface, to start or restart a DMA channel when the DMAC is in the Non-secure state. The necessary steps to start a DMA channel thread using the debug instruction registers as following:

- Create a program for the DMA channel.
- 2. Store the program in a region of system memory.
- 3. Poll the DBGSTATUS Register to ensure that debug is idle, that is, the dbgstatus bit is 0.
- 4. Write to the DBGINSTO Register and enter the:
- Instruction byte 0 encoding for DMAGO. Instruction byte 1 encoding for DMAGO.
- Debug thread bit to 0. This selects the DMA manager thread.
- Write to the DBGINST1 Register with the DMAGO instruction byte [5:2] data, see Debug Instruction-1 Register o. You must set these four bytes to the address of the first instruction in the program, that was written to system memory in step 2.
- 6. Writing zero to the DBGCMD Register. The DMAC starts the DMA channel thread and sets the dbgstatus bit to 1.

#### 11.7.2 Security usage

#### DMA manager thread is in the secure state

If the DNS bit is 0, the DMA manager thread operates in the secure state and it only performs secure instruction fetches. When a DMA manager thread in the secure state processes:

#### **DMAGO**

It uses the status of the ns bit, to set the security state of the DMA channel thread by writing to the CNS bit for that channel.

#### **DMAWFE**

It halts execution of the thread until the event occurs. When the event occurs, the DMAC continues execution of the thread, irrespective of the security state of the corresponding INS bit.

#### **DMASEV**

It sets the corresponding bit in the INT EVENT RIS Register, irrespective of the security state of the corresponding INS bit.

#### DMA manager thread is in the Non-secure state

If the DNS bit is 1, the DMA manager thread operates in the Non-secure state, and it only performs non-secure instruction fetches. When a DMA manager thread in the Non-secure state processes:

#### **DMAGO**

The DMAC uses the status of the ns bit, to control if it starts a DMA channel thread. If:

ns = 0

The DMAC does not start a DMA channel thread and instead it:

- 1. Executes a NOP.
- 2. Sets the FSRD Register, see Fault Status DMA Manager
- 3. Sets the dmago_err bit in the FTRD Register, see Fault Type DMA Manager Register.
- 4. Moves the DMA manager to the Faulting state.

ns = 1

The DMAC starts a DMA channel thread in the Non-secure state and programs the CNS bit to be non-secure.

#### **DMAWFE**

The DMAC uses the status of the corresponding INS bit, in the CR3 Register, to control if it waits for the event. If:

INS = 0

The event is in the Secure state. The DMAC:

- 1. Executes a NOP.
- 2. Sets the FSRD Register, see Fault Status DMA Manager Register.
- 3. Sets the mgr_evnt_err bit in the FTRD Register, see Fault Type DMA Manager Register.
- 4. Moves the DMA manager to the Faulting state.

INS = 1

The event is in the Non-secure state. The DMAC halts execution of the thread and waits for the event to occur.

#### **DMASEV**

The DMAC uses the status of the corresponding INS bit, in the CR3Register, to control if it creates the event-interrupt. If:

INS = 0

The event-interrupt resource is in the secure state. The DMAC:

- 1. Executes a NOP.
- 2. Sets the FSRD Register, see Fault Status DMA Manager Register.
- 3. Sets the mgr_evnt_err bit in the FTRD Register, see Fault Type DMA Manager Register.
- 4. Moves the DMA manager to the Faulting state.

INS = 1

The event-interrupt resource is in the Non-secure state. The DMAC creates the event-interrupt.

#### DMA channel thread is in the secure state

When the CNS bit is 0, the DMA channel thread is programmed to operate in the Secure state and it only performs secure instruction fetches.

When a DMA channel thread in the secure state processes the following instructions:

#### **DMAWFE**

The DMAC halts execution of the thread until the event occurs. When the event occurs, the DMAC continues execution of the thread, irrespective of the security state of the corresponding INS bit, in the CR3 Register.

#### **DMASEV**

The DMAC creates the event-interrupt, irrespective of the security state of the corresponding INS bit, in the CR3 Register.

#### **DMAWFP**

The DMAC halts execution of the thread until the peripheral signals a DMA request. When this occurs, the DMAC continues execution of the thread, irrespective of the security state of the corresponding PNS bit, in the CR4 Register.

#### **DMALDP, DMASTP**

The DMAC sends a message to the peripheral to communicate that data transfer is complete, irrespective of the security state of the corresponding PNS bit, in the CR4 Register.

#### **DMAFLUSHP**

The DMAC clears the state of the peripheral and sends a message to the peripheral to resend its level status, irrespective of the security state of the corresponding PNS bit, in the CR4 Register.

When a DMA channel thread is in the Secure state, it enables the DMAC to perform secure and non-secure AXI accesses

#### DMA channel thread is in the Non-secure state

When the CNS bit is 1, the DMA channel thread is programmed to operate in the Non-secure state and it only performs non-secure instruction fetches.

When a DMA channel thread in the Non-secure state processes the following instructions:

#### **DMAWFE**

The DMAC uses the status of the corresponding INS bit, in the CR3 Register, to control if it waits for the event. If:

INS = 0

The event is in the Secure state. The DMAC:

- 1. Executes a NOP.
- 2. Sets the appropriate bit in the FSRC Register that corresponds to the DMA channel number. See Fault Status DMA Channel Register.
- 3. Sets the chevnterr bit in the FTRn Register, see Fault Type DMA Channel Registers.
- 4. Moves the DMA channel to the Faulting completing state.

INS = 1

The event is in the Non-secure state. The DMAC halts execution of the thread and waits for the event to occur.

#### **DMASEV**

The DMAC uses the status of the corresponding INS bit, in the CR3 Register, to control if it creates the event. If:

INS = 0

The event-interrupt resource is in the Secure state. The DMAC:

- 1. Executes a NOP.
- 2. Sets the appropriate bit in the FSRC Register that corresponds to the DMA channel number. See Fault Status DMA Channel Register.
- 3. Sets the ch_evnt_err bit in the FTRn Register, see Fault Type DMA Channel Registers .
- 4. Moves the DMA channel to the Faulting completing state.

INS = 1

The event-interrupt resource is in the Non-secure state. The DMAC creates the event-interrupt.

#### **DMAWFP**

The DMAC uses the status of the corresponding PNS bit, in the CR4 Register, to control if it waits for the peripheral to signal a request. If:

PNS = 0

The peripheral is in the Secure state. The DMAC:

- 1. Executes a NOP.
- 2. Sets the appropriate bit in the FSRC Register that corresponds to the DMA channel number. See Fault Status DMA Channel Register.
- 3. Sets the chaperipherr bit in the FTRn Register, see Fault Type DMA Channel Registers.
- 4. Moves the DMA channel to the Faulting completing state.

PNS = 1

The peripheral is in the Non-secure state. The DMAC halts execution of the thread and waits for the peripheral to signal a request.

#### **DMALDP, DMASTP**

The DMAC uses the status of the corresponding PNS bit, in the CR4 Register, to control if it sends an acknowledgement to the peripheral. If:

PNS = 0

The peripheral is in the secure state. The DMAC:

- 1. Executes a NOP.
- 2. Sets the appropriate bit in the FSRC Register that corresponds to the DMA channel number. See Fault Status DMA Channel Register.
- 3. Sets the ch_periph_err bit in the FTRn Register, see Fault Type DMA Channel Registers.
- 4. Moves the DMA channel to the Faulting completing state.

PNS = 1

The peripheral is in the Non-secure state. The DMAC sends a message to the peripheral to communicate when the data transfer is complete.

#### **DMAFLUSHP**

The DMAC uses the status of the corresponding PNS bit, in the CR4 Register, to control if it sends a flush request to the peripheral. If:

PNS = 0

The peripheral is in the secure state. The DMAC:

- Executes a NOP.
- 2. Sets the appropriate bit in the FSRC Register that corresponds to the DMA channel number. See Fault Status DMA Channel Register.
- 3. Sets the ch_periph_err bit in the FTRn Register, see Fault Type DMA Channel Registers.
- 4. Moves the DMA channel to the Faulting completing state.

PNS = 1

The peripheral is in the Non-secure state. The DMAC clears the state of the peripheral and sends a message to the peripheral to resend its level status.

When a DMA channel thread is in the Non-secure state, and a DMAMOV CCR instruction attempts to program the channel to perform a secure AXI transaction, the DMAC:

- 1. Executes a DMANOP.
- 2. Sets the appropriate bit in the FSRC Register that corresponds to the DMA channel number. See Fault Status DMA Channel Register.
- 3. Sets the ch_rdwr_err bit in the FTRn Register, see Fault Type DMA Channel Registers.
- 4. Moves the DMA channel thread to the Faulting completing state.

## 11.7.3 Programming restrictions

## **Fixed unaligned bursts**

The DMAC does not support fixed unaligned bursts. If you program the following conditions, the DMAC treats this as a programming error:

Unaligned read

- src_inc field is 0 in the CCRn Register
- the SARn Register contains an address that is not aligned to the size of data that the src_burst_size field contain

Unaligned write

- dst_inc field is 0 in the CCRn Register
- the DARn Register contains an address that is not aligned to the size of data that the dst_burst_size field contains

#### **Endian swap size restrictions**

If you program the endian_swap_size field in the CCRn Register, to enable a DMA channel to perform an endian swap then you must set the corresponding SARn Register and the corresponding DARn Register to contain an address that is aligned to the value that the endian swap size field contains.

#### Updating DMA channel control registers during a DMA cycle restrictions

Prior to the DMAC executing a sequence of DMALD and DMAST instructions, the values you program in to the CCRn Register, SARn Register, and DARn Register control the data byte lane manipulation that the DMAC performs when it transfers the data from the source address to the destination address. You'd better not update these registers during a DMA cycle

#### Resource sharing between DMA channels

DMA channel programs share the MFIFO data storage resource. You must not start a set of concurrently running DMA channel programs with a resource requirement that exceeds the configured size of the MFIFO. If you exceed this limit then the DMAC might lock up and generate a Watchdog abort.

#### 11.7.4 Unaligned transfers may be corrupted

For a configuration with more than one channel, if any of channels 1 to 7 is performing transfers between certain types of misaligned source and destination addresses, then the output data may be corrupted by the action of channel 0.

Data corruption might occur if all of the following are true:

- 1. Two beats of AXI read data are received for one of channels 1 to 7.
- 2. Source and destination address alignments mean that each read data beat is splited across two lines in the data buffer (see Splitting data, below).
- 3. There is one idle cycle between the two read data beats.
- 4. Channel 0 performs an operation that updates channel control information during this idle

cycle (see Updates to channel control information, below)

### Splitting data

Depending upon the programmed values for the DMA transfer, one beat of read data from the AXI interface need to be splited across two lines in the internal data buffer. This occurs when the read data beat contains data bytes which will be written to addresses that wrap around at the AXI interface data width, so that these bytes could not be transferred by a single AXI write data beat of the full interface width.

Most applications of DMA-330 do not split data in this way, so are NOT vulnerable to data corruption from this defect.

The following cases are NOT vulnerable to data corruption because they do not split data:

- Byte lane offset between source and destination addresses is 0 when source and destination addresses have the same byte lane alignment, the offset is 0 and a wrap operation that splits data cannot occur.
- Byte lane offset between source and destination addresses is a multiple of source size Table 11-3Source size in CCRn

Source size in CCRn	Allowed offset between SARn and DARn
SS8	any offset allowed.
SS16	0,2,4,6,8,10,12,14
SS32	0,4,8,12
SS64	0,8

## 11.7.5 Interrupt shares between channel

As the DMAC does not record which channel (or list of channels) have asserted an interrupt. So it will depend on your program and whether any of the visible information for that program can be used to determine progress, and help identify the interrupt source. There are 4 likely information sources that can be used to determine the progress made by

- Program counter (PC)
- Source address

a program:

- Destination address
- Loop counters (LC)

For example, a program might emit an interrupt each time that it iterates around a loop. In this case, the interrupt service routine (ISR) would need to store the loop value of each channel when it is called, and then compare against the new value when it is next called. A change in value would indicate that the program has progressed.

The ISR must be carefully written to ensure that no interrupts are lost. The sequence of operations is as follows:

- 1. Disable interrupts
- 2. Immediately clear the interrupt in DMA-330
- Check the relevant registers for both channels to determine which must be serviced
- 4. Take appropriate action for the channels
- 5. Re-enable interrupts and exit ISR

## 11.7.6 Instruction sets

Table 11-4DMAC Instruction sets

Mnemonic	Instruction	Thread usage
DMAADDH	Add Halfword	С
DMAEND	End	M/C
DMAFLUSHP	Flush and notify Peripheral	С
DMAGO	Go	M
DMAKILL	Kill	С
DMALD	Load	С
DMALDP	Load Peripheral	С
DMALP	Loop	С
DMALPEND	Loop End	С
DMALPFE	Loop Forever	С
DMAMOV	Move	С

DMANOP	No operation	M/C
DMARMB	Read Memory Barrier	С
DMASEV	Send Event	M/C
DMAST	Store	С
DMASTP	Store and notify Peripheral	С
DMASTZ	Store Zero	С
DMAWFE	Wait For Event M	M/C
DMAWFP	Wait For Peripheral	С
DMAWMB	Write Memory Barrier	С
DMAADNH	Add Negative Halfword	С

Notes:Thread usage: C=DMA channel, M=DMA manager

### 11.7.7 Assembler directives

In this document, only DMMADNH instruction is took as an example to show the way the instruction assembled. For the other instructions, please refer to pl330_trm.pdf.

#### **DMAADNH**

Add Negative Halfword adds an immediate negative 16-bit value to the SARn Register or DARn Register, for the DMA channel thread. This enables the DMAC to support 2D DMA operations, or reading or writing an area of memory in a different order to naturally incrementing addresses. See Source Address Registers and Destination Address Registers. The immediate unsigned 16-bit value is one-extended to 32 bits, to create a value that is the two's complement representation of a negative number between -65536 and -1, before the DMAC adds it to the address using 32-bit addition. The DMAC discards the carry bit so that addresses wrap from 0xFFFFFFFF to 0x00000000. The net effect is to subtract between 65536 and 1 from the current value in the Source or Destination Address Register. Following table shows the instruction encoding.

#### **Assembler syntax**

DMAADNH <address_register>, <16-bit immediate>

where:

<address_register>

Selects the address register to use. It must be either:

SAR

SARn Register and sets ra to 0.

DAR

DARn Register and sets ra to 1.

<16-bit immediate>

The immediate value to be added to the <address register>.

You should specify the 16-bit immediate as the number that is to be represented in the instruction encoding. For example, DMAADNH DAR, 0xFFF0 causes the value 0xFFFFFF0 to be added to the current value of the Destination Address Register, effectively subtracting 16 from the DAR.

You can only use this instruction in a DMA channel thread.

# **Chapter 12 MAC Ethernet Interface**

### 12.1 Overview

The MAC Ethernet Controller provides a complete Ethernet interface from processor to a Reduced Media Independent Interface (RMII) compliant Ethernet PHY.

The MAC includes a DMA controller. The DMA controller efficiently moves packet data from microprocessor's RAM, formats the data for an IEEE 802.3-2002 compliant packet and transmits the data to an Ethernet Physical Interface (PHY). It also efficiently moves packet data from RXFIFO to microprocessor's RAM.

#### **12.1.1 Feature**

- Supports 10/100-Mbps data transfer rates with the RMII interfaces
- Supports both full-duplex and half-duplex operation
  - Supports CSMA/CD Protocol for half-duplex operation
  - Supports IEEE 802.3x flow control for full-duplex operation
  - Optional forwarding of received pause control frames to the user application in fullduplex operation
  - Back-pressure support for half-duplex operation
  - Automatic transmission of zero-quanta pause frame on de-assertion of flow control input in full-duplex operation
- Preamble and start-of-frame data (SFD) insertion in Transmit, and deletion in Receive paths
- Automatic CRC and pad generation controllable on a per-frame basis
- Options for Automatic Pad/CRC Stripping on receive frames
- Programmable frame length to support Standard Ethernet frames
- Programmable InterFrameGap (40-96 bit times in steps of 8)
- Supports a variety of flexible address filtering modes:
  - 64-bit Hash filter (optional) for multicast and uni-cast (DA) addresses
  - Option to pass all multicast addressed frames
  - Promiscuous mode support to pass all frames without any filtering for network monitoring
  - Passes all incoming packets (as per filter) with a status report
- Separate 32-bit status returned for transmission and reception packets
- Supports IEEE 802.1Q VLAN tag detection for reception frames
- MDIO Master interface for PHY device configuration and management
- Support detection of LAN wake-up frames and AMD Magic Packet frames
- Support checksum off-load for received IPv4 and TCP packets encapsulated by the Ethernet frame
- Support checking IPv4 header checksum and TCP, UDP, or ICMP checksum encapsulated in IPv4 or IPv6 datagrams
- Comprehensive status reporting for normal operation and transfers with errors
- Support per-frame Transmit/Receive complete interrupt control
- Supports 4-KB receive FIFO depths on reception.
- Supports 2-KB FIFO depth on transmission
- Automatic generation of PAUSE frame control or backpressure signal to the MAC core based on Receive FIFO-fill (threshold configurable) level
- Handles automatic retransmission of Collision frames for transmission
- Discards frames on late collision, excessive collisions, excessive deferral and underrun conditions
- AXI interface to any CPU or memory
- Software can select the type of AXI burst (fixed and variable length burst) in the AXI Master interface
- Supports internal loopback on theRMII for debugging
- Debug status register that gives status of FSMs in Transmit and Receive data-paths and FIFO fill-levels.

# 12.2 Block Diagram




Fig.12-1 MACArchitecture

The MAC is broken up into multiple separate functional units. These blocks are interconnected in the MAC module. The block diagram shows the general flow of data and control signals between these blocks.

The MAC transfers data to system memory through the AXI master interface. The host CPU uses the APB Slave interface to access the MAC subsystem's control and status registers (CSRs).

The MAC supports the PHY interfaces of reduced MII (RMII).

The Transmit FIFO (Tx FIFO) buffers data read from system memory by the DMA before transmission by the MAC Core. Similarly, the Receive FIFO (Rx FIFO) stores the Ethernet frames received from the line until they are transferred to system memory by the DMA. These are asynchronous FIFOs, as they also transfer the data between the application clock and the MAC line clocks.

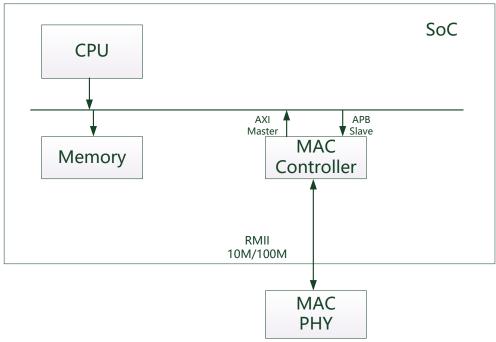



Fig.12-2 MAC Block Diagram

The MAC controller named MAC2IO:

MAC2IO Supports 10/100-Mbps data transfer rates with the RMII interfaces

# 12.3 Function Description

#### 12.3.1 Frame Structure

Data frames transmitted shall have the frame format shown in Fig. 1-3.

Fig. 12-3 MAC Frame Structure

The preamble begins a frame transmission. The bit value of the preamble field consists of 7 octets with the following bit values:

10101010 10101010 10101010 10101010 10101010 10101010 10101010

The SFD (start frame delimiter) <sfd> indicates the start of a frame and follows the preamble. The bit value is 10101011.

The data in a well formed frame shall consist of N octet's data.

## 12.3.2 RMII Interface timing diagram

The Reduced Media Independent Interface (RMII) specification reduces the pin count between Ethernet PHYs and Switch ASICs (only in 10/100 mode). According to the IEEE 802.3u standard, an MII contains 16 pins for data and control. In devices incorporating multiple MAC or PHY interfaces (such as switches), the number of pins adds significant cost with increase in port count. The RMII specification addresses this problem by reducing the pin count to 7 for each port - a 62.5% decrease in pin count.

The RMII module is instantiated between the MAC and the PHY. This helps translation of the MAC's MII into the RMII. The RMII block has the following characteristics:

- Supports 10-Mbps and 100-Mbps operating rates. It does not support 1000-Mbps operation.
- Two clock references are sourced externally or CRU, providing independent, 2-bit wide transmit and receive paths.

## **Transmit Bit Ordering**

Each nibble from the MII must be transmitted on the RMII a di-bit at a time with the order of di-bit transmission shown in Fig.1-4. The lower order bits (D1 and D0) are transmitted first followed by higher order bits (D2 and D3).

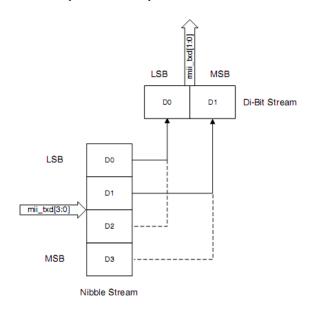



Fig. 12-4 RMII transmission bit ordering

#### **RMII Transmit Timing Diagrams**

Fig.1-5 through 1-8 show MII-to-RMII transaction timing. The clk_rmii_i (REF_CLK) frequency is 50MHz in RMII interface. In 10Mb/s mode, as the REF_CLK frequency is 10 times as the data rate, the value on rmii_txd_o[1:0] (TXD[1:0]) shall be valid such that TXD[1:0] may be sampled every 10th cycle, regard-less of the starting cycle within the group and yield the correct frame data.

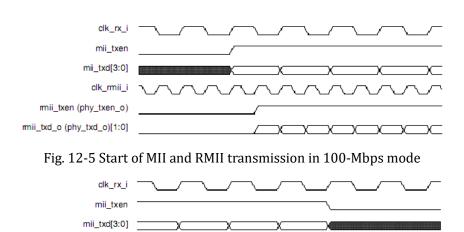



Fig. 12-6 End of MII and RMII Transmission in 100-Mbps Mode

clk_rmii_i ___

rmii_txen (phy_txen_o)

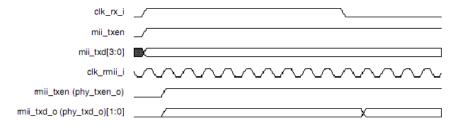



Fig. 12-7 Start of MII and RMII Transmission in 10-Mbps Mode

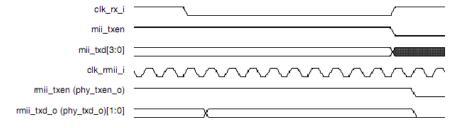



Fig. 12-8 End of MII and RMII Transmission in 10-Mbps Mode

## **Receive Bit Ordering**

Each nibble is transmitted to the MII from the di-bit received from the RMII in the nibble transmission order shown in Fig.1-9. The lower order bits (D0 and D1) are received first, followed by the higher order bits (D2 and D3).

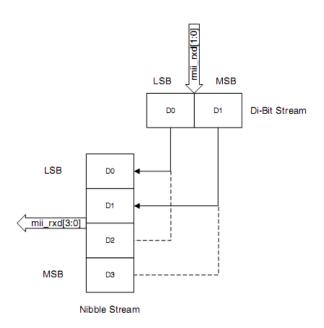



Fig. 12-9 RMII receive bit ordering

## 12.3.3 Management Interface

The MAC management interface provides a simple, two-wire, serial interface to connect the MAC and a managed PHY, for the purposes of controlling the PHY and gathering status from the PHY. The management interface consists of a pair of signals that transport the management information across the MII bus: MDIO and MDC.

The MAC initiates the management write/read operation. The clock gmii_mdc_o(MDC) is a divided clock from the application clock pclk_MAC. The divide factor depends on the clock range setting in the GMII address register. Clock range is set as follows:

Selection	pclk_MAC	MDC Clock
0000	60-100 MHz	pclk_MAC/42
0001	100-150 MHz	pclk_MAC/62
0010	20-35 MHz	pclk_MAC/16
0011	35-60 MHz	pclk_MAC/26
0100	150-250 MHz	pclk_MAC/102
0101	250-300 MHz	pclk_MAC/124
0110 0111	Reserved	

The MDC is the derivative of the application clock pclk_MAC. The management operation is performed through the gmii_mdi_i, gmii_mdo_o and gmii_mdo_o_e signals. A three-state buffer is implemented in the PAD.

The frame structure on the MDIO line is shown below.

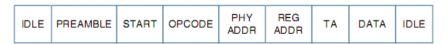



Fig. 12-10 MDIO frame structure

IDLE: The mdio line is three-state; there is no clock on gmii_mdc_o

PREAMBLE: 32 continuous bits of value 1

START: Start-of-frame is 2'b01

OPCODE: 2'b10 for read and 2'b01 for write PHY ADDR: 5-bit address select for one of 32 PHYs REG ADDR: Register address in the selected PHY

TA: Turnaround is 2'bZ0 for read and 2'b10 for Write

DATA: Any 16-bit value. In a write operation, the MAC drives mdio; in a read

operation, PHY drives it.

## 12.3.4 Power Management Block

Power management (PMT) supports the reception of network (remote) wake-up frames and Magic Packet frames. PMT does not perform the clock gate function, but generates interrupts

for wake-up frames and Magic Packets received by the MAC. The PMT block sits on the receiver path of the MAC and is enabled with remote wake-up frame enable and Magic Packet enable. These enables are in the PMT control and status register and are programmed by the application.

When the power down mode is enabled in the PMT, then all received frames are dropped by the core and they are not forwarded to the application. The core comes out of the power down mode only when either a Magic Packet or a Remote Wake-up frame is received and the corresponding detection is enabled.

#### **Remote Wake-Up Frame Detection**

When the MAC is in sleep mode and the remote wake-up bit is enabled in register MAC_PMT_CTRL_STA (0x002C), normal operation is resumed after receiving a remote wake-up frame. The application writes all eight wake-up filter registers, by performing a sequential write to address (0028). The application enables remote wake-up by writing a 1 to bit 2 of the register MAC_PMT_CTRL_STA.

PMT supports four programmable filters that allow support of different receive frame patterns. If the incoming frame passes the address filtering of Filter Command, and if Filter CRC-16 matches the incoming examined pattern, then the wake-up frame is received. Filter_offset (minimum value 12, which refers to the 13th byte of the frame) determines the offset from which the frame is to be examined. Filter Byte Mask determines which bytes of the frame must be examined. The thirty-first bit of Byte Mask must be set to zero. The remote wake-up CRC block determines the CRC value that is compared with Filter CRC-16. The wake-up frame is checked only for length error, FCS error, dribble bit error, GMII error, collision, and to ensure that it is not a runt frame. Even if the wake-up frame is more than 512 bytes long, if the frame has a valid CRC value, it is considered valid. Wake-up frame detection is updated in the register MAC_PMT_CTRL_STA for every remote Wake-up frame received. A PMT interrupt to the application triggers a read to the MAC_PMT_CTRL_STA register to determine reception of a wake-up frame.

#### **Magic Packet Detection**

The Magic Packet frame is based on a method that uses Advanced Micro Device's Magic Packet technology to power up the sleeping device on the network. The MAC receives a specific packet of information, called a Magic Packet, addressed to the node on the network. Only Magic Packets that are addressed to the device or a broadcast address will be checked to determine whether they meet the wake-up requirements. Magic Packets that pass the address filtering (unicast or broadcast) will be checked to determine whether they meet the remote Wake-on-LAN data format of 6 bytes of all ones followed by a MAC Address appearing 16 times.

The application enables Magic Packet wake-up by writing a 1 to Bit 1 of the register MAC_PMT_CTRL_STA. The PMT block constantly monitors each frame addressed to the node for a specific Magic Packet pattern. Each frame received is checked for a 48'hFF_FF_FF_FF_FF_FF pattern following the destination and source address field. The PMT block then checks the frame for 16 repetitions of the MAC address without any breaks or interruptions. In case of a break in the 16 repetitions of the address, the 48'hFF_FF_FF_FF_FF pattern is scanned for again in the incoming frame. The 16 repetitions can be anywhere in the frame, but must be preceded by the synchronization stream (48'hFF_FF_FF_FF_FF_FF). The device will also accept a multicast frame, as long as the 16 duplications of the MAC address are detected.

If the MAC address of a node is 48'h00_11_22_33_44_55, then the MAC scans for the data sequence:

Magic Packet detection is updated in the PMT Control and Status register for Magic Packet received. A PMT interrupt to the Application triggers a read to the PMT CSR to determine whether a Magic Packet frame has been received.

## 12.3.5 MAC Management Counters

The counters in the MAC Management Counters (MMC) module can be viewed as an extension of the register address space of the CSR module. The MMC module maintains a set of registers for gathering statistics on the received and transmitted frames. These include a control register for controlling the behavior of the registers, two 32-bit registers containing interrupts generated (receive and transmit), and two 32-bit registers containing masks for the Interrupt register (receive and transmit). These registers are accessible from the Application through the MAC Control Interface (MCI). Non-32-bit accesses are allowed as long as the address is word-aligned.

The organization of these registers is shown in Register Description. The MMCs are accessed using transactions, in the same way the CSR address space is accessed. The Register Description in this chapter describe the various counters and list the address for each of the statistics counters. This address will be used for Read/Write accesses to the desired transmit/receive counter.

The MMC module gathers statistics on encapsulated IPv4, IPv6, TCP, UDP, or ICMP payloads in received Ethernet frames.

# 12.4 Register Description

## 12.4.1 Registers Summary

Name	Offset	Size	Reset Value	Description
MAC MAC CONF	0x0000	W	0×00000000	MAC Configuration Register
MAC MAC CONF	UXUUUU	VV	0x00000000	This is the operation mode register for the MAC
				MAC Frame Filter
MAC_MAC_FRM_FILT	0x0004	W	0×00000000	Contains the frame filtering
				controls
				Hash Table High Register
				Contains the higher 32 bits of the
MAC HACH TAR HI	0x0008	W	0x00000000	Multicast Hash table.This register
MAC HASH TAB HI	UXUUU8	VV	0x00000000	is present only when the Hash
				filter function is selected in
				coreConsultant
				Hash Table Low Register
				Contains the lower 32 bits of the
MAC HASH TAB LO	0x000c	W	0×00000000	Multicast Hash table. This register
1776 1778 10	OXOOOC		000000000	is present only when the Hash
				filter function is selected in
				coreConsultant
				GMII Address Register
MAC GMII ADDR	0x0010	W	0x00000000	Controls the management cycles
				to an external PHY
				GMII Data Register
MAC GMII DATA	0x0014	W	0x00000000	Contains the data to be written to
				or read from the PHY register
				Flow Control Register
MAC_FLOW_CTRL	0x0018	W	0x00000000	Controls the generation of control
				frames

Name	Offset	Size	Reset Value	Description
				VLAN Tag Register
MAC VLAN TAG	0x001c	w	0x0000000	Identifies IEEE 802.1Q VLAN type
				frames
				Debug register
				This debug register gives the
				status of all the main modules of
				the transmit and receive data-
MAC_DEBUG	0x0024	W	0x00000000	paths and the FIFOs. An all-zero
				status indicates that the MAC core
				is in idle state (and FIFOs are
				empty) and no activity is going on
				in the data-paths
MAC DMT CTDL CTA	0,,002.5	١٨/	0,00000000	PMT Control and Status Register
MAC PMT CTRL STA	0x002c	W	0x00000000	PMT Control and Status
MAC INT CTATUC	0x0038	۱۸/	0x00000000	Interrupt Status Register
MAC INT STATUS	UXUU36	W	000000000	Contains the interrupt status
				Interrupt Mask Register
MAC INT MASK	0x003c	W	0x00000000	Contains the masks for generating
				the interrupts
				MAC Address0 High Register
MAC MAC ADDRO HI	0x0040	W	0x0000ffff	Contains the higher 16 bits of the
				first MAC address
		W	0xffffffff	MAC Address0 Low Register
MAC MAC ADDRO LO	0x0044			Contains the lower 32 bits of the
				first MAC address
				AN Control Register
MAC_AN_CTRL	0x00c0	W	0x00000000	Enables and/or restarts auto-
MAC_AN_CINE	0.0000	V V	020000000	negotiation. It also enables PCS
				loopback
				AN Status Register
MAC AN STATUS	0x00c4	W	0x00000008	Indicates the link and auto-
				negotiation status
				Auto Negotiation Advertisement
	0x00c8 W			Register
MAC AN ADV		w	0x000001e0	This register is configured before
				auto-negotiation begins. It
				contains the advertised ability of
				the MAC

Name	Offset	Size	Reset Value	Description
MAC AN LINK PART AB	0x00cc	w	0×00000000	Auto Negotiation Link Partner Ability Register Contains the advertised ability of the link partner. Its value is valid after successful completion of auto-negotiation or when a new base page has been received (indicated in the Auto-Negotiation Expansion Register)
MAC AN EXP	0x00d0	w	0x00000000	Auto Negotiation Expansion Register Indicates whether a new base page has been received from the link partner
MAC_INTF_MODE_STA	0x00d8	W	0×00000000	RGMII Status Register Indicates the status signals received from the PHY through the RGMII interface
MAC MMC CTRL	0x0100	W	0x00000000	MMC Control Register The MMC Control register establishes the operating mode of the management counters
MAC MMC RX INTR	0x0104	W	0×00000000	MMC Receive Interrupt Register The MMC Receive Interrupt register maintains the interrupts generated when the receive statistic counters reach half their maximum values (0x8000_0000), and when they cross their maximum values (0xFFFF_FFFF). When Counter Stop Rollover is set, then interrupts are set but the counter remains at all-ones. The MMC Receive Interrupt register is a 32-bit wide register. An interrupt bit is cleared when the respective MMC counter that caused the interrupt is read. The least significant byte lane (bits[7:0]) of the respective counter must be read in order to clear the interrupt bit

Name	Offset	Size	Reset Value	Description
MAC MMC TX INTR	0x0108	W	0x00000000	MMC Transmit Interrupt Register The MMC Transmit Interrupt register maintains the interrupts generated when transmit statistic counters reach half their maximum values (0x8000_0000), and when they cross their maximum values (0xFFFF_FFFF). When Counter Stop Rollover is set, then interrupts are set but the counter remains at all-ones. The MMC Transmit Interrupt register is a 32-bit wide register. An interrupt bit is cleared when the respective MMC counter that caused the interrupt is read. The least significant byte lane (bits[7:0]) of the respective counter must be read in order to clear the interrupt bit
MAC MMC RX INT MSK	0x010c	w	0x00000000	MMC Receive Interrupt Mask Register The MMC Receive Interrupt Mask register maintains the masks for the interrupts generated when receive statistic counters reach half their maximum value, and when they reach their maximum values
MAC MMC TX INT MSK	0x0110	w	0x00000000	MMC Transmit Interrupt Mask Register The MMC Transmit Interrupt Mask register maintains the masks for the interrupts generated when transmit statistic counters reach half their maximum value, and when they reach their maximum values
MAC MMC TXOCTETCNT  GB	0x0114	W	0x00000000	MMC TX OCTET Good and Bad Counter
MAC MMC TXFRMCNT G B	0x0118	W	0×00000000	MMC TX OCTET Good and Bad Counter
MAC MMC TXUNDFLWER R	0x0148	W	0x00000000	MMC TX Underflow Error

Name	Offset	Size	Reset Value	Description
MAC_MMC_TXCARERR	0x0160	W	0x00000000	MMC TX Carrier Error
MAC MMC TXOCTETCNT G	0x0164	W	0x00000000	MMC TX OCTET Good Counter
MAC_MMC_TXFRMCNT_G	0x0168	W	0x00000000	MMC TX Frame Good Counter
MAC MMC RXFRMCNT G B	0x0180	W	0×00000000	MMC RX Frame Good and Bad Counter
MAC MMC RXOCTETCNT  GB	0x0184	W	0×00000000	MMC RX OCTET Good and Bad Counter
MAC MMC RXOCTETCNT  G	0x0188	W	0×00000000	MMC RX OCTET Good Counter
MAC MMC RXMCFRMCNT G	0x0190	W	0×00000000	MMC RX Multicast Frame Good Counter
MAC MMC RXCRCERR	0x0194	W	0x00000000	MMC RX Carrier
MAC_MMC_RXLENERR	0x01c8	W	0x00000000	MMC RX Length Error
MAC MMC RXFIFOOVRFL W	0x01d4	W	0×00000000	MMC RX FIFO Overflow
MAC MMC IPC INT MSK	0×0200	w	0×00000000	MMC Receive Checksum Offload Interrupt Mask Register The MMC Receive Checksum Offload Interrupt Mask register maintains the masks for the interrupts generated when the receive IPC (Checksum Offload) statistic counters reach half their maximum value, and when they reach their maximum values

Name	Offset	Size	Reset Value	Description
			value	MMC Bassina Chashanas Officed
MAC MMC IPC INTR	0x0208	w	0×00000000	Interrupt Register The MMC Receive Checksum Offload Interrupt register maintains the interrupts generated when receive IPC statistic counters reach half their maximum values (0x8000_0000), and when they cross their maximum values (0xFFFF_FFFF). When Counter Stop Rollover is set, then interrupts are set but the counter remains at all-ones. When the MMC IPC counter that caused the interrupt is read, its corresponding interrupt bit is cleared. The counter's least- significant byte lane (bits[7:0]) must be read to clear the interrupt bit
MAC MMC RXIPV4GFRM	0x0210	W	0x00000000	MMC RX IPV4 Good Frame
MAC MMC RXIPV4HDERR FRM	0x0214	W		MMC RX IPV4 Head Error Frame
MAC MMC RXIPV6GFRM	0x0224	W	0x00000000	MMC RX IPV6 Good Frame
MAC MMC RXIPV6HDERR FRM	0x0228	W	0x00000000	MMC RX IPV6 Head Error Frame
MAC MMC RXUDPERRFR M	0x0234	W	0×00000000	MMC RX UDP Error Frame
MAC MMC RXTCPERRFRM	0x023c	W	0x00000000	MMC RX TCP Error Frame
MAC MMC RXICMPERRFR M	0x0244	W	0×00000000	MMC RX ICMP Error Frame
MAC MMC RXIPV4HDERR OCT	0x0254	W	0×00000000	MMC RX OCTET IPV4 Head Error
MAC MMC RXIPV6HDERR OCT	0x0268	W	0x00000000	MMC RX OCTET IPV6 Head Error
MAC MMC RXUDPERROC  I	0x0274	W	0x00000000	MMC RX OCTET UDP Error
MAC MMC RXTCPERROCT	0x027c	W	0x00000000	MMC RX OCTET TCP Error
MAC MMC RXICMPERROC T	0x0284	W	0×00000000	MMC RX OCTET ICMP Error
MAC BUS MODE	0x1000	W	0x00020101	Bus Mode Register

Name	Offset	Size	Reset Value	Description
MAC TX POLL DEMAND	0x1004	W	0x00000000	Transmit Poll Demand Register Used by the host to instruct the DMA to poll the Transmit Descriptor List
MAC RX POLL DEMAND	0x1008	W	0x00000000	Receive Poll Demand Register Used by the Host to instruct the DMA to poll the Receive Descriptor list
MAC RX DESC LIST AD DR	0x100c	W	0x00000000	Receive Descriptor List Address Register Points the DMA to the start of the Receive Descriptor list
MAC TX DESC LIST ADD	0x1010	W	0x00000000	Transmit Descriptor List Address Register Points the DMA to the start of the Transmit Descriptor List
MAC_STATUS	0x1014	W	0×00000000	Status Register The Software driver (application) reads this register during interrupt service routine or polling to determine the status of the DMA
MAC_OP_MODE	0x1018	W	0x00000000	Operation Mode Register Establishes the Receive and Transmit operating modes and command
MAC INT ENA	0x101c	W	0x00000000	Interrupt Enable Register Enables the interrupts reported by the Status Register
MAC_OVERFLOW_CNT	0x1020	w	0×00000000	Missed Frame and Buffer Overflow Counter Register Contains the counters for discarded frames because no host Receive Descriptor was available, and discarded frames because of Receive FIFO Overflow
MAC REC INT WDT TIM ER	0x1024	W	0x00000000	Receive Interrupt Watchdog Timer Register Watchdog time-out for Receive Interrupt (RI) from DMA

Name	Offset	Size	Reset Value	Description
MAC AXI BUS MODE	0x1028	W	0x00110001	AXI Bus Mode Register Controls AXI Master behavior (mainly controls burst splitting and number of outstanding requests)
MAC AXI STATUS	0x102c	W	0×00000000	AXI Status Register Gives the idle status of the AXI master's read/write channels
MAC CUR HOST TX DES	0x1048	W	0x00000000	Current Host Transmit Descriptor Register Points to the start of current Transmit Descriptor read by the DMA
MAC CUR HOST RX DES	0x104c	W	0x00000000	Current Host Receive Descriptor Register Points to the start of current Receive Descriptor read by the DMA
MAC CUR HOST TX BUF ADDR	0x1050	w	0x00000000	Current Host Transmit Buffer Address Register Points to the current Transmit Buffer address read by the DMA
MAC CUR HOST RX BUF ADDR	0x1054	W	0x00000000	Current Host Receive Buffer Address Register Points to the current Receive Buffer address read by the DMA

Notes: Size: B- Byte (8 bits) access, HW- Half WORD (16 bits) access, W-WORD (32 bits) access

# 12.4.2 Detail Register Description

# MAC MAC CONF

Address: Operational Base + offset (0x0000)

Bit	Attr	<b>Reset Value</b>	Description
31:25	RO	0x0	reserved
24	RW	0×0	TC Transmit Configuration in RGMII When set, this bit enables the transmission of duplex mode, link speed, and link up/down information to the PHY in the RGMII ports. When this bit is reset, no such information is driven to the PHY

Bit	Attr	Reset Value	Description
			WD
			Watchdog Disable
			When this bit is set, the MAC disables the watchdog timer on the
23	RW	0x0	receiver, and can receive frames of up to 16,384 bytes.
			When this bit is reset, the MAC allows no more than 2,048 bytes
			(10,240 if JE is set high) of the frame being received and cuts off
			any bytes received after that
			JD
			Jabber Disable
			When this bit is set, the MAC disables the jabber timer on the
22	RW	0x0	transmitter, and can transfer frames of up to 16,384 bytes.
			When this bit is reset, the MAC cuts off the transmitter if the
			application sends out more than 2,048 bytes of data (10,240 if JE
			is set high) during transmission
			BE
21	RW	0×0	Frame Burst Enable
			When this bit is set, the MAC allows frame bursting during
			transmission in GMII Half-Duplex mode
20	RO	0x0	reserved
			IFG
			Inter-Frame Gap
			These bits control the minimum IFG between frames during
			transmission.
19:17	RW	0x0	3'b000: 96 bit times
			3'b001: 88 bit times
			3'b010: 80 bit times
			 3'b111: 40 bit times
			DCRS
			Disable Carrier Sense During Transmission When set high, this bit makes the MAC transmitter ignore the
			(G)MII CRS signal during frame transmission in Half-Duplex
16	RW	0x0	mode. This request results in no errors generated due to Loss of
			Carrier or No Carrier during such transmission. When this bit is
			low, the MAC transmitter generates such errors due to Carrier
			Sense and will even abort the transmissions
			PS
			Port Select
15	RW	0×0	Selects between GMII and MII:
			1'b0: GMII (1000 Mbps)
			1'b1: MII (10/100 Mbps)

Bit	Attr	Reset Value	Description
			FES
			Speed
14	RW	0x0	Indicates the speed in Fast Ethernet (MII) mode:
			1'b0: 10 Mbps
			1'b1: 100 Mbps
			DO
			Disable Receive Own
1 2	DW	0.40	When this bit is set, the MAC disables the reception of frames
13	RW	0x0	when the gmii_txen_o is asserted in Half-Duplex mode.
			When this bit is reset, the MAC receives all packets that are given
			by the PHY while transmitting
			LM
			Loopback Mode
12	RW	0x0	When this bit is set, the MAC operates in loopback mode at
12	FCVV	UXU	GMII/MII. The (G)MII Receive clock input (clk_rx_i) is required
			for the loopback to work properly, as the Transmit clock is not
			looped-back internally
			DM
			Duplex Mode
11	RW	0x0	When this bit is set, the MAC operates in a Full-Duplex mode
			where it can transmit and receive simultaneously. This bit is RO
			with default value of 1'b1 in Full-Duplex-only configuration
			IPC
			Checksum Offload
			When this bit is set, the MAC calculates the 16-bit one's
			complement of the one's complement sum of all received
			Ethernet frame payloads. It also checks whether the IPv4 Header
			checksum (assumed to be bytes 25-26 or 29-30 (VLAN-tagged)
			of the received Ethernet frame) is correct for the received frame
			and gives the status in the receive status word. The MAC core
10	RW	0x0	also appends the 16-bit checksum calculated for the IP header
			datagram payload (bytes after the IPv4 header) and appends it
			to the Ethernet frame transferred to the application (when Type 2
			COE is deselected).
			When this bit is reset, this function is disabled.
			When Type 2 COE is selected, this bit, when set, enables IPv4
			checksum checking for received frame payloads TCP/UDP/ICMP
			headers. When this bit is reset, the COE function in the receiver
			is disabled and the corresponding PCE and IP HCE status bits are
			always cleared

Bit	Attr	Reset Value	Description
9	RW	0×0	DR Disable Retry When this bit is set, the MAC will attempt only 1 transmission. When a collision occurs on the GMII/MII, the MAC will ignore the current frame transmission and report a Frame Abort with excessive collision error in the transmit frame status. When this bit is reset, the MAC will attempt retries based on the settings of BL
8	RW	0x0	LUD Link Up/Down Indicates whether the link is up or down during the transmission of configuration in RGMII interface: 1'b0: Link Down 1'b1: Link Up
7	RW	0×0	ACS Automatic Pad/CRC Stripping When this bit is set, the MAC strips the Pad/FCS field on incoming frames only if the length's field value is less than or equal to 1,500 bytes. All received frames with length field greater than or equal to 1,501 bytes are passed to the application without stripping the Pad/FCS field. When this bit is reset, the MAC will pass all incoming frames to the Host unmodified
6:5	RW	0×0	BL Back-Off Limit The Back-Off limit determines the random integer number (r) of slot time delays (4,096 bit times for 1000 Mbps and 512 bit times for $10/100$ Mbps) the MAC waits before rescheduling a transmission attempt during retries after a collision. This bit is applicable only to Half-Duplex mode and is reserved (RO) in Full-Duplex-only configuration.  2'b00: $k = min (n, 10)$ 2'b01: $k = min (n, 8)$ 2'b10: $k = min (n, 4)$ 2'b11: $k = min (n, 1)$ ,  Where $n = retransmission$ attempt. The random integer r takes the value in the range $0 = r < 2^k$

Bit	Attr	Reset Value	Description
4	RW	0×0	DC Deferral Check When this bit is set, the deferral check function is enabled in the MAC. The MAC will issue a Frame Abort status, along with the excessive deferral error bit set in the transmit frame status when the transmit state machine is deferred for more than 24,288 bit times in 10/100-Mbps mode. If the Core is configured for 1000 Mbps operation, the threshold for deferral is 155,680 bits times. Deferral begins when the transmitter is ready to transmit, but is prevented because of an active CRS (carrier sense) signal on the GMII/MII. Defer time is not cumulative. If the transmitter defers for 10,000 bit times, then transmits, collides, backs off, and then has to defer again after completion of back-off, the deferral timer resets to 0 and restarts. When this bit is reset, the deferral check function is disabled and the MAC defers until the CRS signal goes inactive
3	RW	0×0	TE Transmitter Enable When this bit is set, the transmit state machine of the MAC is enabled for transmission on the GMII/MII. When this bit is reset, the MAC transmit state machine is disabled after the completion of the transmission of the current frame, and will not transmit any further frames
2	RW	0×0	RE Receiver Enable When this bit is set, the receiver state machine of the MAC is enabled for receiving frames from the GMII/MII. When this bit is reset, the MAC receive state machine is disabled after the completion of the reception of the current frame, and will not receive any further frames from the GMII/MII
1:0	RO	0x0	reserved

# MAC MAC FRM FILT

Address: Operational Base + offset (0x0004)

Bit	Attr	<b>Reset Value</b>	Description
	RW	0x0	RA
			Receive All
			When this bit is set, the MAC Receiver module passes to the
31			Application all frames received irrespective of whether they pass
31			the address filter. The result of the SA/DA filtering is updated
			(pass or fail) in the corresponding bits in the Receive Status
			Word. When this bit is reset, the Receiver module passes to the
			Application only those frames that pass the SA/DA address filter
30:11	RO	0x0	reserved

Bit	Attr	Reset Value	Description
10	RW	0×0	HPF Hash or Perfect Filter When set, this bit configures the address filter to pass a frame if it matches either the perfect filtering or the hash filtering as set by HMC or HUC bits. When low and if the HUC/HMC bit is set, the frame is passed only if it matches the Hash filter
9	RW	0×0	SAF Source Address Filter Enable The MAC core compares the SA field of the received frames with the values programmed in the enabled SA registers. If the comparison matches, then the SAMatch bit of RxStatus Word is set high. When this bit is set high and the SA filter fails, the MAC drops the frame.  When this bit is reset, then the MAC Core forwards the received frame to the application and with the updated SA Match bit of the RxStatus depending on the SA address comparison
8	RW	0×0	SAIF SA Inverse Filtering When this bit is set, the Address Check block operates in inverse filtering mode for the SA address comparison. The frames whose SA matches the SA registers will be marked as failing the SA Address filter. When this bit is reset, frames whose SA does not match the SA registers will be marked as failing the SA Address filter
7:6	RW	0×0	PCF Pass Control Frames These bits control the forwarding of all control frames (including unicast and multicast PAUSE frames). Note that the processing of PAUSE control frames depends only on RFE of Register MAC_FLOW_CTRL[2]. 2'b00: MAC filters all control frames from reaching the application. 2'b01: MAC forwards all control frames except PAUSE control frames to application even if they fail the Address filter. 2'b10: MAC forwards all control frames to application even if they fail the Address Filter.
5	RW	0×0	DBF Disable Broadcast Frames When this bit is set, the AFM module filters all incoming broadcast frames. When this bit is reset, the AFM module passes all received broadcast frames

Bit	Attr	Reset Value	Description
			PM
Ì			Pass All Multicast
4	RW	0×0	When set, this bit indicates that all received frames with a
4	KVV	0.00	multicast destination address (first bit in the destination address
			field is '1') are passed.
			When reset, filtering of multicast frame depends on HMC bit
			DAIF
			DA Inverse Filtering
3	RW	0×0	When this bit is set, the Address Check block operates in inverse
		0.00	filtering mode for the DA address comparison for both unicast
			and multicast frames.
			When reset, normal filtering of frames is performed
			HMC
		0×0	Hash Multicast
			When set, MAC performs destination address filtering of received
2	RW		multicast frames according to the hash table.
			When reset, the MAC performs a perfect destination address
			filtering for multicast frames, that is, it compares the DA field
			with the values programmed in DA registers
			HUC
			Hash Unicast
	DVA	W 0×0	When set, MAC performs destination address filtering of unicast
1	RW		frames according to the hash table.
			When reset, the MAC performs a perfect destination address
			filtering for unicast frames, that is, it compares the DA field with
			the values programmed in DA registers PR
			Promiscuous Mode
			When this bit is set, the Address Filter module passes all
0	RW	W 0x0	incoming frames regardless of its destination or source address.
			The SA/DA Filter Fails status bits of the Receive Status Word will
			always be cleared when PR is set
			always be cleared when rivis set

## MAC HASH TAB HI

Address: Operational Base + offset (0x0008)

Bit	Attr	<b>Reset Value</b>	Description
			HTH
31:0	RW	0x00000000	Hash Table High
			This field contains the upper 32 bits of Hash table

MAC HASH TAB LO
Address: Operational Base + offset (0x000c)

## PX30 TRM-Part1

Bit	Attr	<b>Reset Value</b>	Description
			HTL
31:0	RW	0x00000000	Hash Table Low
			This field contains the lower 32 bits of Hash table

MAC GMII ADDR
Address: Operational Base + offset (0x0010)

Bit	Attr	<b>Reset Value</b>	Description
31:16	RO	0x0	reserved
15:11	RW	0×00	PA Physical Layer Address This field tells which of the 32 possible PHY devices are being accessed
10:6	RW	0×00	GR GMII Register These bits select the desired GMII register in the selected PHY device

Bit	Attr	Reset Value	Description
BIL	Atti	Reset value	-
5:2	RW	0×0	CR APB Clock Range The APB Clock Range selection determines the frequency of the MDC clock as per the pclk_MAC frequency used in your design. The suggested range of pclk_MAC frequency applicable for each value below (when Bit[5] = 0) ensures that the MDC clock is approximately between the frequency range 1.0 MHz - 2.5 MHz. Selection pclk_MAC MDC Clock  0000 60-100 MHz pclk_MAC/42  0001 100-150 MHz pclk_MAC/62  0010 20-35 MHz pclk_MAC/16  0011 35-60 MHz pclk_MAC/16  0101 150-250 MHz pclk_MAC/102  0101 250-300 MHz pclk_MAC/102  0101 250-300 MHz pclk_MAC/124  0110, 0111 Reserved When bit 5 is set, you can achieve MDC clock of frequency higher than the IEEE 802.3 specified frequency limit of 2.5 MHz and program a clock divider of lower value. For example, when pclk_MAC is of frequency 100 MHz and you program these bits as "1010", then the resultant MDC clock will be of 12.5 MHz which is outside the limit of IEEE 802.3 specified range. Please program the values given below only if the interfacing chips supports faster MDC clocks.  Selection MDC Clock  1000 pclk_MAC/4  1001 pclk_MAC/6  1010 pclk_MAC/6  1010 pclk_MAC/10  1110 pclk_MAC/10  1110 pclk_MAC/12  1101 pclk_MAC/12  1101 pclk_MAC/14  1110 pclk_MAC/16  1111 pclk_MAC/16
1	RW	0×0	GW GMII Write When set, this bit tells the PHY that this will be a Write operation using register MAC_GMII_DATA. If this bit is not set, this will be a Read operation, placing the data in register MAC_GMII_DATA

Bit	Attr	<b>Reset Value</b>	Description
Bit	Attr	Reset Value	GB GMII Busy This bit should read a logic 0 before writing to Register GMII_ADDR and Register GMII_DATA. This bit must also be set to 0 during a Write to Register GMII_ADDR. During a PHY register access, this bit will be set to 1'b1 by the Application to indicate
0	С		that a Read or Write access is in progress. Register GMII_DATA (GMII Data) should be kept valid until this bit is cleared by the MAC during a PHY Write operation. The Register GMII_DATA is invalid until this bit is cleared by the MAC during a PHY Read operation. The Register GMII_ADDR (GMII Address) should not be written to until this bit is cleared

MAC GMII DATA
Address: Operational Base + offset (0x0014)

Bit	Attr	Reset Value	Description
31:16	RO	0x0	reserved
			GD
			GMII Data
15:0	RW	0x0000	This contains the 16-bit data value read from the PHY after a
			Management Read operation or the 16-bit data value to be
			written to the PHY before a Management Write operation

# MAC_FLOW_CTRL

Address: Operational Base + offset (0x0018)

Bit		Reset Value	Description
31:16	RW	0×0000	PT Pause Time This field holds the value to be used in the Pause Time field in the transmit control frame. If the Pause Time bits is configured to be double-synchronized to the (G)MII clock domain, then consecutive writes to this register should be performed only after at least 4 clock cycles in the destination clock domain
15:8	RO	0x0	reserved
7	RW	0×0	DZPQ Disable Zero-Quanta Pause When set, this bit disables the automatic generation of Zero-Quanta Pause Control frames on the de-assertion of the flow-control signal from the FIFO layer (MTL or external sideband flow control signal sbd_flowctrl_i/mti_flowctrl_i). When this bit is reset, normal operation with automatic Zero-Quanta Pause Control frame generation is enabled
6	RO	0x0	reserved

Bit	Attr	Reset Value	Description
5:4	RW	0×0	PLT Pause Low Threshold This field configures the threshold of the PAUSE timer at which the input flow control signal mti_flowctrl_i (or sbd_flowctrl_i) is checked for automatic retransmission of PAUSE Frame. The threshold values should be always less than the Pause Time configured in Bits[31:16]. For example, if PT = 100H (256 slottimes), and PLT = 01, then a second PAUSE frame is automatically transmitted if the mti_flowctrl_i signal is asserted at 228 (256-28) slot-times after the first PAUSE frame is transmitted.  Selection Threshold  00 Pause time minus 4 slot times  01 Pause time minus 28 slot times  10 Pause time minus 144 slot times  11 Pause time minus 256 slot times  Slot time is defined as time taken to transmit 512 bits (64 bytes) on the GMII/MII interface
3	RW	0×0	UP Unicast Pause Frame Detect When this bit is set, the MAC will detect the Pause frames with the station's unicast address specified in MAC Address0 High Register and MAC Address0 Low Register, in addition to the detecting Pause frames with the unique multicast address. When this bit is reset, the MAC will detect only a Pause frame with the unique multicast address specified in the 802.3x standard
2	RW	0×0	RFE Receive Flow Control Enable When this bit is set, the MAC will decode the received Pause frame and disable its transmitter for a specified (Pause Time) time. When this bit is reset, the decode function of the Pause frame is disabled
1	RW	0×0	TFE Transmit Flow Control Enable In Full-Duplex mode, when this bit is set, the MAC enables the flow control operation to transmit Pause frames. When this bit is reset, the flow control operation in the MAC is disabled, and the MAC will not transmit any Pause frames. In Half-Duplex mode, when this bit is set, the MAC enables the back-pressure operation. When this bit is reset, the backpressure feature is disabled

Bit	Attr	<b>Reset Value</b>	Description
0	RW	0×0	FCB_BPA Flow Control Busy/Backpressure Activate This bit initiates a Pause Control frame in Full-Duplex mode and activates the backpressure function in Half-Duplex mode if TFE bit is set. In Full-Duplex mode, this bit should be read as 1'b0 before writing to the register MAC_FLOW_CTRL. To initiate a pause control frame, the application must set this bit to 1'b1. During a transfer of the control frame, this bit will continue to be set to signify that a frame transmission is in progress. After the completion of Pause control frame transmission, the MAC will reset this bit to 1'b0. The register MAC_FLOW_CTRL should not be written to until this bit is cleared. In Half-Duplex mode, when this bit is set (and TFE is set), then backpressure is asserted by the MAC Core. During backpressure, when the MAC receives a new frame, the transmitter starts sending a JAM pattern resulting in a collision. This control register bit is logically OR'ed with the mti_flowctrl_i input signal for the backpressure function

# **MAC VLAN TAG**

Address: Operational Base + offset (0x001c)

Bit	Attr	<b>Reset Value</b>	Description
31:17	RO	0x0	reserved
16	RW	0×0	ETV Enable 12-Bit VLAN Tag Comparison When this bit is set, a 12-bit VLAN identifier, rather than the complete 16-bit VLAN tag, is used for comparison and filtering. Bits[11:0] of the VLAN tag are compared with the corresponding field in the received VLAN-tagged frame. When this bit is reset, all 16 bits of the received VLAN frame's fifteenth and sixteenth bytes are used for comparison
15:0	RW	0x0000	VL VLAN Tag Identifier for Receive Frames This contains the 802.1Q VLAN tag to identify VLAN frames, and is compared to the fifteenth and sixteenth bytes of the frames being received for VLAN frames. Bits[15:13] are the User Priority, Bit[12] is the Canonical Format Indicator (CFI) and bits[11:0] are the VLAN tag's VLAN Identifier (VID) field. When the ETV bit is set, only the VID (Bits[11:0]) is used for comparison. If VL (VL[11:0] if ETV is set) is all zeros, the MAC does not check the fifteenth and sixteenth bytes for VLAN tag comparison, and declares all frames with a Type field value of 0x8100 to be VLAN frames

# **MAC DEBUG**

Address: Operational Base + offset (0x0024)

Bit		Reset Value	Description
31:26		0×0	reserved
31.20	KO	0.00	TFIFO3
			When high, it indicates that the MTL TxStatus FIFO is full and
25	RW	0x0	hence the MTL will not be accepting any more frames for
			transmission
			TFIFO2
24	RW	0×0	When high, it indicates that the MTL TxFIFO is not empty and has
		o x o	some data left for transmission
23	RO	0x0	reserved
			TFIFO1
22	RW	0×0	When high, it indicates that the MTL TxFIFO Write Controller is
			active and transferring data to the TxFIFO
			TFIFOSTA
			This indicates the state of the TxFIFO read Controller:
			2'b00: IDLE state
21:20	RW	0x0	2'b01: READ state (transferring data to MAC transmitter)
			2'b10: Waiting for TxStatus from MAC transmitter
			2'b11: Writing the received TxStatus or flushing the TxFIFO
			PAUSE
4.0	D.47		When high, it indicates that the MAC transmitter is in PAUSE
19	RW	0x0	condition (in full-duplex only) and hence will not schedule any
			frame for transmission
			TSAT
			This indicates the state of the MAC Transmit Frame Controller
			module:
			2'b00: IDLE
18:17	RW	0x0	2'b01: Waiting for Status of previous frame or IFG/backoff period
			to be over
			2'b10: Generating and transmitting a PAUSE control frame (in full
			duplex mode)
			2'b11: Transferring input frame for transmission
			TACT
16	RW	0x0	When high, it indicates that the MAC GMII/MII transmit protocol
			engine is actively transmitting data and not in IDLE state
15:10	RO	0x0	reserved
			RFIFO
			This gives the status of the RxFIFO Fill-level:
9:8	RW	0×0	2'b00: RxFIFO Empty
- · •			2'b01: RxFIFO fill-level below flow-control de-activate threshold
			2'b10: RxFIFO fill-level above flow-control activate threshold
			2'b11: RxFIFO Full
7	RO	0x0	reserved

Bit	Attr	<b>Reset Value</b>	Description
			RFIFORD
			It gives the state of the RxFIFO read Controller:
6:5	RW	0×0	2'b00: IDLE state
0.5	KVV	UXU	2'b01: Reading frame data
			2'b10: Reading frame status (or time-stamp)
			2'b11: Flushing the frame data and Status
	RW	0x0	RFIFOWR
4			When high, it indicates that the MTL RxFIFO Write Controller is
			active and transferring a received frame to the FIFO
3	RO	0x0	reserved
			ACT
2:1	DW	W 0×0	When high, it indicates the active state of the small FIFO Read
2.1	RW		and Write controllers respectively of the MAC receive Frame
			Controller module
			RDB
0	RW	RW 0x0	When high, it indicates that the MAC GMII/MII receive protocol
			engine is actively receiving data and not in IDLE state

MAC PMT CTRL STA
Address: Operational Base + offset (0x002c)

Bit	Attr	<b>Reset Value</b>	Description
			WFFRPR
31	W1	0x0	Wake-Up Frame Filter Register Pointer Reset
31	С	UXU	When set, resets the Remote Wake-up Frame Filter register
			pointer to 3'b000. It is automatically cleared after 1 clock cycle
30:10	RO	0x0	reserved
			GU
9	RW	0x0	Global Unicast
9	KVV	UXU	When set, enables any unicast packet filtered by the MAC (DAF)
			address recognition to be a wake-up frame
8:7	RO	0x0	reserved
			WFR
			Wake-Up Frame Received
6	RC	0x0	When set, this bit indicates the power management event was
			generated due to reception of a wake-up frame. This bit is
			cleared by a read into this register
			MPR
			Magic Packet Received
5	RC	0x0	When set, this bit indicates the power management event was
			generated by the reception of a Magic Packet. This bit is cleared
			by a read into this register
4:3	RO	0x0	reserved

Bit	Attr	Reset Value	Description
			WFE
2	RW	0x0	Wake-Up Frame Enable
_		o no	When set, enables generation of a power management event due
			to wake-up frame reception
			MPE
1	RW	0x0	Magic Packet Enable
1	KVV		When set, enables generation of a power management event due
			to Magic Packet reception
		/W 0×0	PD
	R/W		Power Down
			When set, all received frames will be dropped. This bit is cleared
0			automatically when a magic packet or Wake-Up frame is
0	SC		received, and Power-Down mode is disabled. Frames received
			after this bit is cleared are forwarded to the application. This bit
			must only be set when either the Magic Packet Enable or Wake-
			Up Frame Enable bit is set high

## MAC_INT_STATUS

Address: Operational Base + offset (0x0038)

Bit	Attr	<b>Reset Value</b>	Description
31:8	RO	0x0	reserved
			MRCOIS
			MMC Receive Checksum Offload Interrupt Status
7	RO	0x0	This bit is set high whenever an interrupt is generated in the MMC
			Receive Checksum Offload Interrupt Register. This bit is cleared
			when all the bits in this interrupt register are cleared
			MTIS
			MMC Transmit Interrupt Status
6	RO	0×0	This bit is set high whenever an interrupt is generated in the MMC
		UXU	Transmit Interrupt Register. This bit is cleared when all the bits in
			this interrupt register are cleared. This bit is only valid when the
			optional MMC module is selected during configuration
		O 0x0	MRIS
			MMC Receive Interrupt Status
5	RO		This bit is set high whenever an interrupt is generated in the MMC
			Receive Interrupt Register. This bit is cleared when all the bits in
			this interrupt register are cleared. This bit is only valid when the
			optional MMC module is selected during configuration
			MIS
			MMC Interrupt Status
4	RO	0x0	This bit is set high whenever any of bits 7:5 is set high and
			cleared only when all of these bits are low. This bit is valid only
			when the optional MMC module is selected during configuration

Bit	Attr	<b>Reset Value</b>	Description
			PIS
			PMT Interrupt Status
3	D.O.	0.0	This bit is set whenever a Magic packet or Wake-on-LAN frame is
3	RO	0x0	received in Power-Down mode). This bit is cleared when both
			bits[6:5] are cleared due to a read operation to the register
			MAC_PMT_CTRL_STA
2:1	RO	0x0	reserved
			RIS
		0x0	RGMII Interrupt Status
0	RO		This bit is set due to any change in value of the Link Status of
			RGMII interface. This bit is cleared when the user makes a read
			operation the RGMII Status register

## **MAC INT MASK**

Address: Operational Base + offset (0x003c)

Bit	Attr	<b>Reset Value</b>	Description
31:4	RO	0x0	reserved
			PIM
			PMT Interrupt Mask
3	RW	0x0	This bit when set, will disable the assertion of the interrupt signal
			due to the setting of PMT Interrupt Status bit in Register
			MAC_INT_STATUS
2:1	RO	0x0	reserved
			RIM
			RGMII Interrupt Mask
0	RW	0x0	This bit when set, will disable the assertion of the interrupt signal
			due to the setting of RGMII Interrupt Status bit in Register
			MAC_INT_STATUS

# MAC MAC ADDRO HI

Address: Operational Base + offset (0x0040)

Bit	Attr	<b>Reset Value</b>	Description
31:16	RO	0x0	reserved
15:0	RW	0xffff	A47_A32  MAC Address0 [47:32]  This field contains the upper 16 bits (47:32) of the 6-byte first MAC address. This is used by the MAC for filtering for received
			frames and for inserting the MAC address in the Transmit Flow Control (PAUSE) Frames

## MAC MAC ADDRO LO

Address: Operational Base + offset (0x0044)

Bit	Attr	<b>Reset Value</b>	Description
31:0	RW	0×ffffffff	A31_A0 MAC Address0 [31:0] This field contains the lower 32 bits of the 6-byte first MAC address. This is used by the MAC for filtering for received frames and for inserting the MAC address in the Transmit Flow Control (PAUSE) Frames

## MAC AN CTRL

Address: Operational Base + offset (0x00c0)

Bit	Attr	<b>Reset Value</b>	Description
31:13	RO	0x0	reserved
			ANE
			Auto-Negotiation Enable
12	RW	0x0	When set, will enable the MAC to perform auto-negotiation with
			the link partner.
			Clearing this bit will disable auto-negotiation
11:10	RO	0x0	reserved
			RAN
	D ///		Restart Auto-Negotiation
9	R/W SC		When set, will cause auto-negotiation to restart if the ANE is set.
	SC		This bit is self-clearing after auto-negotiation starts. This bit
			should be cleared for normal operation
8:0	RO	0x0	reserved

# **MAC AN STATUS**

Address: Operational Base + offset (0x00c4)

Bit	Attr	<b>Reset Value</b>	Description
31:6	RO	0x0	reserved
			ANC
			Auto-Negotiation Complete
5	RO	0x0	When set, this bit indicates that the auto-negotiation process is completed.
			This bit is cleared when auto-negotiation is reinitiated
4	RO	0x0	reserved
			ANA
3	RO	0×1	Auto-Negotiation Ability
]	KO	OXI	This bit is always high, because the MAC supports auto-
			negotiation
			LS
2	R/W	0x0	Link Status
_	SC	0.00	When set, this bit indicates that the link is up. When cleared, this
			bit indicates that the link is down
1:0	RO	0x0	reserved

## MAC AN ADV

Address: Operational Base + offset (0x00c8)

Bit	Attr	<b>Reset Value</b>	Description
31:16	RO	0x0	reserved
			NP Next Page Support
15	RO	0x0	This bit is tied to low, because the MAC does not support the next page
14	RO	0x0	reserved
13:12	RW	0x0	RFE Remote Fault Encoding These 2 bits provide a remote fault encoding, indicating to a link partner that a fault or error condition has occurred
11:9	RO	0x0	reserved
8:7	RW	0x3	PSE Pause Encoding These 2 bits provide an encoding for the PAUSE bits, indicating that the MAC is capable of configuring the PAUSE function as defined in IEEE 802.3x
6	RW	0x1	HD Half-Duplex This bit, when set high, indicates that the MAC supports Half-Duplex. This bit is tied to low (and RO) when the MAC is configured for Full-Duplex-only operation
5	RW	0×1	FD Full-Duplex This bit, when set high, indicates that the MAC supports Full-Duplex
4:0	RO	0x0	reserved

## **MAC AN LINK PART AB**

Address: Operational Base + offset (0x00cc)

Bit	Attr	<b>Reset Value</b>	Description
31:16	RO	0x0	reserved
			NP
			Next Page Support
15	RO	0×0	When set, this bit indicates that more next page information is
13	2	UXU	available.
			When cleared, this bit indicates that next page exchange is not
			desired
			ACK
	RO	0×0	Acknowledge
14			When set, this bit is used by the auto-negotiation function to
14	KO		indicate that the link partner has successfully received the MAC's
			base page. When cleared, it indicates that a successful receipt of
			the base page has not been achieved

Bit	Attr	Reset Value	Description
13:12	RO	0x0	RFE Remote Fault Encoding These 2 bits provide a remote fault encoding, indicating a fault or error condition of the link partner
11:9	RO	0x0	reserved
8:7	RO	0×0	PSE Pause Encoding These 2 bits provide an encoding for the PAUSE bits, indicating that the link partner's capability of configuring the PAUSE function as defined in IEEE 802.3x
6	RO	0x0	HD Half-Duplex When set, this bit indicates that the link partner has the ability to operate in Half-Duplex mode. When cleared, the link partner does not have the ability to operate in Half-Duplex mode
5	RO	0×0	FD Full-Duplex When set, this bit indicates that the link partner has the ability to operate in Full-Duplex mode. When cleared, the link partner does not have the ability to operate in Full-Duplex mode
4:0	RO	0x0	reserved

# MAC_AN_EXP

Address: Operational Base + offset (0x00d0)

Bit	Attr	Reset Value	Description
31:3	RO	0x0	reserved
			NPA
2	D.O.	00	Next Page Ability
2	RO	0×0	This bit is tied to low, because the MAC does not support next
			page function
	DO.	0x0	NPR
4			New Page Received
1	RO		When set, this bit indicates that a new page has been received by
			the MAC. This bit will be cleared when read
0	RO	0x0	reserved

## MAC INTF MODE STA

Address: Operational Base + offset (0x00d8)

Bit	Attr	<b>Reset Value</b>	Description
31:4	RO	0x0	reserved
			LST
3	RO	0x0	Link Status
			Indicates whether the link is up (1'b1) or down (1'b0)

Bit	Attr	<b>Reset Value</b>	Description
			LSD
			Link Speed
2:1	D.O.	0.40	Indicates the current speed of the link:
2.1	RO	0×0	2'b00: 2.5 MHz
			2'b01: 25 MHz
			2'b10: 125 MHz
		0x0	LM
			Link Mode
0	RW		Indicates the current mode of operation of the link:
			1'b0: Half-Duplex mode
			1'b1: Full-Duplex mode

# MAC MMC CTRL

Address: Operational Base + offset (0x0100)

Bit	Attr	<b>Reset Value</b>	Description
31:6	RO	0x0	reserved
5	RW	0×0	FHP Full-Half preset When low and bit4 is set, all MMC counters get preset to almosthalf value. All octet counters get preset to 0x7FFF_F800 (half - 2K Bytes) and all frame-counters gets preset to 0x7FFF_FFF0 (half - 16) When high and bit4 is set, all MMC counters get preset to almostfull value. All octet counters get preset to 0xFFFF_F800 (full - 2K Bytes) and all frame-counters gets preset to 0xFFFF_FFF0 (full - 16)
4	R/W SC	0×0	CP Counters Preset When set, all counters will be initialized or preset to almost full or almost half as per Bit5 above. This bit will be cleared automatically after 1 clock cycle. This bit along with bit5 is useful for debugging and testing the assertion of interrupts due to MMC counter becoming half-full or full
3	RW	0x0	MCF MMC Counter Freeze When set, this bit freezes all the MMC counters to their current value. (None of the MMC counters are updated due to any transmitted or received frame until this bit is reset to 0. If any MMC counter is read with the Reset on Read bit set, then that counter is also cleared in this mode.)
2	RW	0×0	ROR Reset on Read When set, the MMC counters will be reset to zero after Read (self-clearing after reset). The counters are cleared when the least significant byte lane (bits[7:0]) is read

Bit	Attr	<b>Reset Value</b>	Description
		0×0	CSR
1	DW		Counter Stop Rollover
1	RW		When set, counter after reaching maximum value will not roll
			over to zero
		$\int_{C} \int_{C} \int_{C$	CR
	R/W		Counters Reset
0	SC		When set, all counters will be reset. This bit will be cleared
			automatically after 1 clock cycle

# MAC MMC RX INTR

Address: Operational Base + offset (0x0104)

Bit	Attr	<b>Reset Value</b>	Description
31:22	RO	0x0	reserved
			INT21
21	RW	0x0	The bit is set when the rxfifooverflow counter reaches half the
			maximum value, and also when it reaches the maximum value
20:19	RO	0x0	reserved
			INT18
18	RC	0x0	The bit is set when the rxlengtherror counter reaches half the
			maximum value, and also when it reaches the maximum value
17:6	RO	0x0	reserved
			INT5
5	RW	0x0	The bit is set when the rxcrcerror counter reaches half the
			maximum value, and also when it reaches the maximum value
			INT4
4	RC	0×0	The bit is set when the rxmulticastframes_g counter reaches half
_	IXC	0.00	the maximum value, and also when it reaches the maximum
			value
3	RO	0x0	reserved
			INT2
2	RC	0x0	The bit is set when the rxoctetcount_g counter reaches half the
			maximum value, and also when it reaches the maximum value
			INT1
1	RC	0x0	The bit is set when the rxoctetcount_gb counter reaches half the
			maximum value, and also when it reaches the maximum value
			INTO
0	RC	0x0	The bit is set when the rxframecount_gb counter reaches half the
			maximum value, and also when it reaches the maximum value

MAC MMC TX INTR
Address: Operational Base + offset (0x0108)

Bit	Attr	Reset Value	Description
31:22	RO	0x0	reserved
			INT21
21	RC	0x0	The bit is set when the txframecount_g counter reaches half the
			maximum value, and also when it reaches the maximum value
			INT20
20	RC	0x0	The bit is set when the txoctetcount_g counter reaches half the
			maximum value, and also when it reaches the maximum value
			INT19
19	RC	0x0	The bit is set when the txcarriererror counter reaches half the
			maximum value, and also when it reaches the maximum value
18:14	RO	0x0	reserved
			INT13
13	RC	0x0	The bit is set when the txunderflowerror counter reaches half the
			maximum value, and also when it reaches the maximum value
12:2	RO	0x0	reserved
			INT1
1	RC	0x0	The bit is set when the txframecount_gb counter reaches half the
			maximum value, and also when it reaches the maximum value
			INTO
0	RC	0x0	The bit is set when the txoctetcount_gb counter reaches half the
			maximum value, and also when it reaches the maximum value

# MAC MMC RX INT MSK

Address: Operational Base + offset (0x010c)

Bit	Attr	Reset Value	Description
31:22	RO	0x0	reserved
			INT21
21	RW	0x0	Setting this bit masks the interrupt when the rxfifooverflow
21	IK VV	UXU	counter reaches half the maximum value, and also when it
			reaches the maximum value
20:19	RO	0x0	reserved
			INT18
18	RW	0x0	Setting this bit masks the interrupt when the rxlengtherror
10	KVV		counter reaches half the maximum value, and also when it
			reaches the maximum value
17:6	RO	0x0	reserved
		W 0×0	INT5
5	RW		Setting this bit masks the interrupt when the rxcrcerror counter
	1200	0.00	reaches half the maximum value, and also when it reaches the
			maximum value
			INT4
4	RW	0×0	Setting this bit masks the interrupt when the
'	1	W UXU	rxmulticastframes_g counter reaches half the maximum value,
			and also when it reaches the maximum value

Bit	Attr	Reset Value	Description
3	RO	0x0	reserved
2	RW	0x0	INT2 Setting this bit masks the interrupt when the rxoctetcount_g counter reaches half the maximum value, and also when it reaches the maximum value
1	RW	0x0	INT1 Setting this bit masks the interrupt when the rxoctetcount_gb counter reaches half the maximum value, and also when it reaches the maximum value
0	RW	0×0	INTO Setting this bit masks the interrupt when the rxframecount_gb counter reaches half the maximum value, and also when it reaches the maximum value

# MAC MMC TX INT MSK

Address: Operational Base + offset (0x0110)

Bit	Attr	<b>Reset Value</b>	Description
31:22	RO	0x0	reserved
			INT21
21	RW	0x0	Setting this bit masks the interrupt when the txframecount_g
21	IK VV	UXU	counter reaches half the maximum value, and also when it
			reaches the maximum value
			INT20
20	RW	0×0	Setting this bit masks the interrupt when the txoctetcount_g
20	KVV	UXU	counter reaches half the maximum value, and also when it
			reaches the maximum value
			INT19
19	RW	0×0	Setting this bit masks the interrupt when the txcarriererror
19	KVV	OXO	counter reaches half the maximum value, and also when it
			reaches the maximum value
18:14	RO	0x0	reserved
			INT13
13	RW	0x0	Setting this bit masks the interrupt when the txunderflowerror
13	IXVV		counter reaches half the maximum value, and also when it
			reaches the maximum value
12:2	RO	0x0	reserved
			INT1
1	RW	0×0	Setting this bit masks the interrupt when the txframecount_gb
_	IXVV	0.00	counter reaches half the maximum value, and also when it
			reaches the maximum value
			INTO
0	RW	W 0x0	Setting this bit masks the interrupt when the txoctetcount_gb
	1		counter reaches half the maximum value, and also when it
			reaches the maximum value

## MAC MMC TXOCTETCNT GB

Address: Operational Base + offset (0x0114)

Bit	Attr	<b>Reset Value</b>	Description
31:0	RW		txoctetcount_gb Number of bytes transmitted, exclusive of preamble and retried
31.0	IXVV		bytes, in good and bad frames

## **MAC MMC TXFRMCNT GB**

Address: Operational Base + offset (0x0118)

Bit	Attr	Reset Value	Description
DIC	Atti	Reset Value	Description
			txframecount_gb
31:0	RW	0x00000000	Number of good and bad frames transmitted, exclusive of retried
			frames

# MAC MMC TXUNDFLWERR

Address: Operational Base + offset (0x0148)

Bit	Attr	<b>Reset Value</b>	Description
31:0	DW	10×00000000	txunderflowerror
31.0	RW		Number of frames aborted due to frame underflow error

## MAC_MMC_TXCARERR

Address: Operational Base + offset (0x0160)

Bit	Attr	<b>Reset Value</b>	Description
31:0	RW	0x00000000	txcarriererror  Number of frames aborted due to carrier sense error (no carrier or loss of carrier)

# MAC MMC TXOCTETCNT G

Address: Operational Base + offset (0x0164)

Address: Operational base + offset (0x010+)			+ onset (0x010+)
Bit	Attr	<b>Reset Value</b>	Description
31:0	RW	0x00000000	txoctetcount_g Number of bytes transmitted, exclusive of preamble, in good frames only

#### MAC MMC TXFRMCNT G

Address: Operational Base + offset (0x0168)

Bit	Attr	<b>Reset Value</b>	Description
31:0	DW	10×00000000	txframecount_g
31.0	KVV		Number of good frames transmitted

#### MAC MMC RXFRMCNT GB

Address: Operational Base + offset (0x0180)

Bit	Attr	<b>Reset Value</b>	Description
31:0	RW	IOXOOOOOOOO	rxframecount_gb
31:0			Number of good and bad frames received

#### **MAC MMC RXOCTETCNT GB**

Address: Operational Base + offset (0x0184)

Bit	Attr	<b>Reset Value</b>	Description
31:0	RW	0x00000000	rxoctetcount_gb Number of bytes received, exclusive of preamble, in good and bad frames

## MAC MMC RXOCTETCNT G

Address: Operational Base + offset (0x0188)

Bit	Attr	<b>Reset Value</b>	Description
31:0	RW	0×00000000	rxoctetcount_g Number of bytes received, exclusive of preamble, only in good frames

## MAC MMC RXMCFRMCNT G

Address: Operational Base + offset (0x0190)

Bit	Attr	<b>Reset Value</b>	Description
31:0	RW	$10 \times 000000000$	rxmulticastframes_g
31:0			Number of good multicast frames received

#### **MAC MMC RXCRCERR**

Address: Operational Base + offset (0x0194)

Bit	Attr	<b>Reset Value</b>	Description
21.0	RW	N 10×00000000 1	rxcrcerror
31:0			Number of frames received with CRC error

# **MAC MMC RXLENERR**

Address: Operational Base + offset (0x01c8)

Bit	Attr	<b>Reset Value</b>	Description
			rxlengtherror
31:0	RW	0x00000000	Number of frames received with length error (Length type field
			≠frame size), for all frames with valid length field

## MAC MMC RXFIFOOVRFLW

Address: Operational Base + offset (0x01d4)

Bit	Attr	<b>Reset Value</b>	Description
31:0	RW	$10\times00000000$	rxfifooverflow
31.0			Number of missed received frames due to FIFO overflow

## MAC MMC IPC INT MSK

Address: Operational Base + offset (0x0200)

Addic	33. O	octational base	1 011366 (070200)
Bit	Attr	<b>Reset Value</b>	Description
31:30	RO	0x0	reserved

Bit	Attr	Reset Value	Description
			INT29
29	RW	0×0	Setting this bit masks the interrupt when the rxicmp_err_octets counter reaches half the maximum value, and also when it reaches the maximum value
28	RO	0x0	reserved
27	RW	0×0	INT27 Setting this bit masks the interrupt when the rxtcp_err_octets counter reaches half the maximum value, and also when it reaches the maximum value
26	RO	0x0	reserved
25	RW	0x0	INT25 Setting this bit masks the interrupt when the rxudp_err_octets counter reaches half the maximum value, and also when it reaches the maximum value
24:23	RO	0x0	reserved
22	RW	0×0	INT22 Setting this bit masks the interrupt when the rxipv6_hdrerr_octets counter reaches half the maximum value, and also when it reaches the maximum value
21:18	RO	0x0	reserved
17	RW	0×0	INT17 Setting this bit masks the interrupt when the rxipv4_hdrerr_octets counter reaches half the maximum value, and also when it reaches the maximum value
16:14	RO	0x0	reserved
13	RW	0×0	INT13 Setting this bit masks the interrupt when the rxicmp_err_frms counter reaches half the maximum value, and also when it reaches the maximum value
12	RO	0x0	reserved
11	RW	0×0	INT11 Setting this bit masks the interrupt when the rxtcp_err_frms counter reaches half the maximum value, and also when it reaches the maximum value
10	RO	0x0	reserved
9	RW	0×0	INT9 Setting this bit masks the interrupt when the rxudp_err_frms counter reaches half the maximum value, and also when it reaches the maximum value
8:7	RO	0x0	reserved
6	RW	0x0	INT6 Setting this bit masks the interrupt when the rxipv6_hdrerr_frms counter reaches half the maximum value, and also when it reaches the maximum value

Bit	Attr	Reset Value	Description
			INT5
5	RW	0x0	Setting this bit masks the interrupt when the rxipv6_gd_frms
5	KVV	UXU	counter reaches half the maximum value, and also when it
			reaches the maximum value
4:2	RO	0x0	reserved
		V 0x0	INT1
1	RW		Setting this bit masks the interrupt when the rxipv4_hdrerr_frms
1	KVV		counter reaches half the maximum value, and also when it
			reaches the maximum value
		RW 0x0	INTO
0	DW		Setting this bit masks the interrupt when the rxipv4_gd_frms
U	KVV		counter reaches half the maximum value, and also when it
			reaches the maximum value

# **MAC MMC IPC INTR**

Address: Operational Base + offset (0x0208)

Bit	Attr	Reset Value	Description
31:30	RO	0x0	reserved
			INT29
20	D.C.	00	The bit is set when the rxicmp_err_octets counter reaches half
29	RC	0x0	the maximum value, and also when it reaches the maximum
			value
28	RO	0x0	reserved
			INT27
27	RC	0x0	The bit is set when the rxtcp_err_octets counter reaches half the
			maximum value, and also when it reaches the maximum value
26	RO	0x0	reserved
			INT25
25	RC	0x0	The bit is set when the rxudp_err_octets counter reaches half the
			maximum value, and also when it reaches the maximum value
24:23	RO	0x0	reserved
		0x0	INT22
22	RC		The bit is set when the rxipv6_hdrerr_octets counter reaches half
22	IXC		the maximum value, and also when it reaches the maximum
			value
21:18	RO	0x0	reserved
			INT17
17	RC	0×0	The bit is set when the rxipv4_hdrerr_octets counter reaches half
17	IXC	0.00	the maximum value, and also when it reaches the maximum
			value
16:14	RO	0x0	reserved
			INT13
13	RC	C 0x0	The bit is set when the rxicmp_err_frms counter reaches half the
			maximum value, and also when it reaches the maximum value

Bit	Attr	Reset Value	Description
12	RO	0x0	reserved
			INT11
11	RC	0x0	The bit is set when the rxtcp_err_frms counter reaches half the maximum value, and also when it reaches the maximum value
10	RO	0x0	reserved
10	KU	UXU	
9	RC	0x0	INT9 The bit is set when the rxudp_err_frms counter reaches half the maximum value, and also when it reaches the maximum value
8:7	RO	0x0	reserved
6	RC	0×0	INT6 The bit is set when the rxipv6_hdrerr_frms counter reaches half the maximum value, and also when it reaches the maximum value
5	RC	0x0	INT5 The bit is set when the rxipv6_gd_frms counter reaches half the maximum value, and also when it reaches the maximum value
4:2	RO	0x0	reserved
1	RC	0×0	INT1 The bit is set when the rxipv4_hdrerr_frms counter reaches half the maximum value, and also when it reaches the maximum value
0	RC	0×0	INTO The bit is set when the rxipv4_gd_frms counter reaches half the maximum value, and also when it reaches the maximum value

# **MAC MMC RXIPV4GFRM**

Address: Operational Base + offset (0x0210)

Bit	Attr	<b>Reset Value</b>	Description
31:0	RW	0x00000000	rxipv4_gd_frms  Number of good IPv4 datagrams received with the TCP, UDP, or ICMP payload

# MAC MMC RXIPV4HDERRFRM

Address: Operational Base + offset (0x0214)

Bit	Attr	<b>Reset Value</b>	Description
			rxipv4_hdrerr_frms
31:0	RW	0x00000000	Number of IPv4 datagrams received with header (checksum,
			length, or version mismatch) errors

# MAC MMC RXIPV6GFRM

Address: Operational Base + offset (0x0224)

Bit	Attr	<b>Reset Value</b>	Description
31:0	RW	0x00000000	rxipv6_gd_frms Number of good IPv6 datagrams received with TCP, UDP, or ICMP payloads

## MAC_MMC_RXIPV6HDERRFRM

Address: Operational Base + offset (0x0228)

Bit	Attr	<b>Reset Value</b>	Description
			rxipv6_hdrerr_frms
31:0	RW	0x00000000	Number of IPv6 datagrams received with header errors (length or
			version mismatch)

#### **MAC MMC RXUDPERRFRM**

Address: Operational Base + offset (0x0234)

Bit	Attr	<b>Reset Value</b>	Description
31:0	RW		rxudp_err_frms Number of good IP datagrams whose UDP payload has a
			checksum error

## **MAC MMC RXTCPERRFRM**

Address: Operational Base + offset (0x023c)

Bit	Attr	<b>Reset Value</b>	Description
31:0	RW		rxtcp_err_frms Number of good IP datagrams whose TCP payload has a
			checksum error

## **MAC MMC RXICMPERRFRM**

Address: Operational Base + offset (0x0244)

Bit	Attr	<b>Reset Value</b>	Description
31:0	RW	0x00000000	rxicmp_err_frms  Number of good IP datagrams whose ICMP payload has a checksum error

#### **MAC MMC RXIPV4HDERROCT**

Address: Operational Base + offset (0x0254)

Bit	Attr	<b>Reset Value</b>	Description
	) RW	0x00000000	rxipv4_hdrerr_octets
31:0			Number of bytes received in IPv4 datagrams with header errors
31.0			(checksum, length, version mismatch). The value in the Length
			field of IPv4 header is used to update this counter

## MAC MMC RXIPV6HDERROCT

Address: Operational Base + offset (0x0268)

Bit	Attr	<b>Reset Value</b>	Description
31:0	RW	0x00000000	rxipv6_hdrerr_octets  Number of bytes received in IPv6 datagrams with header errors (length, version mismatch). The value in the IPv6 header's Length field is used to update this counter

# **MAC MMC RXUDPERROCT**

Address: Operational Base + offset (0x0274)

Bit	Attr	<b>Reset Value</b>	Description
31:0	RW		rxudp_err_octets Number of bytes received in a UDP segment that had checksum
			errors

# **MAC MMC RXTCPERROCT**

Address: Operational Base + offset (0x027c)

Bit	Attr	<b>Reset Value</b>	Description
31:0	RW.	RW 10200000000 1	rxtcp_err_octets
31.0	IXVV		Number of bytes received in a TCP segment with checksum errors

# **MAC MMC RXICMPERROCT**

Address: Operational Base + offset (0x0284)

Bit	Attr	<b>Reset Value</b>	Description
31:0	RW		rxicmp_err_octets Number of bytes received in an ICMP segment with checksum
			errors

## **MAC BUS MODE**

Address: Operational Base + offset (0x1000)

Bit	Attr	Reset Value	Description
31:26	RO	0x0	reserved
25	RW	0×0	AAL Address-Aligned Beats When this bit is set high and the FB bit equals 1, the AXI interface generates all bursts aligned to the start address LS bits. If the FB bit equals 0, the first burst (accessing the data buffer's start address) is not aligned, but subsequent bursts are aligned to the address
24	RW	0x0	PBL_Mode 8xPBL Mode When set high, this bit multiplies the PBL value programmed (bits [22:17] and bits [13:8]) eight times. Thus the DMA will transfer data in to a maximum of 8, 16, 32, 64, 128, and 256 beats depending on the PBL value

Bit	Attr	Reset Value	Description
23	RW	0×0	USP Use Separate PBL When set high, it configures the RxDMA to use the value configured in bits [22:17] as PBL while the PBL value in bits [13:8] is applicable to TxDMA operations only. When reset to low, the PBL value in bits [13:8] is applicable for both DMA engines
22:17	RW	0×01	RPBL RxDMA PBL These bits indicate the maximum number of beats to be transferred in one RxDMA transaction. This will be the maximum value that is used in a single block Read/Write. The RxDMA will always attempt to burst as specified in RPBL each time it starts a Burst transfer on the host bus. RPBL can be programmed with permissible values of 1, 2, 4, 8, 16, and 32. Any other value will result in undefined behavior. These bits are valid and applicable only when USP is set high
16	RW	0×0	FB Fixed Burst This bit controls whether the AXI Master interface performs fixed burst transfers or not. When set, the AHB will use only SINGLE, INCR4, INCR8 or INCR16 during start of normal burst transfers. When reset, the AXI will use SINGLE and INCR burst transfer operations
15:14	RO	0x0	reserved

Bit	Attr	Reset Value	Description
13:8	RW	0×01	PBL Programmable Burst Length These bits indicate the maximum number of beats to be transferred in one DMA transaction. This will be the maximum value that is used in a single block Read/Write. The DMA will always attempt to burst as specified in PBL each time it starts a Burst transfer on the host bus. PBL can be programmed with permissible values of 1, 2, 4, 8, 16, and 32. Any other value will result in undefined behavior. When USP is set high, this PBL value is applicable for TxDMA transactions only. The PBL values have the following limitations. The maximum number of beats (PBL) possible is limited by the size of the Tx FIFO and Rx FIFO in the MTL layer and the data bus width on the DMA. The FIFO has a constraint that the maximum beat supported is half the depth of the FIFO, except when specified (as given below). For different data bus widths and FIFO sizes, the valid PBL range (including x8 mode) is provided in the following table. If the PBL is common for both transmit and receive DMA, the minimum Rx FIFO and Tx FIFO depths must be considered. Do not program out-of-range PBL values, because the system may not behave properly. For TxFIFO, valid PBL range in full duplex mode and duplex mode is 128 or less. For RxFIFO, valid PBL range in full duplex mode is all
6:2	RO	0x0 0x00	DSL Descriptor Skip Length This bit specifies the number of dword to skip between two unchained descriptors. The address skipping starts from the end of current descriptor to the start of next descriptor. When DSL value equals zero, then the descriptor table is taken as contiguous by the DMA, in Ring mode
1	RO	0x0	reserved
0	R/W SC	0x1	SWR Software Reset When this bit is set, the MAC DMA Controller resets all MAC Subsystem internal registers and logic. It is cleared automatically after the reset operation has completed in all of the core clock domains. Read a 0 value in this bit before re-programming any register of the core. Note: The reset operation is completed only when all the resets in all the active clock domains are de-asserted. Hence it is essential that all the PHY inputs clocks (applicable for the selected PHY interface) are present for software reset completion

# MAC TX POLL DEMAND

Address: Operational Base + offset (0x1004)

Bit	Attr	<b>Reset Value</b>	Description
		0×00000000	TPD Transmit Poll Demand When these bits are written with any value, the DMA reads the current descriptor pointed to by Register MAC_CUR_HOST_TX_DESC. If that descriptor is not available (owned by Host), transmission returns to the Suspend state and
			DMA Register MAC_STATUS[2] is asserted. If the descriptor is
			available, transmission resumes

## MAC RX POLL DEMAND

Address: Operational Base + offset (0x1008)

Bit	Attr	<b>Reset Value</b>	Description
		0x00000000	RPD
			Receive Poll Demand
	RO		When these bits are written with any value, the DMA reads the
31:0			current descriptor pointed to by Register
31.0			MAC_CUR_HOST_RX_DESC. If that descriptor is not available
			(owned by Host), reception returns to the Suspended state and
			Register MAC_STATUS[7] is not asserted. If the descriptor is
			available, the Receive DMA returns to active state

# MAC RX DESC LIST ADDR

Address: Operational Base + offset (0x100c)

Bit	Attr	<b>Reset Value</b>	Description
	RW	0x00000000	SRL
			Start of Receive List
31:0			This field contains the base address of the First Descriptor in the
31.0			Receive Descriptor list. The LSB bits [1/2/3:0] for 32/64/128-bit
			bus width) will be ignored and taken as all-zero by the DMA
			internally. Hence these LSB bits are Read Only

# MAC TX DESC LIST ADDR

Address: Operational Base + offset (0x1010)

Bit	Attr	<b>Reset Value</b>	Description
		0x00000000	STL
	RW		Start of Transmit List
31:0			This field contains the base address of the First Descriptor in the
31.0			Transmit Descriptor list. The LSB bits [1/2/3:0] for 32/64/128-bit
			bus width) will be ignored and taken as all-zero by the DMA
			internally. Hence these LSB bits are Read Only

## **MAC_STATUS**

Address: Operational Base + offset (0x1014)

Bit	Attr	<b>Reset Value</b>	Description
31:29	RO	0x0	reserved
28	RO	0×0	GPI MAC PMT Interrupt This bit indicates an interrupt event in the MAC core's PMT module. The software must read the corresponding registers in the MAC core to get the exact cause of interrupt and clear its source to reset this bit to 1'b0. The interrupt signal from the MAC subsystem (sbd_intr_o) is high when this bit is high
27	RO	0×0	GMI MAC MMC Interrupt This bit reflects an interrupt event in the MMC module of the MAC core. The software must read the corresponding registers in the MAC core to get the exact cause of interrupt and clear the source of interrupt to make this bit as 1'b0. The interrupt signal from the MAC subsystem (sbd_intr_o) is high when this bit is high
26	RO	0×0	GLI MAC Line interface Interrupt This bit reflects an interrupt event in the MAC Core's PCS or RGMII interface block. The software must read the corresponding registers in the MAC core to get the exact cause of interrupt and clear the source of interrupt to make this bit as 1'b0. The interrupt signal from the MAC subsystem (sbd_intr_o) is high when this bit is high
25:23	RO	0×0	EB Error Bits These bits indicate the type of error that caused a Bus Error (e.g., error response on the AXI interface). Valid only with Fatal Bus Error bit (Register MAC_STATUS[13]) set. This field does not generate an interrupt. Bit 23: 1'b1 Error during data transfer by TxDMA 1'b0 Error during data transfer by RxDMA Bit 24: 1'b1 Error during read transfer 1'b0 Error during write transfer Bit 25: 1'b1 Error during descriptor access 1'b0 Error during data buffer access

Bit	Attr	<b>Reset Value</b>	Description
<b>Bit</b> 22:20		Reset Value  0x0	Transmit Process State These bits indicate the Transmit DMA FSM state. This field does not generate an interrupt. 3'b000: Stopped; Reset or Stop Transmit Command issued. 3'b001: Running; Fetching Transmit Transfer Descriptor. 3'b010: Running; Waiting for status. 3'b011: Running; Reading Data from host memory buffer and queuing it to transmit buffer (Tx FIFO). 3'b100: TIME_STAMP write state. 3'b101: Reserved for future use. 3'b110: Suspended; Transmit Descriptor Unavailable or Transmit Buffer Underflow. 3'b111: Running; Closing Transmit Descriptor
19:17	RO	0×0	RS Receive Process State These bits indicate the Receive DMA FSM state. This field does not generate an interrupt. 3'b000: Stopped: Reset or Stop Receive Command issued. 3'b001: Running: Fetching Receive Transfer Descriptor. 3'b010: Reserved for future use. 3'b011: Running: Waiting for receive packet. 3'b100: Suspended: Receive Descriptor Unavailable. 3'b101: Running: Closing Receive Descriptor. 3'b110: TIME_STAMP write state. 3'b111: Running: Transferring the receive packet data from receive buffer to host memory
16	W1 C	0×0	NIS  Normal Interrupt Summary  Normal Interrupt Summary bit value is the logical OR of the following when the corresponding interrupt bits are enabled in Register OP_MODE:  Register MAC_STATUS[0]: Transmit Interrupt  Register MAC_STATUS[2]: Transmit Buffer Unavailable  Register MAC_STATUS[6]: Receive Interrupt  Register MAC_STATUS[14]: Early Receive Interrupt  Only unmasked bits affect the Normal Interrupt Summary bit.  This is a sticky bit and must be cleared (by writing a 1 to this bit) each time a corresponding bit that causes NIS to be set is cleared

Bit	Attr	Reset Value	Description
			AIS
			Abnormal Interrupt Summary
			Abnormal Interrupt Summary bit value is the logical OR of the
			following when the corresponding interrupt bits are enabled in
			Register OP_MODE:
			Register MAC_STATUS[1]: Transmit Process Stopped
			Register MAC_STATUS[1]: Transmit Troccss Stopped Register MAC_STATUS[3]: Transmit Jabber Timeout
			Register MAC_STATUS[4]: Receive FIFO Overflow
15	W1	0×0	Register MAC_STATUS[5]: Transmit Underflow
	С	0.00	Register MAC_STATUS[3]: Transmit Undernow  Register MAC_STATUS[7]: Receive Buffer Unavailable
			Register MAC_STATUS[8]: Receive Process Stopped
			Register MAC_STATUS[9]: Receive Watchdog Timeout
			Register MAC_STATUS[10]: Early Transmit Interrupt
			Register MAC_STATUS[13]: Fatal Bus Error
			Only unmasked bits affect the Abnormal Interrupt Summary bit.
			This is a sticky bit and must be cleared each time a
			corresponding bit that causes AIS to be set is cleared
		0x0	ERI
	W1		Early Receive Interrupt
14	С		This bit indicates that the DMA had filled the first data buffer of
			the packet. Receive Interrupt Register MAC_STATUS[6]
			automatically clears this bit
	W1 C	0×0	FBI
			Fatal Bus Error Interrupt
13			This bit indicates that a bus error occurred, as detailed in
			[25:23]. When this bit is set, the corresponding DMA engine
			disables all its bus accesses
12:11	RO	0x0	reserved
			ETI
	W1		Early Transmit Interrupt
10	C	0x0	This bit indicates that the frame to be transmitted was fully
			transferred to the MTL
			Transmit FIFO
			RWT
۵	W1	0x0	Receive Watchdog Timeout
9	С	UXU	This bit is asserted when a frame with a length greater than
			2,048 bytes is received
			RPS
	W1	0×0	Receive Process Stopped
8	С		This bit is asserted when the Receive Process enters the Stopped
			state

Bit	Attr	Reset Value	Description
7	W1 C	0×0	RU Receive Buffer Unavailable This bit indicates that the Next Descriptor in the Receive List is owned by the host and cannot be acquired by the DMA. Receive Process is suspended. To resume processing Receive descriptors, the host should change the ownership of the descriptor and issue a Receive Poll Demand command. If no Receive Poll Demand is issued, Receive Process resumes when the next recognized incoming frame is received. Register MAC_STATUS[7] is set only when the previous Receive Descriptor was owned by the DMA
6	W1 C	0×0	RI Receive Interrupt This bit indicates the completion of frame reception. Specific frame status information has been posted in the descriptor. Reception remains in the Running state
5	W1 C	0×0	UNF Transmit Underflow This bit indicates that the Transmit Buffer had an Underflow during frame transmission. Transmission is suspended and an Underflow Error TDES0[1] is set
4	W1 C	0x0	OVF Receive Overflow This bit indicates that the Receive Buffer had an Overflow during frame reception. If the partial frame is transferred to application, the overflow status is set in RDES0[11]
3	W1 C	0×0	TJT Transmit Jabber Timeout This bit indicates that the Transmit Jabber Timer expired, meaning that the transmitter had been excessively active. The transmission process is aborted and placed in the Stopped state. This causes the Transmit Jabber Timeout TDES0[14] flag to assert
2	W1 C	0×0	TU Transmit Buffer Unavailable This bit indicates that the Next Descriptor in the Transmit List is owned by the host and cannot be acquired by the DMA. Transmission is suspended. Bits[22:20] explain the Transmit Process state transitions. To resume processing transmit descriptors, the host should change the ownership of the bit of the descriptor and then issue a Transmit Poll Demand command
1	W1 C	0×0	TPS Transmit Process Stopped This bit is set when the transmission is stopped

Bit	Attr	<b>Reset Value</b>	Description
	W1 C	0x0	TI
0			Transmit Interrupt
U			This bit indicates that frame transmission is finished and
			TDES1[31] is set in the First Descriptor

# MAC OP MODE

Address: Operational Base + offset (0x1018)

Bit	Attr	<b>Reset Value</b>	Description
31:27	RO	0x0	reserved
26	RW	0×0	DT Disable Dropping of TCP/IP Checksum Error Frames When this bit is set, the core does not drop frames that only have errors detected by the Receive Checksum Offload engine. Such frames do not have any errors (including FCS error) in the Ethernet frame received by the MAC but have errors in the encapsulated payload only. When this bit is reset, all error frames are dropped if the FEF bit is reset
25	RW	0×0	RSF Receive Store and Forward When this bit is set, the MTL only reads a frame from the Rx FIFO after the complete frame has been written to it, ignoring RTC bits. When this bit is reset, the Rx FIFO operates in Cut-Through mode, subject to the threshold specified by the RTC bits
24	RW	0×0	DFF Disable Flushing of Received Frames When this bit is set, the RxDMA does not flush any frames due to the unavailability of receive descriptors/buffers as it does normally when this bit is reset
23:22	RO	0x0	reserved
21	RW	0×0	TSF Transmit Store and Forward When this bit is set, transmission starts when a full frame resides in the MTL Transmit FIFO. When this bit is set, the TTC values specified in Register MAC_OP_MODE[16:14] are ignored. This bit should be changed only when transmission is stopped

Bit	Attr	Reset Value	Description
20	W1 C	0×0	FTF Flush Transmit FIFO When this bit is set, the transmit FIFO controller logic is reset to its default values and thus all data in the Tx FIFO is lost/flushed. This bit is cleared internally when the flushing operation is completed fully. The Operation Mode register should not be written to until this bit is cleared. The data which is already accepted by the MAC transmitter will not be flushed. It will be scheduled for transmission and will result in underflow and runt frame transmission.  Note: The flush operation completes only after emptying the TxFIFO of its contents and all the pending Transmit Status of the transmitted frames are accepted by the host. In order to complete this flush operation, the PHY transmit clock (clk_tx_i) is required to be active
19:17	RO	0×0	reserved
16:14		0×0	TTC Transmit Threshold Control These three bits control the threshold level of the MTL Transmit FIFO. Transmission starts when the frame size within the MTL Transmit FIFO is larger than the threshold. In addition, full frames with a length less than the threshold are also transmitted. These bits are used only when the TSF bit (Bit 21) is reset. 3'b000: 64 3'b001: 128 3'b010: 192 3'b011: 256 3'b100: 40 3'b101: 32 3'b110: 24 3'b111: 16

Bit	Attr	Reset Value	Description
13	RW	0x0	ST Start/Stop Transmission Command When this bit is set, transmission is placed in the Running state, and the DMA checks the Transmit List at the current position for a frame to be transmitted. Descriptor acquisition is attempted either from the current position in the list, which is the Transmit List Base Address set by Register MAC_TX_DESC_LIST_ADDR, or from the position retained when transmission was stopped previously. If the current descriptor is not owned by the DMA, transmission enters the Suspended state and Transmit Buffer Unavailable (Register MAC_STATUS[2]) is set. The Start Transmission command is effective only when transmission is stopped. If the command is issued before setting DMA Register TX_DESC_LIST_ADDR, then the DMA behavior is unpredictable. When this bit is reset, the transmission process is placed in the Stopped state after completing the transmission of the current frame. The Next Descriptor position in the Transmit List is saved, and becomes the current position when transmission is restarted. The stop transmission command is effective only the transmission of the current frame is complete or when the transmission is in the Suspended state
12:11	RW	0×0	RFD Threshold for deactivating flow control (in both HD and FD) These bits control the threshold (Fill-level of Rx FIFO) at which the flow-control is de-asserted after activation. 2'b00: Full minus 1 KB 2'b01: Full minus 2 KB 2'b10: Full minus 3 KB 2'b11: Full minus 4 KB Note that the de-assertion is effective only after flow control is asserted
10:9	RW	0×0	RFA Threshold for activating flow control (in both HD and FD) These bits control the threshold (Fill level of Rx FIFO) at which flow control is activated. 2'b00: Full minus 1 KB 2'b01: Full minus 2 KB 2'b10: Full minus 3 KB 2'b11: Full minus 4 KB Note that the above only applies to Rx FIFOs of 4 KB or more when the EFC bit is set high

Bit	Attr	Reset Value	Description
8	RW	0×0	EFC Enable HW flow control When this bit is set, the flow control signal operation based on fill-level of Rx FIFO is enabled. When reset, the flow control operation is disabled
7	RW	0×0	FEF Forward Error Frames When this bit is reset, the Rx FIFO drops frames with error status (CRC error, collision error, GMII_ER, giant frame, watchdog timeout, overflow). However, if the frame's start byte (write) pointer is already transferred to the read controller side (in Threshold mode), then the frames are not dropped. When FEF is set, all frames except runt error frames are forwarded to the DMA. But when RxFIFO overflows when a partial frame is written, then such frames are dropped even when FEF is set
6	RW	0×0	FUF Forward Undersized Good Frames When set, the Rx FIFO will forward Undersized frames (frames with no Error and length less than 64 bytes) including pad-bytes and CRC). When reset, the Rx FIFO will drop all frames of less than 64 bytes, unless it is already transferred due to lower value of Receive Threshold (e.g., RTC = 01)
5	RO	0x0	reserved
4:3	RW	0×0	RTC Receive Threshold Control These two bits control the threshold level of the MTL Receive FIFO. Transfer (request) to DMA starts when the frame size within the MTL Receive FIFO is larger than the threshold. In addition, full frames with a length less than the threshold are transferred automatically. Note that value of 11 is not applicable if the configured Receive FIFO size is 128 bytes. These bits are valid only when the RSF bit is zero, and are ignored when the RSF bit is set to 1. 2'b00: 64 2'b01: 32 2'b10: 96 2'b11: 128
2	RW	0×0	OSF Operate on Second Frame When this bit is set, this bit instructs the DMA to process a second frame of Transmit data even before status for first frame is obtained

Bit	Attr	Reset Value	Description
1	RW	0x0	Start/Stop Receive When this bit is set, the Receive process is placed in the Running state. The DMA attempts to acquire the descriptor from the Receive list and processes incoming frames. Descriptor acquisition is attempted from the current position in the list, which is the address set by register MAC_RX_DESC_LIST_ADDR or the position retained when the Receive process was previously stopped. If no descriptor is owned by the DMA, reception is suspended and Receive Buffer Unavailable (Register MAC_STATUS[7]) is set. The Start Receive command is effective only when reception has stopped. If the command was issued before setting register MAC_RX_DESC_LIST_ADDR, DMA behavior is unpredictable. When this bit is cleared, RxDMA operation is stopped after the transfer of the current frame. The next descriptor position in the Receive list is saved and becomes the current position after the Receive process is restarted. The Stop Receive command is effective only when the Receive process is in either the Running (waiting for receive packet) or in the Suspended state
0	RO	0x0	reserved

# MAC_INT_ENA

Address: Operational Base + offset (0x101c)

Bit	Attr	<b>Reset Value</b>	Description
31:17	RO	0x0	reserved
			NIE
			Normal Interrupt Summary Enable
			When this bit is set, a normal interrupt is enabled. When this bit
			is reset, a normal interrupt is disabled. This bit enables the
16	RW	0x0	following bits:
			Register MAC_STATUS[0]: Transmit Interrupt
			Register MAC_STATUS[2]: Transmit Buffer Unavailable
			Register MAC_STATUS[6]: Receive Interrupt
			Register MAC_STATUS[14]: Early Receive Interrupt

Bit	Attr	Reset Value	Description
			AIE
			Abnormal Interrupt Summary Enable
			When this bit is set, an Abnormal Interrupt is enabled. When this
			bit is reset, an Abnormal Interrupt is disabled. This bit enables
			the following bits
			Register MAC_STATUS[1]: Transmit Process Stopped
			Register MAC_STATUS[3]: Transmit Jabber Timeout
15	RW	0x0	Register MAC_STATUS[4]: Receive Overflow
			Register MAC_STATUS[5]: Transmit Underflow
			Register MAC_STATUS[7]: Receive Buffer Unavailable
			Register MAC_STATUS[8]: Receive Process Stopped
			Register MAC_STATUS[9]: Receive Watchdog Timeout
			Register MAC_STATUS[10]: Early Transmit Interrupt
			Register MAC_STATUS[13]: Fatal Bus Error
			ERE
			Early Receive Interrupt Enable
14	RW	0x0	When this bit is set with Normal Interrupt Summary Enable (BIT
			16), Early Receive Interrupt is enabled. When this bit is reset,
			Early Receive Interrupt is disabled
			FBE
			Fatal Bus Error Enable
13	RW	0×0	When this bit is set with Abnormal Interrupt Summary Enable
			(BIT 15), the Fatal Bus Error Interrupt is enabled. When this bit is
			reset, Fatal Bus Error Enable Interrupt is disabled
12:11	RO	0x0	reserved
			ETE
			Early Transmit Interrupt Enable
10	RW	0x0	When this bit is set with an Abnormal Interrupt Summary Enable
			(BIT 15), Early Transmit Interrupt is enabled. When this bit is
			reset, Early Transmit Interrupt is disabled
			RWE
			Receive Watchdog Timeout Enable
			When this bit is set with Abnormal Interrupt Summary Enable
9	RW	0x0	(BIT 15), the Receive Watchdog Timeout Interrupt is enabled.
			When this bit is reset, Receive
			Watchdog Timeout Interrupt is disabled
			RSE
			Receive Stopped Enable
8	RW	0×0	When this bit is set with Abnormal Interrupt Summary Enable
			(BIT 15), Receive Stopped Interrupt is enabled. When this bit is
			reset, Receive Stopped Interrupt is disabled

Bit	Attr	Reset Value	Description
		2 2 2 2 2	RUE
			Receive Buffer Unavailable Enable
7	RW	0×0	When this bit is set with Abnormal Interrupt Summary Enable
,	IXVV	0.00	(BIT 15), Receive Buffer Unavailable Interrupt is enabled. When
			this bit is reset, the Receive Buffer Unavailable Interrupt is
			disabled
			RIE
			Receive Interrupt Enable
6	RW	0x0	When this bit is set with Normal Interrupt Summary Enable (BIT
			16), Receive Interrupt is enabled. When this bit is reset, Receive
			Interrupt is disabled
			UNE
			Underflow Interrupt Enable
5	RW	0x0	When this bit is set with Abnormal Interrupt Summary Enable
			(BIT 15), Transmit Underflow Interrupt is enabled. When this bit
			is reset, Underflow Interrupt is disabled
			OVE
			Overflow Interrupt Enable
4	RW	0x0	When this bit is set with Abnormal Interrupt Summary Enable
			(BIT 15), Receive Overflow Interrupt is enabled. When this bit is
			reset, Overflow Interrupt is disabled
			TJE
			Transmit Jabber Timeout Enable
3	RW	0x0	When this bit is set with Abnormal Interrupt Summary Enable
			(BIT 15), Transmit Jabber Timeout Interrupt is enabled. When
			this bit is reset, Transmit Jabber Timeout Interrupt is disabled
			TUE
			Transmit Buffer Unavailable Enable
2	RW	0x0	When this bit is set with Normal Interrupt Summary Enable (BIT
			16), Transmit Buffer Unavailable Interrupt is enabled. When this
			bit is reset, Transmit Buffer Unavailable Interrupt is disabled
			TSE
			Transmit Stopped Enable
1	RW	0x0	When this bit is set with Abnormal Interrupt Summary Enable
			(BIT 15), Transmission Stopped Interrupt is enabled. When this
			bit is reset, Transmission Stopped Interrupt is disabled
			TIE
			Transmit Interrupt Enable
0	RW	0x0	When this bit is set with Normal Interrupt Summary Enable (BIT
			16), Transmit Interrupt is enabled. When this bit is reset,
			Transmit Interrupt is disabled

# **MAC OVERFLOW CNT**

Address: Operational Base + offset (0x1020)

Bit	Attr	Reset Value	Description
31:29	RO	0x0	reserved
28	RC	0x0	FIFO_overflow_bit
20	RC	UXU	Overflow bit for FIFO Overflow Counter
			Frame_miss_number
			Indicates the number of frames missed by the application
27:17	RC	0×000	This counter is incremented each time the MTL asserts the
			sideband signal mtl_rxoverflow_o. The counter is cleared when
			this register is read with mci_be_i[2] at 1'b1
16	RC	C 0x0	Miss_frame_overflow_bit
10			Overflow bit for Missed Frame Counter
		RC 10x0000	Frame_miss_number_2
			Indicates the number of frames missed by the controller due to
15:0	DC.		the Host Receive Buffer being unavailable. This counter is
13.0	KC		incremented each time the DMA discards an incoming frame. The
			counter is cleared when this register is read with mci_be_i[0] at
			1'b1

# MAC REC INT WDT TIMER

Address: Operational Base + offset (0x1024)

Bit	Attr	Reset Value	Description
31:8	RO	0x0	reserved
			RIWT
			RI Watchdog Timer count
			Indicates the number of system clock cycles multiplied by 256 for
			which the watchdog timer is set. The watchdog timer gets
			triggered with the programmed value after the RxDMA completes
7:0	RW	0x00	the transfer of a frame for which the RI status bit is not set due
			to the setting in the corresponding descriptor RDES1[31]. When
			the watch-dog timer runs out, the RI bit is set and the timer is
			stopped. The watchdog timer is reset when RI bit is set high due
			to automatic setting of RI as per RDES1[31] of any received
			frame

# MAC AXI BUS MODE

Address: Operational Base + offset (0x1028)

Bit	Attr	<b>Reset Value</b>	Description
			EN_LPI
			Enable LPI (Low Power Interface)
			When set to 1, enable the LPI (Low Power Interface) supported
31	RW	0x0	by the MAC and accepts the LPI request from the AXI System
			Clock controller.
			When set to 0, disables the Low Power Mode and always denies
			the LPI request from the AXI System Clock controller

Bit	Attr	Reset Value	Description
			UNLCK_ON_MGK_RWK
			Unlock on Magic Packet or Remote Wake Up
			When set to 1, enables it to request coming out of Low Power
30	RW	0x0	mode only when Magic Packet or Remote Wake Up Packet is
			received.
			When set to 0, enables it requests to come out of Low Power
			mode when any frame is received
29:22	RO	0x0	reserved
			WR_OSR_LMT
			AXI Maximum Write Out Standing Request Limit
21:20	RW	0x1	This value limits the maximum outstanding request on the AXI
			write interface.
			Maximum outstanding requests = WR_OSR_LMT+1
19:18	RO	0x0	reserved
			RD_OSR_LMT
			AXI Maximum Read Out Standing Request Limit
17:16	RW	0x1	This value limits the maximum outstanding request on the AXI
			read interface.
			Maximum outstanding requests = RD_OSR_LMT+1
15:13	RO	0x0	reserved
			AXI_AAL
	RO	O 0x0	Address-Aligned Beats
12			This bit is read-only bit and reflects the AAL bit Register0
12	i (O		(register MAC_BUS_MODE[25]).
			When this bit set to 1, it performs address-aligned burst transfers
			on both read and write channels
11:4	RO	0x0	reserved
			BLEN16
3	RW	0×0	AXI Burst Length 16
5	1244	0.00	When this bit is set to 1, or when UNDEF is set to 1, it is allowed
			to select a burst length of 16
			BLEN8
2	RW	0×0	AXI Burst Length 8
	1	UXU	When this bit is set to 1, or when UNDEF is set to 1, it is allowed
			to select a burst length of 8
			BLEN4
1	RW	W 0x0	AXI Burst Length 4
-			When this bit is set to 1, or when UNDEF is set to 1, it is allowed
			to select a burst length of 4

Bit	Attr	<b>Reset Value</b>	Description
<b>Bit</b> 0	RO	0×1	UNDEF  AXI Undefined Burst Length  This bit is read-only bit and indicates the complement (invert) value of FB bit in register MAC_BUS_MODE[16].  When this bit is set to 1, it is allowed to perform any burst length equal to or below the maximum allowed burst length as programmed in bits[7:1];  When this bit is set to 0, it is allowed to perform only fixed burst lengths as indicated by BLEN256/128/64/32/16/8/4, or a burst
			length of 1

# MAC AXI STATUS

Address: Operational Base + offset (0x102c)

Bit	Attr	<b>Reset Value</b>	Description
31:2	RO	0x0	reserved
			RD_CH_STA
1	RO	0x0	When high, it indicates that AXI Master's read channel is active
			and transferring data
			WR_CH_STA
0	RO	0x0	When high, it indicates that AXI Master's write channel is active
			and transferring data

# MAC CUR HOST TX DESC

Address: Operational Base + offset (0x1048)

Bit	Attr	<b>Reset Value</b>	Description
			HTDAP
31:0	RO	0x00000000	Host Transmit Descriptor Address Pointer
			Cleared on Reset. Pointer updated by DMA during operation

# MAC CUR HOST RX DESC

Address: Operational Base + offset (0x104c)

Bit	Attr	<b>Reset Value</b>	Value Description	
			HRDAP	
31:0	RO	0x00000000	Host Receive Descriptor Address Pointer	
			Cleared on Reset. Pointer updated by DMA during operation	

## MAC CUR HOST TX BUF ADDR

Address: Operational Base + offset (0x1050)

Bit	Attr	<b>Reset Value</b>	Description	
			НТВАР	
31:0	RO	0x00000000	Host Transmit Buffer Address Pointer	
			Cleared on Reset. Pointer updated by DMA during operation	

#### MAC CUR HOST RX BUF ADDR

Address: Operational Base + offset (0x1054)

Bit	Attr	<b>Reset Value</b>	Description
			HRBAP
31:0	RO	0x00000000	Host Receive Buffer Address Pointer
			Cleared on Reset. Pointer updated by DMA during operation

# 12.5 Interface Description

Table 12-1 RMII Interface Description

Module pin	Direction	Pad name	IOMUX setting	
		RMII interface		
mac_clk	I/O	IO_CIFclkinm0_RMIIclk_GPIO2B2vccio3	GPIO2B_IOMUX_SEL_L[10:8]=3'b	
mac_txen	0	IO_CIFd2m0_RMIItxen_GPIO2A0vccio3	GPIO2A_IOMUX_SEL_L[2:0]=3'b1	
mac_txd1	0	IO_CIFd3m0_RMIItxd1_GPIO2A1vccio3	GPIO2A_IOMUX_SEL_L[6:4]=3'b1	
mac_txd0	0	IO_CIFd4m0_RMIItxd0_GPIO2A2vccio3	GPIO2A_IOMUX_SEL_L[10:8]=3'b 10	
mac_rxdv	I	IO_CIFd8m0_RMIIrxdv_GPIO2A6vccio3	GPIO2A_IOMUX_SEL_H[10:8]=3' b10	
mac_rxer	I	IO_CIFd7m0_RMIIrxer_GPIO2A5vccio3	GPIO2A_IOMUX_SEL_H[6:4]=3'b 10	
mac_rxd1	I	IO_CIFd6m0_RMIIrxd1_GPIO2A4vccio3	GPIO2A_IOMUX_SEL_H[2:0]=3'b 10	
mac_rxd0	I	IO_CIFd5m0_RMIIrxd0_GPIO2A3vccio3	GPIO2A_IOMUX_SEL_L[14:12]=3' b10	
Management interface				
mac_mdio	I/O	IO_CIFd9m0_RMIImdio_GPIO2A7vccio3	GPIO2A_IOMUX_SEL_H[14:12]=3 'b10	
mac_mdc	0	IO_CIFhrefm0_RMIImdc_GPIO2B1vccio3	GPIO2B_IOMUX_SEL_L[6:4]=3'b1 0	

Notes: I=input, O=output, I/O=input/output, bidirectional

# 12.6 Application Notes

## 12.6.1 Descriptors

The DMA in MAC can communicate with Host driver through descriptor lists and data buffers. The DMA transfers data frames received by the core to the Receive Buffer in the Host memory, and Transmit data frames from the Transmit Buffer in the Host memory. Descriptors that reside in the Host memory act as pointers to these buffers. There are two descriptor lists; one for reception, and one for transmission. The base address of each list is written into DMA Registers RX_DESC_LIST_ADDR and TX_DESC_LIST_ADDR, respectively. A descriptor list is forward linked (either implicitly or explicitly). The last descriptor may point back to the first entry to create a ring structure. Explicit chaining of descriptors is accomplished by setting the second address chained in both Receive and Transmit descriptors (RDES1[24] and TDES1[24]). The descriptor lists resides in the Host physical memory address space. Each descriptor can point to a maximum of two buffers. This enables two buffers to be used, physically addressed, rather than contiguous buffers in memory.

A data buffer resides in the Host physical memory space, and consists of an entire frame or part of a frame, but cannot exceed a single frame. Buffers contain only data, buffer status is maintained in the descriptor. Data chaining refers to frames that span multiple data buffers.

However, a single descriptor cannot span multiple frames. The DMA will skip to the next frame buffer when end-of-frame is detected. Data chaining can be enabled or disabled The descriptor ring and chain structure is shown in following figure.

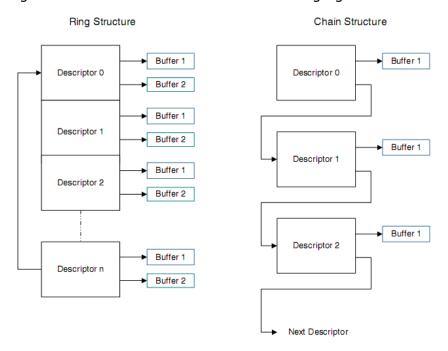



Fig. 12-11 Descriptor Ring and Chain Structure

Each descriptor contains two buffers, two byte-count buffers, and two address pointers, which enable the adapter port to be compatible with various types of memory management schemes. The descriptor addresses must be aligned to the bus width used (Word/Dword/Lword for 32/64/128-bit buses).

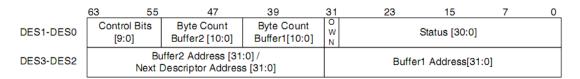



Fig. 12-12 Rx/Tx Descriptors definition

# 12.6.2 Receive Descriptor

The MAC Subsystem requires at least two descriptors when receiving a frame. The Receive state machine of the DMAalways attempts to acquire an extra descriptor in anticipation of an incoming frame. (The size of the incoming frame is unknown). Before the RxDMA closes a descriptor, it will attempt to acquire the next descriptor even if no frames are received. In a single descriptor (receive) system, the subsystem will generate a descriptor error if the receive buffer is unable to accommodate the incoming frame and the next descriptor is not owned by the DMA. Thus, the Host is forced to increase either its descriptor pool or the buffer size. Otherwise, the subsystem starts dropping all incoming frames.

#### **Receive Descriptor 0 (RDES0)**

RDES0 contains the received frame status, the frame length, and the descriptor ownership information.

Table 12-2 Receive Descriptor 0

	Table 12-2 Receive Descriptor 0
Bit	Description
31	OWN: Own Bit
	When set, this bit indicates that the descriptor is owned by the DMA of the MAC
	Subsystem. When this bit is reset, this bit indicates that the descriptor is owned
	by the Host. The DMA clears this bit either when it completes the frame reception

D:4	Doggwintign
Bit	Description
	or when the buffers that are associated with this descriptor are full.
30	AFM: Destination Address Filter Fail
20.16	When set, this bit indicates a frame that failed in the DA Filter in the MAC Core.
29:16	FL: Frame Length
	These bits indicate the byte length of the received frame that was transferred to host memory (including CRC). This field is valid when Last Descriptor (RDES0[8])
	is set and either the Descriptor Error (RDES0[14]) or Overflow Error bits are reset.
	The frame length also includes the two bytes appended to the Ethernet frame
	when IP checksum calculation (Type 1) is enabled and the received frame is not a
	MAC control frame.
	This field is valid when Last Descriptor (RDES0[8]) is set. When the Last
	Descriptor and Error Summary bits are not set, this field indicates the
	accumulated number of bytes that have been transferred for the current frame.
15	ES: Error Summary
	Indicates the logical OR of the following bits:
	RDES0[0]: Payload Checksum Error
	• RDES0[1]: CRC Error
	RDES0[3]: Receive Error
	RDES0[4]: Watchdog Timeout
	• RDES0[6]: Late Collision
	• RDES0[7]: IPC Checksum
	• RDES0[11]: Overflow Error
	RDES0[14]: Descriptor Error  This field is valid only when the Last Descriptor (RDES0[01) is set
14	This field is valid only when the Last Descriptor (RDES0[8]) is set.  DE: Descriptor Error
14	When set, this bit indicates a frame truncation caused by a frame that does not fit
	within the current descriptor buffers, and that the DMA does not own the Next
	Descriptor. The frame is truncated. This field is valid only when the Last Descriptor
	(RDES0[8]) is set
13	SAF: Source Address Filter Fail
	When set, this bit indicates that the SA field of frame failed the SA Filter in the
	MAC Core.
12	LE: Length Error
	When set, this bit indicates that the actual length of the frame received and that
	the Length/ Type field does not match. This bit is valid only when the Frame Type (RDES0[5]) bit is reset. Length error status is not valid when CRC error is present.
11	OE: Overflow Error
	When set, this bit indicates that the received frame was damaged due to buffer
	overflow.
10	VLAN: VLAN Tag
	When set, this bit indicates that the frame pointed to by this descriptor is a VLAN
_	frame tagged by the MAC Core.
9	FS: First Descriptor
	When set, this bit indicates that this descriptor contains the first buffer of the
	frame. If the size of the first buffer is 0, the second buffer contains the beginning of the frame. If the size of the second buffer is also 0, the next Descriptor contains
	the beginning of the frame.
8	LS: Last Descriptor
	When set, this bit indicates that the buffers pointed to by this descriptor are the
	last buffers of the frame.
7	IPC Checksum Error/Giant Frame
	When IP Checksum Engine is enabled, this bit, when set, indicates that the 16-bit
	IPv4 Header checksum calculated by the core did not match the received
	checksum bytes. The Error Summary bit[15] is NOT set when this bit is set in this

Bit	Description
	mode.
6	LC: Late Collision When set, this bit indicates that a late collision has occurred while receiving the frame in Half-Duplex mode.
5	FT: Frame Type When set, this bit indicates that the Receive Frame is an Ethernet-type frame (the LT field is greater than or equal to 16'h0600). When this bit is reset, it indicates that the received frame is an IEEE802.3 frame. This bit is not valid for Runt frames less than 14 bytes.
4	RWT: Receive Watchdog Timeout When set, this bit indicates that the Receive Watchdog Timer has expired while receiving the current frame and the current frame is truncated after the Watchdog Timeout.
3	RE: Receive Error When set, this bit indicates that the gmii_rxer_i signal is asserted while gmii_rxdv_i is asserted during frame reception. This error also includes carrier extension error in GMII and Half-duplex mode. Error can be of less/no extension, or error (rxd ≠ 0f) during extension.
2	DE: Dribble Bit Error When set, this bit indicates that the received frame has a non-integer multiple of bytes (odd nibbles). This bit is valid only in MII Mode.
1	CE: CRC Error When set, this bit indicates that a Cyclic Redundancy Check (CRC) Error occurred on the received frame. This field is valid only when the Last Descriptor (RDES0[8]) is set.
0	Rx MAC Address/Payload Checksum Error When set, this bit indicates that the Rx MAC Address registers value (1 to 15) matched the frame's DA field. When reset, this bit indicates that the Rx MAC Address Register 0 value matched the DA field. If Full Checksum Offload Engine is enabled, this bit, when set, indicates the TCP, UDP, or ICMP checksum the core calculated does not match the received encapsulated TCP, UDP, or ICMP segment's Checksum field. This bit is also set when the received number of payload bytes does not match the value indicated in the Length field of the encapsulated IPv4 or IPv6 datagram in the received Ethernet frame.

Receive Descriptor 1 (RDES1) RDES1 contains the buffer sizes and other bits that control the descriptor chain/ring. Table 12-3 Receive Descriptor 1

Bit	Description
31	Disable Interrupt on Completion
	When set, this bit will prevent the setting of the RI (CSR5[6]) bit of the
	MAC_STATUS Register for the received frame that ends in the buffer pointed to by
	this descriptor. This, in turn, will disable the assertion of the interrupt to Host due
	to RI for that frame.
30:26	Reserved.
25	RER: Receive End of Ring
	When set, this bit indicates that the descriptor list reached its final descriptor. The
	DMA returns to the base address of the list, creating a Descriptor Ring.
24	RCH: Second Address Chained
	When set, this bit indicates that the second address in the descriptor is the Next
	Descriptor address rather than the second buffer address. When RDES1[24] is set,
	RBS2 (RDES1[21-11]) is a "don't care" value.
	RDES1[25] takes precedence over RDES1[24].

Bit	Description
23:22	Reserved.
21:11	RBS2: Receive Buffer 2 Size
	These bits indicate the second data buffer size in bytes. The buffer size must be a multiple of 8 depending upon the bus widths (64), even if the value of RDES3 (buffer2 address pointer) is not aligned to bus width. In the case where the buffer size is not a multiple of 8, the resulting behavior is undefined. This field is not valid if RDES1[24] is set.
10:0	RBS1: Receive Buffer 1 Size Indicates the first data buffer size in bytes. The buffer size must be a multiple of 8 depending upon the bus widths (64), even if the value of RDES2 (buffer1 address pointer) is not aligned. In the case where the buffer size is not a multiple of 8, the resulting behavior is undefined. If this field is 0, the DMA ignores this buffer and uses Buffer 2 or next descriptor depending on the value of RCH (Bit 24).

#### **Receive Descriptor 2 (RDES2)**

RDES2 contains the address pointer to the first data buffer in the descriptor.

Table 12-4 Receive Descriptor 2

Bit	Description
31:0	Buffer 1 Address Pointer These bits indicate the physical address of Buffer 1. There are no limitations on the buffer address alignment except for the following condition: The DMA uses the configured value for its address generation when the RDES2 value is used to store the start of frame. Note that the DMA performs a write operation with the RDES2[2:0] bits as 0 during the transfer of the start of frame but the frame data is shifted as per the actual Buffer address pointer. The DMA ignores RDES2[2:0] (corresponding to bus width of 64) if the address pointer is to a buffer where the middle or last part of the frame is stored.

## **Receive Descriptor 3 (RDES3)**

RDES3 contains the address pointer either to the second data buffer in the descriptor or to the next descriptor.

Table 12-5 Receive Descriptor 3

Bit	Description
31:0	Buffer 2 Address Pointer (Next Descriptor Address) These bits indicate the physical address of Buffer 2 when a descriptor ring structure is used. If the Second Address Chained (RDES1[24]) bit is set, this address contains the pointer to the physical memory where the Next Descriptor is present.  If RDES1[24] is set, the buffer (Next Descriptor) address pointer must be bus width-aligned (RDES3[2:0] = 0, corresponding to a bus width of 64. LSBs are ignored internally.) However, when RDES1[24] is reset, there are no limitations on the RDES3 value, except for the following condition: The DMA uses the configured value for its buffer address generation when the RDES3 value is used to store the start of frame. The DMA ignores RDES3[2:0] (corresponding to a bus width of 64) if the address pointer is to a buffer where the middle or last part of the frame is stored.

# 12.6.3 Transmit Descriptor

The descriptor addresses must be aligned to the bus width used (64). Each descriptor is provided with two buffers, two byte-count buffers, and two address pointers, which enable the adapter port to be compatible with various types of memory-management schemes.

# **Transmit Descriptor 0 (TDES0)**

TDES0 contains the transmitted frame status and the descriptor ownership information. Table 12-6 Transmit Descriptor 0

OWN: Own Bit When set, this bit indicates that the descriptor is owned by the DMA. When this bit is reset, this bit indicates that the descriptor is owned by the Host. The DMA clears this bit either when it completes the frame transmission or when the buffers allocated in the descriptor are empty. The ownership bit of the First Descriptor of the frame should be set after all subsequent descriptors belonging to the same frame have been set. This avoids a possible race condition between fetching a descriptor and the driver setting an ownership bit.  30:17. Reserved.  16. IHE: IP Header Error When set, this bit indicates that the Checksum Offload engine detected an IP header error and consequently did not modify the transmitted frame for any checksum insertion.  15. ES: Error Summary Indicates the logical OR of the following bits:  • TDES0[14]: Jabber Timeout • TDES0[14]: Jabber Timeout • TDES0[13]: Frame Flush • TDES0[13]: Frame Flush • TDES0[13]: Excessive Collision • TDES0[13]: Excessive Deferral • TDES0[13]: Late Collision • TDES0[13]: Excessive Deferral • TDES0[1]: Underflow Error  14. JT: Jabber Timeout When set, this bit indicates the MAC transmitter has experienced a jabber timeout. When set, this bit indicates the the DMA/MTL flushed the frame due to a SW flush command given by the CPU.  12. PCE: Payload Checksum Error This bit, when set, indicates that the Checksum Offload engine had a failure and did not insert any checksum into the encapsulated TCP, UDP, or ICMP payload. This failure can be either due to insufficient bytes, as indicated by the IP Header's Payload Length field, or the MTL starting to forward the frame to the MAC transmitter in Store-and-Forward mode without the checksum having been calculated yet. This second error condition only occurs when the Transmit FIFO depth is less than the length of the Ethernet frame being transmisted: to avoid deadlock, the MTL starts forwarding the frame when the FIFO is full, even in Store-and-Forward mode.  10. NC: No Carrier When set, this bit indicates t		Table 12-6 Transmit Descriptor 0
When set, this bit indicates that the descriptor is owned by the DMA. When this bit is reset, this bit indicates that the descriptor is owned by the Host. The DMA clears this bit either when it completes the frame transmission or when the buffers allocated in the descriptor are empty. The ownership bit of the First Descriptor of the frame should be set after all subsequent descriptors belonging to the same frame have been set. This avoids a possible race condition between fetching a descriptor and the driver setting an ownership bit.  30:17 Reserved.  16 When set, this bit indicates that the Checksum Offload engine detected an IP header error and consequently did not modify the transmitted frame for any checksum insertion.  15 ES: Error Summary Indicates the logical OR of the following bits:	Bit	Description
is reset, this bit indicates that the descriptor is owned by the Host. The DMA clears this bit either when it completes the frame transmission or when the buffers allocated in the descriptor are empty. The ownership bit of the First Descriptor of the frame should be set after all subsequent descriptors belonging to the same frame have been set. This avoids a possible race condition between fetching a descriptor and the driver setting an ownership bit.  30:17 Reserved.  16 IHE: IP Header Error When set, this bit indicates that the Checksum Offload engine detected an IP header error and consequently did not modify the transmitted frame for any checksum insertion.  15 ES: Error Summary Indicates the logical OR of the following bits:  • TDES0[14]: Jabber Timeout  • TDES0[11]: Loss of Carrier  • TDES0[11]: Loss of Carrier  • TDES0[1]: I. Loss of Carrier  • TDES0[1]: Late Collision  • TDES0[8]: Excessive Deferral  • TDES0[8]: Excessive Deferral  • TDES0[1]: Underflow Error  14 JT: Jabber Timeout  When set, this bit indicates the MAC transmitter has experienced a jabber time-out.  17 FF: Frame Flushed  When set, this bit indicates that the DMA/MTL flushed the frame due to a SW flush command given by the CPU.  19 PCE: Payload Checksum Error  This bit, when set, indicates that the Checksum Offload engine had a failure and did not insert any checksum into the encapsulated TCP, UDP, or ICMP payload. This failure can be either due to insufficient bytes, as indicated by the IP Header's Payload Length field, or the MTL starting to forward the frame to the MAC transmitter in Store-and-Forward mode without the checksum having been calculated yet. This second error condition only occurs when the Transmit FIFO depth is less than the length of the Ethernet frame being transmitted: to avoid deadlock, the MTL starts forwarding the frame when the FIFO is full, even in Store-and-Forward mode.  10 NC: No Carrier  When set, this bit indicates that the carrier sense signal form the PHY was not asserted during transmission. This is valid	31	OWN: Own Bit
the frame should be set after all subsequent descriptors belonging to the same frame have been set. This avoids a possible race condition between fetching a descriptor and the driver setting an ownership bit.  30:17 Reserved.  16 IHE: IP Header Error When set, this bit indicates that the Checksum Offload engine detected an IP header error and consequently did not modify the transmitted frame for any checksum insertion.  15 ES: Error Summary Indicates the logical OR of the following bits:  • TDES0[14]: Jabber Timeout  • TDES0[13]: Frame Flush  • TDES0[11]: Loss of Carrier  • TDES0[1]: No Carrier  • TDES0[1]: No Carrier  • TDES0[9]: Late Collision  • TDES0[9]: Late Ecollision  • TDES0[1]: Underflow Error  14 JT: Jabber Timeout When set, this bit indicates the MAC transmitter has experienced a jabber time-out.  17 FF: Frame Flushed When set, this bit indicates that the DMA/MTL flushed the frame due to a SW flush command given by the CPU.  18 PCE: Payload Checksum Error This bit, when set, indicates that the Checksum Offload engine had a failure and did not insert any checksum into the encapsulated TCP, UDP, or ICMP payload. This failure can be either due to insufficient bytes, as indicated by the IP Header's Payload Length field, or the MTL starting to forward the frame to the MAC transmitter in Store-and-Forward mode without the checksum having been calculated yet. This second error condition only occurs when the Transmit FIFO depth is less than the length of the Ethernet frame being transmitted: to avoid deadlock, the MTL starts forwarding the frame when the FIFO is full, even in Store-and-Forward mode.  10 NC: No Carrier When set, this bit indicates that the carrier sense signal form the PHY was not asserted during transmission.  9 LC: Late Collision When set, this bit indicates that frame transmission was aborted due to a collision occurring after the collision window (64 byte times including Preamble in RMII Mode and 512 byte times including Preamble and Carrier Extension in RGMII		is reset, this bit indicates that the descriptor is owned by the Host. The DMA clears this bit either when it completes the frame transmission or when the buffers
30:17   Reserved.		the frame should be set after all subsequent descriptors belonging to the same frame have been set. This avoids a possible race condition between fetching a
16	30:17	
header error and consequently did not modify the transmitted frame for any checksum insertion.  15		
Indicates the logical OR of the following bits:  • TDESO[14]: Jabber Timeout  • TDESO[13]: Frame Flush  • TDESO[10]: No Carrier  • TDESO[9]: Late Collision  • TDESO[9]: Late Collision  • TDESO[1]: Underflow Error  14  JT: Jabber Timeout  When set, this bit indicates the MAC transmitter has experienced a jabber timeout.  13  FF: Frame Flushed  When set, this bit indicates that the DMA/MTL flushed the frame due to a SW flush command given by the CPU.  12  PCE: Payload Checksum Error  This bit, when set, indicates that the Checksum Offload engine had a failure and did not insert any checksum into the encapsulated TCP, UDP, or ICMP payload. This failure can be either due to insufficient bytes, as indicated by the IP Header's Payload Length field, or the MTL starting to forward the frame to the MAC transmitter in Store-and-Forward mode without the checksum having been calculated yet. This second error condition only occurs when the Transmit FIFO depth is less than the length of the Ethernet frame being transmitted: to avoid deadlock, the MTL starts forwarding the frame when the FIFO is full, even in Store-and-Forward mode.  10  LC: Loss of Carrier  When set, this bit indicates that Loss of Carrier occurred during frame transmission. This is valid only for the frames transmitted without collision and when the MAC operates in Half-Duplex Mode.  NC: No Carrier  When set, this bit indicates that the carrier sense signal form the PHY was not asserted during transmission.  9  LC: Late Collision  When set, this bit indicates that frame transmission was aborted due to a collision occurring after the collision window (64 byte times including Preamble in RMII Mode and 512 byte times including Preamble and Carrier Extension in RGMII		header error and consequently did not modify the transmitted frame for any checksum insertion.
TDESO[14]: Jabber Timeout TDESO[13]: Frame Flush TDESO[10]: Loss of Carrier TDESO[10]: No Carrier TDESO[9]: Late Collision TDESO[8]: Excessive Collision TDESO[1]: Underflow Error  TJESO[1]: Underflow Error  TJ: Jabber Timeout When set, this bit indicates the MAC transmitter has experienced a jabber timeout.  FF: Frame Flushed When set, this bit indicates that the DMA/MTL flushed the frame due to a SW flush command given by the CPU.  PCE: Payload Checksum Error This bit, when set, indicates that the Checksum Offload engine had a failure and did not insert any checksum into the encapsulated TCP, UDP, or ICMP payload. This failure can be either due to insufficient bytes, as indicated by the IP Header's Payload Length field, or the MTL starting to forward the frame to the MAC transmitter in Store-and-Forward mode without the checksum having been calculated yet. This second error condition only occurs when the Transmit FIFO depth is less than the length of the Ethernet frame being transmitted: to avoid deadlock, the MTL starts forwarding the frame when the FIFO is full, even in Store-and-Forward mode.  LC: Loss of Carrier When set, this bit indicates that Loss of Carrier occurred during frame transmission. This is valid only for the frames transmitted without collision and when the MAC operates in Half-Duplex Mode.  NC: No Carrier When set, this bit indicates that the carrier sense signal form the PHY was not asserted during transmission.  LC: Late Collision When set, this bit indicates that frame transmission was aborted due to a collision occurring after the collision window (64 byte times including Preamble in RMII Mode and 512 byte times including Preamble and Carrier Extension in RGMII	15	,
TDESO[13]: Frame Flush TDESO[11]: Loss of Carrier TDESO[19]: No Carrier TDESO[9]: Late Collision TDESO[8]: Excessive Collision TDESO[2]: Excessive Deferral TDESO[1]: Underflow Error  TTDESO[1]: Underflow Error  TTDESO[1]: Underflow Error  TTDESO[1]: Underflow Error  TF: Frame Flushed When set, this bit indicates the MAC transmitter has experienced a jabber time-out.  FF: Frame Flushed When set, this bit indicates that the DMA/MTL flushed the frame due to a SW flush command given by the CPU.  PCE: Payload Checksum Error This bit, when set, indicates that the Checksum Offload engine had a failure and did not insert any checksum into the encapsulated TCP, UDP, or ICMP payload. This failure can be either due to insufficient bytes, as indicated by the IP Header's Payload Length field, or the MTL starting to forward the frame to the MAC transmitter in Store-and-Forward mode without the checksum having been calculated yet. This second error condition only occurs when the Transmit FIFO depth is less than the length of the Ethernet frame being transmitted: to avoid deadlock, the MTL starts forwarding the frame when the FIFO is full, even in Store-and-Forward mode.  11 LC: Loss of Carrier When set, this bit indicates that Loss of Carrier occurred during frame transmission. This is valid only for the frames transmitted without collision and when the MAC operates in Half-Duplex Mode.  NC: No Carrier When set, this bit indicates that the carrier sense signal form the PHY was not asserted during transmission.  PLC: Late Collision When set, this bit indicates that frame transmission was aborted due to a collision occurring after the collision window (64 byte times including Preamble in RMII Mode and 512 byte times including Preamble and Carrier Extension in RGMII		
TDESO[11]: Loss of Carrier TDESO[10]: No Carrier TDESO[8]: Excessive Collision TDESO[8]: Excessive Deferral TDESO[1]: Underflow Error  TJ: Jabber Timeout When set, this bit indicates the MAC transmitter has experienced a jabber timeout.  FF: Frame Flushed When set, this bit indicates that the DMA/MTL flushed the frame due to a SW flush command given by the CPU.  PCE: Payload Checksum Error This bit, when set, indicates that the Checksum Offload engine had a failure and did not insert any checksum into the encapsulated TCP, UDP, or ICMP payload. This failure can be either due to insufficient bytes, as indicated by the IP Header's Payload Length field, or the MTL starting to forward the frame to the MAC transmitter in Store-and-Forward mode without the checksum having been calculated yet. This second error condition only occurs when the Transmit FIFO depth is less than the length of the Ethernet frame being transmitted: to avoid deadlock, the MTL starts forwarding the frame when the FIFO is full, even in Store-and-Forward mode.  LC: Loss of Carrier When set, this bit indicates that Loss of Carrier occurred during frame transmission. This is valid only for the frames transmitted without collision and when the MAC operates in Half-Duplex Mode.  NC: No Carrier When set, this bit indicates that the carrier sense signal form the PHY was not asserted during transmission.  C: Late Collision When set, this bit indicates that frame transmission was aborted due to a collision occurring after the collision window (64 byte times including Preamble in RMII Mode and 512 byte times including Preamble and Carrier Extension in RGMII		
TDESO[10]: No Carrier TDESO[9]: Late Collision TDESO[2]: Excessive Collision TDESO[2]: Excessive Deferral TDESO[1]: Underflow Error  TJT: Jabber Timeout When set, this bit indicates the MAC transmitter has experienced a jabber timeout.  FF: Frame Flushed When set, this bit indicates that the DMA/MTL flushed the frame due to a SW flush command given by the CPU.  PCE: Payload Checksum Error This bit, when set, indicates that the Checksum Offload engine had a failure and did not insert any checksum into the encapsulated TCP, UDP, or ICMP payload. This failure can be either due to insufficient bytes, as indicated by the IP Header's Payload Length field, or the MTL starting to forward the frame to the MAC transmitter in Store-and-Forward mode without the checksum having been calculated yet. This second error condition only occurs when the Transmit FIFO depth is less than the length of the Ethernet frame being transmitted: to avoid deadlock, the MTL starts forwarding the frame when the FIFO is full, even in Store-and-Forward mode.  LC: Loss of Carrier When set, this bit indicates that Loss of Carrier occurred during frame transmission. This is valid only for the frames transmitted without collision and when the MAC operates in Half-Duplex Mode.  NC: No Carrier When set, this bit indicates that the carrier sense signal form the PHY was not asserted during transmission.  CC: Late Collision When set, this bit indicates that frame transmission was aborted due to a collision occurring after the collision window (64 byte times including Preamble in RMII Mode and 512 byte times including Preamble and Carrier Extension in RGMII		
TDES0[9]: Late Collision TDES0[2]: Excessive Deferral TDES0[1]: Underflow Error  JT: Jabber Timeout When set, this bit indicates the MAC transmitter has experienced a jabber timeout.  FF: Frame Flushed When set, this bit indicates that the DMA/MTL flushed the frame due to a SW flush command given by the CPU.  PCE: Payload Checksum Error This bit, when set, indicates that the Checksum Offload engine had a failure and did not insert any checksum into the encapsulated TCP, UDP, or ICMP payload. This failure can be either due to insufficient bytes, as indicated by the IP Header's Payload Length field, or the MTL starting to forward the frame to the MAC transmitter in Store-and-Forward mode without the checksum having been calculated yet. This second error condition only occurs when the Transmit FIFO depth is less than the length of the Ethernet frame being transmitted: to avoid deadlock, the MTL starts forwarding the frame when the FIFO is full, even in Store-and-Forward mode.  LC: Loss of Carrier When set, this bit indicates that Loss of Carrier occurred during frame transmission. This is valid only for the frames transmitted without collision and when the MAC operates in Half-Duplex Mode.  NC: No Carrier When set, this bit indicates that the carrier sense signal form the PHY was not asserted during transmission.  CL: Late Collision When set, this bit indicates that frame transmission was aborted due to a collision occurring after the collision window (64 byte times including Preamble in RMII Mode and 512 byte times including Preamble and Carrier Extension in RGMII		
TDESO[8]: Excessive Collision TDESO[2]: Excessive Deferral TDESO[1]: Underflow Error  14 JT: Jabber Timeout When set, this bit indicates the MAC transmitter has experienced a jabber timeout.  FF: Frame Flushed When set, this bit indicates that the DMA/MTL flushed the frame due to a SW flush command given by the CPU.  PCE: Payload Checksum Error This bit, when set, indicates that the Checksum Offload engine had a failure and did not insert any checksum into the encapsulated TCP, UDP, or ICMP payload. This failure can be either due to insufficient bytes, as indicated by the IP Header's Payload Length field, or the MTL starting to forward the frame to the MAC transmitter in Store-and-Forward mode without the checksum having been calculated yet. This second error condition only occurs when the Transmit FIFO depth is less than the length of the Ethernet frame being transmitted: to avoid deadlock, the MTL starts forwarding the frame when the FIFO is full, even in Store-and-Forward mode.  11 LC: Loss of Carrier When set, this bit indicates that Loss of Carrier occurred during frame transmission. This is valid only for the frames transmitted without collision and when the MAC operates in Half-Duplex Mode.  NC: No Carrier When set, this bit indicates that the carrier sense signal form the PHY was not asserted during transmission.  9 LC: Late Collision When set, this bit indicates that frame transmission was aborted due to a collision occurring after the collision window (64 byte times including Preamble in RMII Mode and 512 byte times including Preamble and Carrier Extension in RGMII		
TDESO[2]: Excessive Deferral TDESO[1]: Underflow Error  TJE Jabber Timeout When set, this bit indicates the MAC transmitter has experienced a jabber time-out.  FF: Frame Flushed When set, this bit indicates that the DMA/MTL flushed the frame due to a SW flush command given by the CPU.  PCE: Payload Checksum Error This bit, when set, indicates that the Checksum Offload engine had a failure and did not insert any checksum into the encapsulated TCP, UDP, or ICMP payload. This failure can be either due to insufficient bytes, as indicated by the IP Header's Payload Length field, or the MTL starting to forward the frame to the MAC transmitter in Store-and-Forward mode without the checksum having been calculated yet. This second error condition only occurs when the Transmit FIFO depth is less than the length of the Ethernet frame being transmitted: to avoid deadlock, the MTL starts forwarding the frame when the FIFO is full, even in Store-and-Forward mode.  LC: Loss of Carrier When set, this bit indicates that Loss of Carrier occurred during frame transmission. This is valid only for the frames transmitted without collision and when the MAC operates in Half-Duplex Mode.  NC: No Carrier When set, this bit indicates that the carrier sense signal form the PHY was not asserted during transmission.  LC: Late Collision When set, this bit indicates that frame transmission was aborted due to a collision occurring after the collision window (64 byte times including Preamble in RMII Mode and 512 byte times including Preamble and Carrier Extension in RGMII		
<ul> <li>* TDES0[1]: Underflow Error</li> <li>JT: Jabber Timeout When set, this bit indicates the MAC transmitter has experienced a jabber time- out.</li> <li>FF: Frame Flushed When set, this bit indicates that the DMA/MTL flushed the frame due to a SW flush command given by the CPU.</li> <li>PCE: Payload Checksum Error This bit, when set, indicates that the Checksum Offload engine had a failure and did not insert any checksum into the encapsulated TCP, UDP, or ICMP payload. This failure can be either due to insufficient bytes, as indicated by the IP Header's Payload Length field, or the MTL starting to forward the frame to the MAC transmitter in Store-and-Forward mode without the checksum having been calculated yet. This second error condition only occurs when the Transmit FIFO depth is less than the length of the Ethernet frame being transmitted: to avoid deadlock, the MTL starts forwarding the frame when the FIFO is full, even in Store-and-Forward mode.</li> <li>LC: Loss of Carrier When set, this bit indicates that Loss of Carrier occurred during frame transmission. This is valid only for the frames transmitted without collision and when the MAC operates in Half-Duplex Mode.</li> <li>NC: No Carrier When set, this bit indicates that the carrier sense signal form the PHY was not asserted during transmission.</li> <li>LC: Late Collision When set, this bit indicates that frame transmission was aborted due to a collision occurring after the collision window (64 byte times including Preamble in RMII Mode and 512 byte times including Preamble and Carrier Extension in RGMII</li> </ul>		<del>-</del> -
14 JT: Jabber Timeout When set, this bit indicates the MAC transmitter has experienced a jabber time- out.  13 FF: Frame Flushed When set, this bit indicates that the DMA/MTL flushed the frame due to a SW flush command given by the CPU.  12 PCE: Payload Checksum Error This bit, when set, indicates that the Checksum Offload engine had a failure and did not insert any checksum into the encapsulated TCP, UDP, or ICMP payload. This failure can be either due to insufficient bytes, as indicated by the IP Header's Payload Length field, or the MTL starting to forward the frame to the MAC transmitter in Store-and-Forward mode without the checksum having been calculated yet. This second error condition only occurs when the Transmit FIFO depth is less than the length of the Ethernet frame being transmitted: to avoid deadlock, the MTL starts forwarding the frame when the FIFO is full, even in Store-and-Forward mode.  11 LC: Loss of Carrier When set, this bit indicates that Loss of Carrier occurred during frame transmission. This is valid only for the frames transmitted without collision and when the MAC operates in Half-Duplex Mode.  10 NC: No Carrier When set, this bit indicates that the carrier sense signal form the PHY was not asserted during transmission.  9 LC: Late Collision When set, this bit indicates that frame transmission was aborted due to a collision occurring after the collision window (64 byte times including Preamble in RMII Mode and 512 byte times including Preamble and Carrier Extension in RGMII		I
When set, this bit indicates the MAC transmitter has experienced a jabber time- out.  13 FF: Frame Flushed When set, this bit indicates that the DMA/MTL flushed the frame due to a SW flush command given by the CPU.  12 PCE: Payload Checksum Error This bit, when set, indicates that the Checksum Offload engine had a failure and did not insert any checksum into the encapsulated TCP, UDP, or ICMP payload. This failure can be either due to insufficient bytes, as indicated by the IP Header's Payload Length field, or the MTL starting to forward the frame to the MAC transmitter in Store-and-Forward mode without the checksum having been calculated yet. This second error condition only occurs when the Transmit FIFO depth is less than the length of the Ethernet frame being transmitted: to avoid deadlock, the MTL starts forwarding the frame when the FIFO is full, even in Store-and-Forward mode.  11 LC: Loss of Carrier When set, this bit indicates that Loss of Carrier occurred during frame transmission. This is valid only for the frames transmitted without collision and when the MAC operates in Half-Duplex Mode.  10 NC: No Carrier When set, this bit indicates that the carrier sense signal form the PHY was not asserted during transmission.  9 LC: Late Collision When set, this bit indicates that frame transmission was aborted due to a collision occurring after the collision window (64 byte times including Preamble in RMII Mode and 512 byte times including Preamble and Carrier Extension in RGMII	14	
13 FF: Frame Flushed When set, this bit indicates that the DMA/MTL flushed the frame due to a SW flush command given by the CPU.  12 PCE: Payload Checksum Error This bit, when set, indicates that the Checksum Offload engine had a failure and did not insert any checksum into the encapsulated TCP, UDP, or ICMP payload. This failure can be either due to insufficient bytes, as indicated by the IP Header's Payload Length field, or the MTL starting to forward the frame to the MAC transmitter in Store-and-Forward mode without the checksum having been calculated yet. This second error condition only occurs when the Transmit FIFO depth is less than the length of the Ethernet frame being transmitted: to avoid deadlock, the MTL starts forwarding the frame when the FIFO is full, even in Store-and-Forward mode.  11 LC: Loss of Carrier When set, this bit indicates that Loss of Carrier occurred during frame transmission. This is valid only for the frames transmitted without collision and when the MAC operates in Half-Duplex Mode.  10 NC: No Carrier When set, this bit indicates that the carrier sense signal form the PHY was not asserted during transmission.  9 LC: Late Collision When set, this bit indicates that frame transmission was aborted due to a collision occurring after the collision window (64 byte times including Preamble in RMII Mode and 512 byte times including Preamble and Carrier Extension in RGMII		
When set, this bit indicates that the DMA/MTL flushed the frame due to a SW flush command given by the CPU.  PCE: Payload Checksum Error This bit, when set, indicates that the Checksum Offload engine had a failure and did not insert any checksum into the encapsulated TCP, UDP, or ICMP payload. This failure can be either due to insufficient bytes, as indicated by the IP Header's Payload Length field, or the MTL starting to forward the frame to the MAC transmitter in Store-and-Forward mode without the checksum having been calculated yet. This second error condition only occurs when the Transmit FIFO depth is less than the length of the Ethernet frame being transmitted: to avoid deadlock, the MTL starts forwarding the frame when the FIFO is full, even in Store-and-Forward mode.  LC: Loss of Carrier When set, this bit indicates that Loss of Carrier occurred during frame transmission. This is valid only for the frames transmitted without collision and when the MAC operates in Half-Duplex Mode.  NC: No Carrier When set, this bit indicates that the carrier sense signal form the PHY was not asserted during transmission.  LC: Late Collision When set, this bit indicates that frame transmission was aborted due to a collision occurring after the collision window (64 byte times including Preamble in RMII Mode and 512 byte times including Preamble and Carrier Extension in RGMII		
command given by the CPU.  PCE: Payload Checksum Error This bit, when set, indicates that the Checksum Offload engine had a failure and did not insert any checksum into the encapsulated TCP, UDP, or ICMP payload. This failure can be either due to insufficient bytes, as indicated by the IP Header's Payload Length field, or the MTL starting to forward the frame to the MAC transmitter in Store-and-Forward mode without the checksum having been calculated yet. This second error condition only occurs when the Transmit FIFO depth is less than the length of the Ethernet frame being transmitted: to avoid deadlock, the MTL starts forwarding the frame when the FIFO is full, even in Store-and-Forward mode.  11 LC: Loss of Carrier When set, this bit indicates that Loss of Carrier occurred during frame transmission. This is valid only for the frames transmitted without collision and when the MAC operates in Half-Duplex Mode.  10 NC: No Carrier When set, this bit indicates that the carrier sense signal form the PHY was not asserted during transmission.  9 LC: Late Collision When set, this bit indicates that frame transmission was aborted due to a collision occurring after the collision window (64 byte times including Preamble in RMII Mode and 512 byte times including Preamble and Carrier Extension in RGMII	13	
PCE: Payload Checksum Error This bit, when set, indicates that the Checksum Offload engine had a failure and did not insert any checksum into the encapsulated TCP, UDP, or ICMP payload. This failure can be either due to insufficient bytes, as indicated by the IP Header's Payload Length field, or the MTL starting to forward the frame to the MAC transmitter in Store-and-Forward mode without the checksum having been calculated yet. This second error condition only occurs when the Transmit FIFO depth is less than the length of the Ethernet frame being transmitted: to avoid deadlock, the MTL starts forwarding the frame when the FIFO is full, even in Store-and-Forward mode.  11 LC: Loss of Carrier When set, this bit indicates that Loss of Carrier occurred during frame transmission. This is valid only for the frames transmitted without collision and when the MAC operates in Half-Duplex Mode.  10 NC: No Carrier When set, this bit indicates that the carrier sense signal form the PHY was not asserted during transmission.  9 LC: Late Collision When set, this bit indicates that frame transmission was aborted due to a collision occurring after the collision window (64 byte times including Preamble in RMII Mode and 512 byte times including Preamble and Carrier Extension in RGMII		·
This bit, when set, indicates that the Checksum Offload engine had a failure and did not insert any checksum into the encapsulated TCP, UDP, or ICMP payload. This failure can be either due to insufficient bytes, as indicated by the IP Header's Payload Length field, or the MTL starting to forward the frame to the MAC transmitter in Store-and-Forward mode without the checksum having been calculated yet. This second error condition only occurs when the Transmit FIFO depth is less than the length of the Ethernet frame being transmitted: to avoid deadlock, the MTL starts forwarding the frame when the FIFO is full, even in Store-and-Forward mode.  11 LC: Loss of Carrier When set, this bit indicates that Loss of Carrier occurred during frame transmission. This is valid only for the frames transmitted without collision and when the MAC operates in Half-Duplex Mode.  10 NC: No Carrier When set, this bit indicates that the carrier sense signal form the PHY was not asserted during transmission.  9 LC: Late Collision When set, this bit indicates that frame transmission was aborted due to a collision occurring after the collision window (64 byte times including Preamble in RMII Mode and 512 byte times including Preamble and Carrier Extension in RGMII	12	
did not insert any checksum into the encapsulated TCP, UDP, or ICMP payload. This failure can be either due to insufficient bytes, as indicated by the IP Header's Payload Length field, or the MTL starting to forward the frame to the MAC transmitter in Store-and-Forward mode without the checksum having been calculated yet. This second error condition only occurs when the Transmit FIFO depth is less than the length of the Ethernet frame being transmitted: to avoid deadlock, the MTL starts forwarding the frame when the FIFO is full, even in Store-and-Forward mode.  11 LC: Loss of Carrier When set, this bit indicates that Loss of Carrier occurred during frame transmission. This is valid only for the frames transmitted without collision and when the MAC operates in Half-Duplex Mode.  10 NC: No Carrier When set, this bit indicates that the carrier sense signal form the PHY was not asserted during transmission.  9 LC: Late Collision When set, this bit indicates that frame transmission was aborted due to a collision occurring after the collision window (64 byte times including Preamble in RMII Mode and 512 byte times including Preamble and Carrier Extension in RGMII	12	,
failure can be either due to insufficient bytes, as indicated by the IP Header's Payload Length field, or the MTL starting to forward the frame to the MAC transmitter in Store-and-Forward mode without the checksum having been calculated yet. This second error condition only occurs when the Transmit FIFO depth is less than the length of the Ethernet frame being transmitted: to avoid deadlock, the MTL starts forwarding the frame when the FIFO is full, even in Store-and-Forward mode.  11 LC: Loss of Carrier When set, this bit indicates that Loss of Carrier occurred during frame transmission. This is valid only for the frames transmitted without collision and when the MAC operates in Half-Duplex Mode.  10 NC: No Carrier When set, this bit indicates that the carrier sense signal form the PHY was not asserted during transmission.  9 LC: Late Collision When set, this bit indicates that frame transmission was aborted due to a collision occurring after the collision window (64 byte times including Preamble in RMII Mode and 512 byte times including Preamble and Carrier Extension in RGMII		· · · · · · · · · · · · · · · · · · ·
transmitter in Store-and-Forward mode without the checksum having been calculated yet. This second error condition only occurs when the Transmit FIFO depth is less than the length of the Ethernet frame being transmitted: to avoid deadlock, the MTL starts forwarding the frame when the FIFO is full, even in Store-and-Forward mode.  11 LC: Loss of Carrier When set, this bit indicates that Loss of Carrier occurred during frame transmission. This is valid only for the frames transmitted without collision and when the MAC operates in Half-Duplex Mode.  10 NC: No Carrier When set, this bit indicates that the carrier sense signal form the PHY was not asserted during transmission.  9 LC: Late Collision When set, this bit indicates that frame transmission was aborted due to a collision occurring after the collision window (64 byte times including Preamble in RMII Mode and 512 byte times including Preamble and Carrier Extension in RGMII		
calculated yet. This second error condition only occurs when the Transmit FIFO depth is less than the length of the Ethernet frame being transmitted: to avoid deadlock, the MTL starts forwarding the frame when the FIFO is full, even in Store-and-Forward mode.  11 LC: Loss of Carrier When set, this bit indicates that Loss of Carrier occurred during frame transmission. This is valid only for the frames transmitted without collision and when the MAC operates in Half-Duplex Mode.  10 NC: No Carrier When set, this bit indicates that the carrier sense signal form the PHY was not asserted during transmission.  9 LC: Late Collision When set, this bit indicates that frame transmission was aborted due to a collision occurring after the collision window (64 byte times including Preamble in RMII Mode and 512 byte times including Preamble and Carrier Extension in RGMII		
depth is less than the length of the Ethernet frame being transmitted: to avoid deadlock, the MTL starts forwarding the frame when the FIFO is full, even in Store-and-Forward mode.  11 LC: Loss of Carrier When set, this bit indicates that Loss of Carrier occurred during frame transmission. This is valid only for the frames transmitted without collision and when the MAC operates in Half-Duplex Mode.  10 NC: No Carrier When set, this bit indicates that the carrier sense signal form the PHY was not asserted during transmission.  9 LC: Late Collision When set, this bit indicates that frame transmission was aborted due to a collision occurring after the collision window (64 byte times including Preamble in RMII Mode and 512 byte times including Preamble and Carrier Extension in RGMII		
deadlock, the MTL starts forwarding the frame when the FIFO is full, even in Store-and-Forward mode.  11 LC: Loss of Carrier When set, this bit indicates that Loss of Carrier occurred during frame transmission. This is valid only for the frames transmitted without collision and when the MAC operates in Half-Duplex Mode.  10 NC: No Carrier When set, this bit indicates that the carrier sense signal form the PHY was not asserted during transmission.  9 LC: Late Collision When set, this bit indicates that frame transmission was aborted due to a collision occurring after the collision window (64 byte times including Preamble in RMII Mode and 512 byte times including Preamble and Carrier Extension in RGMII		,
Store-and-Forward mode.  11 LC: Loss of Carrier When set, this bit indicates that Loss of Carrier occurred during frame transmission. This is valid only for the frames transmitted without collision and when the MAC operates in Half-Duplex Mode.  10 NC: No Carrier When set, this bit indicates that the carrier sense signal form the PHY was not asserted during transmission.  9 LC: Late Collision When set, this bit indicates that frame transmission was aborted due to a collision occurring after the collision window (64 byte times including Preamble in RMII Mode and 512 byte times including Preamble and Carrier Extension in RGMII		
<ul> <li>LC: Loss of Carrier         When set, this bit indicates that Loss of Carrier occurred during frame         transmission. This is valid only for the frames transmitted without collision and         when the MAC operates in Half-Duplex Mode.</li> <li>NC: No Carrier         When set, this bit indicates that the carrier sense signal form the PHY was not         asserted during transmission.</li> <li>LC: Late Collision         When set, this bit indicates that frame transmission was aborted due to a collision         occurring after the collision window (64 byte times including Preamble in RMII         Mode and 512 byte times including Preamble and Carrier Extension in RGMII</li> </ul>		
When set, this bit indicates that Loss of Carrier occurred during frame transmission. This is valid only for the frames transmitted without collision and when the MAC operates in Half-Duplex Mode.  10 NC: No Carrier When set, this bit indicates that the carrier sense signal form the PHY was not asserted during transmission.  9 LC: Late Collision When set, this bit indicates that frame transmission was aborted due to a collision occurring after the collision window (64 byte times including Preamble in RMII Mode and 512 byte times including Preamble and Carrier Extension in RGMII	11	
when the MAC operates in Half-Duplex Mode.  10 NC: No Carrier When set, this bit indicates that the carrier sense signal form the PHY was not asserted during transmission.  9 LC: Late Collision When set, this bit indicates that frame transmission was aborted due to a collision occurring after the collision window (64 byte times including Preamble in RMII Mode and 512 byte times including Preamble and Carrier Extension in RGMII		When set, this bit indicates that Loss of Carrier occurred during frame
<ul> <li>NC: No Carrier         When set, this bit indicates that the carrier sense signal form the PHY was not asserted during transmission.</li> <li>LC: Late Collision         When set, this bit indicates that frame transmission was aborted due to a collision occurring after the collision window (64 byte times including Preamble in RMII Mode and 512 byte times including Preamble and Carrier Extension in RGMII</li> </ul>		transmission. This is valid only for the frames transmitted without collision and
When set, this bit indicates that the carrier sense signal form the PHY was not asserted during transmission.  9 LC: Late Collision When set, this bit indicates that frame transmission was aborted due to a collision occurring after the collision window (64 byte times including Preamble in RMII Mode and 512 byte times including Preamble and Carrier Extension in RGMII		
asserted during transmission.  9 LC: Late Collision When set, this bit indicates that frame transmission was aborted due to a collision occurring after the collision window (64 byte times including Preamble in RMII Mode and 512 byte times including Preamble and Carrier Extension in RGMII	10	
9 LC: Late Collision When set, this bit indicates that frame transmission was aborted due to a collision occurring after the collision window (64 byte times including Preamble in RMII Mode and 512 byte times including Preamble and Carrier Extension in RGMII		·
When set, this bit indicates that frame transmission was aborted due to a collision occurring after the collision window (64 byte times including Preamble in RMII Mode and 512 byte times including Preamble and Carrier Extension in RGMII	0	
occurring after the collision window (64 byte times including Preamble in RMII Mode and 512 byte times including Preamble and Carrier Extension in RGMII	9	
Mode and 512 byte times including Preamble and Carrier Extension in RGMII		
		· · ·
,		Mode). Not valid if Underflow Error is set.
8 EC: Excessive Collision	8	

Bit	Description
	When set, this bit indicates that the transmission was aborted after 16 successive collisions while attempting to transmit the current frame. If the DR (Disable Retry) bit in the MAC Configuration Register is set, this bit is set after the first collision and the transmission of the frame is aborted.
7	VF: VLAN Frame
6:3	When set, this bit indicates that the transmitted frame was a VLAN-type frame.  CC: Collision Count
0.3	This 4-bit counter value indicates the number of collisions occurring before the frame was transmitted. The count is not valid when the Excessive Collisions bit (TDES0[8]) is set.
2	ED: Excessive Deferral When set, this bit indicates that the transmission has ended because of excessive deferral of over 24,288 bit times (155,680 bits times in 1000-Mbps mode) if the Deferral Check (DC) bit is set high in the MAC Control Register.
1	UF: Underflow Error When set, this bit indicates that the MAC aborted the frame because data arrived late from the Host memory. Underflow Error indicates that the DMA encountered an empty Transmit Buffer while transmitting the frame. The transmission process enters the suspended state and sets both Transmit Underflow (Register MAC_STATUS[5]) and Transmit Interrupt (Register MAC_STATUS [0]).
0	DB: Deferred Bit When set, this bit indicates that the MAC defers before transmission because of the presence of carrier. This bit is valid only in Half-Duplex mode.

**Transmit Descriptor 1 (TDES1)**TDES1 contains the buffer sizes and other bits which control the descriptor chain/ring and the frame being transferred.

Table 12-7 Transmit Descriptor 1

	Table 12-7 Transmit Descriptor 1
Bit	Description
31	IC: Interrupt on Completion When set, this bit sets Transmit Interrupt (Register 5[0]) after the present frame has been transmitted.
30	LS: Last Segment When set, this bit indicates that the buffer contains the last segment of the frame.
29	FS: First Segment When set, this bit indicates that the buffer contains the first segment of a frame.
28:27	CIC: Checksum Insertion Control These bits control the insertion of checksums in Ethernet frames that encapsulate TCP, UDP, or ICMP over IPv4 or IPv6 as described below.  2'b00: Do nothing. Checksum Engine is bypassed  2'b01: Insert IPv4 header checksum. Use this value to insert IPv4 header checksum when the frame encapsulates an IPv4 datagram.  2'b10: Insert TCP/UDP/ICMP checksum. The checksum is calculated over the TCP, UDP, or ICMP segment only and the TCP, UDP, or ICMP pseudo-header checksum is assumed to be present in the corresponding input frame's Checksum field. An IPv4 header checksum is also inserted if the encapsulated datagram conforms to IPv4.  2'b11: Insert a TCP/UDP/ICMP checksum that is fully calculated in this engine. In other words, the TCP, UDP, or ICMP pseudo-header is included in the checksum calculation, and the input frame's corresponding Checksum field has an all-zero value. An IPv4 Header checksum is also inserted if the encapsulated datagram conforms to IPv4. The Checksum engine detects whether the TCP, UDP, or ICMP segment is encapsulated in IPv4 or IPv6 and processes its data accordingly.

Bit	Description
26	DC: Disable CRC When set, the MAC does not append the Cyclic Redundancy Check (CRC) to the end of the transmitted frame. This is valid only when the first segment (TDES1[29]).
25	TER: Transmit End of Ring When set, this bit indicates that the descriptor list reached its final descriptor. The returns to the base address of the list, creating a descriptor ring.
24	TCH: Second Address Chained When set, this bit indicates that the second address in the descriptor is the Next Descriptor address rather than the second buffer address. When TDES1[24] is set, TBS2 (TDES1[21–11]) are "don't care" values. TDES1[25] takes precedence over TDES1[24].
23	DP: Disable Padding When set, the MAC does not automatically add padding to a frame shorter than 64 bytes. When this bit is reset, the DMA automatically adds padding and CRC to a frame shorter than 64 bytes and the CRC field is added despite the state of the DC (TDES1[26]) bit. This is valid only when the first segment (TDES1[29]) is set.
22	Reserved.
21:11	TBS2: Transmit Buffer 2 Size These bits indicate the Second Data Buffer in bytes. This field is not valid if TDES1[24] is set.
10:0	TBS1: Transmit Buffer 1 Size These bits indicate the First Data Buffer byte size. If this field is 0, the DMA ignores this buffer and uses Buffer 2 or next descriptor depending on the value of TCH (Bit 24).

#### **Transmit Descriptor 2 (TDES2)**

TDES2 contains the address pointer to the first buffer of the descriptor.

Table 12-8 Transmit Descriptor 2

Tubic 12 o Transmit Bescriptor 2	
Bit	Description
31:0	Buffer 1 Address Pointer
	These bits indicate the physical address of Buffer 1. There is no limitation on the
	buffer address alignment.

#### **Transmit Descriptor 3 (TDES3)**

TDES3 contains the address pointer either to the second buffer of the descriptor or the next descriptor.

Table 12-9 Transmit Descriptor 3

Bit	Description
31:0	Buffer 2 Address Pointer (Next Descriptor Address)
	Indicates the physical address of Buffer 2 when a descriptor ring structure is used.
	If the Second Address Chained (TDES1[24]) bit is set, this address contains the
	pointer to the physical memory where the Next
	Descriptor is present. The buffer address pointer must be aligned to the bus width
	only when TDES1[24] is set. (LSBs are ignored internally.)

# 12.6.4 Programming Guide

#### **DMA Initialization – Descriptors**

The following operations must be performed to initialize the DMA.

- 1. Provide a software reset. This will reset all of the MAC internal registers and logic. (MAC_OP_MODE[0]).
- 2. Wait for the completion of the reset process (poll MAC_OP_MODE[0], which is only cleared after the reset operation is completed).

- 3. Program the following fields to initialize the Bus Mode Register by setting values in register MAC_BUS_MODE
  - a. Mixed Burst and AAL
  - b. Fixed burst or undefined burst
  - c. Burst length values and burst mode values.
  - d. Descriptor Length (only valid if Ring Mode is used)
  - e. Tx and Rx DMA Arbitration scheme
- 4. Program the AXI Interface options in the register MAC_BUS_MODE
- a. If fixed burst-length is enabled, then select the maximum burst-length possible on the AXI bus (Bits[7:1])
- 5. A proper descriptor chain for transmit and receive must be created. It should also ensure that the receive descriptors are owned by DMA (bit 31 of descriptor should be set). When OSF mode is used, at least two descriptors are required.
- 6. Software should create three or more different transmit or receive descriptors in the chain before reusing any of the descriptors.
- 7. Initialize receive and transmit descriptor list address with the base address of transmit and receive descriptor (register MAC_RX_DESC_LIST_ADDR and MAC_TX_DESC_LIST_ADDR).
- 8. Program the following fields to initialize the mode of operation by setting values in register  $MAC_OP_MODE$ 
  - a. Receive and Transmit Store And Forward
  - b. Receive and Transmit Threshold Control (RTC and TTC)
  - c. Hardware Flow Control enable
- d. Flow Control Activation and De-activation thresholds for MTL Receive and Transmit FIFO (RFA and RFD)
  - e. Error Frame and undersized good frame forwarding enable
  - f. OSF Mode
- 9. Clear the interrupt requests, by writing to those bits of the status register (interrupt bits only) which are set. For example, by writing 1 into bit 16 normal interrupt summary will clear this bit (register MAC_STATUS).
- 10. Enable the interrupts by programming the interrupt enable register MAC_INT_ENA.
- 11. Start the Receive and Transmit DMA by setting SR (bit 1) and ST (bit 13) of the control register MAC_OP_MODE.

#### **MAC Initialization**

The following MAC Initialization operations can be performed after the DMA initialization sequence. If the MAC Initialization is done before the DMA is set-up, then enable the MAC receiver (last step below) only after the DMA is active. Otherwise, received frames will fill the RxFIFO and overflow.

- 1. Program the register MAC_GMII_ADDR for controlling the management cycles for external PHY, for example, Physical Layer Address PA (bits 15-11). Also set bit 0 (GMII Busy) for writing into PHY and reading from PHY.
- 2. Read the 16-bit data of (MAC_GMII_DATA) from the PHY for link up, speed of operation, and mode of operation, by specifying the appropriate address value in registerMAC GMII ADDR (bits 15-11).
- Provide the MAC address registers (MAC_MAC_ADDR0_HI and MAC_MAC_ADDR0_LO).
- 4. If Hash filtering is enabled in your configuration, program the Hash filter register (MAC_HASH_TAB_HI and MAC_HASH_TAB_LO).
- 5. Program the following fields to set the appropriate filters for the incoming frames in register MAC_MAC_FRM_FILT
  - a. Receive All
  - b. Promiscuous mode
  - c. Hash or Perfect Filter
  - d. Unicast, Multicast, broad cast and control frames filter settings etc.
- Program the following fields for proper flow control in register MAC FLOW CTRL.
  - a. Pause time and other pause frame control bits
  - b. Receive and Transmit Flow control bits

- c. Flow Control Busy/Backpressure Activate
- 7. Program the Interrupt Mask register bits, as required, and if applicable, for your configuration.
- 8. Program the appropriate fields in register MAC_MAC_CONF for example, Inter-frame gap while transmission, jabber disable, etc. Based on the Auto-negotiation you can set the Duplex mode (bit 11), port select (bit 15), etc.
- 9. Set the bits Transmit enable (TE bit-3) and Receive Enable (RE bit-2) in register MAC_MAC_CONF.

### **Normal Receive and Transmit Operation**

For normal operation, the following steps can be followed.

- For normal transmit and receive interrupts, read the interrupt status. Then poll the descriptors, reading the status of the descriptor owned by the Host (either transmit or receive).
- On completion of the above step, set appropriate values for the descriptors, ensuring that transmit and receive descriptors are owned by the DMA to resume the transmission and reception of data.
- If the descriptors were not owned by the DMA (or no descriptor is available), the DMA will go into SUSPEND state. The transmission or reception can be resumed by freeing the descriptors and issuing a poll demand by writing 0 into the Tx/Rx poll demand register (MAC_TX_POLL_DEMAND and MAC_RX_POLL_DEMAND).
- The values of the current host transmitter or receiver descriptor address pointer can be read for the debug process (MAC_CUR_HOST_TX_DESC and MAC_CUR_HOST_RX_DESC).
- The values of the current host transmit buffer address pointer and receive buffer address pointer can be read for the debug process (MAC_CUR_HOST_TX_Buf_ADDR and MAC_CUR_HOST_RX_BUF_ADDR).

#### Stop and Start Operation

When the transmission is required to be paused for some time then the following steps can be followed.

- 1. Disable the Transmit DMA (if applicable), by clearing ST (bit 13) of the control register MAC OP MODE.
- 2. Wait for any previous frame transmissions to complete. This can be checked by reading the appropriate bits of MAC Debug register.
- 3. Disable the MAC transmitter and MAC receiver by clearing the bits Transmit enable (TE bit-3) and Receive Enable (RE bit-2) in register MAC MAC CONF.
- 4. Disable the Receive DMA (if applicable), after making sure the data in the RX FIFO is transferred to the system memory (by reading the register MAC_DEBUG).
- Make sure both the TX FIFO and RX FIFO are empty.
- 6. To re-start the operation, start the DMAs first, before enabling the MAC Transmitter and Receiver.

#### 12.6.5 Clock Architecture

In RMII mode, reference clock and TX/RX clock can be from CRU or external OSC as following figure.

The mux select is CRU_CLKSEL23_CON[6].

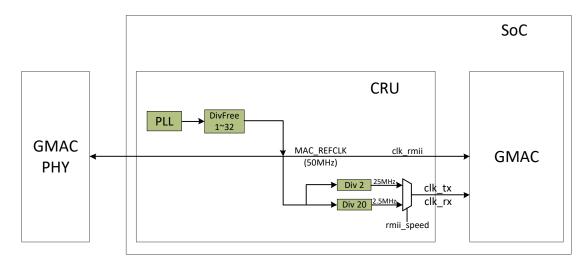



Fig. 12-13 RMII clock architecture when clock source from CRU

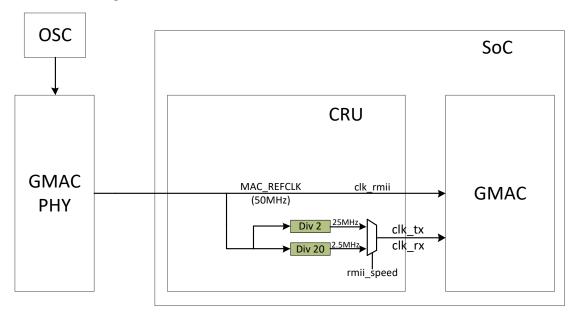



Fig. 12-14 RMII clock architecture when clock source from external OSC

### 12.6.6 Remote Wake-Up Frame Filter Register

The register wkupfmfilter_reg, address (028H), loads the Wake-up Frame Filter register. To load values in a Wake-up Frame Filter register, the entire register (wkupfmfilter_reg) must be written. The wkupfmfilter_reg register is loaded by sequentially loading the eight register values in address (028) for wkupfmfilter_reg0, wkupfmfilter_reg1, ..., wkupfmfilter_reg7, respectively. Wkupfmfilter reg is read in the same way.

The internal counter to access the appropriate wkupfmfilter_reg is incremented when lane3 (or lane 0 in big-endian) is accessed by the CPU. This should be kept in mind if you are accessing these registers in byte or half-word mode.

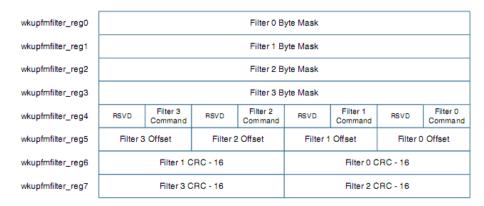



Fig. 12-1Wake-Up Frame Filter Register

#### Filter i Byte Mask

This register defines which bytes of the frame are examined by filter i (0, 1, 2, and 3) in order to determine whether or not the frame is a wake-up frame. The MSB (thirty-first bit) must be zero. Bit j [30:0] is the Byte Mask. If bit j (byte number) of the Byte Mask is set, then Filter i Offset + j of the incoming frame is processed by the CRC block; otherwise Filter i Offset + j is ignored.

#### Filter i Command

This 4-bit command controls the filter i operation. Bit 3 specifies the address type, defining the pattern's destination address type. When the bit is set, the pattern applies to only multicast frames; when the bit is reset, the pattern applies only to unicast frame. Bit 2 and Bit 1 are reserved. Bit 0 is the enable for filter i; if Bit 0 is not set, filter i is disabled.

#### Filter i Offset

This register defines the offset (within the frame) from which the frames are examined by filter i. This 8-bit pattern-offset is the offset for the filter i first byte to examined. The minimum allowed is 12, which refers to the 13th byte of the frame (offset value 0 refers to the first byte of the frame).

#### Filter i CRC-16

This register contains the CRC_16 value calculated from the pattern, as well as the byte mask programmed to the wake-up filter register block.

### 12.6.7 System Consideration During Power-Down

MAC neither gates nor stops clocks when Power-Down mode is enabled. Power saving by clock gating must be done outside the core by the CRU. The receive data path must be clocked with clk_rx_i during Power-Down mode, because it is involved in magic packet/wake-on-LAN frame detection. However, the transmit path and the APB path clocks can be gated off during Power-Down mode.

The PMT interrupt is asserted when a valid wake-up frame is received. This interrupt is generated in the clk_rx domain.

The recommended power-down and wake-up sequence is as follows.

- 1. Disable the Transmit DMA (if applicable) and wait for any previous frame transmissions to complete. These transmissions can be detected when Transmit Interrupt (TI Register MAC_STATUS[0]) is received.
- 2. Disable the MAC transmitter and MAC receiver by clearing the appropriate bits in the MAC Configuration register.
- 3. Wait until the Receive DMA empties all the frames from the Rx FIFO (a software timer may be required).
- 4. Enable Power-Down mode by appropriately configuring the PMT registers.
- 5. Enable the MAC Receiver and enter Power-Down mode.
- 6. Gate the APB and transmit clock inputs to the core (and other relevant clocks in the system) to reduce power and enter Sleep mode.
- 7. On receiving a valid wake-up frame, the MAC asserts the PMT interrupt signal and exits Power-Down mode.
- 8. On receiving the interrupt, the system must enable the APB and transmit clock inputs to

the core.

9. Read the register MAC_PMT_CTRL_STA to clear the interrupt, then enable the other modules in the system and resume normal operation.

# 12.6.8 GRF Register Summary

MAC2IO				
GRF Register	Register Description			
	MACspeed			
GRF_MAC_CON1[2]	1'b1: 100-Mbps			
	1'b0: 10-Mbps			
	MAC transmit flow control			
	When set high, instructs the MAC to transmit PAUSE Control			
GRF_MAC_CON1[3]	frames in Full-duplex mode. In Half-duplex mode, the MAC			
	enables the Back-pressure function until this signal is made			
	low again			
	PHY interface select			
GRF_MAC_CON1[6:4]	3'b001: RGMII(useless)			
GRI_MAC_CONT[0.4]	3'b100: RMII			
	All others: Reserved			
	rmii_extclk_sel			
CRU_CLKSEL23_CON[6]	1'b1:from CRU			
	1'b0:from IO			
	rmii_clk_sel			
CRU_CLKSEL23_CON[7]	1'b1:100M			
	1'b0:10M			

# **Chapter 13 Timer**

### 13.1 Overview

Timer is a programmable timer peripheral. This component is an APB slave device. There are 6 non-secure timers and 2 secure timers.

Timer5 and STimer0~1 count up from zero to a programmed value and generate an interrupt when the counter reaches the programmed value.

Timer0~4 count down from a programmed value to zero and generate an interrupt when the counter reaches zero.

Timer supports the following features:

- Timer0~Timer5 is used for no-secure, STimer0~STimer1 is used for secure.
- Two operation modes: free-running and user-defined count.

# 13.2 Block Diagram

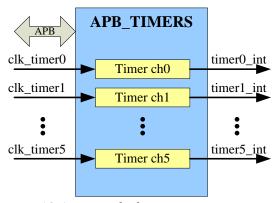



Fig. 13-1 Timer Block Diagram

The above figure shows the architecture of the APB timers (include six programmable timer channels) that in the bus subsystem. The Stimers that in the bus subsystem only include two programmable timer channels.

# **13.3 Function Description**

#### 13.3.1 Timer clock

TIMER0~ TIMER5 and STIMER0~1 are in the pd_bus subsystem. The timer clock is 24MHz OSC.

### 13.3.2 Programming sequence

- 1. Initialize the timer by the TIMERn_CONTROLREG ( $0 \le n \le 5$ ) register:
- Disable the timer by writing a "0" to the timer enable bit (bit 0). Accordingly, the timer_en output signal is de-asserted.
- Program the timer mode—user-defined or free-running—by writing a "0" or "1" respectively, to the timer mode bit (bit 1).
- Set the interrupt mask as either masked or not masked by writing a "0" or "1" respectively, to the timer interrupt mask bit (bit 2).
- 2. Load the timer count value into the TIMERn_LOAD_COUNT1 ( $0 \le n \le 5$ ) and TIMERn_LOAD_COUNT0 ( $0 \le n \le 5$ ) register.
- 3. Enable the timer by writing a "1" to bit 0 of TIMERn CONTROLREG ( $0 \le n \le 5$ ).

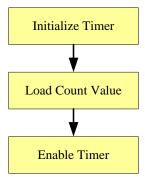



Fig. 13-2 Timer Usage Flow

### 13.3.3 Loading a timer count value

For the descending Timers(Timer0~4). The initial value for each timer—that is, the value from which it counts down—is loaded into the timer using the load count register (TIMERn_LOAD_COUNT1 and TIMERn_ LOAD_COUNT0). Two events can cause a timer to load the initial value from its load count register:

- Timer is enabled after reset or disabled.
- Timer counts down to 0, when timer is configured into free-running mode. For the incremental Timers(Timer5 and STimer0~1). The initial value for each timer is zero. The count register will count up to the value loaded in the register TIMERn_LOAD_COUNT1 and TIMERn LOAD COUNT0. Two events can cause a timer to load zero:
- Timer is enabled after reset or disabled.
- Timer counts up to the value stored in TIMERn_LOAD_COUNT1 and TIMERn_ LOAD_COUNT0, when timer is configured into free-running mode.

### 13.3.4 Timer mode selection

- User-defined count mode Timer loads TIMERn_LOAD_COUNT1 and TIMERn_LOAD_COUNT0 registers (for descending timers) or zero (for incremental timers) as initial value. When the timer counts down to 0 (for descending timers) or counts up to the value in TIMERn_LOAD_COUNT1 and TIMERn_LOAD_COUNT0 (for incremental timers), it will not automatically reload the count register. User need to disable timer firstly and follow the programming sequence to make timer work again.
- Free-running mode Timer loads the TIMERn_LOAD_COUNT1 and TIMERn_LOAD_COUNT0(for descending timers) or zero (for incremental timers)register as initial value. Timer will automatically reload the count register, when timer counts down to 0 (for descending timers) or counts up to the value in TIMERn_LOAD_COUNT1 and TIMERn_LOAD_COUNT0 (for incremental timers).

# 13.4 Register Description

### 13.4.1 Registers Summary

Name	Offset	Size	Reset Value	Description
TIMER TIMERN LOAD CO UNTO	0x0000	W	0×00000000	Timern Load Count Register 0
TIMER TIMERN LOAD CO UNT1	0x0004	W	0x00000000	Timern Load Count Register 1.High 32 bits Value to be loaded into Timer n. This is the value from which counting commences
TIMER TIMERN CURRENT VALUEO	0x0008	W	0x00000000	Timern Current Value Register 0

Name	Offset	Size	Reset Value	Description
TIMER TIMERN CURRENT VALUE1	0x000c	W	0x00000000	Timern Current Value Register 1.High 32 bits of Current Value of Timer n
TIMER TIMERN CONTROL REG	0x0010	W	0×00000000	Timern Control Register
TIMER TIMERN INTSTAT US	0x0018	W	0×00000000	Timern Interrupt Status Register

Notes: Size: **B**- Byte (8 bits) access, **HW**- Half WORD (16 bits) access, **W**-WORD (32 bits) access

### 13.4.2 Detail Register Description

### TIMER TIMERN LOAD COUNTO

Address: Operational Base + offset (0x0000)

Bit	Attr	<b>Reset Value</b>	Description
31:0	RW	0x00000000	load_count_0 Low 32 bits Value to be loaded into Timer n. This is the value from which counting commences

### TIMER TIMERN LOAD COUNT1

Address: Operational Base + offset (0x0004)

Bit	Attr	<b>Reset Value</b>	Description
31:0	RW	0x00000000	load_count_0 Low 32 bits Value to be loaded into Timer n. This is the value from which counting commences

### TIMER TIMERN CURRENT VALUEO

Address: Operational Base + offset (0x0008)

Bit	Attr	<b>Reset Value</b>	Description
31:0	RO	0x00000000	timern_current_value0
31.0	NO	0.000000000	Low 32 bits of Current Value of Timer n

#### **TIMER TIMERN CURRENT VALUE1**

Address: Operational Base + offset (0x000c)

Bit	Attr	<b>Reset Value</b>	Description
21.0	31:0 IRO 10x00000000		timern_current_value0
31.0			Low 32 bits of Current Value of Timer n

#### **TIMER TIMERN CONTROLREG**

Address: Operational Base + offset (0x0010)

Bit	Attr	<b>Reset Value</b>	Description
31:3	RO	0x0	reserved

Bit	Attr	<b>Reset Value</b>	Description
			timer_int_mask
2	RW	0x0	Timer interrupt mask.
2	KVV	UXU	0: mask
			1: not mask
			timer_mode
1	RW	00	Timer mode.
1	KVV	0x0	0: free-running mode
			1: user-defined count mode
			timer_en
	RW	0×0	Timer enable.
0			0: disable
			1: enable

#### TIMER TIMERn_INTSTATUS

Address: Operational Base + offset (0x0018)

Bit	Attr	<b>Reset Value</b>	Description
31:1	RO	0x0	reserved
0	RO	10x0	timern_int This register contains the interrupt status for timern

# 13.5 Application Notes

In the chip, the timer_clk is from 24MHz OSC, asynchronous to the pclk. When user disables the timer enables bit (bit 0 of TIMERn_CONTROLREG ( $0 \le n \le 5$ )), the timeren output signal is de-asserted, and timer_clk will stop. When user enables the timer, the timer_en signal is asserted and timer_clk will start running.

The application is only allowed to re-config registers when timer_en is low.

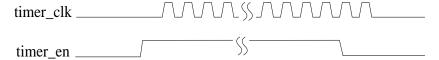



Fig. 13-3 Timing between timer_en and timer_clk

Please refer to function description section for the timer usage flow.

# **Chapter 14 System Debug**

### 14.1 Overview

The chip uses the DAPLITE Technology to support real-time debug.

#### **14.1.1 Features**

- Invasive debug with core halted
- SW-DP

### 14.1.2 Debug components address map

The following table shows the debug components address in memory map:

Module	Base Address
DAP ROM	0xff680000

# 14.2 Block Diagram

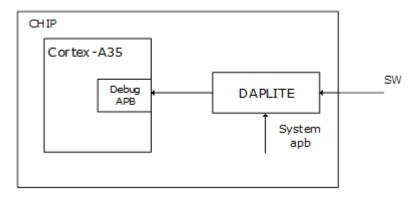



Fig. 14-1Debug system structure

# 14.3 Function Description

### 14.3.1 DAP

The DAP has following components:

- Serial Wire JTAG Debug Port(SWJ-DP)
- APB Access Port(APB-AP)
- ROM table

The debug port is the host tools interface to access the DAP-Lite. This interface controls any access ports provided within the DAP-Lite. The DAP-Lite supports a combined debug port which includes both JTAG and Serial Wire Debug(SWD), with a mechanism that supports switching between them.

The APB-AP acts as a bridge between SWJ-DP and APB bus which translate the Debug request to APB bus.

The DAP provides an internal ROM table connected to the master Debug APB port of the APB-Mux. The Debug ROM table is loaded at address 0x00000000 and 0x80000000 of this bus and is accessible from both APB-AP and the system APB input. Bit[31] of the address bus is not connected to the ROM Table, ensuring that both views read the same value. The ROM table stores the locations of the components on the Debug APB.

More information please refer to the documentCoreSight_DAPLite_TRM.pdf for the debug detail description.

# 14.4 Register Description

Please refer to the document CoreSight_DAPLite_TRM.pdf for the debug detail description.

# 14.5 Interface Description

#### 14.5.1 DAP SW-DP Interface

This implementation is taken from ADIv5.1 and operates with a synchronous serial interface. This uses a single bidirectional data signal, and a clock signal.

The figure below describes the interaction between the timing of transactions on the serialwire interface, and the DAP internal bus transfers. It shows when the target respondswith a WAIT acknowledgement.

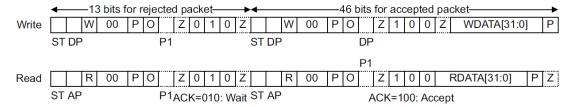



Fig. 14-2SW-DP acknowledgement timing

Table 14-1 SW-DP Interface Description

Module pin	Directio n	Pad name	IOMUX
jtag_tck	I	IO_SDMMC0d2_UART4rx_JTA	GRF_GPIO1D_IOMUX_H[2:0]=3'b
		Gtck_GPIO1D4vccio2	011
jtag_tms	I/O	IO_SDMMC0d3_UART4tx_JTA	GRF_GPIO1D_IOMUX_h[6:4]=3'b
		Gtms_GPIO1D5vccio2	011

# Chapter 15 WatchDog

#### 15.1 Overview

Watchdog Timer (WDT) is an APB slave peripheral that can be used to prevent system lockup that may becaused by conflicting parts or programs .The WDT would generate interrupt or reset signal when it's counter reaches zero, then a reset controller would reset the system. there are a Non-secure WDT(WDT_NS) and a Secure WDT(WDT_S); WDT supports the following features:

- 32 bits APB bus width
- WDT counter's clock is pclk
- 32 bits WDT counter width
- Counter counts down from a preset value to 0 to indicate the occurrence of a timeout
- WDT can perform two types of operations when timeout occurs:
  - Generate a system reset
  - First generate an interrupt and if this is not cleared by the service routine by the time a second timeout occurs then generate a system reset
- Programmable reset pulse length
- Total 16 defined-ranges of main timeout period
- Support two WTD, one is used for non-secure application, the other is used for secure application

# 15.2 Block Diagram

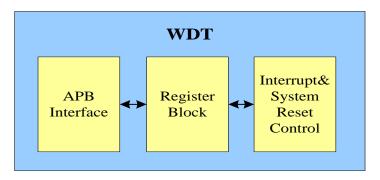



Fig. 15-1WDT block diagram

#### **Block Descriptions:**

APB Interface

The APB Interface implements the APB slave operation. Its data bus width is 32 bits.

Register Block

A register block that read coherence for the current count register.

Interrupt & system reset control

An interrupt/system reset generation block is comprised of a decrementing counter and control logic.

# **15.3 Function Description**

#### 15.3.1 Operation

#### Counter

The WDT counts from a preset (timeout) value in descending order to zero. When the counter reaches zero, depending on the output response mode selected, either a system reset or an interrupt occurs. When the counter reaches zero, it wraps to the selected timeout value and continues decrementing. The user can restart the counter to its initial value. This is programmed by writing to the restart register at any time. The process of restarting the watchdog counter is sometimes referred as kicking the dog. As a safety feature to prevent accidental restarts, the value 0x76 must be written to the Current Counter Value Register (WDT_CRR).

#### **Interrupts**

The WDT can be programmed to generate an interrupt (and then a system reset) when a timeout occurs. When a 1 is written to the response mode field (RMOD, bit 1) of the Watchdog Timer Control Register (WDT_CR), the WDT generates an interrupt. If it is not cleared by the time a second timeout occurs, then it generates a system reset. If a restart occurs at the same time the watchdog counter reaches zero, an interrupt is not generated.

#### **System Resets**

When a 0 is written to the output response mode field (RMOD, bit 1) of the Watchdog Timer Control Register (WDT_CR), the WDT generates a system reset when a timeout occurs.

#### **Reset Pulse Length**

The reset pulse length is the number of pclk cycles for which a system reset is asserted. When a system reset is generated, it remains asserted for the number of cycles specified by the reset pulse length or until the system is reset. A counter restart has no effect on the system reset once it has been asserted.

# 15.4 Register Description

This section describes the control/status registers of the design.

### 15.4.1 Registers Summary

Name	Offset	Size	Reset Value	Description
WDT_CR	0x0000	W	0x0000000a	Control Register
WDT TORR	0x0004	W	0x00000000	Timeout range Register
WDT CCVR	0x0008	W	0x0000ffff	Current counter value Register
WDT CRR	0x000c	W	0x00000000	Counter restart Register
WDT STAT	0x0010	W	0x00000000	Interrupt status Register
WDT EOI	0x0014	W	0x00000000	Interrupt clear Register

Notes:Size:B- Byte (8 bits) access, HW- Half WORD (16 bits) access, W-WORD (32 bits) access

## 15.4.2 Detail Register Description

### **WDT CR**

Address: Operational Base + offset (0x0000)

Bit	Attr	<b>Reset Value</b>	Description			
31:5	RO	0x0	reserved			
			rst_pluse_lenth			
			Reset pulse length. This is used to select the number of pclk			
			cycles			
		0x2	for which the system reset stays asserted.			
			000: 2 pclk cycles			
4:2	RW		001: 4 pclk cycles			
4.2	KVV		010: 8 pclk cycles			
			011: 16 pclk cycles			
			100: 32 pclk cycles			
			101: 64 pclk cycles			
			110: 128 pclk cycles			
			111: 256 pclk cycles			

Bit	Attr	<b>Reset Value</b>	Description				
			resp_mode				
			Response mode. Selects the output response generated to a				
1	RW	0×1	timeout.				
-	KVV		0: Generate a system reset.				
			1: First generate an interrupt and if it is not cleared by the time a				
			second timeout occurs then generate a system reset				
		W 0x0	wdt_en				
	0 RW		WDT enable:				
U			0: WDT disabled;				
			1: WDT enabled				

# **WDT_TORR**

Address: Operational Base + offset (0x0004)

Bit		<b>Reset Value</b>	Description
31:4	RO	0x0	reserved
3:0	RW	0×0	timeout_period Timeout period. This field is used to select the timeout period from which the watchdog counter restarts. A change of the timeout period takes effect only after the next counter restart (kick). The range of values available for a 32-bit watchdog counter are: 0000: 0x0000ffff 0001: 0x0001ffff 0010: 0x0003ffff 0110: 0x0007ffff 0110: 0x003fffff 0111: 0x007fffff 1000: 0x00ffffff 1001: 0x03ffffff 1001: 0x03ffffff 1101: 0x03ffffff 1101: 0x07ffffff 1101: 0x07ffffff 1101: 0x0fffffff 1101: 0x3fffffff 1111: 0x7fffffff

**WDT CCVR**Address: Operational Base + offset (0x0008)

Bit	Attr	<b>Reset Value</b>	Description		
31:0	RO	0x00000000	cur_cnt Current counter value. This register, when read, is the current value of the internal		
			counter. This value is read coherently when ever it is read		

# WDT CRR

Address: Operational Base + offset (0x000c)

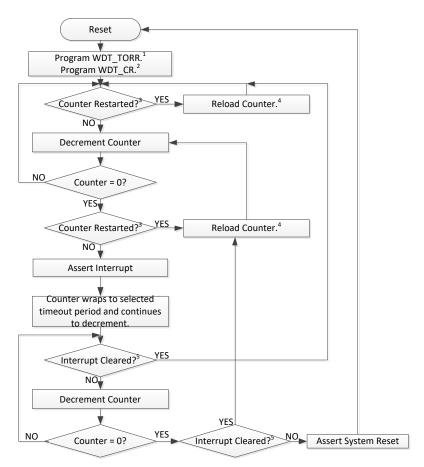
Bit	Attr	<b>Reset Value</b>	Description
31:8	RO	0x0	reserved
7:0	W1 C		cnt_restart Counter restart. This register is used to restart the WDT counter. As a safety feature to prevent accidental restarts, the value 0x76 must be written. A restart also clears the WDT interrupt. Reading this register returns zero

### **WDT_STAT**

Address: Operational Base + offset (0x0010)

Bit	Attr	<b>Reset Value</b>	Description			
31:1	RO	0x0	reserved			
		0×0	wdt_status			
0	DO		This register shows the interrupt status of the WDT.			
U	0 RO		1: Interrupt is active regardless of polarity;			
			0: Interrupt is inactive			

### **WDT EOI**


Address: Operational Base + offset (0x0014)

Bit	Attr	<b>Reset Value</b>	Description		
31:1	RO	0x0	reserved		
			wdt_int_clr		
0	RO	0x0	Clears the watchdog interrupt. This can be used to clear the		
			interrupt without restarting the watchdog counter		

# **15.5 Application Notes**

# 15.5.1 Programming sequence

The following figure show the operation flow chart (Response mode=1).



- 1. Select required timeout period.
- 2. Set reset pulse length, response mode, and enable WDT.
- 3. Write 0x76 to WDT_CRR.
- 4. Starts back to selected timeout period.
- 5. Can clear by reading WDT_EOI or restarting (kicking) the counter by writing 0x76 to WDT_CRR.

Fig. 15-2WDT Operation Flow

# Chapter 16 Serial Flash Controller (SFC)

# 16.1 Overview

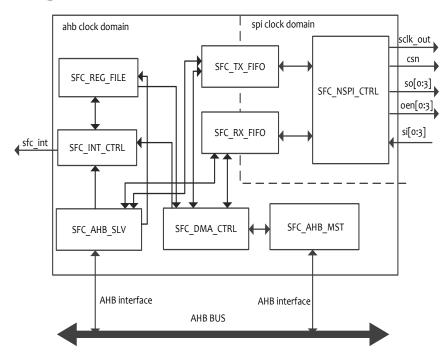
The serial flash controller (SFC) is used to control the data transfer between the chip system and the serial nor/nand flash device.

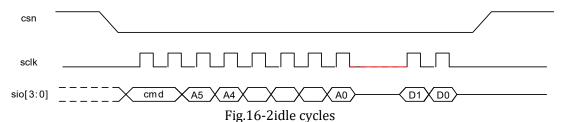
The SFC supports the following features:

- Support AHB slave interface to configure register and read/write serial flash Support AHB master interface to transfer data from/to SPIflash device
- Support AHB burst with incr4x32bits, or incr x32bits
- Support two independent clock domain: AHB clock and SPI clock
- Support x1,x2,x4 data bits mode

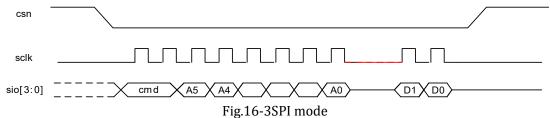
- Support up to 4 chip select Support interrupt output, interrupt maskable Support Spansion, MXIC, Gigadevice...vendor's nor flash memory.

# 16.2 Block Diagram





Fig.16-1SFC architecture

# 16.3 Function Description


#### 16.3.1 SFC slave

The AHB slave is used to configure the register, and also write to/read from the serial nor/nand flash device.

The SFC_CTRL register is a global control register, when the controller is in busy state(SFC_SR), SFC_CTRL cannot be set. The field sclk_idle_level_cycles of this register is used to configure the idle level cycles of sclk before read the first bit of the read command. Like the following picture shows: the red line of the sclk is the idle cycles, during these cycles, the chip pad is switched to output. When sclk idle level cycles=0, it means there will be not such idle level.



When the field spi mode is set, the transfer waveform will like following, and switch to mode3.



# **16.4 Register Description**

# 16.4.1 Registers Summary

Name	Offset	Size	Reset Value	Description
SFC CTRL	0x0000	W	0x00000000	Control Register
SFC_IMR	0x0004	W	0x00000000	Interrupt Mask
SFC ICLR	0x0008	W	0x00000000	Interrupt Clear
SFC FTLR	0x000c	W	0x00000000	FIFO Threshold Level
SFC_RCVR	0x0010	W	0x00000000	SFC Recover
SFC AX	0x0014	W	0x00000000	SFC AX Value
SFC ABIT	0x0018	W	0x00000000	Flash Address bits
SFC_ISR	0x001c	W	0x00000000	Interrupt Status
SFC FSR	0x0020	W	0x0000001	FIFO Status
SFC_SR	0x0024	W	0x00000000	SFC Status
SFC RISR	0x0028	W	0x00000000	Raw Interrupt Status
SFC VER	0x002c	W	0x0a340003	Version Register
SFC_QOP	0x0030	W	0x00000000	quad line operation io level preset
SFC DMATR	0x0080	W	0x00000000	DMA Trigger
SFC DMAADDR	0x0084	W	0x00000000	DMA Address
SFC CMD	0x0100	W	0x00000000	SFC CMD
SFC ADDR	0x0104	W	0x00000000	Address the flash
SFC DATA	0x0108	W	0x00000000	DATA that write to /read from the flash

Notes: Size: B- Byte (8 bits) access, HW- Half WORD (16 bits) access, W-WORD (32 bits) access

### 16.4.2 Detail Register Description

### SFC_CTRL

Address: Operational Base + offset (0x0000)

Bit	Attr	Reset Value		Description	
31:14	RO	0x0	reserved		

Bit	Attr	Reset Value	Description		
13:12	RW	0×0	DATB Data bits width 2'b00: 1bit, x1 mode 2'b01: 2bits, x2 mode 2'b10: 4bits, x4 mode 2'b11: reserved		
11:10	RW	0×0	ADRB Address bits width 2'b00: 1bit, x1 mode 2'b01: 2bits, x2 mode 2'b10: 4bits, x4 mode 2'b11: reserved		
9:8	RW	0×0	CMDB Command bits width 2'b00: 1bit, x1 mode 2'b01: 2bits, x2 mode 2'b10: 4bits, x4 mode 2'b11:reserved		
7:4	RW	0×0	IDLE_CYCLE 4'b0: idle hold is disable 4'b1: hold the sclk_out in idle for two cycles when switch to shift in		
3:2	RO	0x0	reserved		
1	RW	0×0	SHIFTPHASE 1'b0: shift in the data at posedge sclk_out 1'b1: shift in the data at negedge sclk_out		
0	RW	0×0	SPIM SPI MODE Select 1'b0: mode 0 1'b1: mode 3		

# SFC_IMR

Address: Operational Base + offset (0x0004)

Bit	Attr	Reset Value	Description
31:8	RO	0x0	reserved
			DMAM
7	RW	0x0	1'b0: dma_intr interrupt is not masked
			1'b1: dma_intr interrupt is masked
			NSPIM
6	RW	0x0	1'b0: nspi_intr interrupt is not masked
			1'b1: nspi_intr interrupt is masked
			АНВМ
5	RW	0x0	1'b0: ahb_intr interrupt is not masked
			1'b1: ahb_intr interrupt is masked

Bit	Attr	Reset Value	Description
			TRANSM
4	RW	0x0	1'b0: transf_intr interrupt is not masked
			1'b1: transf_intr interrupt is masked
			TXEM
3	RW	0x0	1'b0: txe_intr interrupt is not masked
			1'b1: txe_intr interrupt is masked
			TXOM
2	RW	0x0	1'b0: txo_intr interrupt is not masked
			1'b1: txo_intr interrupt is masked
			RXUM
1	RW	0x0	1'b0: rxu_intr interrupt is not masked
			1'b1: rxu_intr interrupt is masked
			RXFM
0	RW	0x0	1'b0: rxf_intr interrupt is not masked
			1'b1: rxf_intr interrupt is masked

# SFC ICLR

Address: Operational Base + offset (0x0008)

Bit	Attr	<b>Reset Value</b>	Description
31:8	RO	0x0	reserved
7	W1	0x0	DMAC
/	С	0.00	DMA finish Interrupt Clear
6	W1	0x0	NSPIC
O	С	UXU	SPI Error Interrupt Clear
5	W1	0x0	AHBC
	С	UXU	AHB Error Interrupt Clear
4	W1	0x0	TRANSC
4	С	UXU	Transfer finish Interrupt Clea
3	W1	0x0	TXEC
3	С		Transmit FIFO Empty Interrupt Clear
2	W1	10x0	TXOC
	С		Transmit FIFO Overflow Interrupt Clear
1	W1	0x0	RXUC
T	С	UXU	Receive FIFO Underflow Interrupt Clear
0	W1	0×0	RXFC
0	С	0x0	Receive FIFO Full Interrupt Clear

# SFC_FTLR

Address: Operational Base + offset (0x000c)

Bit	Attr	<b>Reset Value</b>	Description
31:16	RO	0x0	reserved
			RXFTLR
15:8	RW	0x00	When the number of receive FIFO entries is bigger than or equal
			to this value, the receive FIFO full interrupt is triggered.
			TXFTLR
7:0	RW	0x00	When the number of transmit FIFO entries is less than or equal to
			this value, the transmit FIFO empty interrupt is triggered.

### SFC_RCVR

Address: Operational Base + offset (0x0010)

Bit	Attr	<b>Reset Value</b>	Description
31:1	RO	0x0	reserved
		0x0	RCVR
	RW		SFC Recover
0			Write 1 to recover the SFC State Machine, FIFO state and other
			logic state.

### SFC_AX

Address: Operational Base + offset (0x0014)

Bit	Attr	<b>Reset Value</b>	Description
31:8	RO	0x0	reserved
7:0	RW	0×00	AX The AX Value when doing the continuous read(enhance mode).

### **SFC_ABIT**

Address: Operational Base + offset (0x0018)

Bit	Attr	<b>Reset Value</b>	Description
31:5	RO	0x0	reserved
4:0	RW	0x00	ABIT
4.0	IK VV	UXUU	Flash Address bits

# SFC ISR

Address: Operational Base + offset (0x001c)

Bit	Attr	<b>Reset Value</b>	Description
31:8	RO	0x0	reserved
			DMAS
7	DO	0.40	DMA Finish Interrupt Status
/	RO	0x0	1'b0: not active
			1'b1: active
	RO	RO 0x0	NSPIS
6			SPI Error Interrupt Statu
O			1'b0: not active
			1'b1: active

Bit	Attr	Reset Value	Description
			AHBS
5	RO	0x0	AHB Error Interrupt Status
3	KU	UXU	1'b0: not active
			1'b1: active
			TRANSS
4	RO	0×0	Transfer finish Interrupt Status
-	KO	0.00	1'b0: not active
			1'b1: active
		0x0	TXES
3	RO		Transmit FIFO Empty Interrupt Status
5	KO		1'b0: not active
			1'b1: active
		0x0	TXOS
2	RO		Transmit FIFO Overflow Interrupt Status
_	KO		1'b0: not active
			1'b1: active
			RXUS
1	RO	0x0	Receive FIFO Underflow Interrupt Status
*	KO		1'b0: not active
			1'b1: active
			RXFS
0	RW	V 0x0	Receive FIFO Full Interrupt Status
U	IZVV		1'b0: not active
			1'b1: active

# SFC_FSR

Address: Operational Base + offset (0x0020)

Bit	Attr	<b>Reset Value</b>	Description
31:21	RO	0x0	reserved
			RXWLVL
			RX FIFO Water Level
20:16	DО	0×00	0x0: fifo is empty
20.10	KO	000	0x1: 1 entry is taken
			0x10:16 entry is taken, fifo is full
15:13	RO	0x0	reserved
			TXWLVL
			TX FIFO Water Level
12:8	RO		0x0: fifo is full
12.0	KU		0x1: left 1 entry
			0x10:left 16 entry, fifo is empty
7:4	RO	0x0	reserved

Bit	Attr	Reset Value	Description
			RXFS
3	RO	0x0	Receive FIFO Full Status
3	KU	UXU	1'b0: rx fifo is not full
			1'b1: rx fifo is full
			RXES
2	RO	0x0	Receive FIFO Empty Status
2	KU	UXU	1'b0: rx fifo is not empty
			1'b1: rx fifo is empty
		0x0	TXES
1	RO		Transmit FIFO Empty Status
1			1'b0: tx fifo is not empty
			1'b1: tx fifo is empty
	RO		TXFS
0			Transmit FIFO Full Status
0			1'b0: tx fifo is not full
			1'b1: tx fifo is full

# SFC_SR

Address: Operational Base + offset (0x0024)

Bit	Attr	<b>Reset Value</b>	Description
31:1	RO	0x0	reserved
		0x0	SR
0	RO		0: SFC is idle
0			1: SFC is busy
			When busy, don't set the control register.

# SFC RISR

Address: Operational Base + offset (0x0028)

Bit	Attr	<b>Reset Value</b>	Description
31:8	RO	0x0	reserved
			DMAS
7	RO	0.40	DMA Finish Interrupt Status
/	KU	0x0	1'b0: not active
			1'b1: active
		0x0	NSPIS
6	RO		SPI Error Interrupt Statu
O	RO		1'b0: not active
			1'b1: active
			AHBS
5	DО		AHB Error Interrupt Status
3	KO		1'b0: not active
			1'b1: active

Bit	Attr	<b>Reset Value</b>	Description
			TRANSS
4	RO	0x0	Transfer finish Interrupt Status
4	KO	UXU	1'b0: not active
			1'b1: active
			TXES
3	RO	0x0	Transmit FIFO Empty Interrupt Status
3	KO	UXU	1'b0: not active
			1'b1: active
		0x0	TXOS
2	RO		Transmit FIFO Overflow Interrupt Status
2	KU		1'b0: not active
			1'b1: active
		0x0	RXUS
1	RO		Receive FIFO Underflow Interrupt Status
1	KU		1'b0: not active
			1'b1: active
		0x0	RXFS
0	RO		Receive FIFO Full Interrupt Status
٥	KU		1'b0: not active
			1'b1: active

### SFC_VER

Address: Operational Base + offset (0x002c)

Bit	Attr	<b>Reset Value</b>	Description	
31:0	RW	0x0a340003	VER the version id of sfc	

### SFC QOP

Address: Operational Base + offset (0x0030)

Bit	Attr	<b>Reset Value</b>	Description			
31:1	RO	0x0	reserved			
			SO123			
0	RW	0x0	the value of SO1,SO2 and SO3 during command and address bits			
			input			

### **SFC DMATR**

Address: Operational Base + offset (0x0080)

Bit	Attr	<b>Reset Value</b>	Description		
31:1	RO	0x0	reserved		
0	W1	0x0	DMATR		
U	С		Write 1 to start the dma transfer.		

### SFC_DMAADDR

Address: Operational Base + offset (0x0084)

### PX30 TRM-Part1

Bit	Attr	<b>Reset Value</b>	Description		
31:0	DW	V 10x00000000 1	DMAADDR		
31.0	:0 RW		DMA Address		

### SFC CMD

Address: Operational Base + offset (0x0100)

Bit	Attr	<b>Reset Value</b>	Description			
31:30	WO	0×0	CS Flash chip select 2'b00: chip select 0			
			2'b01: chip select 1 2'b10: chip select 2 2'b11: chip select 3			
29:16	WO	0×0000	TRB Total Data Bytes number that will write to /read from the flash.			
15:14	wo	0×0	ADDRB Address bits number select, if there is not address command to send, set to zero 2'b00: 0bits 2'b01: 24bits 2'b10: 32bits 2'b11: From the ABIT register			
13	wo	0×0	CONT Continuous read mode 1'b0: disable continuous read mode 1'b1: enable continuous read mode			
12	WO	WR Flash Write or Read				
11:8	WO	0x0	DUMM Dummy Bits Number			
7:0	WO	0×00	CMD Flash Command			

### SFC_ADDR

Address: Operational Base + offset (0x0104)

Bit	Attr	<b>Reset Value</b>	Description		
31:0	WO	/O 10x00000000 1	ADDR		
31.0	WO 0		Flash's address		

# SFC_DATA

Address: Operational Base + offset (0x0108)

Bit	Attr	<b>Reset Value</b>	Description		
31:0	DW	RW 10x00000000 1	DATA		
31.0	RVV		Flash's Data		

# **16.5 Interface Description**

Table 16-11SPI interface description

Module Pin	Direct ion	Pad Name	IOMUX Setting	
sfc_clk	0	IO_FLASHrdy_EMMCclkout_SFCclk_ GPIO1B1vccio0	GRF_GPIO1B_IOMUX_SEL_L[6: 4]=3'b011	
sfc_csn0	0	IO_FLASHd4_EMMCd4_SFCcsn0_GP IO1A4vccio0	GRF_GPIO1A_IOMUX_SEL_H[2: 0]=3'b011	
sfc_sio0	I/O	IO_FLASHd0_EMMCd0_SFCsio0_GPI O1A0vccio0	GRF_GPIO1A_IOMUX_SEL_L[2: 0]=3'b011	
sfc_sio1	I/O	IO_FLASHd1_EMMCd1_SFCsio1_GPI O1A1vccio0	GRF_GPIO1A_IOMUX_SEL_L[6: 4]=3'b011	
sfc_sio2	I/O	IO_FLASHd2_EMMCd2_SFCsio2_GPI O1A2vccio0	GRF_GPIO1A_IOMUX_SEL_L[10:8]=3'b011	
sfc_sio3	I/O	IO_FLASHd3_EMMCd3_SFCsio3_GPI O1A3vccio0	GRF_GPIO1A_IOMUX_SEL_L[14:12]=3'b011	

Notes: I=input, O=output, I/O=input/output, bidirectional.

# **16.6 Application Notes**

### 16.6.1 AHB Slave write flash flow

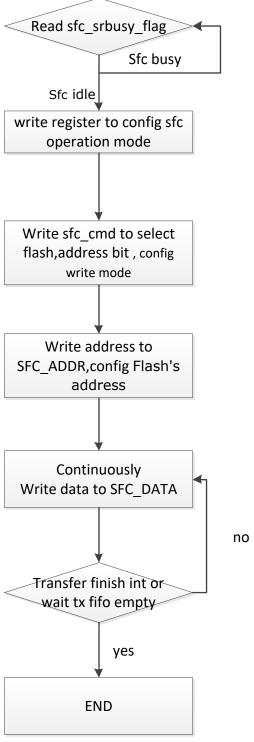



Fig.16-4slave mode write

### 16.6.2 AHB Slave read flash flow

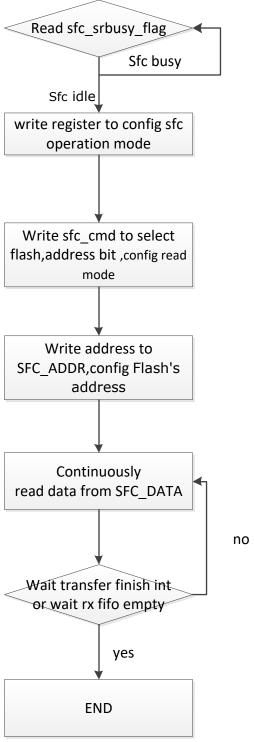



Fig.16-5slave mode read

### 16.6.3 AHB DMA transfer flow

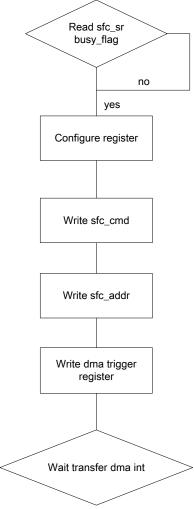



Fig.16-6master mode flow

### 16.6.4 Other Notes

The SFC_clk need to be kept under 150MHZ. It's better to soft reset the SFC before data transfer.

# **Chapter 17 Serial Peripheral Interface (SPI)**

### 17.1 Overview

The serial peripheral interface is an APB slave device. A four wire full duplex serial protocol from Motorola. There are four possible combinations for the serial clock phase and polarity. The clock phase (SCPH) determines whether the serial transfer begins with the falling edge of slave select signals or the first edge of the serial clock. The slave select line is held high when the SPI is idle or disabled. This SPI controller can work as either master or slave

SPI Controller supports the following features:

Support Motorola SPI, TI Synchronous Serial Protocol and National Semiconductor Micro wire interface

Support 32-bit APB bus Support two internal 16-bit wide and 32-location deep FIFOs, one for transmitting and the other for receiving serial data

Support two chip select signals in master mode Support 4,8,16 bit serial data transfer Support configurable interrupt polarity

Support asynchronous APB bus and SPI clock

Support master and slave mode

Support DMA handshake interface and configurable DMA water level Support transmit FIFO empty, underflow, receive FIFO full, overflow, interrupt and all interrupts can be masked

Support configurable water level of transmit FIFO empty and receive FIFO full interrupt

Support configurable water level of transmit FIFO empty and receive FIFO full interrupt Support combine interrupt output Support up to half of SPI clock frequency transfer in master mode and one sixth of SPI clock frequency transfer in slave mode Support full and half duplex mode transfer Stop transmitting SCLK if transmit FIFO is empty or receive FIFO is full in master mode

Support configurable delay from chip select active to SCLK active in master mode Support configurable period of chip select inactive between two parallel data in master mode

Support big and little endian, MSB and LSB first transfer Support two 8-bit audio data store together in one 16-bit wide location Support sample RXD 0~3 SPI clock cycles later Support configurable SCLK polarity and phase Support fix and incremental address access to transmit and receive FIFO

# 17.2 Block Diagram

The SPI Controller comprises with:

- AMBA APB interface and DMA Controller Interface
- Transmit and receive FIFO controllers and an FSM controller

Register block

Shift control and interrupt

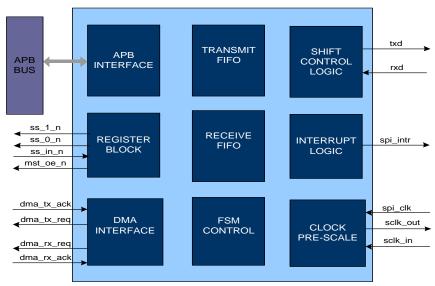



Fig. 17-1SPI Controller Block diagram

#### APB INTERFACE

The host processor accesses data, control, and status information on the SPI through the APB interface. The SPI supports APB data bus widths of 32 bits and 8 or 16 bits when reading or writing internal FIFO if data frame size(SPI_CTRL0[1:0]) is set to 8 bits.

#### **DMA INTERFACE**

This block has a handshaking interface to a DMA Controller to request and control transfers. The APB bus is used to perform the data transfer to or from the DMA Controller.

#### **FIFO LOGIC**

For transmit and receive transfers, data transmitted from the SPI to the external serial device is written into the transmit FIFO. Data received from the external serial device into the SPI is pushed into the receive FIFO. Both fifos are 32x16bits.

#### **FSM CONTROL**

Control the state's transformation of the design.

#### **REGISTER BLOCK**

All registers in the SPI are addressed at 32-bit boundaries to remain consistent with the APB bus. Where the physical size of any register is less than 32-bits wide, the upper unused bits of the 32-bit boundary are reserved. Writing to these bits has no effect; reading from these bits returns 0.

#### SHIFT CONTROL

Shift control logic shift the data from the transmit fifo or to the receive fifo. This logic automatically right-justifies receive data in the receive FIFO buffer.

#### **INTERRUPT CONTROL**

The SPI supports combined and individual interrupt requests, each of which can be masked. The combined interrupt request is the ORed result of all other SPI interrupts after masking.

# 17.3 Function Description

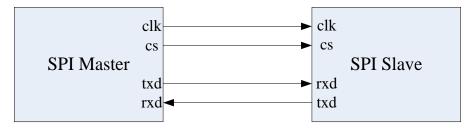



Fig. 17-2SPI Master and Slave Interconnection

The SPI controller support dynamic switching between master and slave in a system. The diagram show how the SPI controller connects with other SPI devices.

#### **Operation Modes**

The SPI can be configured in the following two fundamental modes of operation: Master Mode when SPI_CTRLR0 [20] is 1'b0, Slave Mode when SPI_CTRLR0 [20] is 1'b1.

#### **Transfer Modes**

The SPI operates in the following three modes when transferring data on the serial bus.

1). Transmit and Receive

When SPI CTRLR0 [19:18] == 2'b00, both transmit and receive logic are valid.

2). Transmit Only

When  $SPI_CTRLR0$  [19:18] == 2'b01, the receive data are invalid and should not be stored in the receive FIFO.

3).Receive Only

When SPI_CTRLR0 [19:18]== 2'b10, the transmit data are invalid.

#### **Clock Ratios**

A summary of the frequency ratio restrictions between the bit-rate clock (sclk_out/sclk_in) and the SPI peripheral clock (spi_clk) are described as,

When SPI Controller works as master, the  $F_{spi_clk} >= 2 \times (maximum F_{sclk_out})$ 

When SPI Controller works as slave, the  $F_{spi_clk} > = 6 \times (maximum F_{sclk_in})$ 

With the SPI, the clock polarity (SCPOL) configuration parameter determines whether the inactive state of the serial clock is high or low. To transmit data, both SPI peripherals must have identical serial clock phase (SCPH) and clock polarity (SCPOL) values. The data frame can be 4/8/16 bits in length.

When the configuration parameter SCPH = 0, data transmission begins on the falling edge of the slave select signal. The first data bit is captured by the master and slave peripherals on the first edge of the serial clock; therefore, valid data must be present on the txd and rxd lines prior to the first serial clock edge. The following two figures show a timing diagram for a single SPI data transfer with SCPH = 0. The serial clock is shown for configuration parameters SCPOL = 0 and SCPOL = 1.

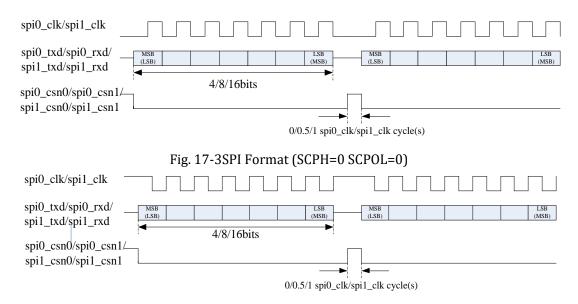



Fig. 17-4SPI Format (SCPH=0 SCPOL=1)

When the configuration parameter SCPH = 1, both master and slave peripherals begin transmitting data on the first serial clock edge after the slave select line is activated. The first data bit is captured on the second (trailing) serial clock edge. Data are propagated by the master and slave peripherals on the leading edge of the serial clock. During continuous data frame transfers, the slave select line may be held active-low until the last bit of the last frame has been captured. The following two figures show the timing diagram for the SPI format when the configuration parameter SCPH = 1.

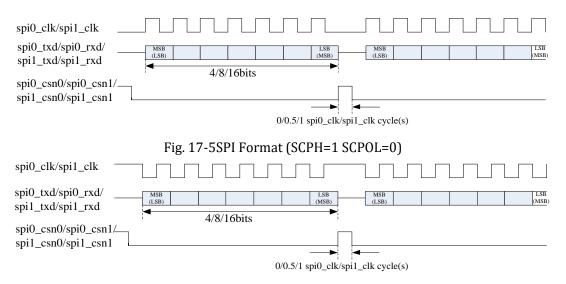



Fig. 17-6SPI Format (SCPH=1 SCPOL=1)

# 17.4 Register Description

# 17.4.1 Registers Summary

Name	Offset	Size	Reset Value	Description
SPI CTRLRO	0x0000	W	0x00000002	Control Register 0
SPI CTRLR1	0x0004	W	0x00000000	Control Register 1
SPI_ENR	0x0008	W	0x00000000	SPI Enable Register
SPI SER	0x000c	W	0x00000000	Slave Enable Register
SPI BAUDR	0x0010	W	0x00000000	Baud Rate Select
SPI_TXFTLR	0x0014	W	0x00000000	Transmit FIFO Threshold Level
SPI RXFTLR	0x0018	W	0x00000000	Receive FIFO Threshold Level
SPI_TXFLR	0x001c	W	0x00000000	Transmit FIFO Level
SPI RXFLR	0x0020	W	0x00000000	Receive FIFO Level
SPI SR	0x0024	W	0x00000004	SPI Status
SPI_IPR	0x0028	W	0x00000000	Interrupt Polarity
SPI IMR	0x002c	W	0x00000000	Interrupt Mask
SPI_ISR	0x0030	W	0x00000000	Interrupt Status
SPI_RISR	0x0034	W	0x0000001	Raw Interrupt Status
SPI ICR	0x0038	W	0x00000000	Interrupt Clear
SPI DMACR	0x003c	W	0x00000000	DMA Control
SPI DMATDLR	0x0040	W	0x00000000	DMA Transmit Data Level
SPI DMARDLR	0x0044	W	0x00000000	DMA Receive Data Level
SPI_TXDR	0x0400	W	0x00000000	Transmit FIFO Data
SPI RXDR	0x0800	W	0x00000000	Receive FIFO Data

Notes: Size: B- Byte (8 bits) access, HW- Half WORD (16 bits) access, W-WORD (32 bits) access

### 17.4.2 Detail Register Description

#### SPI_CTRLR0

Address: Operational Base + offset (0x0000)

Bit	Attr	Reset Value	Description
31:22	RO	0x0	reserved
			MTM
			Microwire transfer mode.
2.1	DW	00	Valid when frame format is set to National Semiconductors
21	RW	0x0	Microwire.
			1'b0: non-sequential transfer
			1'b1: sequential transfer
			ОРМ
20	DW	0.40	Operation mode.
20	RW	0x0	1'b0: Master Mode
			1'b1: Slave Mode
			XFM
			Transfer mode.
10.10	DW	0.40	2'b00 :Transmit & Receive
19:18	KW	0×0	2'b01 : Transmit Only
			2'b10: Receive Only
			2'b11 : reserved
		0x0	FRF
			Frame format.
17:16	DW		2'b00: Motorola SPI
17:16	KVV		2'b01: Texas Instruments SSP
			2'b10: National Semiconductors Microwire
			2'b11 : Reserved
			RSD
			Rxd sample delay.
			When SPI is configured as a master, if the rxd data cannot be
		/ 0×0	sampled by the sclk_out edge at the right time, this register
	RW		should be configured to define the number of the spi_clk cycles
15:14			after the active sclk_out edge to sample rxd data later when SPI
			works at high frequency.
			2'b00:do not delay
			2'b01:1 cycle delay
			2'b10:2 cycles delay
			2'b11:3 cycles delay
			ВНТ
			Byte and Halfword Transform.
13	RW	0x0	Valid when data frame size is 8bit.
			1'b0:apb 16bit write/read, spi 8bit write/read
			1'b1: apb 8bit write/read, spi 8bit write/read
			FBM
12	RW	0×0	First bit mode.
			1'b0:first bit is MSB
			1'b1:first bit is LSB

Bit	Attr	Reset Value	Description
			EM
			Endian mode.
11	RW	0x0	Serial endian mode can be configured by this bit. Apb endian
11	KVV	0.00	mode is always little endian.
			1'b0:little endian
			1'b1:big endian
			SSD
			ss_n to sclk_out delay.
			Valid when the frame format is set to Motorola SPI and SPI used
10	RW	0x0	as a master.
10	IXVV	0.00	1'b0: the period between ss_n active and sclk_out active is half
			sclk_out cycles.
			1'b1: the period between ss_n active and sclk_out active is one
			sclk_out cycle
			CSM
			Chip select mode.
			Valid when the frame format is set to Motorola SPI and SPI used
			as a master.
9:8	RW	0×0	2'b00: ss_n keep low after every frame data is transferred.
			2'b01:ss_n be high for half sclk_out cycles after every frame data
			is transferred.
			2'b10: ss_n be high for one sclk_out cycle after every frame data
			is transferred.
			2'b11:reserved
			SCPOL
_	D.14		Serial Clock Polarity.
7	RW	0x0	Valid when the frame format is set to Motorola SPI.
			1'b0: Inactive state of serial clock is low
			1'b1: Inactive state of serial clock is high
			SCPH Social Clock Phase
_	DVA	00	Serial Clock Phase.
6	RW	0x0	Valid when the frame format is set to Motorola SPI.
			1'b0: Serial clock toggles in middle of first data bit
			1'b1: Serial clock toggles at start of first data bit

Bit	Attr	<b>Reset Value</b>	Description
5:2	RW	0x0	CFS Control Frame Size.Selects the length of the control word for the Microwire frame format. 4'b0000~0010:reserved 4'b0011:4-bit serial data transfer 4'b0100:5-bit serial data transfer 4'b0101:6-bit serial data transfer 4'b0110:7-bit serial data transfer 4'b0111:8-bit serial data transfer 4'b1000:9-bit serial data transfer 4'b1001:10-bit serial data transfer 4'b1011:12-bit serial data transfer 4'b1011:12-bit serial data transfer 4'b1101:15-bit serial data transfer 4'b1101:15-bit serial data transfer 4'b1111:16-bit serial data transfer
1:0	RW	0x2	DFS Data frame size, selects the data frame length. 2'b00:4bit data 2'b01:8bit data 2'b10:16bit data 2'b11:reserved

# **SPI CTRLR1**

Address: Operational Base + offset (0x0004)

Bit	Attr	<b>Reset Value</b>	Description
31:16	RO	0x0	reserved
15:0	RW	0x0000	NDM  Number of Data Frames. When Transfer Mode is receive only, this register field sets the number of data frames to be continuously received by the SPI. The SPI continues to receive serial data until the number of data frames received is equal to this register value plus 1, which enables you to receive up to 64 KB of data in a
			continuous transfer

### **SPI_ENR**

Address: Operational Base + offset (0x0008)

Bit	Attr	<b>Reset Value</b>	Description
31:1	RO	0x0	reserved
	DW C	00	ENR
			Enables and disables all SPI operations.
U	RW	0x0	Transmit and receive FIFO buffers are cleared when the device is
			disabled

### **SPI SER**

Address: Operational Base + offset (0x000c)

Bit	Attr	<b>Reset Value</b>	Description
31:2	RO	0x0	reserved
			SER
1:0	RW	0x0	Slave Select Enable.This register is valid only when SPI is
			configured as a master device

### **SPI_BAUDR**

Address: Operational Base + offset (0x0010)

Bit	Attr	<b>Reset Value</b>	Description
31:16	RO	0x0	reserved
		0×0000	BAUDR SPI Clock Divider. Baud Rate Select. This register is valid only when the SPI is configured as a master device. The LSB for this field is always set to 0 and is unaffected by a write operation, which ensures an even value is held in this register. If the value is 0, the serial output clock (sclk_out) is disabled. The frequency of the sclk_out is derived from the following equation: Fsclk_out = Fspi_clk/ SCKDV Where SCKDV is any even value between 2 and 65534. For example: for Fspi_clk = 3.6864MHz and SCKDV = 2
			$Fsclk_out = 3.6864/2 = 1.8432MHz$

### SPI_TXFTLR

Address: Operational Base + offset (0x0014)

Bit	Attr	<b>Reset Value</b>	Description
31:5	RO	0x0	reserved
			TXFTLR
4:0	RW	10x00	Transmit FIFO Threshold Level.When the number of transmit FIFO entries is less than or equal to this value, the transmit FIFO empty interrupt is triggered

### **SPI_RXFTLR**

Address: Operational Base + offset (0x0018)

Bit	Attr	<b>Reset Value</b>	Description
31:5	RO	0x0	reserved
4:0			RXFTLR
	RW	0x00	Receive FIFO Threshold Level.When the number of receive FIFO entries is greater than or equal to this value + 1, the receive
	KVV	UXUU	
			FIFO full interrupt is triggered

### SPI_TXFLR

Address: Operational Base + offset (0x001c)

Bit	Attr	<b>Reset Value</b>	Description
31:6	RO	0x0	reserved
			TXFLR
5:0	RO	0x00	Transmit FIFO Level.Contains the number of valid data entries in
			the transmit FIFO

#### SPI_RXFLR

Address: Operational Base + offset (0x0020)

Bit	Attr	<b>Reset Value</b>	Description
31:6	RO	0x0	reserved
			RXFLR
5:0	RO	0x00	Reveive FIFO Level.Contains the number of valid data entries in
			the receive FIFO

### SPI_SR

Address: Operational Base + offset (0x0024)

Bit	Attr	<b>Reset Value</b>	Description
31:5	RO	0x0	reserved
			RFF
1	RO	0x0	Receive FIFO Full.
4	KU	UXU	1'b0: Receive FIFO is not full
			1'b1: Receive FIFO is full
			RFE
3	RW	0.40	Receive FIFO Empty.
3	KVV	0x0	1'b0: Receive FIFO is not empty
			1'b1: Receive FIFO is empty
			TFE
2	RO	0x1	Transmit FIFO Empty.
2	KO		1'b0: Transmit FIFO is not empty
			1'b1: Transmit FIFO is empty
		O 0x0	TFF
1	RO		Transmit FIFO Full.
1	KU	UXU	1'b0: Transmit FIFO is not full
			1'b1: Transmit FIFO is full
			BSF
		0×0	SPI Busy Flag.When set, indicates that a serial transfer is in
0	RO		progress; when cleared indicates that the SPI is idle or disabled.
			1'b0: SPI is idle or disabled
			1'b1: SPI is actively transferring data

### **SPI_IPR**

Address: Operational Base + offset (0x0028)

Bit	Attr	<b>Reset Value</b>	Description
31:1	RO	0x0	reserved
	RW	0×0	IPR
			Interrupt Polarity Register.
0			1'b0:Active Interrupt Polarity Level is HIGH
			1'b1: Active Interrupt Polarity Level is LOW

### SPI_IMR

Address: Operational Base + offset (0x002c)

Bit	Attr	<b>Reset Value</b>	Description
31:5	RO	0x0	reserved
			RFFIM
4	RW	0x0	Receive FIFO Full Interrupt Mask.
4	KVV	UXU	1'b0: spi_rxf_intr interrupt is masked
			1'b1: spi_rxf_intr interrupt is not masked
			RFOIM
3	RW	0×0	Receive FIFO Overflow Interrupt Mask.
3	KVV	UXU	1'b0: spi_rxo_intr interrupt is masked
			1'b1: spi_rxo_intr interrupt is not masked
		0x0	RFUIM
2	RW		Receive FIFO Underflow Interrupt Mask.
_	IXVV		1'b0: spi_rxu_intr interrupt is masked
			1'b1: spi_rxu_intr interrupt is not masked
			TFOIM
1	RW	0x0	Transmit FIFO Overflow Interrupt Mask.
_	IXVV	0.00	1'b0: spi_txo_intr interrupt is masked
			1'b1: spi_txo_intr interrupt is not masked
			TFEIM
0	RW	RW 0x0	Transmit FIFO Empty Interrupt Mask.
	IXVV		1'b0: spi_txe_intr interrupt is masked
			1'b1: spi_txe_intr interrupt is not masked

# SPI_ISR

Address: Operational Base + offset (0x0030)

Bit	Attr	<b>Reset Value</b>	Description
31:5	RO	0x0	reserved
			RFFIS
4	RO	0×0	Receive FIFO Full Interrupt Status.
4	KU		1'b0: spi_rxf_intr interrupt is not active after masking
			1'b1: spi_rxf_intr interrupt is full after masking
			RFOIS
2	D ()		Receive FIFO Overflow Interrupt Status.
3	RO		1'b0: spi_rxo_intr interrupt is not active after masking
			1'b1: spi_rxo_intr interrupt is active after masking

Bit	Attr	<b>Reset Value</b>	Description
			RFUIS
2	RO	0x0	Receive FIFO Underflow Interrupt Status.
2	KU	UXU	1'b0: spi_rxu_intr interrupt is not active after masking
			1'b1: spi_rxu_intr interrupt is active after masking
	RO	O 0x0	TFOIS
1			Transmit FIFO Overflow Interrupt Status.
1			1'b0: spi_txo_intr interrupt is not active after masking
			1'b1: spi_txo_intr interrupt is active after masking
		O 0x0	TFEIS
0	D.O.		Transmit FIFO Empty Interrupt Status.
U	KU		1'b0: spi_txe_intr interrupt is not active after masking
			1'b1: spi_txe_intr interrupt is active after masking

### **SPI RISR**

Address: Operational Base + offset (0x0034)

Bit	Attr	<b>Reset Value</b>	Description
31:5	RO	0x0	reserved
			RFFRIS
4	RW	0x0	Receive FIFO Full Raw Interrupt Status.
4	KVV	UXU	1'b0: spi_rxf_intr interrupt is not active prior to masking
			1'b1: spi_rxf_intr interrupt is full prior to masking
			RFORIS
3	RO	0×0	Receive FIFO Overflow Raw Interrupt Status.
3	KO	UXU	1'b0 = spi_rxo_intr interrupt is not active prior to masking
			1'b1 = spi_rxo_intr interrupt is active prior to masking
		0x0	RFURIS
2	RO		Receive FIFO Underflow Raw Interrupt Status.
	KO		1'b0: spi_rxu_intr interrupt is not active prior to masking
			1'b1: spi_rxu_intr interrupt is active prior to masking
			TFORIS
1	RO	0×0	Transmit FIFO Overflow Raw Interrupt Status.
_	IXO	.0  000	1'b0: spi_txo_intr interrupt is not active prior to masking
			1'b1: spi_txo_intr interrupt is active prior to masking
			TFERIS
0	RO	0x1	Transmit FIFO Empty Raw Interrupt Status.
U	KU	O OXI	1'b0: spi_txe_intr interrupt is not active prior to masking
			1'b1: spi_txe_intr interrupt is active prior to masking

#### SPT TCR

Address: Operational Base + offset (0x0038)

Bit	Attr	<b>Reset Value</b>	Description
31:4	RO	0x0	reserved

Bit	Attr	<b>Reset Value</b>	Description
			CTFOI
3	RW	0x0	Clear Transmit FIFO Overflow Interrupt.
			Write 1 to Clear Transmit FIFO Overflow Interrupt
			CRFOI
2	RW	0x0	Clear Receive FIFO Overflow Interrupt.
			Write 1 to Clear Receive FIFO Overflow Interrupt
			CRFUI
1	WO	0x0	Clear Receive FIFO Underflow Interrupt.
			Write 1 to Clear Receive FIFO Underflow Interrupt
			CCI
0	WO	0x0	Clear Combined Interrupt.
			Write 1 to Clear Combined Interrupt

# SPI DMACR

Address: Operational Base + offset (0x003c)

Bit	Attr	Reset Value	Description
31:2	RO	0x0	reserved
			TDE
1	DW	0x0	Transmit DMA Enable.
1	RW		1'b0: Transmit DMA disabled
			1'b1: Transmit DMA enabled
	RW	RW 0x0	RDE
0			Receive DMA Enable.
U			1'b0: Receive DMA disabled
			1'b1: Receive DMA enabled

### **SPI DMATDLR**

Address: Operational Base + offset (0x0040)

Bit	Attr	<b>Reset Value</b>	Description
31:5	RO	0x0	reserved
			TDL
			Transmit Data Level.
			This bit field controls the level at which a DMA request is made by
4:0	RW	0x00	the transmit logic. It is equal to the watermark level; that is, the
			dma_tx_req signal is generated when the number of valid data
			entries in the transmit FIFO is equal to or below this field value,
			and Transmit DMA Enable (DMACR[1]) = 1

### SPI_DMARDLR

Address: Operational Base + offset (0x0044)

Bit	Attr	<b>Reset Value</b>	Description
31:5	RO	0x0	reserved

Bit	Attr	<b>Reset Value</b>	Description
			RDL
			Receive Data Level.
			This bit field controls the level at which a DMA request is made by
4:0	RW	0x00	the receive logic. The watermark level = DMARDL+1; that is,
			dma_rx_req is generated when the number of valid data entries
			in the receive FIFO is equal to or above this field value + 1, and
			Receive DMA Enable(DMACR[0])=1

# SPI_TXDR

Address: Operational Base + offset (0x0400)

Bit	Attr	<b>Reset Value</b>	Description
31:16	RO	0x0	reserved
			TXDR
15:0	WO	0x0000	Transimt FIFO Data Register.
			When it is written to, data are moved into the transmit FIFO

# **SPI RXDR**

Address: Operational Base + offset (0x0800)

Bit	Attr	<b>Reset Value</b>	Description
31:16	RO	0x0	reserved
			RXDR
15:0	RW	0x0000	Receive FIFO Data Register.
			When the register is read, data in the receive FIFO is accessed

# **17.5 Interface Description**

Table 17-11SPI interface description

Module Pin	Direction	Pad Name	IOMUX Setting
spi0_clk	I/O	IO_FLASHrdn_UART3rxm1_SPI0cl k_GPIO1B7vccio0	GRF_GPIO1B_IOMUX_H[2:0]=3 /b11
spiO myd	I	IO_FLASHcle_UART3ctsm1_SPI0 mosi_I2C3sda_GPIO1B4vccio0	SPI Slave mode: GRF_GPIO1B_IOMUX_H[6:4]=3 'b11
spi0_rxd	I	IO_FLASHwrn_UART3rtsm1_SPI0 miso_I2C3scl_GPIO1B5vccio0	SPI Master mode: GRF_GPIO1B_IOMUX_H[10:8]= 3'b11
spiO tvd	0	IO_FLASHcle_UART3ctsm1_SPI0 mosi_I2C3sda_GPIO1B4vccio0	SPI Master mode: GRF_GPIO1B_IOMUX_H[6:4]=3 'b11
spi0_txd	0	IO_FLASHwrn_UART3rtsm1_SPI0 miso_I2C3scl_GPIO1B5vccio0	SPI Slave mode: GRF_GPIO1B_IOMUX_H[10:8]= 3'b11
spi0_csn0	I/O	IO_FLASHcs1_UART3txm1_SPI0cs n_GPIO1B6vccio0	GRF_GPIO1B_IOMUX_H[14:12] =3'b11
spi1_clk	I/O	IO_LCDCd11m0_I2S08ch_sdo2_C IFd9m1_SPI1clk_GPIO3B7vccio4	GRF_GPIO3B_IOMUX_H[14:12] =3'b11
spi1_rxd	I	IO_LCDCd8m0_I2S08ch_sclkrx_C	SPI Slave mode:

Module Pin	Direction	Pad Name	IOMUX Setting
		IFd7m1_SPI1mosi_GPIO3B4vccio	GRF_GPIO3B_IOMUX_H[2:0]=3
		4	′b11
		IO_LCDCd10m0_I2S08ch_sdo3_C	SPI Master mode:
	I	IFd8m1_SPI1miso_GPIO3B6vccio	GRF_GPIO3B_IOMUX_H[10:8]= 3'b11
		4	
	0	IO_LCDCd8m0_I2S08ch_sclkrx_C IFd7m1 SPI1mosi GPIO3B4vccio	SPI Master mode: GRF_GPIO3B_IOMUX_H[2:0]=3
opi1 tvd		4	/b11
spi1_txd	0	IO_LCDCd10m0_I2S08ch_sdo3_C	SPI Slave mode:
		IFd8m1_SPI1miso_GPIO3B6vccio	GRF_GPIO3B_IOMUX_H[10:8]=
		4	3′b11
spi1_csn0	0	IO_LCDCd5m0_I2S08ch_sdi2_CIF	GRF_GPIO3B_IOMUX_L[6:4]=3'
5p.1_55110		d6m1_SPI1csn_GPIO3B1vccio4	b11
spi1_csn1	0	IO_LCDCd6_SPI1csn1_GPIO3B2vc	GRF_GPIO3B_IOMUX_L[10:8]=
shit_csiit	0	cio4	3'b11

Notes: I=input, O=output, I/O=input/output, bidirectional. spi_csn1 can only be used in master mode

# 17.6 Application Notes

#### **Clock Ratios**

A summary of the frequency ratio restrictions between the bit-rate clock (sclk_out/sclk_in) and the SPI peripheral clock (spi_clk) are described as,

When SPI Controller works as master, the Fspi_clk>=  $2 \times (maximum Fsclk_out)$ When SPI Controller works as slave, the Fspi_clk>=  $6 \times (maximum Fsclk_in)$ 

#### **Master Transfer Flow**

When configured as a serial-master device, the SPI initiates and controls all serial transfers. The serial bit-rate clock, generated and controlled by the SPI, is driven out on the sclk_out line. When the SPI is disabled (SPI_ENR = 0), no serial transfers can occur and sclk_out is held in "inactive" state, as defined by the serial protocol under which it operates.

#### **Slave Transfer Flow**

When the SPI is configured as a slave device, all serial transfers are initiated and controlled by the serial bus master.

When the SPI serial slave is selected during configuration, it enables its txd data onto the serial bus. All data transfers to and from the serial slave are regulated on the serial clock line (sclk_in), driven from the serial-master device. Data are propagated from the serial slave on one edge of the serial clock line and sampled on the opposite edge.

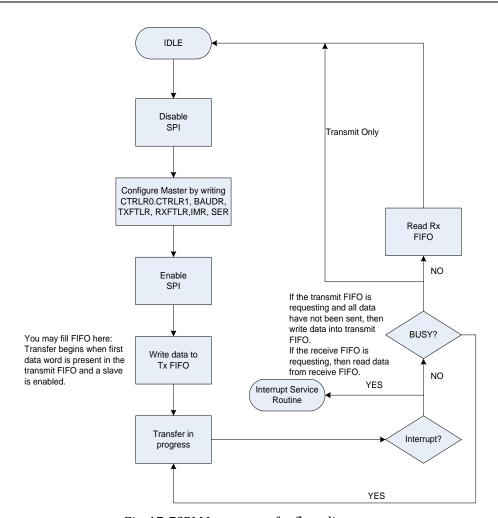



Fig. 17-7SPI Master transfer flow diagram

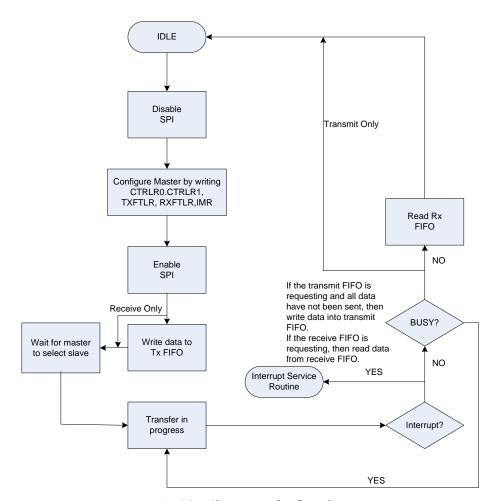



Fig. 17-8SPI Slave transfer flow diagram

# **Chapter 18 UART**

#### 18.1 Overview

The Universal Asynchronous Receiver/Transmitter (UART) is used for serial communication with a peripheral, modem (data carrier equipment, DCE) or data set. Data is written from a master (CPU) over the APB bus to the UART and it is converted to serial form and transmitted to the destination device. Serial data is also received by the UART and stored for the master (CPU) to read back.

UART Controller supports the following features:

- Support 6 independent UART controller: UART0~UART5
- contain two 64Bytes FIFOs for data receive and transmit
- support auto flow-control
- Support bit rates 115.2Kbps,460.8Kbps,921.6Kbps,1.5Mbps,3Mbps, 4Mbps
- Support programmable baud rates, even with non-integer clock divider
- Standard asynchronous communication bits (start, stop and parity)
- Support interrupt-based or DMA-based mode
- Support 5-8 bits width transfer

# **18.2 Block Diagram**

This section provides a description about the functions and behavior under various conditions. The UART Controller comprises with:

- AMBA APB interface
- FIFO controllers
- Register block
- Modem synchronization block and baud clock generation block
- Serial receiver and serial transmitter

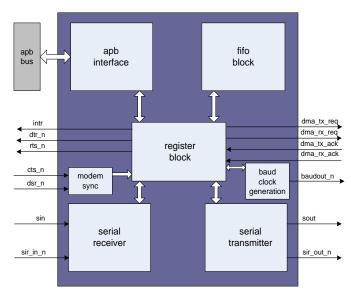



Fig. 18-1UART Architecture

#### **APB INTERFACE**

The host processor accesses data, control, and status information on the UART through the APB interface. The UART supports APB data bus widths of 8, 16, and 32 bits.

#### Register block

Be responsible for the main UART functionality including control, status and interrupt generation.

#### **Modem Synchronization block**

Synchronizes the modem input signal.

#### **FIFO block**

Be responsible for FIFO control and storage (when using internal RAM) or signaling to

control external RAM (when used).

#### **Baud Clock Generator**

Generates the transmitter and receiver baud clockalong with the output reference clock signal (baudout_n).

#### **Serial Transmitter**

Converts the parallel data, written to the UART, into serial form and adds all additional bits, as specified by the control register, for transmission. This makeup of serial data, referred to as a character can exit the block in two forms, either serial UART format or IrDA 1.0 SIR format.

#### **Serial Receiver**

Converts the serial data character (as specified by the control register) received in either the UART or IrDA 1.0 SIR format to parallel form. Parity error detection, framing error detection and line break detection is carried out in this block.

# 18.3 Function Description

#### **UART (RS232) Serial Protocol**

Because the serial communication is asynchronous, additional bits (start and stop) are added to the serial data to indicate the beginning and end. An additional parity bit may be added to the serial character. This bit appears after the last data bit and before the stop bit(s) in the character structure to perform simple error checking on the received data, as shown in Figure.

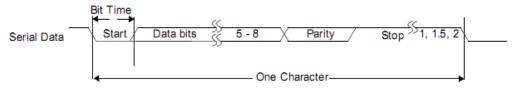



Fig. 18-2UART Serial protocol

#### **IrDA 1.0 SIR Protocol**

The Infrared Data Association (IrDA) 1.0 Serial Infrared (SIR) mode supports bi-directional datacommunications with remote devices using infrared radiation as the transmission medium. IrDA 1.0 SIR mode specifies a maximum baud rate of 115.2 Kbaud.

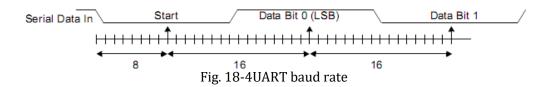

Transmitting a single infrared pulse signals a logic zero, while a logic one is represented by not sending a pulse. The width of each pulse is 3/16ths of a normal serial bit time. Data transfers can only occur in half-duplex fashion when IrDA SIR mode is enabled.



Fig. 18-3IrDA 1.0

#### **Baud Clock**

The baud rate is controlled by the serial clock (sclk or pclk in a single clock implementation) and the Divisor Latch Register (DLH and DLL). As the exact number of baud clocks that each bit was transmitted for is known, calculating the mid-point for sampling is not difficult, that is every 16 baud clocks after the mid-point sample of the start bit.



### FIFO Support

#### 1. NONE FIFO MODE

If FIFO support is not selected, then no FIFOs are implemented and only a single receive data byte and transmit data byte can be stored at a time in the RBR and THR.

#### 2. FIFO MODE

The FIFO depth of UART0/UART1/UART2/UART3/UART4/UART5 is 64bytes. The FIFO mode of all the UART is enabled by register FCR[0].

#### **Interrupts**

The following interrupt types can be enabled with the IER register.

- Receiver Error
- Receiver Data Available
- Character Timeout (in FIFO mode only)
- Transmitter Holding Register Empty at/below threshold (in Programmable THRE Interrupt mode)
- Modem Status

#### **DMA Support**

The UART supports DMA signaling with the use of two output signals (dma_tx_req_n and dma_rx_req_n) to indicate when data is ready to be read or when the transmit FIFO is empty.

The dma_tx_req_n signal is asserted under the following conditions:

- When the Transmitter Holding Register is empty in non-FIFO mode.
- When the transmitter FIFO is empty in FIFO mode with Programmable THRE interrupt mode disabled.
- When the transmitter FIFO is at, or below the programmed threshold with Programmable THRE interrupt mode enabled.

The dma_rx_req_n signal is asserted under the following conditions:

- When there is a single character available in the Receive Buffer Register in non-FIFO mode.
- When the Receiver FIFO is at or above the programmed trigger level in FIFO mode.

#### **Auto Flow Control**

The UART can be configured to have a 16750-compatible Auto RTS and Auto CTS serial data flow control mode available. If FIFOs are not implemented, then this mode cannot be selected. When Auto Flow Control mode has been selected, it can be enabled with the Modem Control Register (MCR[5]). Following figure shows a block diagram of the Auto Flow Control functionality.

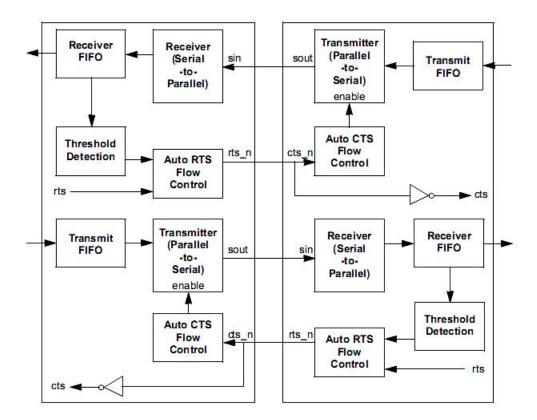



Fig. 18-5UART Auto flow control block diagram

Auto RTS - Becomes active when the following occurs:

- Auto Flow Control is selected during configuration
- FIFOs are implemented
- RTS (MCR[1] bit and MCR[5]bit are both set)
- FIFOs are enabled (FCR[0]) bit is set)
- SIR mode is disabled (MCR[6] bit is not set)

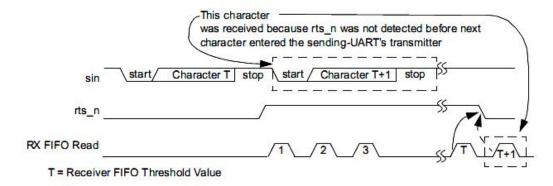



Fig. 18-6UART AUTO RTS TIMING

Auto CTS - becomes active when the following occurs:

- Auto Flow Control is selected during configuration
- FIFOs are implemented
- AFCE (MCR[5] bit is set)
- FIFOs are enabled through FIFO Control Register FCR[0] bit
- SIR mode is disabled (MCR[6] bit is not set)

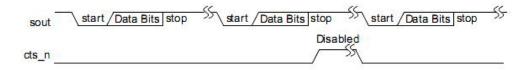



Fig. 18-7UART AUTO CTS TIMING

# **18.4 Register Description**

This section describes the control/status registers of the design

**18.4.1 Registers Summary** 

Name	Offset	Size	Reset Value	Description
UART RBR	0x0000	W	0x00000000	Receive Buffer Register
UART_THR	0x0000	W	0x00000000	Transmit Holding Register
UART_DLL	0x0000	W	0x00000000	Divisor Latch (Low)
UART DLH	0x0004	W	0x00000000	Divisor Latch (High)
<u>UART_IER</u>	0x0004	W	0x00000000	Interrupt Enable Register
<u>UART IIR</u>	0x0008	W	0x0000001	Interrupt Identification Register
UART FCR	0x0008	W	0x00000000	FIFO Control Register
<u>UART_LCR</u>	0x000c	W	0x00000000	Line Control Register
<u>UART MCR</u>	0x0010	W	0x00000000	Modem Control Register
<u>UART_LSR</u>	0x0014	W	0x00000060	Line Status Register
<u>UART_MSR</u>	0x0018	W	0x00000000	Modem Status Register
<u>UART SCR</u>	0x001c	W	0x00000000	Scratchpad Register
<u>UART_SRBR</u>	0x0030	W	0x00000000	Shadow Receive Buffer Register
<u>UART STHR</u>	0x006c	W	0x00000000	Shadow Transmit Holding Register
<u>UART_FAR</u>	0x0070	W	0x00000000	FIFO Access Register
<u>UART_TFR</u>	0x0074	W	0x00000000	Transmit FIFO Read
<u>UART_RFW</u>	0x0078	W	0x00000000	Receive FIFO Write
<u>UART_USR</u>	0x007c	W	0x00000006	UART Status Register
<u>UART_TFL</u>	0x0080	W	0x00000000	Transmit FIFO Level
<u>UART_RFL</u>	0x0084	W	0x00000000	Receive FIFO Level
<u>UART_SRR</u>	0x0088	W	0x00000000	Software Reset Register
<u>UART_SRTS</u>	0x008c	W	0x00000000	Shadow Request to Send
<u>UART_SBCR</u>	0x0090	W	0x00000000	Shadow Break Control Register
<u>UART_SDMAM</u>	0x0094	W	0x00000000	Shadow DMA Mode
<u>UART_SFE</u>	0x0098	W	0x00000000	Shadow FIFO Enable
<u>UART_SRT</u>	0x009c	W	0x00000000	Shadow RCVR Trigger
UART_STET	0x00a0	W	0x00000000	Shadow TX Empty Trigger
<u>UART HTX</u>	0x00a4	W	0x00000000	Halt TX
<u>UART_DMASA</u>	0x00a8	W	0x00000000	DMA Software Acknowledge
UART CPR	0x00f4	W	0x00000000	Component Parameter Register
<u>UART UCV</u>	0x00f8	W	0x3330382a	UART Component Version
Water Size P Pyte (8 hits) as	0x00fc	W	0x44570110	Component Type Register

Notes: Size: B- Byte (8 bits) access, HW- Half WORD (16 bits) access, W-WORD (32 bits) access

# 18.4.2 Detail Register Description

### **UART_RBR**

Address: Operational Base + offset (0x0000)

Bit	Attr	<b>Reset Value</b>	Description
31:8	RO	0x0	reserved
7:0	RW	0x0 0x00	data_input  Data byte received on the serial input port (sin) in UART mode, or the serial infrared input (sir_in) in infrared mode. The data in this register is valid only if the Data Ready (DR) bit in the Line Status Register (LCR) is set. If in non-FIFO mode (FIFO_MODE == NONE) or FIFOs are disabled (FCR[0] set to zero), the data in the RBR must be read before the next data arrives, otherwise it is overwritten, resulting in an over-run error. If in FIFO mode (FIFO_MODE != NONE) and FIFOs are enabled (FCR[0] set to one), this register accesses the head of the receive FIFO. If the receive FIFO is full and this register is not read before the next data character arrives, then the data already in the FIFO is preserved, but any incoming data are lost and an
			over-run error occurs

# UART THR

Address: Operational Base + offset (0x0000)

Bit	Attr	<b>Reset Value</b>	Description
31:8	RO	0x0	reserved
7:0	RW	0×00	data_output Data to be transmitted on the serial output port (sout) in UART mode or the serial infrared output (sir_out_n) in infrared mode. Data should only be written to the THR when the THR Empty (THRE) bit (LSR[5]) is set.  If in non-FIFO mode or FIFOs are disabled (FCR[0] = 0) and THRE is set, writing a single character to the THR clears the THRE. Any additional writes to the THR before the THRE is set again causes the THR data to be overwritten.  If in FIFO mode and FIFOs are enabled (FCR[0] = 1) and THRE is set, x number of characters of data may be written to the THR before the FIFO is full. The number x (default=16) is determined by the value of FIFO Depth that you set during configuration. Any attempt to write data when the FIFO is full results in the write data being lost

### **UART DLL**

Address: Operational Base + offset (0x0000)

Bit	Attr	<b>Reset Value</b>	Description
31:8	RO	0x0	reserved

Bit	Attr	<b>Reset Value</b>	Description
7:0	RW		baud_rate_divisor_L Lower 8-bits of a 16-bit, read/write, Divisor Latch register that contains the baud rate divisor for the UART. This register may only be accessed when the DLAB bit (LCR[7]) is set and the UART is not busy (USR[0] is zero). The output baud rate is equal to the serial clock (sclk) frequency divided by sixteen times the value of the baud rate divisor, as follows: baud rate = (serial clock freq) / (16 * divisor). Note that with the Divisor Latch Registers (DLL and DLH) set to zero, the baud clock is disabled and no serial communications occur. Also, once the DLH is set, at least 8 clock cycles of the slowest Uart clock should be allowed to pass before transmitting or receiving data

### **UART DLH**

Address: Operational Base + offset (0x0004)

Bit	Attr	<b>Reset Value</b>	Description
31:8	RO	0x0	reserved
			baud_rate_divisor_H
7:0	RW	0x00	Upper 8 bits of a 16-bit, read/write, Divisor Latch register that
			contains the baud rate divisor for the UART

# **UART_IER**

Address: Operational Base + offset (0x0004)

Bit	Attr	<b>Reset Value</b>	Description
31:8	RO	0x0	reserved
7	RW	0x0	prog_thre_int_en Programmable THRE Interrupt Mode Enable. This is used to enable/disable the generation of THRE Interrupt.  0 = disabled  1 = enabled
6:4	RO	0x0	reserved
3	RW	0x0	modem_status_int_en Enable Modem Status Interrupt. This is used to enable/disable the generation of Modem Status Interrupt. This is the fourth highest priority interrupt.  0 = disabled 1 = enabled

Bit	Attr	Reset Value	Description
2	RW	0×0	receive_line_status_int_en Enable Receiver Line Status Interrupt. This is used to enable/disable the generation of Receiver Line Status Interrupt. This is the highest priority interrupt.  0 = disabled 1 = enabled
1	RW	0×0	trans_hold_empty_int_en Enable Transmit Holding Register Empty Interrupt
0	RW	0×0	receive_data_available_int_en Enable Received Data Available Interrupt. This is used to enable/disable the generation of Received Data Available Interrupt and the Character Timeout Interrupt (if in FIFO mode and FIFOs enabled). These are the second highest priority interrupts.  0 = disabled 1 = enabled

#### **UART IIR**

Address: Operational Base + offset (0x0008)

Bit	Attr	Reset Value	Description
31:8	RO	0x0	reserved
			fifos_en
			FIFOs Enabled.
7:6	RO	0x0	This is used to indicate whether the FIFOs are enabled or
7.0	KO	UXU	disabled.
			00 = disabled
			11 = enabled
5:4	RO	0x0	reserved
		0 0x1	int_id
			Interrupt ID.
			This indicates the highest priority pending interrupt which can be
			one of the following types:
			0000 = modem status
3:0	RO		0001 = no interrupt pending
			0010 = THR empty
			0100 = received data available
			0110 = receiver line status
			0111 = busy detect
			1100 = character timeout

# **UART_FCR**

Address: Operational Base + offset (0x0008)

Bit	Attr	<b>Reset Value</b>	Description
31:8	RO	0x0	reserved

Bit	Attr	Reset Value	Description
7:6	WO	0×0	rcvr_trigger RCVR Trigger. This is used to select the trigger level in the receiver FIFO at which the Received Data Available Interrupt is generated. In auto flow control mode it is used to determine when the rts_n signal is de-asserted. It also determines when the dma_rx_req_n signal is asserted in certain modes of operation. The following trigger levels are supported:  00 = 1 character in the FIFO 01 = FIFO 1/4 full 10 = FIFO 1/2 full 11 = FIFO 2 less than ful
5:4	WO	0×0	tx_empty_trigger  TX Empty Trigger.  This is used to select the empty threshold level at which the THRE Interrupts are generated when the mode is active. It also determines when the dma_tx_req_n signal is asserted when in certain modes of operation. The following trigger levels are supported:  00 = FIFO empty 01 = 2 characters in the FIFO 10 = FIFO 1/4 full 11 = FIFO 1/2 full
3	wo	0×0	dma_mode  DMA Mode.  This determines the DMA signalling mode used for the dma_tx_req_n and dma_rx_req_n output signals when additional DMA handshaking signals are not selected .  0 = mode 0  1 = mode 11100 = character timeout
2	wo	0×0	xmit_fifo_reset XMIT FIFO Reset. This resets the control portion of the transmit FIFO and treats the FIFO as empty. This also de-asserts the DMA TX request and single signals when additional DMA handshaking signals are selected. Note that this bit is 'self-clearing'. It is not necessary to clear this bit
1	WO	0×0	rcvr_fifo_reset RCVR FIFO Reset. This resets the control portion of the receive FIFO and treats the FIFO as empty. This also de-asserts the DMA RX request and single signals when additional DMA handshaking signals are selected . Note that this bit is 'self-clearing'. It is not necessary to clear this bit

Bit	Attr	<b>Reset Value</b>	Description
0	WO	0x0	fifo_en FIFO Enable. This enables/disables the transmit (XMIT) and receive (RCVR) FIFOs. Whenever the value of this bit is changed
			both the XMIT and RCVR controller portion of FIFOs is reset

# **UART_LCR**

Address: Operational Base + offset (0x000c)

Bit		Reset Value	Description
31:8	RO	0x0	reserved
7	RW	0×0	div_lat_access Divisor Latch Access Bit. Writeable only when UART is not busy (USR[0] is zero), always readable. This bit is used to enable reading and writing of the Divisor Latch register (DLL and DLH) to set the baud rate of the UART. This bit must be cleared after initial baud rate setup in order to access other registers
6	RW	0×0	break_ctrl Break Control Bit. This is used to cause a break condition to be transmitted to the receiving device. If set to one the serial output is forced to the spacing (logic 0) state. When not in Loopback Mode, as determined by MCR[4], the sout line is forced low until the Break bit is cleared. If MCR[6] set to one, the sir_out_n line is continuously pulsed. When in Loopback Mode, the break condition is internally looped back to the receiver and the sir_out_n line is forced low
5	RO	0x0	reserved
4	RW	0×0	even_parity_sel Even Parity Select. Writeable only when UART is not busy (USR[0] is zero), always readable. This is used to select between even and odd parity, when parity is enabled (PEN set to one). If set to one, an even number of logic 1s is transmitted or checked. If set to zero, an odd number of logic 1s is transmitted or checked
3	RW	0×0	parity_en Parity Enable. Writeable only when UART is not busy (USR[0] is zero), always readable. This bit is used to enable and disable parity generation and detection in transmitted and received serial character respectively.  0 = parity disabled 1 = parity enabled

Bit	Attr	Reset Value	Description
2	RW	0×0	stop_bits_num Number of stop bits. Writeable only when UART is not busy (USR[0] is zero), always readable. This is used to select the number of stop bits per character that the peripheral transmits and receives. If set to zero, one stop bit is transmitted in the serial data. If set to one and the data bits are set to 5 (LCR[1:0] set to zero) one and a half stop bits is transmitted. Otherwise, twostop bits are transmitted. Note that regardless of the number of stop bits selected, the receiver checks only the first stop bit.  0 = 1 stop bit 1 = 1.5 stop bits when DLS (LCR[1:0]) is zero, else 2 stop bit
1:0	RW	0×0	data_length_sel Data Length Select. Writeable only when UART is not busy (USR[0] is zero), always readable. This is used to select the number of data bits per character that the peripheral transmits and receives. The number of bit that may be selected areas follows:  00 = 5 bits 01 = 6 bits 10 = 7 bits 11 = 8 bits

# **UART MCR**

Address: Operational Base + offset (0x0010)

Bit	Attr	<b>Reset Value</b>	Description
31:7	RO	0x0	reserved
			sir_mode_en
			SIR Mode Enable.
6	RW	0x0	This is used to enable/disable the IrDA SIR Mode .
			0 = IrDA SIR Mode disabled
			1 = IrDA SIR Mode enabled
	RW	W 0x0	auto_flow_ctrl_en
5			Auto Flow Control Enable.
3			0 = Auto Flow Control Mode disabled
			1 = Auto Flow Control Mode enabled
		W 0×0	loopback
4	RW		LoopBack Bit.
-	KVV		This is used to put the UART into a diagnostic mode for test
			purposes

Bit	Attr	Reset Value	Description
			out2
			OUT2.
			This is used to directly control the user-designated Output2
3	RW	0x0	(out2_n) output. The value written to this location is inverted and
			driven out on out2_n, that is:
			0 = out2_n de-asserted (logic 1)
			1 = out2_n asserted (logic 0)
2	RW	0.40	out1
2	KVV	0x0	OUT1
			req_to_send
	RW	W 0x0	Request to Send.
1			This is used to directly control the Request to Send (rts_n)
			output. The Request To Send (rts_n) output is used to inform the
			modem or data set that the UART is ready to exchange data
			data_terminal_ready
			Data Terminal Ready.
			This is used to directly control the Data Terminal Ready (dtr_n)
0	RW	W 0x0	output. The value written to this location is inverted and driven
			out on dtr_n, that is:
			0 = dtr_n de-asserted (logic 1)
			1 = dtr_n asserted (logic 0)

<u>UART_LSR</u> Address: Operational Base + offset (0x0014)

Bit	Attr	<b>Reset Value</b>	Description
31:8	RO	0x0	reserved
7	RO	0×0	receiver_fifo_error  Receiver FIFO Error bit. This bit is relevant FIFOs are enabled  (FCR[0] set to one). This is used to indicate if there is at least one parity error, framing error, or break indication in the FIFO.  0 = no error in RX FIFO  1 = error in RX FIFO
6	RO	0x1	trans_empty Transmitter Empty bit. If FIFOs enabled (FCR[0] set to one), this bit is set whenever the Transmitter Shift Register and the FIFO are both empty. If FIFOs are disabled, this bit is set whenever the Transmitter Holding Register and the Transmitter Shift Register are both empty

Bit	Attr	Reset Value	Description
5	RO	0×1	trans_hold_reg_empty Transmit Holding Register Empty bit.  If THRE mode is disabled (IER[7] set to zero) and regardless of FIFO's being implemented/enabled or not, this bit indicates that the THR or TX FIFO is empty.  This bit is set whenever data is transferred from the THR or TX FIFO to the transmitter shift register and no new data has been written to the THR or TX FIFO. This also causes a THRE Interrupt to occur, if the THRE Interrupt is enabled. If IER[7] set to one and FCR[0] set to one respectively, the functionality is switched to indicate the transmitter FIFO is full, and no longer controls THRE interrupts, which are then controlled by the FCR[5:4] threshold setting
4	RO	0×0	break_int Break Interrupt bit. This is used to indicate the detection of a break sequence on the serial input data
3	RO	0×0	framing_error Framing Error bit. This is used to indicate the occurrence of a framing error in the receiver. A framing error occurs when the receiver does not detect a valid STOP bit in the received data
2	RO	0×0	parity_eror Parity Error bit. This is used to indicate the occurrence of a parity error in the receiver if the Parity Enable (PEN) bit (LCR[3]) is set
1	RO	0×0	overrun_error Overrun error bit. This is used to indicate the occurrence of an overrun error. This occurs if a new data character was received before the previous data was read
0	RO	0×0	data_ready Data Ready bit. This is used to indicate that the receiver contains at least one character in the RBR or the receiver FIFO.  0 = no data ready 1 = data ready

# **UART_MSR**

Address: Operational Base + offset (0x0018)

Bit	Attr	<b>Reset Value</b>	Description
31:8	RO	0x0	reserved

Bit	Attr	Reset Value	Description
			data_carrior_detect
7	RO	0×0	Data Carrier Detect.
	KO	0.00	This is used to indicate the current state of the modem control
			line dcd_n
			ring_indicator
6	RO	0×0	Ring Indicator.
		OXO	This is used to indicate the current state of the modem control
			line ri_n
			data_set_ready
5	RO	0×0	Data Set Ready.
		o x o	This is used to indicate the current state of the modem control
			line dsr_n
		0×0	clear_to_send
4	RO		Clear to Send.
'		o x o	This is used to indicate the current state of the modem control
			line cts_n
		0x0	delta_data_carrier_detect
3	RO		Delta Data Carrier Detect.
			This is used to indicate that the modem control line dcd_n has
			changed since the last time the MSR was read
			trailing_edge_ring_indicator
			Trailing Edge of Ring Indicator. This is used to indicate that a
2	RO	0x0	change on the input ri_n (from an active-low to an inactive-high
			state) has occurred since the last time
			the MSR was read
			delta_data_set_ready
1	RO	0x0	Delta Data Set Ready.
			This is used to indicate that the modem control line dsr_n has
			changed since the last time the MSR was read
			delta_clear_to_send
0	RO	0x0	Delta Clear to Send.
		-	This is used to indicate that the modem control line cts_n has
			changed since the last time the MSR was read

### **UART_SCR**

Address: Operational Base + offset (0x001c)

, taa. c.	taureser operational base i offset (oxoute)					
Bit	Attr	Reset Value	Description			
31:8	RO	0x0	reserved			
7:0	RW		temp_store_space This register is for programmers to use as a temporary storage			
			space			

# **UART SRBR**

Address: Operational Base + offset (0x0030)

Bit	Attr	<b>Reset Value</b>	Description		
31:8	RO	0x0	reserved		
7:0	RO	0×00	shadow_rbr This is a shadow register for the RBR and has been allocated sixteen 32-bit locations so as to accommodate burst accesses from the master. This register contains the data byte received on the serial input port (sin) in UART mode or the serial infrared input (sir_in) in infrared mode. The data in this register is valid only if the Data Ready (DR) bit in the Line status Register (LSR) is set.  If FIFOs are disabled (FCR[0] set to zero), the data in the RBR must be read before the next data arrives, otherwise it is overwritten, resulting in an overrun error.  If FIFOs are enabled (FCR[0] set to one), this register accesses the head of the receive FIFO. If the receive FIFO is full and this register is not read before the next data character arrives, then the data already in the FIFO are preserved, but any incoming		
			data is lost. An overrun error also occurs		

# **UART STHR**

Address: Operational Base + offset (0x006c)

Bit	Attr	<b>Reset Value</b>	Description	
31:8	RO	0x0	reserved	
7:0	RO	10x00	shadow_thr This is a shadow register for the THR	

#### **UART_FAR**

Address: Operational Base + offset (0x0070)

Bit	Attr	<b>Reset Value</b>	Description
31:1	RO	0x0	reserved
			fifo_access_test_en
			This register is use to enable a FIFO access mode for testing, so
			that the receive FIFO can be written by the master and the
			transmit FIFO can be read by the master when FIFOs are
0	RW	0x0	implemented and enabled. When FIFOs are not enabled it allows
			the RBR to be written by the master and the THR to be read by
			the master.
			0 = FIFO access mode disabled
			1 = FIFO access mode enabled

# **UART TFR**

Address: Operational Base + offset (0x0074)

Bit	Attr	<b>Reset Value</b>		Description	
31:8	RO	0x0	reserved		

Bit	Attr	<b>Reset Value</b>	Description			
7:0	RO	0×00	trans_fifo_read Transmit FIFO Read. These bits are only valid when FIFO access mode is enabled (FAR[0] is set to one).When FIFOs are implemented and enabled, reading this register gives the data at the top of the transmit FIFO. Each consecutive read pops the transmit FIFO and gives the next data value that is currently at the top of the FIFO			

# **UART_RFW**

Address: Operational Base + offset (0x0078)

Bit	Attr	Reset Value	Description		
31:10	RO	0x0	reserved		
			receive_fifo_framing_error		
9	wo	0x0	Receive FIFO Framing Error.		
9	VVO	0.00	These bits are only valid when FIFO access mode is enabled		
			(FAR[0] is set to one)		
			receive_fifo_parity_error		
8	wo	0x0	Receive FIFO Parity Error.		
	VVO		These bits are only valid when FIFO access mode is enabled		
			(FAR[0] is set to one)		
		0×00	receive_fifo_write		
			Receive FIFO Write Data.		
			These bits are only valid when FIFO access mode is enabled		
			(FAR[0] is set to one). When FIFOs are enabled, the data that is		
7:0	WO		written to the RFWD is pushed into the receive FIFO. Each		
			consecutive write pushes the new data to the next write location		
			in the receive FIFO.		
			When FIFOs not enabled, the data that is written to the RFWD is		
			pushed into the RBR		

# **UART USR**

Address: Operational Base + offset (0x007c)

Bit	Attr	<b>Reset Value</b>	Description		
31:5	RO	0x0	reserved		
			receive_fifo_full		
		0×0	Receive FIFO Full.		
4	RO		This is used to indicate that the receive FIFO is completely full.		
4			0 = Receive FIFO not full		
			1 = Receive FIFO Full		
			This bit is cleared when the RX FIFO is no longer full		

Bit	Attr	Reset Value	Description
			receive_fifo_not_empty
			Receive FIFO Not Empty.
			This is used to indicate that the receive FIFO contains one or
3	RO	0x0	more entries.
			0 = Receive FIFO is empty
			1 = Receive FIFO is not empty
			This bit is cleared when the RX FIFO is empty
			trasn_fifo_empty
			Transmit FIFO Empty.
		0x1	This is used to indicate that the transmit FIFO is completely
2	RO		empty.
			0 = Transmit FIFO is not empty
			1 = Transmit FIFO is empty
			This bit is cleared when the TX FIFO is no longer empty
			trans_fifo_not_full
			Transmit FIFO Not Full.
1	RO	0×1	This is used to indicate that the transmit FIFO in not full.
*	INO	UXI	0 = Transmit FIFO is full
			1 = Transmit FIFO is not full
			This bit is cleared when the TX FIFO is full
			uart_busy
		0×0	UART Busy. This is indicates that a serial transfer is in progress,
0	RO		when cleared indicates that the uart is idle or inactive.
			0 = Uart is idle or inactive
			1 = Uart is busy (actively transferring data)

### **UART TFL**

Address: Operational Base + offset (0x0080)

Addic	Address: operational base i onset (0x0000)				
Bit	Attr	<b>Reset Value</b>	Description		
31:5	RO	0x0	reserved		
			trans_fifo_level		
4:0	RW	0x00	Transmit FIFO Level. This is indicates the number of data entries		
			in the transmit FIFO		

# **UART RFL**

Address: Operational Base + offset (0x0084)

Bit	Attr	<b>Reset Value</b>	Description
31:5	RO	0x0	reserved
			receive_fifo_level
4:0	RO	0x00	Receive FIFO Level. This is indicates the number of data entries
			in the receive FIFO

### **UART_SRR**

Address: Operational Base + offset (0x0088)

Bit	Attr	<b>Reset Value</b>	Description
31:3	RO	0x0	reserved
			xmit_fifo_reset
2	WO	0x0	XMIT FIFO Reset.
			This is a shadow register for the XMIT FIFO Reset bit (FCR[2])
			rcvr_fifo_reset
1	WO	0x0	RCVR FIFO Reset.
			This is a shadow register for the RCVR FIFO Reset bit (FCR[1])
			uart_reset
			UART Reset.
0	WO	0x0	This asynchronously resets the Uart and synchronously removes
			the reset assertion. For a two clock implementation both pclk and
			sclk domains are reset

### **UART SRTS**

Address: Operational Base + offset (0x008c)

Bit	Attr	<b>Reset Value</b>	Description
31:1	RO	0x0	reserved
			shadow_req_to_send
			Shadow Request to Send.
0	RW	0x0	This is a shadow register for the RTS bit (MCR[1]), this can be
			used to remove the burden of having to performing a read-
			modify-write on the MCR

# **UART SBCR**

Address: Operational Base + offset (0x0090)

Bit	Attr	<b>Reset Value</b>	Description
31:1	RO	0x0	reserved
			shadow_break_ctrl
			Shadow Break Control Bit.
0	RW	0x0	This is a shadow register for the Break bit (LCR[6]), this can be
			used to remove the burden of having to performing a read modify
			write on the LCR

# **UART SDMAM**

Address: Operational Base + offset (0x0094)

Bit	Attr	<b>Reset Value</b>	Description
31:1	RO	0x0	reserved
			shadow_dma_mode
0	RW	0x0	Shadow DMA Mode. This is a shadow register for the DMA mode
			bit (FCR[3])

#### UART_SFE

Address: Operational Base + offset (0x0098)

Bit	Attr	<b>Reset Value</b>	Description
31:1	RO	0x0	reserved
			shadow_fifo_en
0	RW	0x0	Shadow FIFO Enable. Shadow FIFO Enable. This is a shadow
			register for the FIFO enable bit (FCR[0])

#### **UART_SRT**

Address: Operational Base + offset (0x009c)

	10 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0					
Bit	Attr	<b>Reset Value</b>	Description			
31:2	RO	0x0	reserved			
1:0	RW		shadow_rcvr_trigger Shadow RCVR Trigger. This is a shadow register for the RCVR			
			trigger bits (FCR[7:6])			

### **UART_STET**

Address: Operational Base + offset (0x00a0)

Bit	Attr	<b>Reset Value</b>	Description
31:2	RO	0x0	reserved
			shadow_tx_empty_trigger
1:0	RW	0x0	Shadow TX Empty Trigger. This is a shadow register for the TX
			empty trigger bits (FCR[5:4])

### **UART_HTX**

Address: Operational Base + offset (0x00a4)

Bit	Attr	<b>Reset Value</b>	Description
31:1	RO	0x0	reserved
0	RW	0×0	halt_tx_en This register is use to halt transmissions for testing, so that the transmit FIFO can be filled by the master when FIFOs are implemented and enabled.  0 = Halt TX disabled 1 = Halt TX enabled

#### **UART_DMASA**

Address: Operational Base + offset (0x00a8)

Bit	Attr	<b>Reset Value</b>	Description
31:1	RO	0x0	reserved
			dma_software_ack
0	WO	0x0	This register is use to perform a DMA software acknowledge if a
			transfer needs to be terminated due to an error condition

#### **UART_CPR**

Address: Operational Base + offset (0x00f4)

Bit	Attr	Reset Value	Description
31:24	RO	0x0	reserved
_			FIFO_MODE
			0x00 = 0
			0x01 = 16
23:16	RO	0x00	0x02 = 32
			to
			0x80 = 2048
			0x81- 0xff = reserved
15:14	RO	0x0	reserved
			DMA_EXTRA
13	RO	0x0	0 = FALSE
			1 = TRUE
			UART_ADD_ENCODED_PARAMS
12	RO	0x0	0 = FALSE
			1 = TRUE
			SHADOW
11	RO	0x0	0 = FALSE
			1 = TRUE
			FIFO_STAT
10	RO	0x0	0 = FALSE
			1 = TRUE
			FIFO_ACCESS
9	RO	0x0	0 = FALSE
			1 = TRUE
			NEW_FEAT
8	RO	0x0	0 = FALSE
			1 = TRUE
			SIR_LP_MODE
7	RO	0x0	0 = FALSE
			1 = TRUE
			SIR_MODE
6	RO	0x0	0 = FALSE
			1 = TRUE
			THRE_MODE
5	RO	0x0	0 = FALSE
			1 = TRUE
			AFCE_MODE
4	RO	0x0	0 = FALSE
	<b>D</b> 0		1 = TRUE
3:2	RO	0x0	reserved
			APB_DATA_WIDTH
1.0	D 0	00	00 = 8 bits
1:0	RO	0x0	01 = 16 bits
			10 = 32 bits
			11 = reserved

### **UART_UCV**

Address: Operational Base + offset (0x00f8)

Bit	Attr	<b>Reset Value</b>	Description
21.0	RO	0	ver
31:0	KU	0x3330382a	ASCII value for each number in the version

#### **UART_CTR**

Address: Operational Base + offset (0x00fc)

Bit	Attr	<b>Reset Value</b>	Description	
31:0	RO	100/1/15/0110	peripheral_id This register contains the peripherals identification code	

# **18.5 Interface Description**

Table 18-1UART Interface Description

Modulepin	Dir	Pad name	IOMUX				
UARTO Interface							
uart0_sin I		IO_UART0rx_PMUdebug1_GPIO0B3p	GRF_GPIO0B_IOMUX[7:6]=2'b01				
		muio2					
uart0_sout	0	IO_UART0tx_PMUdebug0_GPIO0B2p	GRF_GPIO0B_IOMUX[5:4]=2'b01				
		muio2					
uart0_cts_n	I	IO_UART0cts_PMUdebug2_PMUdebu	GRF_GPIO0B_IOMUX[9:8]=2'b01				
		g_sout_GPIO0B4pmuio2					
uart0_rts_n	0	IO_UART0rts_TESTclk1_GPIO0B5pm	GRF_GPIO0B_IOMUX[11:10]=2'b01				
		uio2					
	_	UART1 Interface					
uart1_sin	I	IO_UART1rx_GPIO1C0vccio1	GRF_GPIO1C_IOMUX_L[2:0]=3'b001				
uart1_sout	0	IO_UART1tx_GPIO1C1vccio1	GRF_GPIO1C_IOMUX_L[6:4]= 3'b001				
uart1_cts_n I		IO_UART1cts_GPIO1C2vccio1	GRF_GPIO1C_IOMUXL[10:8]=3'b001				
uart1_rts_n O		IO_UART1rts_GPIO1C3vccio1	GRF_GPIO1C_IOMUX_L[14:12]=3'b001				
		UART2m0 Interfac	e				
uart2m0_sin	I	IO_SDMMC0d1_UART2rxm0_GPIO1D	GRF_GPIO1D_IOMUX_L[14:12]=3'b010				
		3vccio2					
uart2m0_sout	0	IO_SDMMC0d0_UART2txm0_GPIO1D	GRF_GPIO1D_IOMUX_L[10:8]= 3'b010				
		2vccio2					
		UART2m1 Interfac	e				
uart2m1_sin	I	IO_CIFd1m0_UART2rxm1_GPIO2B6v	GRF_GPIO2B_IOMUX_H[10:8]=3'b010				
		ccio3					
uart2m1_sout	0	IO_CIFd0m0_UART2txm1_GPIO2B4v	GRF_GPIO2B_IOMUX_H[2:0]=3'b010				
		ccio3					
	UART3m0 Interface						
uart3m0_sin	I	IO_PWM3_UART3rxm0_PMUdebug4_	GRF_GPIO0C_IOMUX[3:2]=2'b10				
		GPIO0C1pmuio2					

Modulepin Dir Pa		Pad name	IOMUX	
uart3m0_sout	0	IO_PWM1_UART3txm0_PMUdebug3_	GRF_GPIOOC_IOMUX[1:0]= 2'b10	
		GPIO0C0pmuio2		
uart3m0_cts_n	I	IO_I2C1scl_UART3ctsm0_PMUdebug	GRF_GPIO0C_IOMUX[5:4]=2'b10	
		5_GPIO0C2pmuio2		
uart3m0_rts_n	0	IO_I2C1sda_UARTrtsm0_GPIO0c3pm	GRF_GPIO0C_IOMUX[7:6]= 2'b10	
		uio2		
		UART3m1 Interfac	e	
uart3m1_sin	I	IO_FLASHrdn_UART3rxm1_SPI0clk_	GRF_GPIO1B_IOMUX_H[14:12]=3'b01	
		GPIO1B7vccio0	0	
uart3m1_sout	0	IO_FLASHcs1_UART3txm1_SPI0csn_	GRF_GPIO1B_IOMUX_H[10:8]= 3'b010	
		GPIO1B6vccio0		
uart3m1_cts_n	I	IO_FLASHcle_UART3ctsm1_SPI0mosi	GRF_GPIO1B_IOMUX_H[2:0]=3'b010	
		_I2C3sda_GPIO1B4vccio0		
uart3m1_rts_n	0	IO_FLASHwrn_UART3rtsm1_SPI0mis	GRF_GPIO1B_IOMUX_H[6:4]= 3'b010	
		o_I2C3scl_GPIO1B5vccio0		
	•	UART4 Interface		
uart4_sin	I	IO_SDMMC0d2_UART4rx_JTAGtck_G	GRF_GPIO1D_IOMUX_H[2:0]=3'b010	
		PIO1D4vccio2		
uart4_sout	0	IO_SDMMC0d3_UART4tx_JTAGtms_	GRF_GPIO1D_IOMUX_H[6:4]= 3'b010	
		GPIO1D5vccio2		
uart4_cts_n	I	IO_SDMMC0clkout_UART4cts_TESTcl	GRF_GPIO1D_IOMUX_H[10:8]=3'b010	
		k0_GPIO1D6vccio2		
uart4_rts_n	0	IO_SDMMC0cmd_UART4rts_GPIO1D	GRF_GPIO1D_IOMUX_H[14:12]=3'b01	
		7vccio2	0	
		UART5 Interface	T	
uart5_sin	I	IO_LCDChsyncm0_I2S22ch_mclk_CI	GRF_GPIO3A_IOMUX_L[6:4]=3'b100	
		Fd0m1_UART5rx_GPIO3A1vccio4		
uart5_sout	0	IO_LCDCvsyncm0_I2S22ch_sclk_CIF	GRF_GPIO3A_IOMUX_L[10:8]= 3'b100	
		d1m1_UART5tx_GPIO3A2vccio4		
uart5_cts_n	I	IO_LCDDdenm0_I2S22ch_lrck_CIFd2	GRF_GPIO3A_IOMUX_L[14:12]=3'b100	
		m1_UART5cts_GPIO3A3vccio4		
uart5_rts_n	0	IO_LCDCd1m0_I2S22ch_sdi_CIFd3m	GRF_GPIO3A_IOMUX_H[6:4]= 3'b100	
		1_UART5rts_GPIO3A5vccio4		

The I/O interface of UART2 can be chosen by setting GRF_IOFUNC_SEL0[10]bit, if this bit is set to 1, UART2 uses the UART2m1 I/O interface. The I/O interface of UART3 can be sen by setting GRF_IOFUNC_SEL0[9]bit, if this bit is set to 1, UART3 uses the UART3m1 I/O interface.

# **18.6 Application Notes**

### 18.6.1 None FIFO Mode Transfer Flow

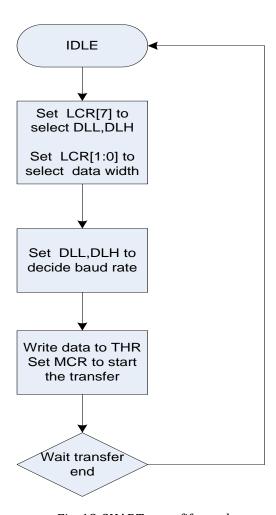



Fig. 18-8UART none fifo mode

#### 18.6.2 FIFO Mode Transfer Flow

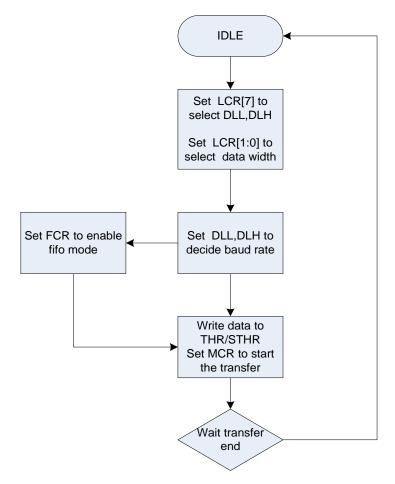



Fig. 18-9UART fifo mode

The UART is an APB slave performing:

Serial-to-parallel conversion on data received from a peripheral device.

Parallel-to-serial conversion on data transmitted to the peripheral device.

The CPU reads and writes data and control/status information through the APB interface. The transmitting and receiving paths are buffered with internal FIFO memories enabling up to 64-bytes to be stored independently in both transmit and receive modes. A baud rate generator can generate a common transmit and receive internal clock input. The baud rates will depend on the internal clock frequency. The UART will also provide transmit, receive and exception interrupts to system. A DMA interface is implemented for improving the system performance.

#### 18.6.3 Baud Rate Calculation

#### **UART** clock generation

The following figures shows the UART clock generation.UART0~5 source clocks can be selected from four PLL outputs (XIN_OSC0_FUNC/GPLL_CLK_MUX/USBPHY480M_MUX/NPLL_CLK_MUX).

UART clocks can be generated by 1 to 32 division of its source clock, or can be fractionally divided again.

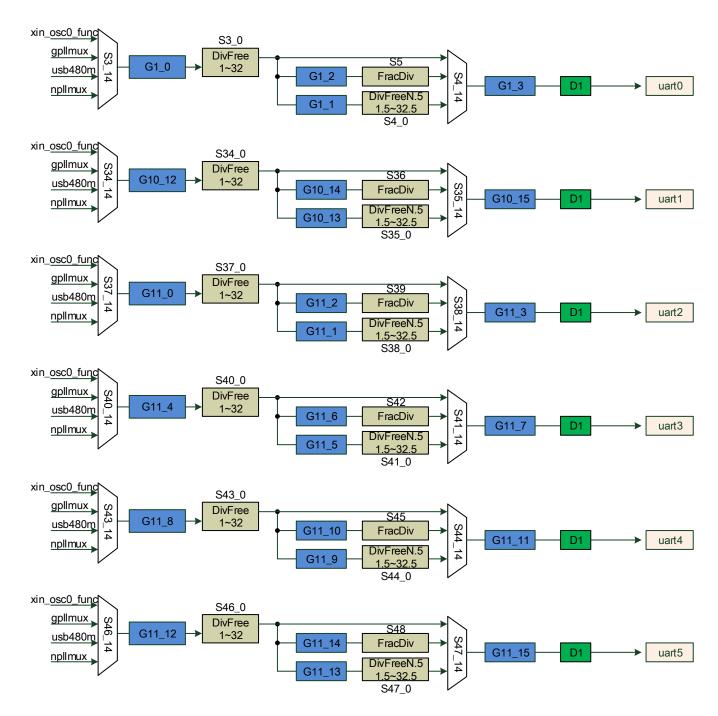



Fig. 18-10UART clock generation

#### **UART** baud rate configuration

The following table provides some reference configuration for different UART baud rates.

Table 18-2 UART baud rate configuration

Baud Rate	Reference Configuration
115.2 Kbps	Configure GENERAL PLL to get 1200MHz clock output; Divide 1200MHz clock by 46875/72 to get 1.8432MHz clock; Configure UART_DLL to 1.
460.8 Kbps	Configure GENERAL PLL to get 1200MHz clock output; Divide 1200MHz clock by 46875/288 to get 7.3728MHz clock;

Baud Rate	Reference Configuration	
	Configure UART_DLL to 1.	
921.6 Kbps	Configure GENERAL PLL to get 1200MHz clock output; Divide 1200MHz clock by 46875/576 to get 14.7456MHz clock; Configure UART_DLL to 1.	
1.5 Mbps	Choose GENERAL PLL to get 1200MHz clock output; Divide 1200MHz clock by 50 to get 24MHz clock; Configure UART_DLL to 1.	
3 Mbps	Choose GENERAL PLL to get 1200MHz clock output; Divide 1200MHz clock by 1200/48 to get 48MHz clock; Configure UART_DLL to 1.	
4 Mbps	Configure GENERAL PLL to get 1200MHz clock output; Divide 1200MHz clock by 480/7.5 to get 64MHz clock; Configure UART_DLL to 1.	

# 18.6.4 CTS_n and RTS_n Polarity Configurable

The polarity of cts_n and rts_n ports can be configured by GRF registers.

- When grf_uart_cts_sel[*] is configured as 1'b1, cts_n is high active. Otherwise, lowactive.
- When grf_uart_rts_sel[*] is configured as 1'b1, rts_n is high active. Otherwise, lowactive.

Table 18-3 UART cts_n and rts_n polarity configuration

UART	GRF_UART_CTS_SEL	GRF_UART_RTS_SEL
UART0	PMUGRF_SOC_CON0[6]	PMUGRF_SOC_CON0[5]
UART1	GRF_SOC_CON2[2]	GRF_SOC_CON2[3]
UART2	GRF_SOC_CON2[4]	GRF_SOC_CON2[5]
UART3	GRF_SOC_CON2[6]	GRF_SOC_CON2[7]
UART4	GRF_SOC_CON2[8]	GRF_SOC_CON2[9]
UART5	GRF_SOC_CON2[10]	GRF_SOC_CON2[11]

### **Chapter 19 SAR-ADC**

#### 19.1 Overview

The SAR-ADC is a 3-channel signal-ended 10-bit Successive Approximation Register (SAR) A/D Converter. It uses the supply and ground as it reference which avoid use of any external reference. It converts the analog input signal into 10-bit binary digital codes at maximum conversion rate of 1MSPS with 13MHz A/D converter clock.

### 19.2 Block Diagram

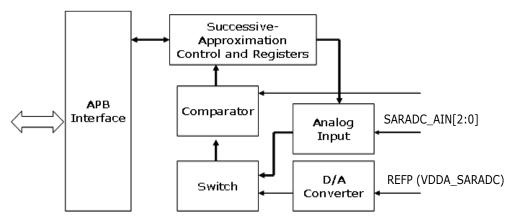



Fig.19-1SAR-ADC block diagram

#### **Successive-Approximate Register and Control Logic Block**

This block is exploited to realize binary search algorithm, storing the intermediate result and generate control signal for analog block.

#### **Comparator Block**

This block compares the analog input SARADC_AIN[2:0] with the voltage generated from D/A Converter, and output the comparison result to SAR and Control Logic Block for binary search. Three level amplifiers are employed in this comparator to provide enough gain.

# 19.3 Function Description

#### 19.3.1 APB Interface

In PX30, SAR-ADC works at single-sample operation mode.

This mode is useful to sample an analog input when there is a gap between two samples to be converted. In this mode START is asserted only on the rising edge of CLKIN where conversion is needed. At the end of every conversion EOC signal is made high and valid output data is available at the rising edge of EOC. The detailed timing diagram will be shown in the following.

# 19.4 Register description

# 19.4.1 Registers Summary

Name	Offset	Size	Reset Value	Description
SARADC DATA	0x0000	W	0x00000000	This register contains the data after A/D Conversion
SARADC STAS	0x0004	W	0×00000000	The status register of A/D Converter
SARADC CTRL	0x0008	W	0×00000000	The control register of A/D Converter
SARADC DLY PU SOC	0x000c	W	0×00000000	delay between power up and start command

Notes: Size: **B**- Byte (8 bits) access, **HW**- Half WORD (16 bits) access, **W**-WORD (32 bits) access

### 19.4.2 Detail Register Description

# **SARADC DATA**

Address: Operational Base + offset (0x0000)

Bit	Attr	<b>Reset Value</b>	Description
31:10	RO	0x0	reserved
9:0	RO	0x000	adc_data

#### **SARADC STAS**

Address: Operational Base + offset (0x0004)

Bit	Attr	<b>Reset Value</b>	Description
31:1	RO	0x0	reserved
			adc_status
0	RO	0x0	0: ADC stop
			1: Conversion in progress

#### **SARADC CTRL**

Address: Operational Base + offset (0x0008)

Bit	Attr	<b>Reset Value</b>	Description
31:7	RO	0x0	reserved
			int_status
6	RW	0x0	This bit will be set to 1 when end-of-conversion.
			Set 0 to clear the interrupt
			int_en
5	RW	0x0	0: Disable
			1: Enable
4	RO	0x0	reserved
			adc_power_ctrl
			0: ADC power down;
3	RW	0x0	1: ADC power up and reset.
			start signal will be asserted (DLY_PU_SOC + 2) sclk clock period
			later after power up
			adc_input_src_sel
			000 : Input source 0 (SARADC_AIN[0])
			001 : Input source 1 (SARADC_AIN[1])
2:0	RW	0×0	010 : Input source 2 (SARADC_AIN[2])
2.0	IK VV		011 : Input source 3 (SARADC_AIN[3])
			100 : Input source 4 (SARADC_AIN[4])
			101 : Input source 5 (SARADC_AIN[5])
			Others: Reserved

#### **SARADC DLY PU SOC**

Address: Operational Base + offset (0x000c)

Bit	Attr	<b>Reset Value</b>	Description
31:6	RO	0x0	reserved
			DLY_PU_SOC
5:0	RW	0x00	The start signal will be asserted (DLY_PU_SOC + 2) sclk clock
			period later after power up

# 19.5 Timing Diagram

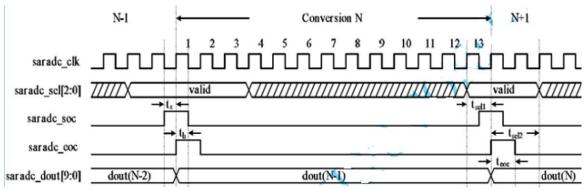



Fig.19-2SAR-ADC timing diagram in single-sample conversion mode

# **19.6 Application Notes**

#### Steps of adc conversion:

- Write SARADC_CTRL[3] as 0 to power down adc converter.
- Write SARADC_CTRL[2:0] as n to select adc channel(n).
- Write SARADC_CTRL[5] as 1 to enable adc interrupt.
- Write SARADC_CTRL[3] as 1 to power up adc converter.
- Wait for adc interrupt or poll SARADC_STAS register to assert whether the conversion is completed
- Read the conversion result from SARADC_DATA[9:0]

Note: The A/D converter was designed to operate at maximum 1MHZ.

# Chapter 20 Temperature-Sensor ADC(TS-ADC)

#### 20.1 Overview

TS-ADC Controller module supports user-defined mode and automatic mode. User-defined mode refers, TSADC all the control signals entirely by software writing to register for direct control. Automatic mode refers to the module automatically poll TSADC output, and the results were checked. If you find that the temperature High in a period of time, an interrupt is generated to the processor down-measures taken; if the temperature over a period of timeHigh, the resulting TSHUT gave CRU module, let it reset the entire chip, or via GPIO give PMIC.

TS-ADC Controller supports the following features:

- Support User-Defined Mode and Automatic Mode
- In User-Defined Mode, start_of_conversion can be controlled completely by software, and also can be generated by hardware.
- In Automatic Mode, the temperature of alarm(high/low temperature) interrupt can be configurable
- In Automatic Mode, the temperature of system reset can be configurable
- Support to 2 channel TS-ADC, the temperature criteria can be configurable
- In Automatic Mode, the time interval of temperature detection can be configurable
- In Automatic Mode, when detecting a high temperature, the time interval of temperature detection can be configurable
- High temperature denounce can be configurable
- 10-bit SARADC up to 50KS/s sampling rate

# 20.2 Block Diagram

TS-ADC controller comprises with:

- APB Interface
- TS-ADC control logic

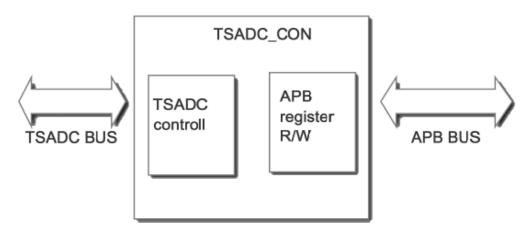



Fig.20-1 TS-ADC Controller Block Diagram

# 20.3 Function Description

#### 20.3.1 APB Interface

There is an APB Slave interface in TS-ADC Controller, which is used to configure the TS-ADC Controller registers and look up the temperature from the temperature sensor.

#### 20.3.2 TS-ADC Controller

This block is exploited to realize binary search algorithm, storing the intermediate result and generate control signal for analog block. This block compares the analog input with the voltage generated from D/A Converter, and output the comparison result to SAR and Control Logic Block for binary search. Three level amplifiers are employed in this comparator to provide

enough gain.

# 20.4 Register description

# 20.4.1 Registers Summary

Name	Offset	Size	Reset Value	Description
TSADC_USER_CON	0x0000	W	0x00000208	The control register of A/D converter
TSADC_AUTO_CON	0x0004	W	0x00000000	ADC auto mode control register
TSADC_INT_EN	0x0008	W	0x00000000	interrupt enable register
TSADC_INT_PD	0x000c	W	0x00000000	int_pd register
TSADC_DATA0	0x0020	W	0x00000000	This register contains the data after A/D conversion
TSADC_DATA1	0x0024	W	0x00000000	This register contains the data after A/D conversion
TSADC_COMP0_INT	0x0030	W	0×00000000	ADC high level for source 0 interrupt
TSADC_COMP1_INT	0x0034	W	0×00000000	ADC high level for source 1 interrupt
TSADC_COMP0_SHUT	0x0040	W	0x00000000	ADC high level for source 0 shut
TSADC_COMP1_SHUT	0x0044	W	0x00000000	ADC high level for source 1 shut
TSADC_HIGHT_INT_DEBOU_NCE	0x0060	W	0x00000003	high temperature / voltage debounce
TSADC_HIGHT_TSHUT_DEB OUNCE	0x0064	W	0x00000003	high temperature / voltage debounce
TSADC_AUTO_PERIOD	0x0068	W	0x00010000	ADC auto access period
TSADC_AUTO_PERIOD_HT	0x006c	W	0x00010000	ADC auto access period when ADC result is high
TSADC_COMP0_LOW_INT	0x0080	W	0x00000000	ADC low level for source 0
TSADC_COMP1_LOW_INT	0x0084	W	0x00000000	ADC low level for source 1

Notes: Size: B- Byte (8 bits) access, HW- Half WORD (16 bits) access, W-WORD (32 bits) access

# 20.4.2 Detail Register Description

#### **TSADC USER CON**

Address: Operational Base + offset (0x0000)

Bit	Attr	<b>Reset Value</b>	Description
31:13	RO	0x0	reserved
12	RO	0×0	adc_status 0: ADC stop; 1: Conversion in progress
11:6	RW	0×08	inter_pd_soc interleave between power down and start of conversion

Bit	Attr	Reset Value	Description
5	RW	0x0	start When software write 1 to this bit , start_of_conversion will be assert. This bit will be cleared after ADC access finishing. When ADC_USER_CON[4] = 1'b1 take effect
4	RW	0×0	start_mode start mode. 0: adc controller will asert start_of_conversion after "inter_pd_soc" cycles. 1: the start_of_conversion will be controlled by ADC_USER_CON[5]
3	RW	0x1	adc_power_ctrl 0: ADC power down; 1: ADC power up and reset
2:0	RW	0×0	adc_input_src_sel  000 : Input source 0 (ADC_AIN[0])  001 : Input source 1 (ADC_AIN[1])  010 : Input source 2 (ADC_AIN[2])  011 : Input source 3 (ADC_AIN[3])  Others : Reserved

TSADC AUTO CON
Address: Operational Base + offset (0x0004)

Bit	Attr	<b>Reset Value</b>	Description
31:26	RO	0x0	reserved
			last_tshut_2cru
			TSHUT status.
25	RW	0x0	This bit will set to 1 when tshut is valid, and only be cleared when
			application write 1 to it.
			This bit will not be cleared by system reset
			last_tshut_2gpio
			TSHUT status.
24	RW	0x0	This bit will set to 1 when tshut is valid, and only be cleared when
			application write 1 to it.
			This bit will not be cleared by system reset
23:18	RO	0x0	reserved
			sample_dly_sel
17	RO	0x0	0: AUTO_PERIOD is used.
			1: AUTO_PERIOD_HT is used
			auto_status
16	RO	0x0	0: auto mode stop;
			1: auto mode in progress
15:14	RO	0x0	reserved

Bit	Attr	Reset Value	Description
			src1_lt_en
13	RW	0x0	0: do not care low level of source 1
			1: enable the low level monitor of source 1
			src0_lt_en
12	RW	0x0	0: do not care low level of source 0
			1: enable the low level monitor of source 0
11:9	RO	0x0	reserved
			tshut_prolarity
8	RW	0x0	0: low active
			1: high active
7:6	RO	0x0	reserved
		0×0	src1_en
F	RW		channel 1 enable.
5			0: do not monitor channel 1 result
			1: monitor channel 1 in turn
			src0_en
4	RW	0x0	channel 0 enable.
4	KVV	UXU	0: do not monitor channel 0 result
			1: monitor channel 0 in turn
3:2	RO	0x0	reserved
			adc_q_sel
1	RW	0x0	adc data select
T	KVV	UXU	0: adc_q
			1: 4096 - adc_q
			auto_en
0	RW	RW 0x0	0: ADC controller works at user-define mode
			1: ADC controller works at auto mode

TSADC INT EN
Address: Operational Base + offset (0x0008)

Bit	Attr	<b>Reset Value</b>	Description
31:17	RO	0x0	reserved
			eoc_int_en
16	RW	0x0	eoc interrupt enable in user defined mode
10	KVV		0: disable;
			1: enable
15:14	RO	0x0	reserved
			lt_inten_src1
13	RW		low temperature interrupt enable for src1
13			0: disable
			1: enable

Bit	Attr	Reset Value	Description
12	RW	0×0	It_inten_src0 low temperature interrupt enable for src0 0: disable 1: enable
11:10	RO	0x0	reserved
9	RW	0x0	tshut_2cru_en_src1 0: TSHUT output to cru disabled. TSHUT output will always keep low. 1: TSHUT output works
8	RW	0×0	tshut_2cru_en_src0 0: TSHUT output to cru disabled. TSHUT output will always keep low. 1: TSHUT output works
7:6	RO	0x0	reserved
5	RW	0×0	tshut_2gpio_en_src1 0: TSHUT output to gpio disabled. TSHUT output will always keep low. 1: TSHUT output works
4	RW	0x0	tshut_2gpio_en_src0 0: TSHUT output to gpio disabled. TSHUT output will always keep low. 1: TSHUT output works
3:2	RO	0x0	reserved
1	RW	0x0	ht_inten_src1 high temperature interrupt enable for src1 0: disable 1: enable
0	RW	0x0	ht_inten_src0 high temperature interrupt enable for src0 0: disable 1: enable

TSADC INT PD
Address: Operational Base + offset (0x000c)

Bit	Attr	<b>Reset Value</b>	Description
31:17	RO	0x0	reserved
			eoc_int_pd
16	RW	0x0	This bit will be set to 1 when end-of-conversion.
			Set 0 to clear the interrupt
15:14	RO	0x0	reserved

Bit	Attr	Reset Value	Description
13	RW	0×0	It_irq_src1 When ADC output is lower than COMP_INT_LOW, this bit will be valid, which means temperature is low, and the application should in charge of this. write 1 to it, this bit will be cleared
12	RW	0×0	It_irq_src0 When ADC output is lower than COMP_INT_LOW, this bit will be valid, which means temperature is low, and the application should in charge of this. write 1 to it, this bit will be cleared
11:6	RO	0x0	reserved
5	RW	0×0	tshut_o_src1 TSHUT output status When ADC output is bigger than COMP_SHUT, this bit will be valid, which means temperature is VERY high, and the application should in charge of this. write 1 to it , this bit will be cleared
4	RW	0×0	tshut_o_src0 TSHUT output status When ADC output is bigger than COMP_SHUT, this bit will be valid, which means temperature is VERY high, and the application should in charge of this. write 1 to it , this bit will be cleared
3:2	RO	0x0	reserved
1	RW	0×0	ht_irq_src1 When ADC output is bigger than COMP_INT, this bit will be valid, which means temperature is high, and the application should in charge of this. write 1 to it, this bit will be cleared
0	RW	0×0	ht_irq_src0 When ADC output is bigger than COMP_INT, this bit will be valid, which means temperature is high, and the application should in charge of this. write 1 to it, this bit will be cleared

# TSADC_DATA0

Address: Operational Base + offset (0x0020)

Bit	Attr	<b>Reset Value</b>	Description
31:12	RO	0x0	reserved
11:0	RO	10×000	adc_data A/D value of the channel 0 last conversion (DOUT[9:0])

# TSADC DATA1

Address: Operational Base + offset (0x0024)

Bit	Attr	<b>Reset Value</b>	Description
31:12	RO	0x0	reserved
11:0	RO	10x000	adc_data
	```		A/D value of the channel 1 last conversion (DOUT[9:0])

TSADC COMPO INT

Address: Operational Base + offset (0x0030)

Bit	Attr	Reset Value	Description
31:12	RO	0x0	reserved
			adc_comp_src0
			ADC high level for channel 0.
11:0	RW	0x000	ADC output is bigger than adc_comp, means the temperature is
			high.
			ADC_HT_INT will be valid

TSADC COMP1 INT

Address: Operational Base + offset (0x0034)

Bit	Attr	Reset Value	Description
31:12	RO	0x0	reserved
			adc_comp_src1 ADC high level for channel 1.
11:0	RW		ADC output is bigger than adc_comp, means the temperature is high. ADC HT INT will be valid

TSADC COMPO SHUT

Address: Operational Base + offset (0x0040)

Bit	Attr	Reset Value	Description
31:12	RO	0x0	reserved
			adc_comp_src0
11:0	RW	0x000	ADC high level for channel 0 to generate TSHUT.
			ADC output is bigger than adc_comp, TSHUT will be valid

TSADC COMP1 SHUT

Address: Operational Base + offset (0x0044)

	tata coo. operational zaco i oncot (citos i)		
Bit	Attr	Reset Value	Description
31:12	RO	0x0	reserved
			adc_comp_src1
11:0	RW	0x000	ADC high level for channel 1 to generate TSHUT.
			ADC output is bigger than adc_comp, TSHUT will be valid

TSADC HIGHT INT DEBOUNCE

Address: Operational Base + offset (0x0060)

Bit	Attr	Reset Value	Description
31:8	RO	0x0	reserved
			debounce
7:0	RW	0x03	ADC controller will only generate interrupt when temperature /
			voltage is higher than COMP_INT for "debounce" times

TSADC HIGHT TSHUT DEBOUNCE

Address: Operational Base + offset (0x0064)

Bit	Attr	Reset Value	Description
31:8	RO	0x0	reserved
			debounce
7:0 RW		0x03	ADC controller will only generate TSHUT when temperature /
			voltage is higher than COMP_SHUT for "debounce" times

TSADC AUTO PERIOD

Address: Operational Base + offset (0x0068)

Bit	Attr	Reset Value	Description
31:0	RW		auto_period when auto mode is enabled, this register controls the interleave
32.0			between every two accessing of ADC

TSADC AUTO PERIOD HT

Address: Operational Base + offset (0x006c)

Bit	Attr	Reset Value	Description	
31:0	RW	0x00010000	auto_period This register controls the interleave between every two accessing of ADC after the temperature is higher than COMP_SHUT or COMP_INT	

TSADC COMPO LOW INT

Address: Operational Base + offset (0x0080)

Bit	Attr	Reset Value	Description
31:12	RO	0x0	reserved
			adc_comp_src0 ADC low level.
11:0	RW		ADC output is lower than adc_comp, means the temperature is low. ADC_LOW_INT will be valid

TSADC COMP1 LOW INT

Address: Operational Base + offset (0x0084)

Bit	Attr	Reset Value	Description
31:12	RO	0x0	reserved
			adc_comp_src1
			ADC low level.
11:0	RW	0x000	ADC output is lower than adc_comp, means the temperature is
			low.
			ADC_LOW_INT will be valid

20.5 Application Notes

20.5.1 Single-sample conversion

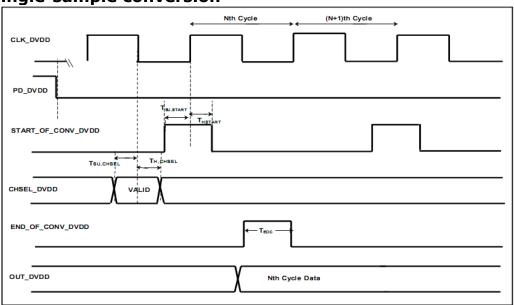


Fig. 20-2the start flow to enable the sensor and adc

20.5.2 Temperature-to-code mapping

Table 20-1 Temperature Code Mapping

temp (C)	Code
-40	3800
-35	3792
-30	3783
-25	3774
-20	3765
-15	3756
-10	3747
-5	3737
0	3728
5	3718
10	3708
15	3698
20	3688
25	3678
30	3667
35	3656
40	3645
45	3634
50	3623
55	3611
60	3600
65	3588
70	3575
75	3563
80	3550
85	3537
90	3524
95	3510
100	3496
105	3482
110	3467
115	3452
120	3437
125	3421

Note:

Code to Temperature mapping of the Temperature sensor is a piece wise linear curve. Any temperature, code faling between to 2 give temperatures can be linearly interpolated.

Code to Temperature mapping should be updated based on sillcon results.

20.5.3 User-Define Mode

- In user-define mode, the PD_DVDD and CHSEL_DVDD are generate by setting register TSADC_USER_CON, bit[3] and bit[2:0]. In order to ensure timing between PD_DVDD and CHSEL_DVDD, the CHSEL_DVDD must be set before the PD_DVDD.
- In user-define mode, you can choose the method to control the START_OF_CONVERSION by setting bit[4] of TSADC_USER_CON. If set to 0, the start_of_conversion will be assert after "inter_pd_soc" cycles, which could be set by bit[11:6] of TSADC_USER_CON. And if start_mode was set 1, the start_of_conversion will be controlled by bit[5] of TSADC USER CON.
- Software can get the four channel temperature from TSADC_DATAn (n=0,1,2,3).

20.5.4 Automatic Mode

You can use the automatic mode with the following step:

- Set TSADC_AUTO_PERIOD, configure the interleave between every two accessing of TSADC in normal operation.
- Set TSADC_AUTO_PERIOD_HT. configure the interleave between every two accessing of TSADC after the temperature is higher than COMP_SHUT or COMP_INT.
- Set TSADC_COMPn_INT(n=0,1), configure the high temperature level, if tsadc output is smaller than the value, means the temperature is high, tsadc_int will be asserted.
- Set TSADC_COMPn_SHUT(n=0,1), configure the super high temperature level, if tsadc output is smaller than the value, means the temperature is too high, TSHUT will be asserted.

- Set TSADC_INT_EN, you can enable the high temperature interrupt for all channel; and you can also set TSHUT output to gpio to reset the whole chip; and you can set TSHUT output to cru to reset the whole chip.
- Set TSADC_HIGHT_INT_DEBOUNCE and TSADC_HIGHT_TSHUT_DEBOUNCE, if the temperature is higher than COMP_INT or COMP_SHUT for "debounce" times, TSADC controller will generate interrupt or TSHUT.
- Set TSADC_AUTO_CON, enable the TSADC controller.

Chapter 21 GPIO

21.1 Overview

GPIO is a programmable General Purpose Programming I/O peripheral. This component is an APB slave device. GPIO controls the output data and direction of external I/O pads. It also can read back thedata on external pads using memory-mapped registers. GPIO supports the following features:

- 32 bits APB bus width
- 32 independently configurable signals
- Separate data registers and data direction registers for each signal
- Software control for each signal, or for each bit of each signal
- Configurable interrupt mode

21.2 Block Diagram

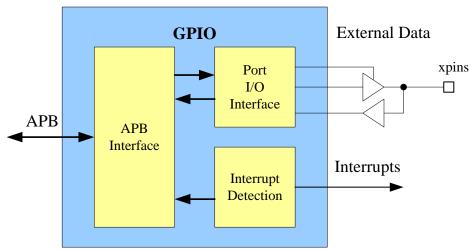


Fig. 21-1GPIO block diagram

Block descriptions:

APB Interface

The APB Interface implements the APB slave operation. Its data bus width is 32 bits.

Port I/O Interface

External data Interface to or from I/O pads.

Interrupt Detection

Interrupt interface to or from interrupt controller.

21.3 Function Description

21.3.1 Operation

Control Mode (software)

Under software control, the data and direction control for the signal aresourced from the data register (GPIO_SWPORTA_DR) and direction control register (GPIO_SWPORTA_DDR). The direction of the external I/O pad is controlled by a write to the Porta datadirection register (GPIO_SWPORTA_DDR). The data written to this memory-mapped register gets mapped onto an output signal, GPIO_PORTA_DDR, of the GPIO peripheral. This output signal controls the direction of an external I/O pad.

The data written to the Porta data register (GPIO_SWPORTA_DR) drives the output buffer of the I/O pad.External data are input on the external data signal, GPIO_EXT_PORTA. Reading the external signal register(GPIO_EXT_PORTA) shows the value on the signal, regardless of the direction. This register is read-only,meaning that it cannot be written from the APB software interface.

Reading External Signals

The data on the GPIO_EXT_PORTA external signal can always be read. The data on the

external GPIO signal is read by an APB read of the memory-mapped register, GPIO EXT PORTA.

An APB read to the GPIO_EXT_PORTA register yields a value equal to that which is on the GPIO_EXT_PORTA signal.

Interrupts

Port A can be programmed to accept external signals as interrupt sources on any of the bits of the signal. The type of interrupt is programmable with one of the following settings:

- Active-high and level
- Active-low and level
- Rising edge
- Falling edge
- Both the rising edge and the falling edge

The interrupts can be masked by programming the GPIO_INTMASK register. The interrupt status can be read before masking (called raw status) and after masking.

The interrupts are combined into a single interrupt output signal, which has the same polarity as the individual interrupts. In order to mask the combined interrupt, all individual interrupts have to be masked. The single combined interrupt does not have its own mask bit.

Whenever Port A is configured for interrupts, the data direction must be set to Input. If the data direction register is reprogrammed to Output, then any pending interrupts are not lost. However, no new interrupts are generated.

For edge-detected interrupts, the ISR can clear the interrupt by writing a 1 to the GPIO_PORTA_EOI register for the corresponding bit to disable the interrupt. This write also clears the interrupt status and raw status registers. Writing to the GPIO_PORTA_EOI register has no effect on level-sensitive interrupts. If level-sensitive interrupts cause the processor to interrupt, then the ISR can poll the GPIO_INT_RAWSTATUS register until the interrupt source disappears, or it can write to the GPIO_INTMASK register to mask the interrupt before exiting the ISR. If the ISR exits without masking or disabling the interrupt prior to exiting, then the level-sensitive interrupt repeatedly requests an interrupt until the interrupt is cleared at the source.

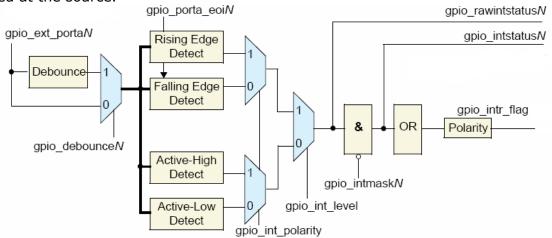


Fig. 21-2 GPIO Interrupt RTL Block Diagram

Debounce operation

Port A has been configured to include the debounce capability interrupt feature. The external signal can be debounced to remove any spurious glitches that are less than one period of the external debouncing clock.

When input interrupt signals are debounced using a debounce clock (pclk), the signals must be active for a minimum of two cycles of the debounce clock to guarantee that they are registered. Any input pulse widths less than a debounce clock period are bounced. A pulse width between one and two debounce clock widths may or may not propagate, depending on its phase relationship to the debounce clock. If the input pulse spans two rising edges of the debounce clock, it is registered. If it spans only one risingedge, it is not registered.

Synchronization of Interrupt Signals to the System Clock

Interrupt signals are internally synchronized to pclk. Synchronization topclk must occur for

edge-detect signals. With level-sensitive interrupts, synchronization is optional andunder software control (GPIO LS SYNC).

21.3.2 Programming

Programming Considerations

- Reading from an unused location or unused bits in a particular register always returns zeros. There is no error mechanism in the APB.
- Programming the GPIO registers for interrupt capability, edge-sensitive or levelsensitive interrupts, and interrupt polarity should be completed prior to enabling the interrupts on Port A inorder to prevent spurious glitches on the interrupt lines to the interrupt controller.
- Writing to the interrupt clear register clears an edge-detected interrupt and has no effect on alevel-sensitive interrupt.

GPIOs' hierarchy in the chip

GPIO0 is in PD_PMU subsystem, GPIO1/GPIO2/GPIO3 are in PD_BUS subsystem.

21.4 Register Description

This section describes the control/status registers of the design. Software should read and write these registers using 32-bits accesses. There are 4 GPIOs (GPIO0 \sim GPIO3), and each of them has same register group. Therefore, 4 GPIOs' register groups have 4 different base addresses.

21.4.1 Registers Summary

Name	Offset	Size	Reset Value	Description
GPIO SWPORTA DR	0x0000	W	0x00000000	Port A data register
GPIO SWPORTA DDR	0x0004	W	0x00000000	Port A data direction register
GPIO INTEN	0x0030	W	0x00000000	Interrupt enable register
GPIO INTMASK	0x0034	W	0x00000000	Interrupt mask register
GPIO INTTYPE LEVEL	0x0038	W	0x00000000	Interrupt level register
GPIO INT POLARITY	0x003c	W	0x00000000	Interrupt polarity register
GPIO INT STATUS	0x0040	W	0x00000000	Interrupt status of port A
GPIO_INT_RAWSTATUS	0x0044	W	0x00000000	Raw Interrupt status of port A
GPIO DEBOUNCE	0x0048	W	0x00000000	Debounce enable register
GPIO PORTA EOI	0x004c	W	0x00000000	Port A clear interrupt register
GPIO EXT PORTA	0x0050	W	0x00000000	Port A external port register
GPIO LS SYNC	0x0060	W	0x00000000	Level_sensitive synchronization enable register
GPIO_INT_BOTHEDGE	0x0068	W	0x00000000	Interrupt both edge type

Notes: <u>Size</u>: **B**- Byte (8 bits) access, **HW**- Half WORD (16 bits) access, **W**-WORD (32 bits) access

21.4.2 Detail Register Description

GPIO SWPORTA DR

Address: Operational Base + offset (0x0000)

Bit	Attr	Reset Value	Description
31:0	RW	0×00000000	gpio_swporta_dr Values written to this register are output on the I/O signals for Port A if the corresponding data direction bits for Port A are set to Output mode. The value read back is equal to the last value
			written to this register

GPIO SWPORTA DDR

Address: Operational Base + offset (0x0004)

Bit	Attr	Reset Value	Description
			gpio_swporta_ddr
			Values written to this register independently control the direction
31:0	RW	0x00000000	of the corresponding data bit in Port A.
			1'b0: Input (default)
			1'b1: Output

GPIO_INTEN

Address: Operational Base + offset (0x0030)

Bit	Attr	Reset Value	Description
			gpio_int_en Allows each bit of Port A to be configured for interrupts. Whenever a 1 is written to a bit of this register, it configures the corresponding bit on Port A to become an interrupt; otherwise,
31:0	RW	0x00000000	Port A operates as a normal GPIO signal. Interrupts are disabled on the corresponding bits of Port A if the corresponding data direction register is set to Output. 1'b0: Configure Port A bit as normal GPIO signal (default) 1'b1: Configure Port A bit as interrupt

GPIO_INTMASK

Address: Operational Base + offset (0x0034)

Bit	Attr	Reset Value	Description
31:1	RO	0x0	reserved
0	RW	0×0	gpio_int_mask Controls whether an interrupt on Port A can create an interrupt for the interrupt controller by not masking it. Whenever a 1 is written to a bit in this register, it masks the interrupt generation capability for this signal; otherwise interrupts are allowed through. 1'b0: Interrupt bits are unmasked (default) 1'b1: Mask interrupt

GPIO INTTYPE LEVEL

Address: Operational Base + offset (0x0038)

Bit	Attr	Reset Value	Description
31:1	RO	0x0	reserved
		W 0×0	gpio_inttype_level
	RW		Controls the type of interrupt that can occur on Port A.
U	KVV		1'b0: Level-sensitive (default)
			1'b1: Edge-sensitive

GPIO INT POLARITY

Address: Operational Base + offset (0x003c)

Bit	Attr	Reset Value	Description
			gpio_int_polarity Controls the polarity of edge or level sensitivity that can occur on
31:0	RW	0x00000000	input of Port A.
			1'b0: Active-low (default)
			1'b1: Active-high

GPIO INT STATUS

Address: Operational Base + offset (0x0040)

Bit	Attr	Reset Value	Description	
31:0	RO	11 1 2 1 11 11 11 11 11 11 11 11 1	gpio_int_status Interrupt status of Port A	

GPIO INT RAWSTATUS

Address: Operational Base + offset (0x0044)

Bit	Attr	Reset Value	Description
31.0	31'0 IRO 10X000000000 I	0×00000000	gpio_int_rawstatus
31.0		Raw interrupt of status of Port A (premasking bits)	

GPIO DEBOUNCE

Address: Operational Base + offset (0x0048)

Bit	Attr	Reset Value	Description
31:0	RW	0×00000000	gpio_debounce Controls whether an external signal that is the source of an interrupt needs to be debounced to remove any spurious glitches. Writing a 1 to a bit in this register enables the debouncing circuitry. A signal must be valid for two periods of an external clock before it is internally processed. 1'b0: No debounce (default) 1'b1: Enable debounce

GPIO PORTA EOI

Address: Operational Base + offset (0x004c)

Bit	Attr	Reset Value	Description
31:0	wo	0×00000000	gpio_porta_eoi Controls the clearing of edge type interrupts from Port A. When a 1 is written into a corresponding bit of this register, the interrupt is cleared. All interrupts are cleared when Port A is not configured for interrupts. 1'b0: No interrupt clear (default) 1'b1: Clear interrupt

GPIO EXT PORTA

Address: Operational Base + offset (0x0050)

Bit	Attr	Reset Value	Description
31:0	RW	0x00000000	gpio_ext_porta When Port A is configured as Input, then reading this location reads the values on the signal. When the data direction of Port A is set as Output, reading this location reads the data register for Port A

GPIO LS SYNC

Address: Operational Base + offset (0x0060)

Bit	Attr	Reset Value	Description
31:0	RW	0x00000000	gpio_ls_sync Writing a 1 to this register results in all level-sensitive interrupts being synchronized to pclk_intr. 1'b0: No synchronization to pclk_intr (default) 1'b1: Synchronize to pclk_intr

GPIO INT BOTHEDGE

Address: Operational Base + offset (0x0068)

Bit	Attr	Reset Value	Description
31:0	RW	0×00000000	interrupt_both_edge_type Controls the edge type of interrupt that can occur on Port A.Whenever a particular bit is programmed to 1, it enables the generation of interrupts on both the rising edge and the falling edge of an external input signal corresponding to that bit on port A.The values programmed in the registers gpio_intype_level and gpio_int_polarity for this particular bit are not considered when the corresponding bit of this register is set to 1. Whenever a particular bit is programmed to 0, the interrupt type depends on the value of the corresponding bits in the gpio_inttype_level and gpio_int_polarity registers

21.5 Interface Description

Table 21-1 GPIO interface description

Module Pin	Module Pin Dir		IOMUX Setting			
GPIO0 Interface						

Module Pin	Dir	Pad Name	IOMUX Setting					
gpio0_porta[7:0]	I/O	GPIO0_A[7:0]	PMUGRF_GPIO0A_IOMUX[15:0]=16'h0					
gpio0_porta[15:8]	I/O	GPIO0_B[7:0]	PMUGRF_GPIO0B_IOMUX[15:0]=16'h0					
gpio0_porta[23:16]	I/O	GPIO0_C[7:0]	PMUGRF_GPIO0C_IOMUX[15:0]=16'h0					
	GPIO1 Interface							
ania1 norta[7,0]	1/0	GPIO1_A[3:0]	GRF_GPIO1A_IOMUX_L[15:0]=16'h0					
gpio1_porta[7:0]	I/O	GPIO1_A[7:4]	GRF_GPIO1A_IOMUX_H[15:0]=16'h0					
gpio1_porta[15:8]	I/O	GPIO1_B[3:0]	GRF_GPIO1B_IOMUX_L[15:0]=16'h0					
gpio1_porta[15:8]	1/0	GPIO1_B[7:4]	GRF_GPIO1B_IOMUX_H[15:0]=16'h0					
gnio1 norta[22:16]	I/O	GPIO1_C[3:0]	GRF_GPIO1C_IOMUX_L[15:0]=16'h0					
gpio1_porta[23:16]	1/0	GPIO1_C[7:4]	GRF_GPIO1C_IOMUX_H[15:0]=16'h0					
anio1 norta[21,24]	I/O	GPIO1_D[3:0]	GRF_GPIO1D_IOMUX_L[15:0]=16'h0					
gpio1_porta[31:24]	1/0	GPIO1_D[7:4]	GRF_GPIO1D_IOMUX_H[15:0]=16'h0					
		GPIO2 Int	erface					
anio 2 norto [7,0]	I/O	GPIO2_A[3:0]	GRF_GPIO2A_IOMUX_L[15:0]=16'h0					
gpio2_porta[7:0]		GPIO2_A[7:4]	GRF_GPIO2A_IOMUX_H[15:0]=16'h					
anio 2 norto [15,0]	I/O	GPIO2_B[3:0]	GRF_GPIO2B_IOMUX_L[15:0]=16'h0					
gpio2_porta[15:8]	1/0	GPIO2_B[7:4]	GRF_GPIO2B_IOMUX_H[15:0]=16'h0					
anio 2 norto [22,16]	I/O	GPIO2_C[3:0]	GRF_GPIO2C_IOMUX_L[15:0]=16'h0					
gpio2_porta[23:16]	1/0	GPIO2_C[7:4]	GRF_GPIO2C_IOMUX_H[15:0]=16'h0					
gpio2_porta[31:24]	I/O	GPIO2_D[3:0]	GRF_GPIO2D_IOMUX_L[15:0]=16'h0					
gpi02_porta[31.24]	1/0	GPIO2_D[7:4]	GRF_GPIO2D_IOMUX_H[15:0]=16'h0					
		GPIO3 Int	erface					
gpio3_porta[7:0]	I/O	GPIO3_A[3:0]	GRF_GPIO3A_IOMUX_L[15:0]=16'h0					
gpios_porta[7.0]	1/0	GPIO3_A[7:4]	GRF_GPIO3A_IOMUX_H[15:0]=16'h0					
gpio3_porta[15:8]	I/O	GPIO3_B[3:0]	GRF_GPIO3B_IOMUX_L[15:0]=16'h0					
gpios_porta[13.6]	1/0	GPIO3_B[7:4]	GRF_GPIO3B_IOMUX_H[15:0]=16'h0					
gpio3_porta[23:16]	I/O	GPIO3_C[3:0]	GRF_GPIO3C_IOMUX_L[15:0]=16'h0					
gpios_poita[23.10]	1/0	GPIO3_C[7:4]	GRF_GPIO3C_IOMUX_H[15:0]=16'h0					
gpio3_porta[31:24]	1/0	GPIO3_D[3:0]	GRF_GPIO3D_IOMUX_L[15:0]=16'h0					
gpios_porta[31,24]	I/O	GPIO3_D[7:4]	GRF_GPIO3D_IOMUX_H[15:0]=16'h0					

21.6 Application Notes

- Steps to set GPIO's direction
 Write GPIO_SWPORT_DDR[x] as 1 to set this gpio as output direction and Write GPIO_SWPORT_DDR[x] as 0 to set this gpio as input direction.
- Default GPIO's direction is input direction.

Steps to set GPIO's level

- Write GPIO_SWPORT_DDR[x] as 1 to set this gpio as output direction. Write GPIO_SWPORT_DR[x] as v to set this GPIO's value.

Steps to get GPIO's level

- Write GPIO_SWPORT_DDR[x] as 0 to set this gpio as input direction. Read from GPIO_EXT_PORT[x] to get GPIO's value

- Steps to set GPIO as interrupt source
 Write GPIO_SWPORT_DDR[x] as 0 to set this gpio as input direction.
 Write GPIO_INTTYPE_LEVEL[x] as v1 and write GPIO_INT_POLARITY[x] as v2 to set
- interrupt type Write GPIO_INTEN[x] as 1 to enable GPIO's interrupt

Note: Please switch iomux to GPIO mode first!

Chapter 22 I2S/PCM Controller

22.1 Overview

The I2S/PCM controller is designed for interfacing between the AHB bus and the I2S bus. The I2S bus (Inter-IC sound bus) is a serial link for digital audio data transfer between devices in the system and be invented by Philips Semiconductor. Now it is widely used by many semiconductor manufacturers.

Devices often use the I2S bus are ADC, DAC, DSP, CPU, etc. With the I2S interface, we can connect audio devices and the embedded SoC platform together and provide an audio interface solution for the system.

Not only I2S but also PCM mode surround audio output and stereo input are supported in I2S/PCM controller.

There are two 2 channel I2S/PCM controllers embedded in the design, I2S1 and I2S2. Common features for I2S1 and I2S2 are as follows.

- Support AHB bus interface
- Support 16 ~ 32 bits audio data transfer
- Support master and slave mode
- Support DMA handshake interface and configurable DMA water level
- Support transmit FIFO empty, underflow, receive FIFO full, overflow interrupt and all interrupts can be masked
- Support configurable water level of transmit FIFO empty and receive FIFO full interrupt
- Support combine interrupt output
- Support 2 channels audio receiving in PCM mode
- Support I2S normal, left and right justified mode serial audio data transfer
- Support PCM early, late1, late2, late3 mode serial audio data transfer
- Support MSB or LSB first serial audio data transfer
- Support 16 to 31 bit audio data left or right justified in 32-bit wide FIFO
- Support two 16-bit audio data store together in one 32-bit wide location
- Support single LRCK for transmitting and receiving data if the sample rate are the same
- Support configurable SCLK and LRCK polarity

22.2 Block Diagram

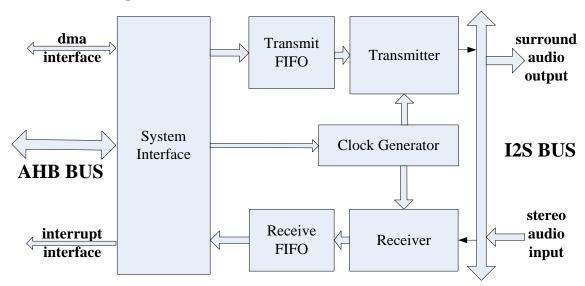


Fig.22-1 I2S/PCM controller (2 channel) Block Diagram

System Interface

The system interface implements the AHB slave operation. It contains not only control registers of transmitter and receiver inside but also interrupt and DMA handshake interface.

Clock Generator

The Clock Generator implements clock generation function. The input source clock to the

module is MCLK_I2S, and by the divider of the module, the clock generator generates SCLK and LRCK to transmitter and receiver.

Transmitter

The Transmitter implements transmission operation. The transmitter can act as either master or slave, with I2S or PCM mode surround serial audio interface.

Receiver

The Receiver implements receive operation. The receiver can act as either master or slave, with I2S or PCM mode stereo serial audio interface.

Transmit FIFO

The Transmit FIFO is the buffer to store transmitted audio data. The size of the FIFO is 32bits x 32.

Receive FIFO

The Receive FIFO is the buffer to store received audio data. The size of the FIFO is 32bits x 32.

22.3 Function description

In the I2S/PCM controller, there are four conditions: transmitter-master & receiver-master; transmitter-master & receiver-slave; transmitter-slave & receiver-master; transmitter-slave & receiver-master; transmitter-slave & receiver-master; transmitter-slave & receiver-master.

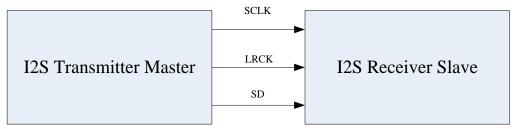


Fig.22-2 I2S transmitter-master & receiver-slave condition

When transmitter acts as a master, it sends all signals to receiver (slave), and CPU control when to send clock and data to the receiver. When acting as a slave, SD signal still goes from transmitter to receiver, but SCLK and LRCK signals are from receiver (master) to transmitter. Based on three interface specifications, transmitting data should be ready before transmitter receives SCLK and LRCK signals. CPU should know when the receiver to initialize a transaction and when to send data.

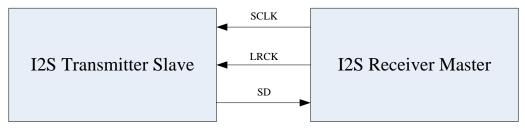


Fig.22-3 I2S transmitter-slave& receiver-master condition

When the receiver acts as a master, it sends SCLK and LRCK signals to the transmitter (slave) and receives serial data. So CPU must tell the transmitter when to start a transaction for it to prepare transmitting data then the receiver start a transfer and send clock and channel-select signals. When the receiver acts as a slave, CPU should only do initial setting and wait for all signals and then start reading data.

Before transmitting or receiving data, CPU need do initial setting to the I2S register. These includes CPU settings, I2S interface registers settings, and maybe the embedded SoC platform settings. These registers must be set before starting data transfer.

22.3.1 I2S normal mode

This is the waveform of I2S normal mode. For LRCK (i2s_lrck_rx/i2s_lrck_tx) signal, it goes low to indicate left channel and high to right channel. For SD (i2s_sdo, i2s_sdi) signal, it transfers MSB or LSB first and sends the first bit one SCLK clock cycle after LRCK changes. The range of SD signal width is from 16 to 32bits.

Fig.22-4 I2S normal mode timing format

22.3.2 I2S left justified mode

This is the waveform of I2S left justified mode. For LRCK (i2s_lrck_rx / i2s_lrck_tx) signal, it goes high to indicate left channel and low to right channel. For SD (i2s_sdo, i2s_sdi) signal, it transfers MSB or LSB first and sends the first bit at the same time when LRCK changes. The range of SD signal width is from 16 to 32bits.

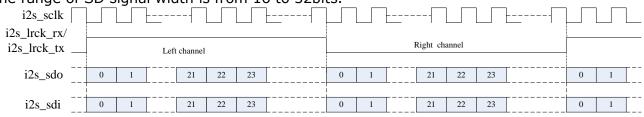


Fig.22-5 I2S left justified mode timing format

22.3.3 I2S right justified mode

This is the waveform of I2S right justified mode. For LRCK (i2s_lrck_rx / i2s_lrck_tx) signal, it goes high to indicate left channel and low to right channel. For SD (i2s_sdo, i2s_sdi) signal, it transfers MSB or LSB first; but different from I2S normal or left justified mode, its data is aligned to last bit at the edge of the LRCK signal. The range of SD signal width is from 16 to 32bits.

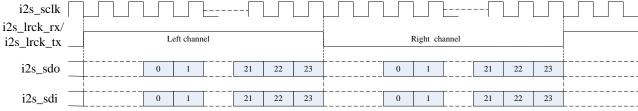


Fig.22-6 I2S right justified modetiming format

22.3.4 PCM early mode

This is the waveform of PCM early mode. For LRCK (i2s_lrck_rx / i2s_lrck_tx) signal, it goes high to indicate the start of a group of audio channels. For SD (i2s_sdo, i2s_sdi) signal, it transfers MSB or LSB first and sends the first bit at the same time when LRCK goes high. The range of SD signal width is from 16 to 32bits.

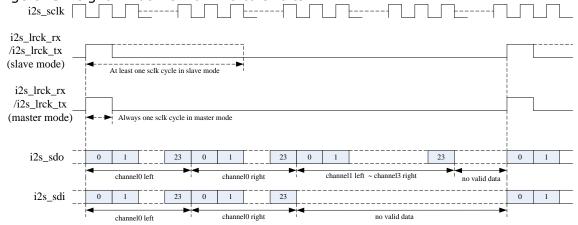


Fig.22-7 PCM early modetiming format

22.3.5 PCM late1 mode

This is the waveform of PCM late1 mode. For LRCK (i2s_lrck_rx / i2s_lrck_tx) signal, it goes high to indicate the start of a group of audio channels. For SD (i2s_sdo, i2s_sdi) signal, it transfers MSB or LSB first and sends the first bit one SCLK clock cycle after LRCK goes high.

Fig.22-8 PCM late1 modetiming format

channel0 right

22.3.6 PCM late2 mode

i2s_sdi

1

This is the waveform of PCM late2 mode. For LRCK (i2s_lrck_rx / i2s_lrck_tx) signal, it goes high to indicate the start of a group of audio channels. For SD (i2s_sdo, i2s_sdi) signal, it transfers MSB or LSB first and sends the first bit two SCLK clock cycles after LRCK goes high. The range of SD signal width is from 16 to 32bits.

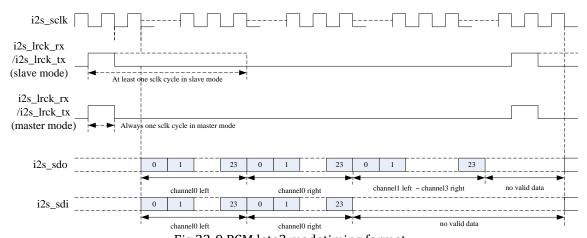


Fig.22-9 PCM late2 modetiming format

22.3.7 PCM late3 mode

This is the waveform of PCM late3 mode. For LRCK (i2s_lrck_rx / i2s_lrck_tx) signal, it goes high to indicate the start of a group of audio channels. For SD (i2s_sdo, i2s_sdi) signal, it transfers MSB or LSB first and sends the first bit three SCLK clock cycles after LRCK goes high. The range of SD signal width is from 16 to 32bits.

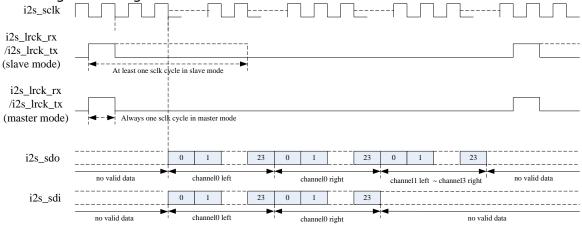


Fig.22-10 PCM late3 modetiming format

22.4 Register Description

This section describes the control/status registers of the design.

0

no valid data

22.4.1 Registers Summary

Name	Offset	Size	Reset	Description
			Value	-
I2S TXCR	0x0000	W	0x0000000f	Transmit operation control
				register.
I2S RXCR	0x0004	W	0x0000000f	Receive operation control register
I2S_CKR	0x0008	W	0x00071f00	Clock generation register
I2S TXFIFOLR	0x000c	W	0x00000000	TX FIFO level register
I2S DMACR	0x0010	W	0x001f0000	DMA control register
I2S_INTCR	0x0014	W	0x00000000	Interrupt control register
I2S INTSR	0x0018	W	0x00000000	Interrupt status register
I2S XFER	0x001c	W	0x00000000	Transfer Start Register
I2S_CLR	0x0020	W	0x00000000	Sclk domain logic clear Register
I2S TXDR	0x0024	W	0x00000000	Transmit FIFO Data Register
I2S_RXDR	0x0028	W	0x00000000	Receive FIFO Data Register
I2S RXFIFOLR	0x002c	W	0x00000000	RX FIFO level register
I2S VER	0x0030	W	0x20150001	Version

Notes: <u>Size</u>: **B**- Byte (8 bits) access, **HW**- Half WORD (16 bits) access, **W**-WORD (32 bits) access

22.4.2 Detail Register Description I2S TXCR

Address: Operational Base + offset (0x0000)

Bit	Attr	Reset Value	Description
31:23	RO	0x0	reserved
22:17	RW	0×00	RCNT (Can be written only when XFER[0] bit is 0.) Only valid in I2S Right justified format and slave tx mode is selected. Start to transmit data RCNT sclk cycles after left channel valid.
16:15	RW	0×0	TCSR 2'b00:two channel 2'b01~2'b11: reserved
14	RW	0x0	HWT (Can be written only when XFER[0] bit is 0.) Only valid when VDW select 16bit data. 0: 32 bit data valid from AHB/APB bus. Low 16 bit for left channel and high 16 bit for right channel. 1: low 16bit data valid from AHB/APB bus, high 16 bit data invalid.
13	RO	0x0	reserved

Bit	Attr	Reset Value	Description
12	RW	0×0	SJM Store justified mode (Can be written only when XFER[1] bit is 0.) 16bit~31bit DATA stored in 32 bits width fifo. This bit is invalid if VDW select 16bit data and HWT select 0, Because every fifo unit contain two 16bit data and 32 bit space is full, it is impossible to choose justified mode. 0: right justified 1: left justified
11	RW	0×0	FBM (Can be written only when XFER[0] bit is 0.) 0: MSB 1: LSB
10:9	RW	0x0	IBM (Can be written only when XFER[0] bit is 0.) 0: I2S normal 1: I2S Left justified 2: I2S Right justified 3: reserved
8:7	RW	0×0	PBM (Can be written only when XFER[0] bit is 0.) 0: PCM no delay mode 1: PCM delay 1 mode 2: PCM delay 2 mode 3: PCM delay 3 mode
6	RO	0×0	reserved
5	RW	0×0	TFS (Can be written only when XFER[0] bit is 0.) 0: I2S format 1: PCM format
4:0	RW	0x0f	VDW (Can be written only when XFER[0] bit is 0.) 0~14: reserved 15: 16bit 16: 17bit 17: 18bit 18: 19bit n: (n+1)bit 28: 29bit 29: 30bit 30: 31bit 31: 32bit

I2S RXCR

Address: Operational Base + offset (0x0004)

Bit		Reset Value	Description
31:17	RO	0x0	reserved
			RCSR
16:15	RW	0x0	2'b00:two channel
			2'b01~2'b11: reserved
			HWT
			(Can be written only when XFER[1] bit is 0.)
			Only valid when VDW select 16bit data.
14	RW	0x0	0: 32 bit data valid to AHB/APB bus. Low 16 bit for left channel
			and high 16 bit for right channel.
			1: low 16bit data valid to AHB/APB bus, high 16 bit data invalid.
13	RO	0x0	reserved
			SJM
			(Can be written only when XFER[1] bit is 0.)
			16bit~31bit DATA stored in 32 bits width fifo.
1.2	DW	0.40	If VDW select 16bit data, this bit is valid only when HWT select
12	RW	0×0	0.Because if HWT is 1, every fifo unit contain two 16bit data and
			32 bit space is full, it is impossible to choose justified mode.
			0: right justified
			1: left justified
			FBM
11	RW	0×0	(Can be written only when XFER[1] bit is 0.)
		OXO .	0: MSB
			1: LSB
			IBM
			(Can be written only when XFER[1] bit is 0.)
10:9	RW	W 0x0	0: I2S normal
			1: I2S Left justified
			2: I2S Right justified
			3: reserved
			PBM (Can be written only when YEED[1] bit is 0.)
			(Can be written only when XFER[1] bit is 0.) 0: PCM no delay mode
8:7	RW	0x0	1: PCM delay 1 mode
			2: PCM delay 2 mode
			3: PCM delay 3 mode
6	RO	0x0	reserved
	110		TFS
			(Can be written only when XFER[1] bit is 0.)
5	RW	W 0x0	0: i2s
			1: pcm
<u> </u>	1	I	r

Bit	Attr	Reset Value	Description
			VDW
			(Can be written only when XFER[1] bit is 0.)
			0~14:reserved
			15: 16bit
		0×0f	16: 17bit
			17: 18bit
4:0	RW		18: 19bit
4.0	KVV	OXOI	
			n: (n+1)bit
			28: 29bit
			29: 30bit
			30: 31bit
			31: 32bit

I2S CKR

Address: Operational Base + offset (0x0008)

Bit	Attr	Reset Value	Description
31:30	RO	0x0	reserved
			TRCM
			2'b00/2'b11: tx_lrck/rx_lrck are used as synchronous signal for
29:28	RW	0x0	TX /RX respectively.
			2'b01: only tx_lrck is used as synchronous signal for TX and RX.
			2'b10: only rx_lrck is used as synchronous signal for TX and RX.
			MSS
27	RW	0×0	(Can be written only when XFER[1] or XFER[0] bit is 0.)
27	IXVV	UXU	0: master mode(sclk output)
			1: slave mode(sclk input)
		0x0	CKP
26	RW		(Can be written only when XFER[1] or XFER[0] bit is 0.)
20	IXVV		0: sample data at posedge sclk and drive data at negedge sclk
			1: sample data at negedge sclk and drive data at posedge sclk
			RLP
			(Can be written only when XFER[1] or XFER[0] bit is 0.)
			0: normal polarity
			(I2S normal: low for left channel, high for right channel
25	RW	0x0	I2S left/right just: high for left channel, low for right channel
			PCM start signal: high valid)
			1:oppsite polarity
			(I2S normal: high for left channel, low for right channel
			I2S left/right just: low for left channel, high for right channel
			PCM start signal: low valid)

Bit	Attr	Reset Value	Description
			TLP
			(Can be written only when XFER[1] or XFER[0] bit is 0.)
			0: normal polarity
			(I2S normal: low for left channel, high for right channel
			I2S left/right just: high for left channel, low for right channel
24	RW	0x0	PCM start signal: high valid)
			1: oppsite polarity
			(I2S normal: high for left channel, low for right channel
			I2S left/right just: low for left channel, high for right channel
			PCM start signal: low valid)
			MDIV
			(Can be written only when XFER[1] or XFER[0] bit is 0.)
23:16	RW	0x00	Serial Clock Divider = (Fmclk / Ftxsclk)-1. That is (mclk frequecy
			/ txsclk frequecy)-1.
			RSD
			(Can be written only when XFER[1] or XFER[0] bit is 0.)
			Receive sclk divider= Fsclk/Frxlrck
			0~30:reserved
		0x1f	31: 32fs
			32: 33fs
	RW		33: 34fs
15:8			34: 35fs
			n: (n+1)fs
			253: 254fs
			254: 255fs
			255: 256fs
			TSD
			(Can be written only when XFER[1] or XFER[0] bit is 0.)
			Transmit sclk divider=Ftxsclk/Ftxlrck
			0~30:reserved
			31: 32fs
			32: 33fs
			33: 34fs
7:0	RW	0x00	34: 35fs
			n: (n+1)fs
			253: 254fs
			254: 255fs
			255: 256fs

I2S_TXFIFOLR

Address: Operational Base + offset (0x000c)

Bit	Attr	Reset Value	Description
31:6	RO	0x0	reserved
5:0	RO	0×00	TFL0 Contains the number of valid data entries in the transmit FIFO.

I2S DMACR

Address: Operational Base + offset (0x0010)

Bit	Attr	Reset Value	Description		
31:25	RO	0x0	reserved		
			RDE		
24	RW	0x0	O: Receive DMA disabled		
			1 : Receive DMA enabled		
23:21	RO	0x0	reserved		
			RDL		
			This bit field controls the level at which a DMA request is made		
20:16	RW	0x1f	by the receive logic. The watermark level = DMARDL+1; that is,		
			dma_rx_req is generated when the number of valid data entries		
			in the receive FIFO is equal to or above this field value + 1.		
15:9	RO	0x0	reserved		
			TDE		
8	RW	0x0	0 : Transmit DMA disabled		
			1 : Transmit DMA enabled		
7:5	RO	0x0	reserved		
			TDL		
			This bit field controls the level at which a DMA request is made by		
		the transmit logic. It is equal to the watermark level; that is, the			
		dma_tx_req signal is generated when the number of valid data			
			entries in the TXFIFO is equal to or below this field value.		

I2S_INTCR

Address: Operational Base + offset (0x0014)

Bit	Attr	Reset Value	Description			
31:25	RO	0x0	reserved			
			RFT			
24:20	RW	0x00	When the number of receive FIFO entries is more than or equal to			
			this threshold plus 1, the receive FIFO full interrupt is triggered.			
19	RO	0x0	reserved			
18	WO	0x0	RXOIC			
10	WO		Write 1 to clear RX overrun interrupt.			
			RXOIE			
17	RW	W 0x0	0: disable			
			1: enable			
			RXFIE			
16	RW	/ 0x0	0: disable			
			1: enable			

Bit	Attr	Reset Value	Description			
15:9	RO	0x0	reserved			
			TFT			
8:4	RW	0x00	When the number of transmit FIFO entries is less than or equal to			
			this threshold, the transmit FIFO empty interrupt is triggered.			
3	RO	0x0	reserved			
2	WO	00	TXUIC			
2	WO 0x0		Write 1 to clear TX underrun interrupt.			
			TXUIE			
1	RW	W 0x0	0: disable			
			1: enable			
			TXEIE			
0	RW	0x0	0: disable			
			1: enable			

I2S_INTSR

Address: Operational Base + offset (0x0018)

Bit	Attr	Reset Value	Description
31:18	RO	0x0	reserved
			RXOI
17	RO	0x0	0: inactive
			1: active
			RXFI
16	RO	0x0	0: inactive
			1: active
15:2	RO	0x0	reserved
			TXUI
1	RO	0x0	0: inactive
			1: active
			TXEI
0	RO	0x0	0: inactive
			1: active

I2S XFER

Address: Operational Base + offset (0x001c)

Bit	Attr	Reset Value	Description		
31:2	RO	0x0	reserved		
			RXS		
1	RW	0x0	0: stop RX transfer.		
			1: start RX transfer		
			TXS		
0	RW	0x0	0: stop TX transfer.		
			1: start TX transfer		

I2S CLR

Address: Operational Base + offset (0x0020)

Bit	Attr	Reset Value	Description			
31:2	RO	0x0	reserved			
1	DW	0x0	RXC			
1	RW		This is a self cleared bit. Write 1 to clear all receive logic.			
	0 RW	0.40	TXC			
U		/ 0×0	This is a self cleared bit. Write 1 to clear all transmit logic.			

I2S TXDR

Address: Operational Base + offset (0x0024)

Bit	Attr	Reset Value	Description		
31:0	WO	0x00000000	TXDR		
31.0	VVO		When it is written to, data are moved into the transmit FIFO.		

I2S RXDR

Address: Operational Base + offset (0x0028)

Bit	Attr	Reset Value	Description	
31:0	RO	0x00000000	RXDR When the register is read, data in the receive FIFO is accessed.	

I2S_RXFIFOLR

Address: Operational Base + offset (0x002c)

Bit	Attr	Reset Value	Description	
31:6	RO	0x0	reserved	
5.0	10 PW 0500		RFL0	
5:0 RW		0x00	Contains the number of valid data entries in the receive FIFO.	

I2S_VER

Address: Operational Base + offset (0x0030)

Bit	Attr	Reset Value		-	D	escription	
31:0	RW	0x20150001	VER				
31.0	KVV	0X20130001	Version of	I2S.			

22.5 Interface Description

Table 22-1 I2S Interface Description

Module Pin	Direction	Pad Name	IOMUX Setting			
		Interface for i2s1				
i2s1_mclk	I/O	IO_I2S12ch_mclk_GPIO2C3vccio5	GRF_GPIO2C_IOMUX_L[14:12] =3'b001			
i2s1_sclk	I/O	IO_I2S12ch_sclk_ GPIO2C2vccio5	GRF_GPIO2C_IOMUX_L[10:8] =3'b001			
i2s1_lrck	I/O	IO_I2S12ch_lrck_ GPIO2C1vccio5	GRF_GPIO2C_IOMUX_L[6:4] =3'b001			
i2s1_sdo	0	IO_I2S12ch_sdo_ GPIO2C4vccio5	GRF_GPIO2C_IOMUX_H[2:0] =3'b001			
i2s1_sdi	I	IO_I2S12ch_sdi_PDMsdi0m1_GPIO2C5v ccio5	GRF_GPIO2C_IOMUX_H[6:4] =3'b001			
	Interface for i2s2					
i2s2_mclk	I/O	IO_LCDChsyncm0_I2S22ch_mclk_CIFd0	GRF_GPIO3A_IOMUX_L[6:4]			

Module Pin	Direction	Pad Name	IOMUX Setting
		m1_UART5rx_GPIO3A1vccio4	=3'b010
i2s2_sclk	I/O	IO_LCDCvsyncm0_I2S22ch_sclk_CIFd1 m1_UART5tx_GPIO3A2vccio4	GRF_GPIO3A_IOMUX_L[10:8] =3'b010
i2s2_lrck	I/O	IO_LCDCdenm0_I2S22ch_lrck_CIFd2m1 _UART5cts_GPIO3A3vccio4	GRF_GPIO3A_IOMUX_L[14:12] =3'b010
i2s2_sdi	I	IO_LCDCd1m0_I2S22ch_sdi_CIFd3m1_ UART5rts_GPIO3A5vccio4	GRF_GPIO3A_IOMUX_H[6:4] =3'b010
i2s2_sdo	0	IO_LCDCd3m0_I2S22ch_sdo_CIFd4m1 _GPIO3A7vccio4	GRF_GPIO3A_IOMUX_H[14:12] =3'b010

Notes: I=input, O=output, I/O=input/output, bidirectional

There is a requirement that the sample rate of I2S1 be the same if TX and RX work at the same time. In this situation, i2s1_lrck is driven by i2s1_lrck_tx or i2s1_lrck_rx by configuring GRF_IOFUNC_SEL0[0]. If GRF_IOFUNC_SEL0[0]=0, the i2s1_lrck_rx is connected to i2s1_lrck. Otherwise the i2s1_lrck_tx is connected to i2s1_lrck. The same situation applies to I2S2. In this situation, i2s2_lrck is driven by i2s2_lrck_tx or i2s2_lrck_rx by configuring GRF_IOFUNC_SEL0[1]. If GRF_IOFUNC_SEL0[1]=0, the i2s2_lrck_rx is connected to i2s2_lrck. Otherwise the i2s2_lrck_tx is connected to i2s2_lrck.

22.6 Application Notes

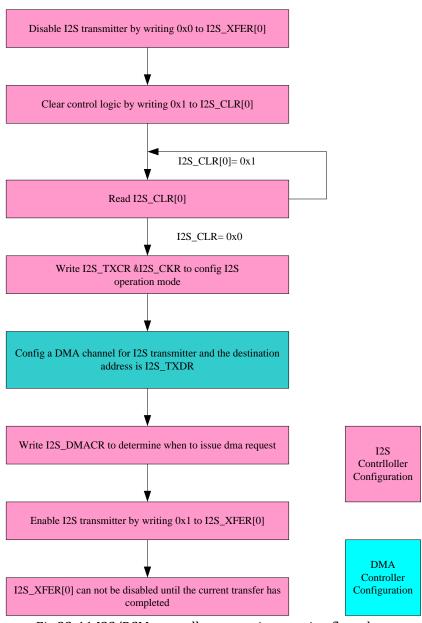


Fig.22-11 I2S/PCM controller transmit operation flow chart

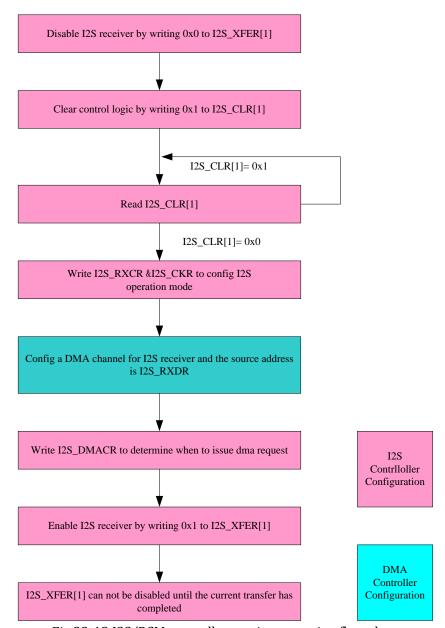


Fig.22-12 I2S/PCM controller receive operation flow chart

Chapter 23 I2S 8-channel

23.1 Overview

The I2S/PCM/TDM controller is designed for interfacing between the AHB bus and the I2S bus.

The I2S bus (Inter-IC sound bus) is a serial link for digital audio data transfer between devices in the system and is invented by Philips Semiconductor. Now it is widely used by many semiconductor manufacturers.

I2S bus is widely used in the devices such as ADC, DAC, DSP, CPU, etc. With the I2S interface, we can connect audio devices and the embedded SoC platform together and provide an audio interface solution for the system.

23.1.1 Features

The I2S/PCM/TDM controller supports I2S,PCM and TDM mode stereo audio output and input.

- Support eight internal 32-bit wide and 32-location deep FIFOs, four for transmitting and the other for receiving audio data
- Support AHB bus interface
- Support 16 ~ 32 bits audio data transfer
- Support master and slave mode
- Support DMA handshaking interface and configurable DMA water level
- Support transmit FIFO empty, underflow, receive FIFO full, overflow interrupt and all interrupts can be masked
- Support configurable water level of transmit FIFO empty and receive FIFO full interrupt
- Support combined interrupt output
- Support 8-channel audio transmitting in I2S/TDM mode and 2-channelin PCM mode.
- Support 8-channel audio receiving in I2S/TDMmode and 2 channel in PCM mode
- Support up to 192kHz sample rate
- Support I2S normal, left and right justified mode serial audio data transfer
- Support PCM early, late1, late2, late3 mode serial audio data transfer
- Support TDM normal,1/2 cycle left shift ,1 cycle left shift,2 cycle left shift, right shift mode serial audio data transfer.
- Support MSB or LSB first serial audio data transfer
- Support 16 to 31 bit audio data left or right justified in 32-bit wide FIFO
- Support two 16-bit audio data store together in one 32-bit wide location
- Support 2 independent LRCK signals, one for receiving and the other for transmitting audio data. Single LRCK can be used for transmitting and receiving data if the sample rate are the same
- Support configurable SCLK and LRCK polarity
- Support TDM programmable slot bit width: 16~32bits
- Support TDM programmable frame width: 32~512bits
- Support TDM programmable FSYNC width
- Support SDI,SDO IOMUX.

23.2 Block Diagram

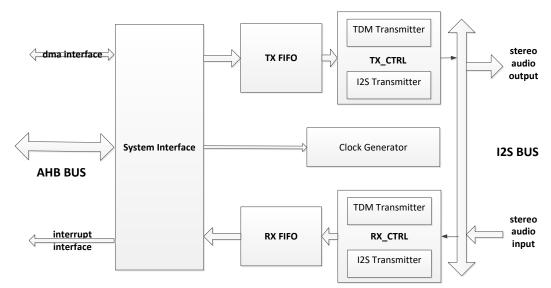


Fig.23-1I2S/PCM/TDM controller (8 channel) Block Diagram

System Interface

The system interface implements the AHB slave operation. It contains not only control registers of transmitters and receiver inside but also interrupt and DMA handshaking interface.

Clock Generator

The Clock Generator implements clock generation function. The input source clock to the module is MCLK_I2S, and by the divider of the module, the clock generator generates SCLK and LRCK to transmitter and receiver.

Transmitters

The Transmitters implement transmission operation. The transmitters can act as either a master or a slave, with I2S, PCM or TDM mode surround serial audio interface.

Receiver

The Receiver implements receive operation. The receiver can act as either a master or a slave, with I2S, PCM or TDM mode stereo serial audio interface.

Transmit FIFO

The Transmit FIFO is the buffer to store transmitted audio data. The size of the FIFO is 32bits x 32.

Receive FIFO

The Receive FIFO is the buffer to store received audio data. The size of the FIFO is 32bits x 32.

23.3 Function description

In the I2S/PCM/TDM controller, there are four types: transmitter-master & receiver-master; transmitter-master & receiver-slave; transmitter-slave & receiver-master; transmitter-slave & receiver-slave.

In broadcasting application, the I2S/PCM/TDM controller is used as a transmitter and external or internal audio CODEC is used as a receiver. In recording application, the I2S/PCM/TDM controller is used as a receiver and external or internal audio CODEC is used as a transmitter. Either the I2S/PCM/TDM controller or the audio CODEC can act as a master

or a slave, but if one is master, the other must be slave.

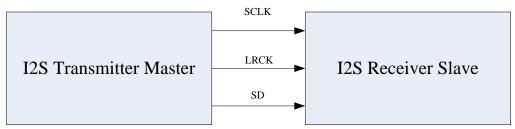


Fig.23-2I2S transmitter-master & receiver-slave condition

When the transmitter acts as a master, it sends all signals to thereceiver (the slave), and CPU controls when to send clock and data to the receiver. When acts as a slave, SD signal still goes from transmitter to receiver, but SCLK and LRCK signals are from the receiver (the master) to the transmitter. Based on three interface specifications, transmitting data should be ready before transmitter receives SCLK and LRCK signals. CPU should know when the receiver to initialize a transaction and when the transmitterto send data.

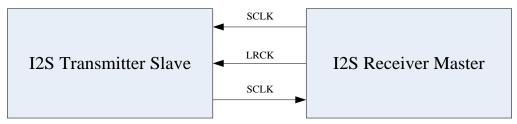


Fig.23-3I2S transmitter-slave & receiver-master condition

When the receiver acts as a master, it sends SCLK and LRCK signals to the transmitter (the slave) and receives serial data. So CPU must tell the transmitter when to start a transaction for it to prepare transmitting data then start a transfer and send clock and channel-select signals. When the receiver acts as a slave, CPU should only do initial setting and wait for all signals and then start reading data.

Before transmitting or receiving data, CPU need do initial setting to the I2S register. These includes CPU settings, I2S interface registers settings, and maybe the embedded SoC platform settings. These registers must be set before starting data transfer.

23.3.1 I2S normal mode

This is the waveform of I2S normal mode. For LRCK (i2s1_lrck_rx/i2s1_lrck_tx) signal, it goes low to indicate left channel and high to right channel. For SD (i2s1_sdo, i2s1_sdi) signal, it starts sending the first bit (MSB or LSB) one SCLK clock cycle after LRCK changes. The range of SD signal width is from 16 to 32bits.

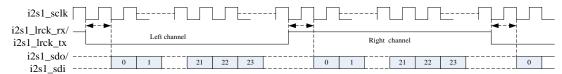


Fig.23-4I2S normal mode timing format

23.3.2 I2S left justified mode

This is the waveform of I2S left justified mode. For LRCK (i2s1_lrck_rx / i2s1_lrck_tx) signal, it goes high to indicate left channel and low to right channel. For SD (i2s1_sdo, i2s1_sdi) signal, it starts sending the first bit (MSB or LSB) at the same time when LRCK changes. The range of SD signal width is from 16 to 32bits.

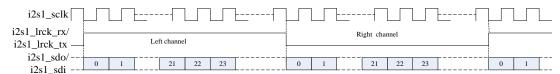


Fig.23-5I2S left justified mode timing format

23.3.3 I2S right justified mode

This is the waveform of I2S right justified mode. For LRCK (i2s1_lrck_rx/ i2s1_lrck_tx) signal, it goes high to indicate left channel and low to right channel. For SD (i2s1_sdo, i2s1_sdi) signal, it transfers MSB or LSB first; but what is different from I2S normal or left justified mode, the last bit of the transferred data is aligned to the transition edge of the LRCK signal while one bit is transferred at one SCLK cycle. The range of SD signal width is from 16 to 32bits.

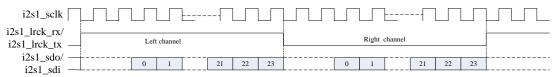


Fig.23-6I2S right justified mode timing format

23.3.4 PCM early mode

This is the waveform of PCM early mode. For LRCK (i2s1_lrck_rx/i2s1_lrck_tx) signal, it goes high to indicate the start of a group of audio channels. For SD (i2s1_sdo, i2s1_sdi) signal, it sends the first bit (MSB or LSB) at the same time when LRCK goes high. The range of SD signal width is from 16 to 32bits.

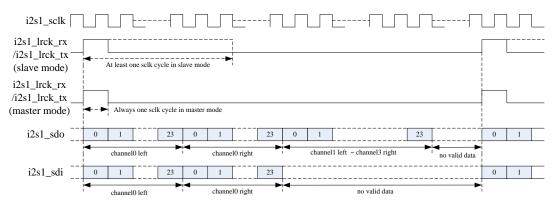


Fig.23-7PCM early mode timing format

23.3.5 PCM late1 mode

This is the waveform of PCM early mode. For LRCK (i2s1_lrck_rx/i2s1_lrck_tx) signal, it goes high to indicate the start of a group of audio channels. For SD (i2s1_sdo, i2s1_sdi) signal, it sends the first bit (MSB or LSB) one SCLK clock cycle after LRCK goes high. The range of SD signal width is from 16 to 32bits.

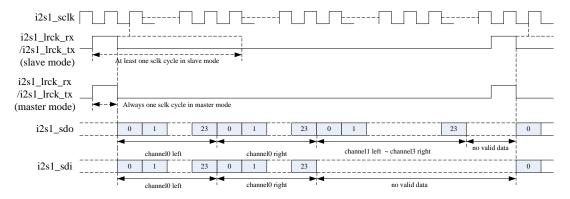


Fig.23-8PCM late1 mode timing format

23.3.6 PCM late2 mode

This is the waveform of PCM early mode. For LRCK (i2s1_lrck_rx/i2s1_lrck_tx) signal, it goes high to indicate the start of a group of audio channels. For SD (i2s1_sdo, i2s1_sdi) signal, it sends the first bit (MSB or LSB)two SCLK clock cycles after LRCK goes high. The range of SD signal width is from 16 to 32bits.

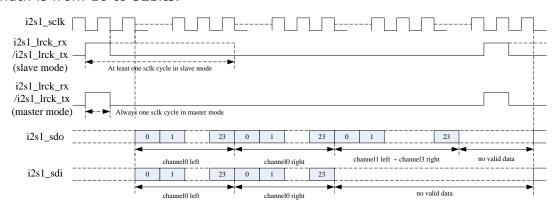


Fig.23-9PCM late2 mode timing format

23.3.7 PCM late3 mode

This is the waveform of PCM early mode. For LRCK (i2s1_lrck_rx/i2s1_lrck_tx) signal, it goes high to indicate the start of a group of audio channels. For SD (i2s1_sdo, i2s1_sdi) signal, it sends the first bit (MSB or LSB) three SCLK clock cycles after LRCK goes high. The range of SD signal width is from 16 to 32bits.

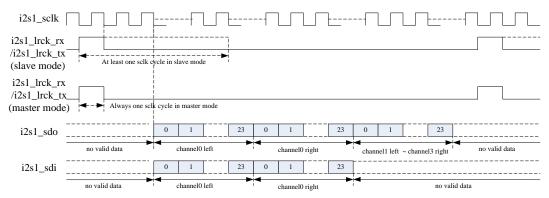
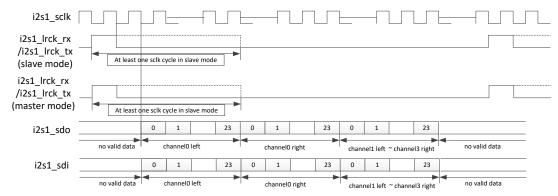
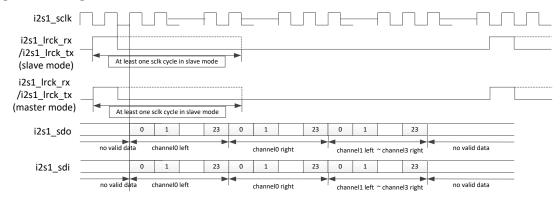
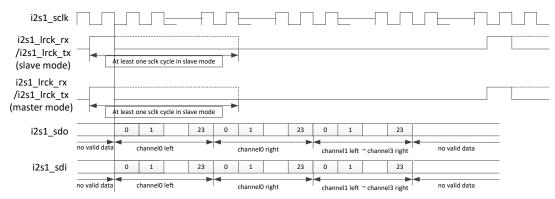



Fig.23-10PCM late3 mode timing format

23.3.8 TDM normal mode (PCM format)

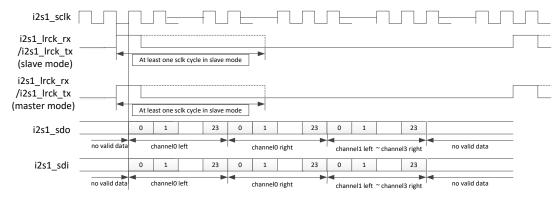

This is the waveform of TDM normal mode. For LRCK (i2s1_lrck_rx/i2s1_lrck_tx) signal, it goes high to indicate the start of a group of audio channels. For SD (i2s1_sdo, i2s1_sdi)

signal, it sends the first bit (MSB or LSB) on the second falling edge of SCLK after LRCK goes high. The range of SD signal width is from 16 to 32bits.

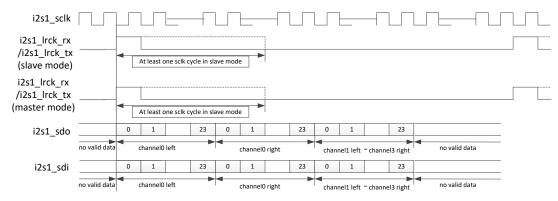

23.3.9 TDM left shift mode0 (PCM format)

This is the waveform of PCM early mode. For LRCK (i2s1_lrck_rx/i2s1_lrck_tx) signal, it goes high to indicate the start of a group of audio channels. For SD (i2s1_sdo, i2s1_sdi) signal, it sends the first bit (MSB or LSB) on the second rising edge of SCLK after LRCK goes high. The range of SD signal width is from 16 to 32bits.

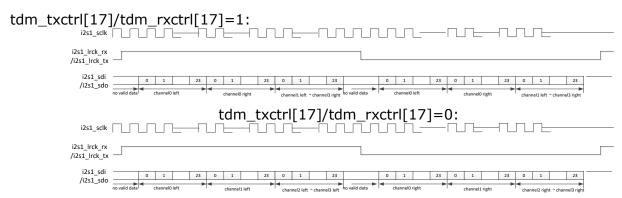
23.3.10 TDM left shift mode1 (PCM format)


This is the waveform of PCM early mode. For LRCK (i2s1_lrck_rx/i2s1_lrck_tx) signal, it goes high to indicate the start of a group of audio channels. For SD (i2s1_sdo, i2s1_sdi) signal, it sends the first bit (MSB or LSB) on the first falling edge of SCLKafter LRCK goes high. The range of SD signal width is from 16 to 32bits.

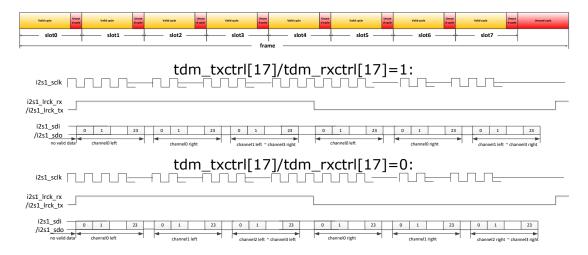
23.3.11 TDM left shift mode2 (PCM format)


This is the waveform of PCM early mode. For LRCK (i2s1_lrck_rx/i2s1_lrck_tx) signal, it goes high to indicate the start of a group of audio channels. For SD (i2s1_sdo, i2s1_sdi) signal, it

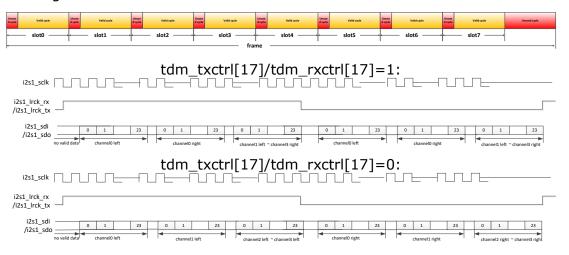
sends the first bit (MSB or LSB) on the first rising edge of SCLK after LRCK goes high. The range of SD signal width is from 16 to 32bits.


23.3.12 TDM left shift mode3 (PCM format)

This is the waveform of PCM early mode. For LRCK (i2s1_lrck_rx/i2s1_lrck_tx) signal, it goes high to indicate the start of a group of audio channels. For SD (i2s1_sdo, i2s1_sdi) signal, it sends the first bit (MSB or LSB) at the same time when LRCK goes high. The range of SD signal width is from 16 to 32bits.


23.3.13 TDM normal mode (I2S format)

This is the waveform of I2S normal mode. For SD (i2s1_sdo, i2s1_sdi) signal, it starts sending the first bit (MSB or LSB)on the first falling edge of SCLK after LRCK changes. The range of SD signal width is from 16 to 32bits.


23.3.14 TDM left justified mode (I2S format)

This is the waveform of I2S left justified mode. For SD (i2s1_sdo, i2s1_sdi) signal, it starts sending the first bit (MSB or LSB) at the same time when LRCK changes. The range of SD signal width is from 16 to 32bits.

23.3.15 TDM right justified mode (I2S format)

This is the waveform of I2S right justified mode. For SD (i2s1_sdo, i2s1_sdi) signal, it transfers MSB or LSB first; but what is different from I2S normal or left justified mode. The range of SD signal width is from 16 to 32bits.

23.4 Register description

23.4.1 Registers Summary

Name	Offset	Size	Reset Value	Description
I2S 8CH TXCR	0x0000	W	0x7200000f	transmit operation control register.
I2S_8CH_RXCR	0x0004	W	0x01c8000f	receive operation control register
I2S 8CH CKR	0x0008	W	0x00001f1f	clock generation register
I2S 8CH TXFIFOLR	0x000c	W	0x00000000	TX FIFO level register
I2S 8CH DMACR	0x0010	W	0x001f0000	DMA control register
I2S 8CH INTCR	0x0014	W	0x01f00000	interrupt control register
I2S 8CH INTSR	0x0018	W	0x00000000	interrupt status register
I2S 8CH XFER	0x001c	W	0x00000000	Transfer Start Register
I2S 8CH CLR	0x0020	W	0x00000000	SCLK domain logic clear Register
I2S 8CH TXDR	0x0024	W	0x00000000	Transimt FIFO Data Register

Name	Offset	Size	Reset Value	Description
I2S 8CH RXDR	0x0028	W	0x00000000	When the register is read, data in
				the receive FIFO is accessed.
I2S 8CH_RXFIFOLR	0x002c	W	0x00000000	RX FIFO level register
I2S 8CH TDM TXCTRL	0x0030	W	0x00003eff	TDM mode transmit operation
123 BEIT IDM TACINE	0.0030	VV	0X00003eII	control register
I2S 8CH TDM RXCTRL	0x0034	W	0x00003eff	TDM mode receive operation
123 8CH IDM RACIRE	000034	VV	0x00003en	control register
I2S 8CH CLKDIV	0x0038	W	0x00000707	clock divider register
I2S 8CH VERSION	0x003c	W	0x20150001	I2S version register

Notes: Size: **B**- Byte (8 bits) access, **HW**- Half WORD (16 bits) access, **W**-WORD (32 bits) access

23.4.2 Detail Register Description

12S 8CH TXCR

Address: Operational Base + offset (0x0000)

Bit	Attr	Reset Value	Description
31	RO	0x0	reserved
			tx_path_select3
			Tx path select;
			2'b00: sdo3 output data from path0;
30:29	RW	0x3	2'b01: sdo3 output data from path1;
			2'b10: sdo3 output data from path2;
			2'b11: sdo3 output data from path3;
			Note: when TDM mode, only path0 enable.
			tx_path_select2
			Tx path select;
			2'b00: sdo2 output data from path0;
28:27	RW	0x2	2'b01: sdo2 output data from path1;
			2'b10: sdo2 output data from path2;
			2'b11: sdo2 output data from path3;
			Note: when TDM mode, only path0 enable.
			tx_path_select1
			Tx path select;
		W 0x1	2'b00: sdo1 output data from path0;
26:25	RW		2'b01: sdo1 output data from path1;
			2'b10: sdo1 output data from path2;
			2'b11: sdo1 output data from path3;
			Note: when TDM mode, only path0 enable.
			tx_path_select0
			Tx path select;
			2'b00: sdo0 output data from path0;
24:23	RW	0x0	2'b01: sdo0 output data from path1;
			2'b10: sdo0 output data from path2;
			2'b11: sdo0 output data from path3;
			Note: when TDM mode, only path0 enable.

Bit	Attr	Reset Value	Description
			RCNT
			(Can be written only when XFER[0] bit is 0.)
22.17	DW	000	Only vailid in I2S Right justified format and slave tx mode is
22:17	RW	0×00	selected.
			Start to transmit data RCNT sclk cycles after left channel valid.
			Note: Only function when TX TFS[1]=0;
			TCSR
			2'b00:two channel
16:15	RW	0x0	2'b01:four channel
			2'b10:six channel
			2'b11:eight channel
			HWT
			(Can be written only when XFER[0] bit is 0.)
			Only valid when VDW select 16bit data.
14	RW	0x0	0:32 bit data valid from AHB/APB bus. Low 16 bit for left channel
			and high 16 bit for right channel.
			1:low 16bit data valid from AHB/APB bus, high 16 bit data
			invalid.
13	RO	0x0	reserved
		W 0×0	SJM
			(Can be written only when XFER[0] bit is 0.)
			16bit~31bit DATA stored in 32 bits width fifo.
12	RW		If VDW select 16bit data, this bit is valid only when HWT select
12			0.Because if HWT is 1, every fifo unit contain two 16bit data and
			32 bit space is full, it is impossible to choose justified mode.
			0:right justified
			1:left justified
			FBM
11	RW	0×0	(Can be written only when XFER[0] bit is 0.)
		o x o	0:MSB
			1:LSB
			IBM
			(Can be written only when XFER[0] bit is 0.)
			0:I2S normal
10:9	RW	0x0	1:I2S Left justified
			2:I2S Right justified
			3:reserved
			Note: Only function when TX TFS[1:0] is 0;
			PBM
			(Can be written only when XFER[0] bit is 0.)
0.7	D.4.	00	0:PCM no delay mode
8:7	RW	0x0	1:PCM delay 1 mode
			2:PCM delay 2 mode
			3:PCM delay 3 mode
			Note: function when TX TFS[1:0] is 1;

Bit	Attr	Reset Value	Description
6:5	6:5 RW	0x0	TFS (Can be written only when XFER[0] bit is 0.) 2'b00: I2S format 2'b01: PCM format
			2'b10: TDM format 0 (PCM mode) 2'b11: TDM format 1 (I2S mode)
4:0	RW	0x0f	VDW (Can be written only when XFER[0] bit is 0.) 0~14:reserved 15:16bit 16:17bit 17:18bit 18:19bit 28:29bit 29:30bit 30:31bit 31:32bit

I2S_8CH_RXCR

Address: Operational Base + offset (0x0004)

Bit	Attr	Reset Value	Description
31:25	RO	0x0	reserved
			rx_path_select3
			2'b00: path3 data from sdi0;
24:23	DW	0x3	2'b01: path3 data from sdi1;
27.23	IXVV	0.0.5	2'b10: path3 data from sdi2;
			2'b11: path3 data from sdi3;
			Note: inoperative at TDM mode.
			rx_path_select2
			Rx path select;
		0x2	2'b00: path2 data from sdi0;
22:21	RW		2'b01: path2 data from sdi1;
			2'b10: path2 data from sdi2;
			2'b11: path2 data from sdi3;
			Note: inoperative at TDM mode.
			rx_path_select1
			Rx path select;
			2'b00: path1 data from sdi0;
20:19	RW	V 0×1	2'b01: path1 data from sdi1;
			2'b10: path1 data from sdi2;
			2'b11: path1 data from sdi3;
			Note: inoperative at TDM mode.

Bit	Attr	Reset Value	Description
			rx_path_select0
			Rx path select;
			2'b00: path0 data from sdi0;
18:17	RW	0x0	2'b01: path0 data from sdi1;
			2'b10: path0 data from sdi2;o
			2'b11: path0 data from sdi3;
			RCSR
			2'b00:two channel
16:15	RW	0x0	2'b01:four channel
			2'b10:six channel
			2'b11:eight channel
			HWT
			(Can be written only when XFER[1] bit is 0.)
	D.4.		Only valid when VDW select 16bit data.
14	RW	0x0	0:32 bit data valid to AHB/APB bus. Low 16 bit for left channel
			and high 16 bit for right channel.
			1:low 16bit data valid to AHB/APB bus, high 16 bit data invalid.
13	RO	0x0	reserved
			SJM
			(Can be written only when XFER[1] bit is 0.)
			16bit~31bit DATA stored in 32 bits width fifo.
1.0	DW	00	If VDW select 16bit data, this bit is valid only when HWT select
12	RW	0x0	0.Because if HWT is 1, every fifo unit contain two 16bit data and
			32 bit space is full, it is impossible to choose justified mode.
			0:right justified
			1:left justified
			FBM
11	RW	/ 00	(Can be written only when XFER[1] bit is 0.)
1 1	IK VV	0x0	0:MSB
			1:LSB
			IBM
			(Can be written only when XFER[1] bit is 0.)
			0:I2S normal
10:9	RW	0x0	1:I2S Left justified
			2:I2S Right justified
			3:reserved
			Note: Only function when RX TFS[1:0] is 0;
			РВМ
			(Can be written only when XFER[1] bit is 0.)
			0:PCM no delay mode
8:7	RW	0x0	1:PCM delay 1 mode
			2:PCM delay 2 mode
			3:PCM delay 3 mode
			Note: Only function when RX TFS[1:0] is 1;

Bit	Attr	Reset Value	Description
6:5	RW	0×0	TFS (Can be written only when XFER[1] bit is 0.) 2'b00: I2S format 2'b01: PCM format 2'b10: TDM format 0 (PCM mode) 2'b11: TDM format 1 (I2S mode)
4:0	RW	0×0f	VDW (Can be written only when XFER[1] bit is 0.) 0~14:reserved 15:16bit 16:17bit 17:18bit 18:19bit 28:29bit 29:30bit 30:31bit 31:32bit

I2S 8CH CKR

Address: Operational Base + offset (0x0008)

Bit	Attr	Reset Value	Description
31:30	RO	0x0	reserved
29:28	DW	0x0	LRCK_COMMON
29.20	KVV	UXU	Lrck as common
			MSS
27	RW	0×0	(Can be written only when XFER[1] or XFER[0] bit is 0.)
27	IXVV	0.00	0:master mode(sclk output)
			1:slave mode(sclk input)
			CKP
26	RW	0x0	(Can be written only when XFER[1] or XFER[0] bit is 0.)
20	1200		0: sample data at posedge sclk and drive data at negedge sclk
			1: sample data at negedge sclk and drive data at posedge sclk
			RLP
			(Can be written only when XFER[1] or XFER[0] bit is 0.)
			0:normal polartiy
			(I2S normal: low for left channel, high for right channel
25	RW	0×0	I2S left/right just: high for left channel, low for right channel
25		W UXU	PCM start signal:high valid)
			1:oppsite polarity
			(I2S normal: high for left channel, low for right channel
			I2S left/right just: low for left channel, high for right channel
			PCM start signal:low valid)

Bit	Attr	Reset Value	Description
24	RW	0x0	TLP (Can be written only when XFER[1] or XFER[0] bit is 0.) 0:normal polartiy (I2S normal: low for left channel, high for right channel I2S left/right just: high for left channel, low for right channel PCM start signal:high valid) 1:oppsite polarity (I2S normal: high for left channel, low for right channel I2S left/right just: low for left channel, high for right channel PCM start signal:low valid)
23:16	RO	0x0	reserved
15:8	RW	0x1f	RSD (Can be written only when XFER[1] or XFER[0] bit is 0.) 0~30:reserved 31~255:frequency of rx_lrck= (Receive sclk divider[7:1]+1)*2*frequency of sclk Note: function when RX TFS[1:0] is 0 or 1;
7:0	RW	0x1f	TSD (Can be written only when XFER[1] or XFER[0] bit is 0.) 0~30:reserved 31~255:frequency of tx_lrck= (Transmit sclk divider[7:1]+1)*2*frequency of sclk Note: function when TX TFS[1:0] is 0 or 1;

I2S 8CH TXFIFOLR
Address: Operational Base + offset (0x000c)

Bit	Attr	Reset Value	Description
31:24	RO	0x0	reserved
22.10	DW	0×00	TFL3
23:18	3:18 RW 0x00	UXUU	Contains the number of valid data entries in the transmit FIFO3.
17.12	DW	2W 0x00	TFL2
17:12	KVV		Contains the number of valid data entries in the transmit FIFO2.
11.0	DW	000	TFL1
11:6	l1:6 RW	0×00	Field0000 Description
F.0	5:0 RO	RO 10x00	TFL0
5:0			Contains the number of valid data entries in the transmit FIFO0.

I2S 8CH DMACR

Address: Operational Base + offset (0x0010)

Bit	Attr	Reset Value	Description
31:25	RO	0x0	reserved
			RDE
24	RW	0x0	0 : Receive DMA disabled
			1 : Receive DMA enabled

Bit	Attr	Reset Value	Description
23:21	RO	0x0	reserved
20:16	RW	0x1f	RDL This bit field controls the level at which a DMA request is made by the receive logic. The watermark level = DMARDL+1; that is, dma_rx_req is generated when the number of valid data entries in the receive FIFO is equal to or above this field value + 1.
15:9	RO	0x0	reserved
8	RW	0×0	TDE 0 : Transmit DMA disabled 1 : Transmit DMA enabled
7:5	RO	0x0	reserved
4:0	RW	0×00	TDL This bit field controls the level at which a DMA request is made by the transmit logic. It is equal to the watermark level; that is, the dma_tx_req signal is generated when the number of valid data entries in the TXFIFO(TXFIFO0 if CSR=00;TXFIFO1 if CSR=01,TXFIFO2 if CSR=10,TXFIFO3 if CSR=11)is equal to or below this field value.

I2S 8CH INTCR

Address: Operational Base + offset (0x0014)

Bit	Attr	Reset Value	Description
31:25	RO	0x0	reserved
			RFT
24:20	RW	0x1f	When the number of receive FIFO entries is more than or equal to
			this threshold plus 1, the receive FIFO full interrupt is triggered.
19	RO	0x0	reserved
1.0	wo	0.40	RXOIC
18	WO	0x0	Write 1 to clear RX overrun interrupt.
			RXOIE
17	RW	0x0	0:disable
			1:enable
			RXFIE
16	RW	0x0	0:disable
			1:enable
15:9	RO	0x0	reserved
			TFT
			When the number of transmit FIFO (TXFIFO0 if CSR=00; TXFIFO1
8:4	RW	0x00	if CSR=01, TXFIFO2 if CSR=10, TXFIFO3 if CSR=11) entries is
			less than or equal to this threshold, the transmit FIFO empty
			interrupt is triggered.
3	RO	0x0	reserved
2	WO	0.40	TXUIC
2	WO	0x0	Write 1 to clear TX underrun interrupt.

Bit	Attr	Reset Value	Description
1			TXUIE
	RW	0x0	0:disable
			1:enable
	RW	0x0	TXEIE
0			0:disable
			1:enable

I2S 8CH INTSR

Address: Operational Base + offset (0x0018)

Bit	Attr	Reset Value	Description
31:18	RO	0x0	reserved
			RXOI
17	RO	0x0	0:inactive
			1:active
			RXFI
16	RO	0x0	0:inactive
			1:active
15:2	RO	0x0	reserved
			TXUI
1	RO	0x0	0:inactive
			1:active
			TXEI
0	RO	0x0	0:inactive
			1:active

I2S 8CH XFER

Address: Operational Base + offset (0x001c)

Bit	Attr	Reset Value	Description
31:2	RO	0x0	reserved
			RXS
1	RW	0x0	0:stop RX transfer.
			1:start RX transfer
			TXS
0	RW	0x0	0:stop TX transfer.
			1:start TX transfer

I2S 8CH CLR

Address: Operational Base + offset (0x0020)

Bit	Attr	Reset Value	Description
31:2	RO	0x0	reserved
1	RW	0x0	RXC
1	KVV		This is a self cleard bit. Write 1 to clear all receive logic.
	RW	0x0	TXC
0			This is a self cleard bit. Write 1 to clear all transmit logic.

I2S 8CH TXDR

Address: Operational Base + offset (0x0024)

Bit	Attr	Reset Value	Description
21.0	WO	0x00000000	TXDR
31:0			When it is written to, data are moved into the transmit FIFO.

I2S 8CH RXDR

Address: Operational Base + offset (0x0028)

Bit	Attr	Reset Value	Description
31:0	RO	$IO_{X}OOOOOOOOO$	RXDR
			When the register is read, data in the receive FIFO is accessed.

12S 8CH RXFIFOLR

Address: Operational Base + offset (0x002c)

Bit	Attr	Reset Value	Description		
31:24	RO	0x0	reserved		
22.10	DW	000	RFL3		
23:18	RW	0x00	Contains the number of valid data entries in the Receive FIFO3.		
17.10	DW	0x00	RFL2		
17:12	KW		Contains the number of valid data entries in the Receive FIFO2.		
11.6	DW	W 0x00	RFL1		
11:6	RW		Contains the number of valid data entries in the Receive FIFO1.		
F. 0	DW		RFL0		
5:0	KW	KW	RW	0x00	Contains the number of valid data entries in the Receive FIFO0.

12S 8CH TDM TXCTRL

Address: Operational Base + offset (0x0030)

Bit	Attr	Reset Value	Description
31:21	RO	0x0	reserved
			TX_TDM_FSYNC_WIDTH_SEL1
			(Can be written only when XFER[0] is 0.)
			0: single period of the ASP_CLK.
20:18	DW	0.40	1: 2 period of the ASP_CLK.
20.16	KVV		n: n+1 period of the ASP_CLK.
			6: 7 period of the ASP_CLK.
			7: the width is equivalent to a channel block
			Note: function when TX TFS[1:0] is 2 or 3;
			TX_TDM_FSYNC_WIDTH_SEL0
			(Can be written only when XFER[0] is 0.)
17	RW		0: 1/2 frame width. Aspc_ctrl1[8:0] should be set to an even
			number
			1: frame width

Bit	Attr	Reset Value	Description
			TDM_TX_SHIFT_CTRL
16:14	RW	0×0	(Can be written only when XFER[0] is 0.) 3'b000: PCM format: normal mode, sample data on the third rising edge of TDM_CLK after rising edge of ASPC_FSYNC. I2S format: normal mode 3'b001: PCM format: 1/2 cycle shift left, sample data on second falling rising edge of TDM_CLK after rising edge of ASPC_FSYNC. I2S format: left justified mode 3'b010: PCM format: 1 cycle shift left, sample data on second rising edge of TDM_CLK after rising edge of ASPC_FSYNC. I2S format: right justified mode 3'b011: PCM format: 3/2 cycle shift left, sample data on first falling edge of TDM_CLK after rising edge of ASPC_FSYNC. I2S format: not support 3'b100: PCM format: 2 cycle shift left, sample data on first rising edge of TDM_CLK after rising edge of ASPC_FSYNC. I2S format: not support 3'b101~3'b111 not support Note: function when TX TFS[1:0] is 2 or 3;
13:9	RW	0x1f	TDM_TX_SLOT_BIT_WIDTH (Can be written only when XFER[0] is 0.) 0~14:reserved 15:16bit 16:17bit 17:18bit 18:19bit n:(n+1)bit 31:32bit Note: function when TX TFS[1:0] is 2 or 3;

Bit	Attr	Reset Value	Description
		0×0ff	TDM_TX_FRAME_WIDTH (Can be written only when XFER[0] is 0.) 0~30:reserved 31:32bit 32:33bit 33:34bit 34:35bit n:(n+1)bit 511:512bit Note: functional when TX TFS[1:0] is 2 or 3;

12S 8CH TDM RXCTRL

Address: Operational Base + offset (0x0034)

Bit	Attr	Reset Value	Description					
31:21	RO	0x0	reserved					
			RX_TDM_FSYNC_WIDTH_SEL1					
			(Can be written only when XFER[0] is 0.)					
			0: single period of the ASP_CLK.					
20.10	RW		1: 2 period of the ASP_CLK.					
20:18			n: n+1 period of the ASP_CLK.					
			6: 7 period of the ASP_CLK.					
			7: the width is equivalent to a channel block					
			Note: function when RX TFS[1:0] is 2 or 3;					
		RW 0x0	RX_TDM_FSYNC_WIDTH_SEL0					
			(Can be written only when XFER[0] is 0.)					
17	RW		0: 1/2 frame width. Aspc_ctrl1[8:0] should be set to an even					
			number					
			1: frame width					

Bit	Attr	Reset Value	Description
			TDM_RX_SHIFT_CTRL
16:14	RW	0×0	(Can be written only when XFER[0] is 0.) 3'b000: PCM format: normal mode, sample data on the third rising edge of TDM_CLK after rising edge of ASPC_FSYNC. I2S format: normal mode 3'b001: PCM format: 1/2 cycle shift left, sample data on second falling rising edge of TDM_CLK after rising edge of ASPC_FSYNC. I2S format: left justified mode 3'b010: PCM format: 1 cycle shift left, sample data on second rising edge of TDM_CLK after rising edge of ASPC_FSYNC. I2S format: right justified mode 3'b011: PCM format: 3/2 cycle shift left, sample data on first falling edge of TDM_CLK after rising edge of ASPC_FSYNC. I2S format: not support 3'b100: PCM format: 2 cycle shift left, sample data on first rising edge of TDM_CLK after rising edge of ASPC_FSYNC. I2S format: not support 3'b101~3'b111 not support Note: function when RX TFS[1:0] is 2 or 3;
13:9	RW	0x1f	TDM_RX_SLOT_BIT_WIDTH (Can be written only when XFER[0] is 0.) 0~14:reserved 15:16bit 16:17bit 17:18bit 18:19bit n:(n+1)bit 31:32bit Note: function when RX TFS[1:0] is 2 or 3;

Bit	Attr	Reset Value	Description					
Bit 8:0		Reset Value 0x0ff	Description TDM_RX_FRAME_WIDTH (Can be written only when XFER[0] is 0.) 0~30:reserved 31:32bit 32:33bit 33:34bit 34:35bit n:(n+1)bit 511:512bit					
			Note: functional when RX TFS[1:0] is 2 or 3;					

12S 8CH CLKDIV

Address: Operational Base + offset (0x0038)

Bit	Attr	Reset Value	Description					
31:16	RO	0x0	reserved					
15:8	RW	0×07	RX_MDIV (Can be written only XFER[0] bit is 0.) Serial Clock Divider = Fmclk / Ftxsclk-1.(mclkfrequecy / txsclk frequecy-1) 0 :Fmclk=Ftxsclk; 1 :Fmclk=2*Ftxsclk; 2,3 :Fmclk=4*Ftxsclk; 4,5 :Fmclk=6*Ftxsclk; 2n,2n+1:Fmclk=(2n+2)*Ftxsclk; 60,61:Fmclk=62*Ftxsclk; 62,63:Fmclk=64*Ftxsclk; 252,253:Fmclk=254*Ftxsclk;					
			252,253:Fmclk=254*Ftxsclk; 254,255:Fmclk=256*Ftxsclk;					

Bit	Attr	Reset Value	Description
7:0	RW	0×07	TX_MDIV (Can be written only when XFER[1] bit is 0.) Serial Clock Divider = Fmclk / Ftxsclk-1.(mclkfrequecy / txsclk frequecy-1) 0 :Fmclk=Ftxsclk; 1 :Fmclk=2*Ftxsclk; 2,3 :Fmclk=4*Ftxsclk; 4,5 :Fmclk=6*Ftxsclk; 2n,2n+1:Fmclk=(2n+2)*Ftxsclk; 60,61:Fmclk=62*Ftxsclk; 62,63:Fmclk=64*Ftxsclk; 252,253:Fmclk=254*Ftxsclk; 254,255:Fmclk=256*Ftxsclk;

12S 8CH VERSION

Address: Operational Base + offset (0x003c)

Bit	Attr	Reset Value	Description			
31:0	D.O.	0v20150001	I2S_VERSION			
31.0	31:0 RO	0x20150001	i2s_version			

23.5 Interface Description

Table 23-1 I2S Interface Description

Module Pin	Directi on	Pad Name	IOMUX Setting
i2s0_8ch_mclk	I/O	IO_LCDCd13_I2S08ch_mclk_GPIO3C 1vccio4	GRF_GPIO3C_IOMUX_L[6:4]=3 'b010
i2s0_8ch_sclk_rx	I/O	IO_LCDCd8m0_I2S08ch_sclkrx_CIFd 7m1_SPI1mosi_GPIO3B4vccio4	GRF_GPIO3B_IOMUX_H[2:0] =3'b010
i2s0_8ch_sclk_tx	I/O	IO_LCDCd15_I2S08ch_sclktx_PWM5_ GPIO3C3vccio4	GRF_GPIO3C_IOMUX_H[14:12] =3'b010
i2s0_8ch_lrck_rx	I/O	IO_LCDCd9m0_I2S08ch_lrckrx_GPIO 3B5vccio4	GRF_GPIO3B_IOMUX_H[6:4] =3'b010
i2s0_8ch_lrck_tx	I/O	IO_LCDCd14_I2S08ch_lrcktx_PWM4_ GPIO3C2vccio4	GRF_GPIO3C_IOMUX_L[10:8] =3'b010
i2s_8ch_sdo0	0	IO_LCDCd16_I2S08ch_sdo0_PWM6_ GPIO3C4vccio4	GRF_GPIO3C_IOMUX_H[2:0] =3'b010
i2s_8ch_sdo1	0	IO_LCDCd12_I2S08ch_sdo1_GPIO3C 0vccio4	GRF_GPIO3C_IOMUX_L[2:0] =3'b010
i2s_8ch_sdo2	0	IO_LCDCd11m0_I2S08ch_sdo2_CIFd 9m1_SPI1clk_GPIO3B7vccio4	GRF_GPIO3B_IOMUX_H[14:12] =3'b010
i2s_8ch_sdo3	0	IO_LCDCd10m0_I2S08ch_sdo3_CIFd 8m1_SPI1miso_GPIO3B6vccio4	GRF_GPIO3B_IOMUX_H[10:8] =3'b010
i2s2_8ch_sdi0	I	IO_LCDCd17_I2S08ch_sdi0_PWM7_G PIO3C5vccio4	GRF_GPIO3C_IOMUX_H[6:4] =3'b010
i2s2_8ch_sdi1	I	IO_LCDCd7_I2S08ch_sdi1_GPIO3B3v ccio4	GRF_GPIO3B_IOMUX_L[14:12] =3'b010
i2s2_8ch_sdi2	I	IO_LCDCd5m0_I2S08ch_sdi2_CIFd6 m1_SPI1csn_GPIO3B1vccio4	GRF_GPIO3B_IOMUX_L[6:4] =3'b010

Module Pin	Directi on	Pad Name	IOMUX Setting
i2s2_8ch_sdi3	I	IO_LCDCd4m0_I2S08ch_sdi3_CIFd5 m1 GPIO3B0vccio4	GRF_GPIO3B_IOMUX_L[2:0] =3'b010

23.6 Application Notes

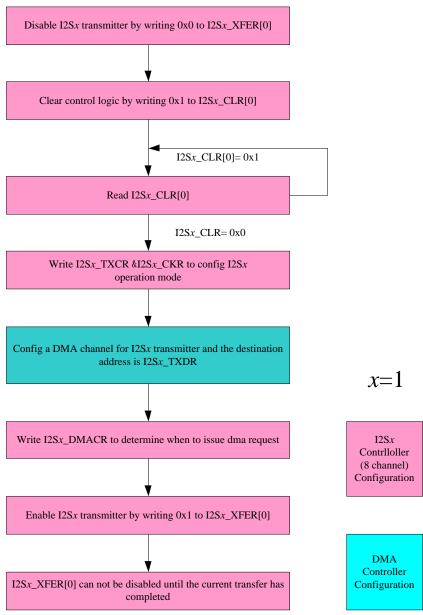


Fig.23-11I2S/PCM/TDM controller transmit operation flow chart

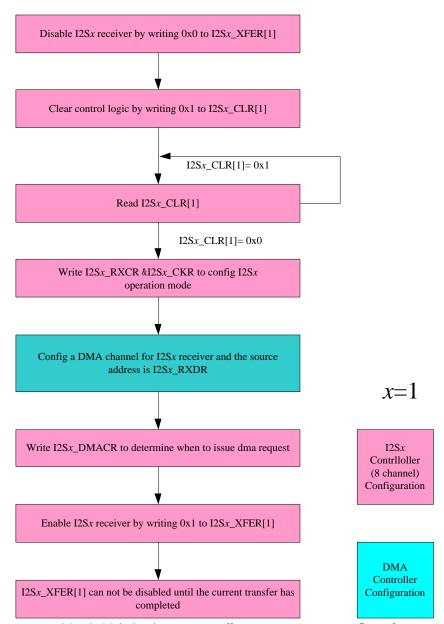


Fig.23-12I2S/PCM/TDM controller receive operation flow chart

Note: User should clear TX/RX logical by CLR[0]/CLR[1] and wait clear operation done before configure the other registers.

Chapter 24 I2C Interface

24.1 Overview

The Inter-Integrated Circuit (I2C) is a two wired (SCL and SDA), bi-directional serial bus that provides an efficient and simple method of information exchange between devices. This I2C bus controller supports master mode acting as a bridge between AMBA protocol and generic I2C bus system.

I2C Controller supports the following features:

- Support 4 independent I2C: I2C0, I2C1, I2C2, I2C3
- Item Compatible with I2C-bus
- AMBA APB slave interface
- Supports master mode of I2C bus
- Software programmable clock frequency and transfer rate up to 400Kbit/sec
- Supports 7 bits and 10 bits addressing modes
- Interrupt or polling driven multiple bytes data transfer
- Clock stretching and wait state generation
- Fiter out glitch on SCL and SDA

24.2 Block Diagram

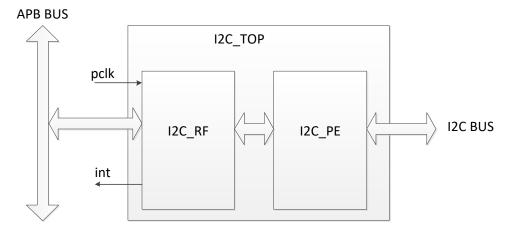


Fig.24-1I2C architecture

24.2.1 I2C RF

I2C_RF module is used to control the I2C controller operation by the host with APB interface. It implements the register set and the interrupt functionality. The CSR component operates synchronously with the pclk clock.

24.2.2 I2C PE

I2C_PE module implements the I2C master operation for transmit data to and receive data from other I2C devices. The I2C master controller operates synchronously with the pclk.

24.2.3 I2C TOP

I2C_TOP module is the top module of the I2C controller.

24.3 Function Description

This chapter provides a description about the functions and behavior under various conditions.

The I2C controller supports only Masterfunction. Itsupports the 7-bits/10-bits addressing mode and support general call address. The maximum clock frequency and transfer rate can

be up to 400Kbit/sec.

The operations of I2C controller is divided to 2 parts and described separately: initialization and master mode programming.

24.3.1 Initialization

The I2C controller is based on AMBA APB bus architecture and usually is part of a SOC. So before I2C operates, some system setting and configuration must be conformed, which includes:

I2C interrupt connection type: CPU interrupt scheme should be considered. If the I2C interrupt is connected to extra Interrupt Controller module, we need decide the INTC vector.

I2C Clock Rate: The I2C controller uses the APB clock as the working clock so the APB clock will determine the I2C bus clock. The correct register setting is subject to the system requirement.

24.3.2 Master Mode Programming

SCL Clock

When the I2C controller is programmed in Master mode, the SCL frequency is determined by I2C_CLKDIV register. The SCL frequency is calculated by the following formula:

SCL Divisor = 8*(CLKDIVL + 1 + CLKDIVH + 1) SCL = PCLK/ SCLK Divisor

Data Receiver Register Access

When the I2C controller received MRXCNT bytes data, CPU can get the data through register RXDATA0 ~ RXDATA7. The controller can receive up to 32 bytes' data in one transaction. When MRXCNT register is written, the I2C controller will start to drive SCL to receive data.

Transmit Transmitter Register

Data to transmit are written to TXDATA0~7 by CPU. The controller can transmit up to 32 bytes' data in one transaction. The lower byte will be transmitted first.

When MTXCNT register is written, the I2C controller will start to transmit data.

Start Command

Write 1 to I2C CON[3], the controller will send I2C start command.

Stop Command

Write 1 to I2C CON[4], the controller will send I2C stop command

I2C Operation mode

There are four i2c operation modes.

are four i2c operation modes. When I2C_CON[2:1] is 2′b00, the controller transmit all valid data in TXDATA0~TXDATA7 byte by byte. The controller will transmit lower byte first. When I2C_CON[2:1] is 2′b01,the controller will transmit device address in MRXADDR first (Write/Read bit = 0) and then transmit device register address in MRXRADDR. After that, the controller will assert restart signal and resend MRXADDR (Write/Read bit = 1). At last, the controller enter receive mode. When I2C_CON[2:1] is 2′b10, the controller is in receive mode, it will trigger clock to read MRXCNT byte data. When I2C_CON[2:1] is 2′b11, the controller will transmit device address in MRXADDR first (Write/Read bit = 1) and then transmit device register address in MRXADDR . After that, the controller will assert restart signal and resend MRXADDR (Write/Read bit = 1). At last, the controller enter receive mode.

• Read/Write Command When I2C_OPMODE(I2C_CON[2:1]) is 2'b01 or 2'b11, the Read/Write command bit is decided by controller itself.

In RX only mode (I2C_CON[2:1] is 2'b10), the Read/Write command bit is decided by MRXADDR[0].

In TX only mode (I2C_CON[[2:1] is 2'b00), the Read/Write command bit is decided by TXDATA[0].

Master Interrupt Condition

There are 7 interrupt bits in I2C_ISR register related to master mode.

Byte transmitted finish interrupt (Bit 0): The bit is asserted when Master completed

transmitting a byte.

Byte received finish interrupt (Bit 1): The bit is asserted when Master completed receiving a byte.

MTXCNT bytes data transmitted finish interrupt (Bit 2): The bit is asserted when

Master completed transmitting MTXCNT bytes.
MRXCNT bytes data received finish interrupt (Bit 3): The bit is asserted when Master completed receiving MRXCNT bytes.
Start interrupt (Bit 4): The bit is asserted when Master finished asserting start command to I2C bus.

- Stop interrupt (Bit 5): The bit is asserted when Master finished asserting stop command to I2C bus.
- NAK received interrupt (Bit 6): The bit is asserted when Master received a NAK handshake.

Last byte acknowledge control

- If I2C_CON[5] is 1, the I2C controller will transmit NAK handshake to slave when the last byte received in RX only mode. If I2C_CON[5] is 0, the I2C controller will transmit ACK handshake to slave when the last byte received in RX only mode.

How to handle NAK handshake received

- If I2C_CON[6] is 1, the I2C controller will stop all transactions when NAK handshake received. And the software should take responsibility to handle the problem. If I2C_CON[6] is 0, the I2C controller will ignore all NAK handshake received.
- - I2C controller data transfer waveform
- Bit transferring
 - Data Validity

The SDA line must be stable during the high period of SCL, and the data on SDA line can only be changed when SCL is in low state.

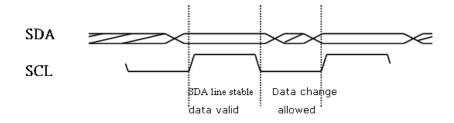


Fig.24-2I2C DATA Validity

START and STOP conditions

START condition occurs when SDA goes low while SCL is in high period. STOP condition is generated when SDA line goes high while SCL is in high state.

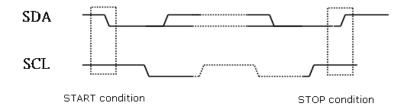


Fig. 24-3I2C Start and stop conditions

Data transfer Acknowledge

After a byte of data transferring (clocks labeled as 1~8), in 9th clock the receiver must assert an ACK signal on SDA line, if the receiver pulls SDA line to low, it means "ACK", on the contrary, it's "NOT ACK".

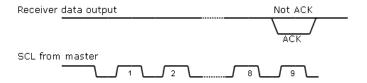


Fig.24-4I2C Acknowledge

> Byte transfer

The master own I2C bus might initiate multi byte to transfer to a slave. The transfer starts from a "START" command and ends in a "STOP" command. After every byte transfer, the receiver must reply an ACK to transmitter.

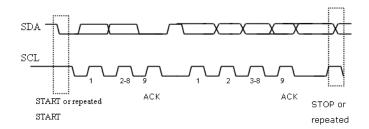


Fig.24-5I2C byte transfer

24.4 Register Description

24.4.1 Registers Summary

Name	Offset	Size	Reset Value	Description
RKI2C CON	0x0000	W	0x00030300	control register
RKI2C CLKDIV	0x0004	W	0x00060006	clock divider register, I2C CLK = PCLK / (16*CLKDIV)
RKI2C MRXADDR	0×0008	W	0×00000000	the slave address accessed for master rx mode
RKI2C MRXRADDR	0x000c	W	0x00000000	the slave register address accessed for master rx mode
RKI2C MTXCNT	0x0010	W	0x00000000	master transmit count.specify the total bytes to be transmit (0~32)
RKI2C MRXCNT	0x0014	W	0x00000000	master rx count.specify the total bytes to be recieved(0~32)
RKI2C IEN	0x0018	W	0x00000000	interrupt enable register
RKI2C_IPD	0x001c	W	0x00000000	interrupt pending register
RKI2C_FCNT	0x0020	W	0×00000000	finished count: the count of data which has been transmitted or receivedfor debug purpose
RKI2C SCL OE DB	0x0024	W	0x00000020	slave hold debounce configure register
RKI2C TXDATA0	0x0100	W	0x00000000	I2C tx data register 0
RKI2C TXDATA1	0x0104	W	0x00000000	I2C tx data register 1
RKI2C_TXDATA2	0x0108	W	0x00000000	I2C tx data register 2
RKI2C TXDATA3	0x010c	W	0x00000000	I2C tx data register 3

Name	Offset	Size	Reset Value	Description
RKI2C_TXDATA4	0x0110	W	0x00000000	I2C tx data register 4
RKI2C TXDATA5	0x0114	W	0x00000000	I2C tx data register 5
RKI2C TXDATA6	0x0118	W	0x00000000	I2C tx data register 6
RKI2C TXDATA7	0x011c	W	0x00000000	I2C tx data register 7
RKI2C RXDATA0	0x0200	W	0x00000000	I2C rx data register 0
RKI2C_RXDATA1	0x0204	W	0x00000000	I2C rx data register 1
RKI2C RXDATA2	0x0208	W	0x00000000	I2C rx data register 2
RKI2C RXDATA3	0x020c	W	0x00000000	I2C rx data register 3
RKI2C RXDATA4	0x0210	W	0x00000000	I2C rx data register 4
RKI2C RXDATA5	0x0214	W	0x00000000	I2C rx data register 5
RKI2C RXDATA6	0x0218	W	0x00000000	I2C rx data register 6
RKI2C_RXDATA7	0x021c	W	0x00000000	I2C rx data register 7
RKI2C ST	0x0220	W	0x00000003	status debug register
RKI2C_DBGCTRL	0x0224	W	0x00000f00	Debug config register

Notes: <u>Size</u>: **B**- Byte (8 bits) access, **HW**- Half WORD (16 bits) access, **W**-WORD (32 bits) access

24.4.2 Detail Register Description

RKI2C CON

Address: Operational Base + offset (0x0000)

Bit	Attr	Reset Value	Description			
31:16	D∩	0x0003	version			
31.10	KO	0x0003	rki2c version information			
			stop_setup			
15:14	RW	0x0	stop setup config:			
			TSU;sto = (stop_setup + 1) * T(SCL_HIGH) + Tclk_i2c			
			start_setup			
13:12	DW	0x0	start setup config:			
13.12	FCVV	W UXU	TSU;sta = (start_setup + 1) * T(SCL_HIGH) + Tclk_i2c			
			THD;sta = (start_setup + 2) * T(SCL_HIGH) - Tclk_i2c			
11	RO	0x0	reserved			
		V 0x0	data_upd_st			
			SDA update point config:			
10:8	RW		Used to config sda change state when scl is low, used to adjust			
10.6	IX V V		setup/hold time			
			$4'bn:Thold = (n + 1) * Tclk_i2c$			
			Note: 0 <= n <= 5			
7	RO	0x0	reserved			
			act2nak			
6	RW	0x0	operation when NAK handshake is received:			
	KW		1'b0: ignored			
			1'b1: stop transaction			

Bit	Attr	Reset Value	Description
			ack
5	RW	0×0	last byte acknowledge control in master receive mode:
	IXVV	0.00	1'b0: ACK
			1'b1: NAK
			stop
4	RW	0x0	stop enable, when this bit is written to 1, I2C will generate stop
			signal.
			start
3	RW	0x0	start enable, when this bit is written to 1, I2C will generate start
			signal.
			i2c_mode
			i2c mode select:
		/ 0x0	2'b00: transmit only
			2'b01: transmit address (device + register address)> restart -
2:1	RW		-> transmit address -> receive only
			2'b10: receive only
			2'b11: transmit address (device + register address, write/read bit
			is 1)> restart> transmit address (device address)>
			receive data
			i2c_en
0	RW	W 0×0	i2c module enable:
	1200		1'b0:not enable
			1'b1:enable

RKI2C CLKDIV

Address: Operational Base + offset (0x0004)

Bit	Attr	Reset Value	Description
			CLKDIVH
31:16	RW	0x0000	scl high level clock count:
			$T(SCL_HIGH) = Tclk_i2c * (CLKDIVH + 1) * 8$
			CLKDIVL
15:0	RW	0x0001	scl low level clock count:
			$T(SCL_LOW) = Tclk_i2c * (CLKDIVL + 1) * 8$

RKI2C_MRXADDR

Address: Operational Base + offset (0x0008)

Bit	Attr	Reset Value	Description
31:27	RO	0x0	reserved
	RW	W 0x0	addhvld
26			address high byte valid:
26			1'b0:invalid
			1'b1:valid

Bit	Attr	Reset Value	Description
			addmvld
25	RW	0x0	address middle byte valid:
25	KVV	UXU	1'b0:invalid
			1'b1:valid
			addlvld
24	RW		address low byte valid:
24	KW		1'b0:invalid
			1'b1:valid
		RW 0x000000	saddr
23:0	DW		master address register.
23:0	KVV		the lowest bit indicate write or read
			24 bits address register

RKI2C MRXRADDR

Address: Operational Base + offset (0x000c)

Bit	Attr	Reset Value	Description
31:27	RO	0x0	reserved
			sraddhvld
26	RW	0x0	address high byte valid:
20	KVV	UXU	1'b0:invalid
			1'b1:valid
		/ 0x0	sraddmvld
25	RW		address middle byte valid:
23	IK VV		1'b0:invalid
			1'b1:valid
		W 0×0	sraddlvld
24	RW		address low byte valid:
24	IK VV		1'b0:invalid
			1'b1:valid
		W 0x000000	sraddr
23:0	RW		slave register address accessed.
			24 bits register address

RKI2C MTXCNT

Address: Operational Base + offset (0x0010)

Bit	Attr	Reset Value	Description
31:6	RO	0x0	reserved
			mtxcnt
5:0	RW	0x00	master transmit count.
			6 bits counter

RKI2C MRXCNT

Address: Operational Base + offset (0x0014)

PX30 TRM-Part1

Bit	Attr	Reset Value	Description
31:6	RO	0x0	reserved
			mrxcnt
5:0	RW	0x00	master rx count.
			6 bits counter

RKI2C IEN

Address: Operational Base + offset (0x0018)

Bit	Attr	Reset Value	Description
31:8	RO	0x0	reserved
7	RW	0×0	slavehdsclen slave hold scl interrupt enable: 1'b0:disable 1'b1:enable
6	RW	0×0	nakrcvien NAK handshake received interrupt enable: 1'b0:disable 1'b1:enable
5	RW	0×0	stopien stop operation finished interrupt enable: 1'b0:disable 1'b1:enable
4	RW	0×0	startien start operation finished interrupt enable: 1'b0:disable 1'b1:enable
3	RW	0×0	mbrfien MRXCNT data received finished interrupt enable: 1'b0:disable 1'b1:enable
2	RW	0x0	mbtfien MTXCNT data transfer finished interrupt enable: 1'b0:disable 1'b1:enable
1	RW	0x0	brfien byte rx finished interrupt enable: 1'b0:disable 1'b1:enable
0	RW	0x0	btfien byte tx finished interrupt enable: 1'b0:disable 1'b1:enable

RKI2C_IPD

Address: Operational Base + offset (0x001c)

Bit	Attr	Reset Value	Description
31:8	RO	0x0	reserved
			slavehdsclipd
7	RW	0x0	slave hold scl interrupt pending bit:
/	KVV	UXU	1'b0:no interrupt available
			1'b1:slave hold scl interrupt appear, write 1 to clear
			nakrcvipd
6	W1	0x0	NAK handshake received interrupt pending bit:
0	С	UXU	1'b0:no interrupt available
			1'b1:NAK handshake received interrupt appear, write 1 to clear
			stopipd
5	W1	0×0	stop operation finished interrupt pending bit:
3	С	UXU	1'b0:no interrupt available
			1'b1:stop operation finished interrupt appear, write 1 to clear
			startipd
4	W1	0×0	start operation finished interrupt pending bit:
7	С	UXU	1'b0:no interrupt available
			1'b1:start operation finished interrupt appear, write 1 to clear
			mbrfipd
	W1		MRXCNT data received finished interrupt pending bit:
3	C	0x0	1'b0:no interrupt available
			1'b1:MRXCNT data received finished interrupt appear, write 1 to
			clear
			mbtfipd
	W1		MTXCNT data transfer finished interrupt pending bit:
2	C	0x0	1'b0:no interrupt available
			1'b1:MTXCNT data transfer finished interrupt appear, write 1 to
			clear
			brfipd
1	W1	0×0	byte rx finished interrupt pending bit:
1	С	UXU	1'b0:no interrupt available
			1'b1:byte rx finished interrupt appear, write 1 to clear
			btfipd
0	W1	10x0	byte tx finished interrupt pending bit:
J	С		1'b0:no interrupt available
			1'b1:byte tx finished interrupt appear, write 1 to clear

RKI2C FCNT

Address: Operational Base + offset (0x0020)

Bit	Attr	Reset Value	Description
31:6	RO	0x0	reserved
			fcnt
5:0	RO	0x00	the count of data which has been transmitted or received
			for debug purpose

RKI2C SCL OE DB

Address: Operational Base + offset (0x0024)

Bit	Attr	Reset Value	Description
31:8	RO	0x0	reserved
			scl_oe_db
7:0	RW	0x20	slave hold scl debounce.
			cycles for debounce (unit: Tclk_i2c)

RKI2C_TXDATA0

Address: Operational Base + offset (0x0100)

Bit	Attr	Reset Value	Description
			txdata0
31:0	RW	0x00000000	data0 to be transmitted.
			32 bits data

RKI2C TXDATA1

Address: Operational Base + offset (0x0104)

Bit	Attr	Reset Value	Description
			txdata1
31:0	RW	0x00000000	data1 to be transmitted.
			32 bits data

RKI2C_TXDATA2

Address: Operational Base + offset (0x0108)

Bit	Attr	Reset Value	Description
			txdata2
31:0	RW	0x00000000	data2 to be transmitted.
			32 bits data

RKI2C_TXDATA3

Address: Operational Base + offset (0x010c)

Bit	Attr	Reset Value	Description
			txdata3
31:0	RW	0x00000000	data3 to be transmitted.
			32 bits data

RKI2C_TXDATA4

Address: Operational Base + offset (0x0110)

Bit	Attr	Reset Value	Description
			txdata4
31:0	RW	0x00000000	data4 to be transmitted.
			32 bits data

RKI2C_TXDATA5

Address: Operational Base + offset (0x0114)

Bit	Attr	Reset Value	Description
			txdata5
31:0	RW	0x00000000	data5 to be transmitted.
			32 bits data

RKI2C_TXDATA6

Address: Operational Base + offset (0x0118)

Bit	Attr	Reset Value	Description
			txdata6
31:0	RW	0x00000000	data6 to be transmitted.
			32 bits data

RKI2C TXDATA7

Address: Operational Base + offset (0x011c)

Bit	Attr	Reset Value	Description
			txdata7
31:0	RW	0x00000000	data7 to be transmitted.
			32 bits data

RKI2C_RXDATA0

Address: Operational Base + offset (0x0200)

Bit	Attr	Reset Value	Description
			rxdata0
31:0	RO	0x00000000	data0 received.
			32 bits data

RKI2C RXDATA1

Address: Operational Base + offset (0x0204)

			1 011366 (07.0201)
Bit	Attr	Reset Value	Description
			rxdata1
31:0	RO	0x00000000	data1 received.
			32 bits data

RKI2C RXDATA2

Address: Operational Base + offset (0x0208)

Bit	Attr	Reset Value	Description
			rxdata2
31:0	RO	0x00000000	data2 received.
			32 bits data

RKI2C_RXDATA3

Address: Operational Base + offset (0x020c)

Bit	Attr	Reset Value	Description
			rxdata3
31:0	RO	0x00000000	data3 received.
			32 bits data

RKI2C_RXDATA4

Address: Operational Base + offset (0x0210)

Bit	Attr	Reset Value	Description
			rxdata4
31:0	RO	0x00000000	data4 received.
			32 bits data

RKI2C RXDATA5

Address: Operational Base + offset (0x0214)

Bit	Attr	Reset Value	Description
			rxdata5
31:0	RO	0x00000000	data5 received.
			32 bits data

RKI2C RXDATA6

Address: Operational Base + offset (0x0218)

Bit	Attr	Reset Value	Description
			rxdata6
31:0	RO	0x00000000	data6 received.
			32 bits data

RKI2C_RXDATA7

Address: Operational Base + offset (0x021c)

Bit	Attr	Reset Value	Description	
			rxdata7	
31:0	RO	0x00000000	data7 received.	
			32 bits data	

RKI2C_ST

Address: Operational Base + offset (0x0220)

	taar oor operational base vertex				
Bit	Attr	Reset Value	Description		
31:2	RO	0x0	reserved		
1	RO	0×0	scl_st		
			scl status:		
			1'b0: scl status low		
			1'b0: scl status high		

Bit	Attr	Reset Value	Description	
	DO.	sda_st sda status: 1'b0: sda status low	sda_st	
			sda status:	
U	RO			
			1'b0: sda status high	

RKI2C DBGCTRL

Address: Operational Base + offset (0x0224)

Bit	Attr	Reset Value	Description	
31:15	RO	0x0	reserved	
		W 0×0	h0_check_scl	
14	DW		0: Check if scl been pull down by slave at the whole SCL_HIGH.	
14	IK VV		1: Check if scl been pull down by slave only at the h0 of	
			SCL_HIGH(SCL_HIGH including h0~h7).	
		0×0	nak_release_scl	
13	RW		0: Hold scl as low when recieved nack	
			1: Release scl as high when recieved nack	
	RW	0×0	flt_en	
12			SCL edage glitch filter enable	
12 K			0: disable	
			1: enable	
11:8	RW	W 0x0	slv_hold_scl_th	
11.0			Slave hold scl threshold = slv_hold_scl_th * Tclk_i2c	
7:4	RW	0x0	flt_r	
7:4			Filter scl rising edge glitches of width less than flt_r * Tclk_i2c	
2.0	DW	0x0	flt_f	
3:0	RW		Filter scl falling edge glitches of width less than flt_f * Tclk_i2c	

24.5 Interface Description

Table 24-1I2C Interface Description

Module pin	Direction	Pad name	IOMUX		
	I2C0 Interface				
i2c0_sda	I/O	IO_I2C0sda_GPIO0B1pmuio2	GRF_GPIO0B_IOMUX_L[6:4]=3'b001		
i2c0_scl	I/O	IO_I2C0scl_GPIO0B0pmuio2	GRF_GPIO0B_IOMUX_L[2:0]=3'b001		
	I2C1 Interface				
i2c1_sda	I/O	IO_I2C1sda_UART3rtsm0_GPIO0C3	GRF_GPIO0C_IOMUX_L[14:12]=2'b001		
		pmuio2			
i2c1_scl	I/O	IO_I2C1scl_UART3ctsm0_PMUdebug	GRF_GPIO0C_IOMUX_L[10:8]=2'b001		
		5_GPIO0C2pmuio2			
	I2C2 Interface				
i2c2_sda	I/O	IO_CIFd11m0_I2C2sda_GPIO2C0vcc	GRF_GPIO2C_IOMUX_L[2:0]=3'b010		
		io3			
i2c2_scl	I/O	IO_CIFd10m0_I2C2scl_GPIO2B7vcci	GRF_GPIO2B_IOMUX_H[14:12]=3'b01		
		о3	0		
	I2C3 Interface				

i2c3_sda	I/O	IO_FLASHcle_UART3ctsm1_SPI0mos	GRF_GPIO1B_IOMUX_H[2:0]=3'b100
		i_I2C3sda_GPIO1B4vccio0	
i2c3_scl	I/O	IO_FLASHwrn_UART3rtsm1_SPI0mis	GRF_GPIO1BH_IOMUX_H[6:4]=3'b100
		o_I2C3scl_GPIO1B5vccio0	

24.6 Application Notes

The I2C controller core operation flow chart below is to describe how the software configures and performs an I2C transaction through this I2C controller core. Descriptions are divided into 3 sections, transmit only mode, receive only mode, and mix mode. Users are strongly advised to follow

Transmit only mode (I2C_CON[1:0]=2'b00)

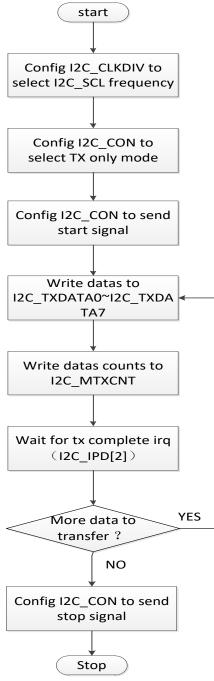


Fig.24-6I2C Flow chat for transmit only mode

Receive only mode (I2C_CON[1:0]=2'b10)

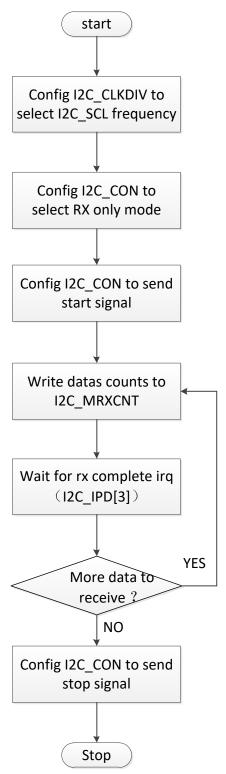


Fig.24-7I2C Flow chat for receive only mode

Mix mode (I2C_CON[1:0]=2'b01 or I2C_CON[1:0]=2'b11)

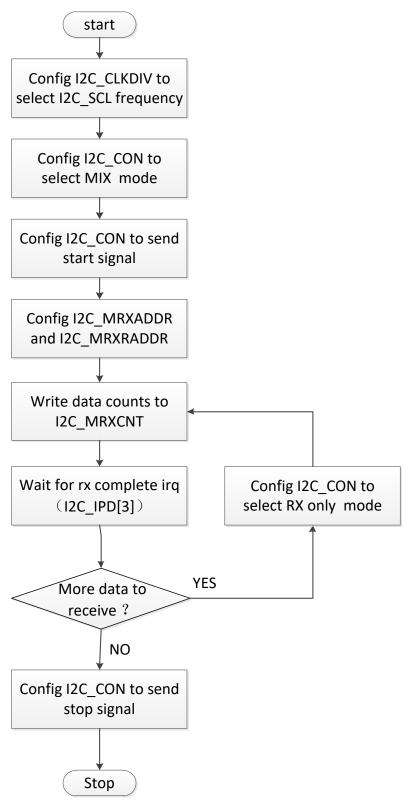


Fig.24-8I2C Flow chat for mix mode

Chapter 25 Audio Serial Port Controller (ASPC)

25.1 Overview

The Audio Serial Port Controller (ASPC) is a PDM interface controller and decoder that supportmono PDM format. It integrates a clock generator driving the PDM microphone and embeds filters which decimatethe incoming bitstream to obtain most common audio rates. ASPC supports the following features:

- Support one internal 32-bit wide and 128-location deep FIFOsfor receiving audio data Support receive FIFO full, overflow interrupt and all interrupts can be masked Support configurable water level of receive FIFO full interrupt

- Support combined interrupt output
 Support AHB bus slave interface
 Support DMA handshaking interface and configurable DMA water level
- Support PDM master receive mode
- Support 4 paths. Each path is composed of two digital microphone channels, the ASPC can be used with four stereo or eight mono microphones. Each path is enabled or disabled independently
- Support 16 ~24 bit sample resolution
- Support sample rate:
 - 8khz,16khz,32kHz,64kHz,128khz,11.025khz,22.05khz,44.1khz,88.2khz,176.4khz,12khz,24khz,48khz,9 6khz,192khz
- Support two 16-bit audio data store together in one 32-bit wide location
- Support 16 to 31 bit audio data left or right justified in 32-bit wide FIFO
- Support programmable data sampling sensibility (rising or falling edge)

25.2 Block Diagram

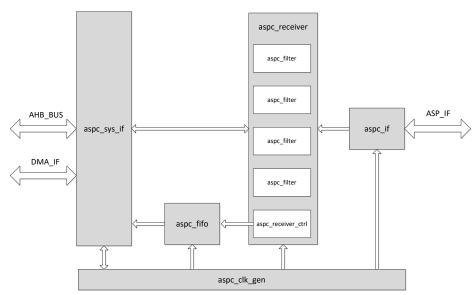


Fig. 25-1 ASPC Block Diagram

System Interface

The system interface implements the APB slave operation. It contains not only control registers of receiver inside but also interrupt and DMA handshaking interface.

Clock Generator

The Clock Generator implements clock generation function. The input source clock to the module is MCLK, and by the divider of the module, the clock generator generates CLK PDM toreceiver.

Receiver

The receiver can act as a decimation filter of PDM. And export PCM format data.

Receive FIFO

The Receive FIFO is the buffer to store received audio data. The size of the FIFO is 32bits x 128.

ASP interface

The ASP interface implements PDM bit streams receive operation.

25.3 Function Description

25.3.1 AHB Interface

There is an AHB slave interface in ASPC. It is responsible for accessing registers and internal memories. The addresses of these registers and memories are listed in 1.4.1.

25.3.2 PDM Interface

The PDM interface is a 5-wire interface. The ASPC module can support up to four external stereo and eight digital microphones.

Fig.1-2 and Fig.1-3 show two cases of use of the ASPC, but all configurations are possible with stereo and mono digital microphones.

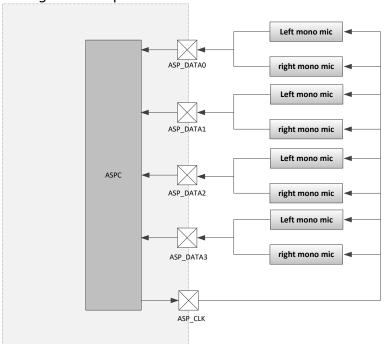


Fig. 25-2 ASPC with Eight Mono MIC

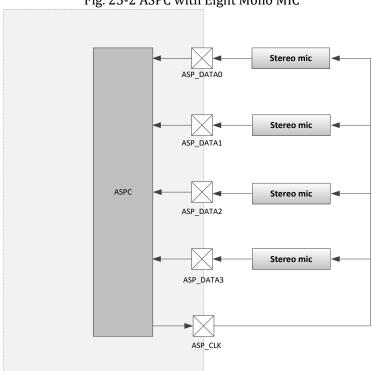


Fig. 25-3 ASPC with Four Stereo MIC

The PDM interface consists of a serial-data shift clock output (ASP_CLK) and a serial data

input (ASP_DATA). The clock is fanned out to both digital mics, and both digital mics' data (left channel and right channel) outputs share a single signal line. To share a single line, the digital mics tristate their output during one phase of the clock(high or low part of cycle, depending on how they are configured via their L/R input).

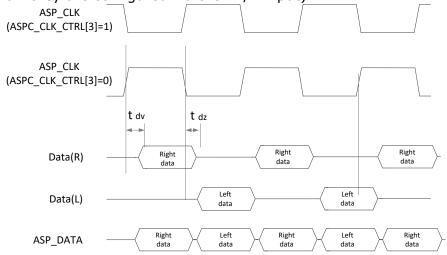


Fig. 25-4 ASPC interface diagram with external MIC

25.3.3 Digital Filter

The external PDMIC generates a PDM stream of bits and transfers it in one period or one half-period of the clock provided by the ASPC. The aim of the ASPC is to process data from the PDM interface, decimate and filter the data, and store the processed data in the FIFO. The four paths are identical. Each path is composed of a left and a right channel. The PDM interface delivers eight parallel data of 1bit. Each bit goes to a filter. The aim of the filter is to limit the noise and export PCM format audio data.

25.3.4 Clock Configuration

MCLK is the source clock signal. ASP_CLK is the output clocks generated in the ASPC and is fed to the external microphones. They are also the internal clock of the external microphones. User must take care about the value of ASP_CLK when selecting the source clock (MCLK).

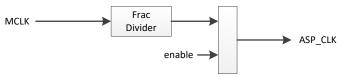


Fig. 25-5 ASPC Clock Structure
Table 25-1 Relation between ASP_CLK and sample rate

ASP_CLK Sample rate

3.072Mhz 12khz,24khz,48khz,96khz,192khz

2.8224Mhz 11.025khz,22.05khz,44.1khz,88.2khz,176.4khz

2.048Mhz 8khz,16khz,32kHz,64kHz,128khz

User must configure the frac_div_con depended on the frequency of Mclk. If Mclk/acp_clk is more than 40, ASPC_CLK_CTRL[6] should set to 1;

25.4 Register Description

25.4.1 Registers Summary

Name	Offset	Size	Reset Value	Description
ASPC SYSCONFIG	0x0000	W	0x00000000	ASPC system config register
ASPC CTRLO	0x0004	W	0x78000017	ASPC control register 0
ASPC_CTRL1	0x0008	W	0x0bb8ea60	ASPC control register 1
ASPC CLK CTRL	0x000c	W	0x00000000	ASPC clock control register

Name	Offset	Size	Reset Value	Description
ASPC HPF CTRL	0×0010	W	0x00000000	ASPC high pass filter control register
ASPC_FIFO_CTRL	0x0014	W	0x00000000	ASPC fifo control register
ASPC_DMA_CTRL	0x0018	W	0x000001f	ASPC dma control register
ASPC INT EN	0x001c	W	0x00000000	ASPC interrupt enable register
ASPC_INT_CLR	0x0020	W	0x00000000	ASPC interrupt clear register
ASPC INT ST	0x0024	W	0x00000000	ASPC interrupt status register
ASPC RXFIFO DATA REG	0x0030	W	0x00000000	ASPC receive fifo data register
ASPC DATAOR REG	0x0034	W	0x00000000	ASPC path0 right channel data register
ASPC_DATAOL_REG	0x0038	w	0×00000000	ASPC path0 left channel data register
ASPC DATA1R REG	0x003c	W	0×00000000	ASPC path1 right channel data register
ASPC DATA1L REG	0x0040	W	0×00000000	ASPC path1 left channel data register
ASPC DATA2R REG	0x0044	W	0x00000000	ASPC path2 right channel data register
ASPC_DATA2L_REG	0x0048	W	0x00000000	ASPC path2 left channel data register
ASPC DATA3R REG	0x004c	W	0×00000000	ASPC path3 right channel data register
ASPC DATA3L REG	0x0050	w	0x00000000	ASPC path3 left channel data register
ASPC_DATA_VALID	0x0054	W	0x00000000	path data valid register
ASPC VERSION	0x0058	W	0x59313030	ASPC version register

Notes: Size: **B**- Byte (8 bits) access, **HW**- Half WORD (16 bits) access, **W**-WORD (32 bits) access

25.4.2 Detail Register Description

ASPC SYSCONFIG

Address: Operational Base + offset (0x0000)

Bit	Attr	Reset Value	Description
31:3	RO	0x0	reserved
2	RW	l()x()	rx_start RX Transfer start bit 0:stop RX transfer. 1:start RX transfer
1	RO	0x0	reserved

Bit	Attr	Reset Value	Description
			rx_clr
			ASPC RX logic clear;
			This is a self cleard bit. High active.
0	RW	0x0	Write 0x1: clear RX logic
			Write 0x0: no action
			Read 0x1: clear ongoing
			Read 0x0: clear done

ASPC CTRLO

Address: Operational Base + offset (0x0004)

Bit		Reset Value	Description
			sjm_sel
			Store justified mode:
			(Can be written only when SYSCONFIG[2] is 0.)
			16bit~31bit DATA stored in 32 bits width fifo.
31	RW	0x0	If VDW select 16bit data, this bit is valid only when HWT select
			1.Because if HWT is 0, every fifo unit contain two 16bit data and
			32 bit space is full, it is impossible to choose justified mode.
			0:right justified
			1:left justified
			path3_en
20	DW	0.41	Path 3 enable;
30	RW	0×1	1'b1: enable
			1'b0: disable
			path2_en
29	RW	0x1	Path 2 enable;
29	KVV		1'b1: enable
			1'b0: disable
		0x1	path1_en
28	RW		Path 1 enable;
20	KVV		1'b1: enable
			1'b0: disable
			path0_en
27	RW	0×1	Path 0 enable;
21	1200	OXI	1'b1: enable
			1'b0: disable
			hwt_en
			HWT
			Halfword word transform
26	RW	0x0	Only valid when VDW select 16bit data.
			0:32 bit data valid to AHB/APB bus. Low 16 bit for left channel
			and high 16 bit for right channel.
			1:low 16bit data valid to AHB/APB bus, high 16 bit data invalid.
25:5	RO	0x0	reserved

Bit	Attr	Reset Value	Description
4:0	RW		data_vld_width (Can be written only when SYSCONFIG[2] is 0.) Valid Data width 0~14:reserved 15:16bit 16:17bit 17:18bit 18:19bit n:(n+1)bit 23:24bit

ASPC CTRL1

Address: Operational Base + offset (0x0008)

Bit	Attr	Reset Value	Description
			frac_div_numerator
31:16	RW	0x0bb8	fraction divider numerator;
			(Can be written only when SYSCONFIG[2] is 0.)
			frac_div_denomonator
15:0	RW	0xea60	fraction divider denominator;
			(Can be written only when SYSCONFIG[2] is 0.)

ASPC CLK CTRL

Address: Operational Base + offset (0x000c)

Bit	Attr	Reset Value	Description
31:7	RO	0x0	reserved
			frac_div_ratio_sel
			fraction clk divider ratio select:
6	RW	0x0	(Can be written only when SYSCONFIG[2] is 0.)
			0: ratio is more than 40;
			1: ratio is less than 35;
			pdm_clk_en
			Pdm clk enable.working at PDM mode
5	RW	0x0	(Can be written only when SYSCONFIG[2] is 0.)
			0:pdm clk disable
			1:pdm clk enable
4	RO	0x0	reserved
			clk_polar
			ASP_CLK polarity selection
3	RW	0x0	(Can be written only when SYSCONFIG[2] is 0.)
			0: no inverted
			1: inverted

Bit	Attr	Reset Value	Description
			pdm_ds_ratio
			DS_RATIO,working at PDM mode
		V 0×0	(Can be written only when SYSCONFIG[2] is 0.)
2:0	RW		3'b000: sample rate 192k/176.5k/128k
2.0	IX V V		3'b001: sample rate 96kk/88.2k/64k
			3'b010: sample rate 48kk/44.1k/32k
			3'b011: sample rate 24kk/22.05k/16k
			3'b100: sample rate 12kk/11.025k/8k

ASPC HPF CTRL

Address: Operational Base + offset (0x0010)

Bit	Attr	Reset Value	Description
31:4	RO	0x0	reserved
			hpfle
			HPFLE
3	RW	0x0	high pass filter enable for left channel
			1'b0: high pass filter for right channel is disabled.
			1'b1: high pass filter for right channel is enabled.
			hpfre
		0x0	HPFRE
2	RW		high pass filter enable for right channel
			1'b0: high pass filter for right channel is disabled.
			1'b1: high pass filter for right channel is enabled.
			hpf_cf
			HPF_CF
			high pass filter configure register
1:0	RW	0×0	high pass filter configure register
1.0	KVV		2'b00: 3.79Hz
			2'b01: 60Hz
			2'b10: 243Hz
			2'b11: 493Hz

ASPC FIFO CTRL

Address: Operational Base + offset (0x0014)

Bit	Attr	Reset Value	Description
31:15	RO	0x0	reserved
			rft
			Receive FIFO Threshold
14:8	RW	0x00	When the number of receive FIFO entries is more than or equal to
			this threshold plus 1, the receive FIFO threshold interrupt is
			triggered.

Bit	Attr	Reset Value	Description
	7:0 RO 0x00	rfl	
7.0		0×00	RFL
7:0		UXUU	Receive FIFO Level
			Contains the number of valid data entries in the receive FIFO.

ASPC DMA CTRL

Address: Operational Base + offset (0x0018)

Bit	Attr	Reset Value	Description
31:9	RO	0x0	reserved
			rde
0	DW	0.0	Receive DMA Enable
8	RW	0×0	0 : Receive DMA disabled
			1 : Receive DMA enabled
7	RO	0x0	reserved
		W 0x1f	rdl
	RW		Receive Data Level
6:0			This bit field controls the level at which a DMA request is made
0.0			by the receive logic. The watermark level = DMARDL+1; that is,
			dma_rx_req is generated when the number of valid data entries
			in the receive FIFO is equal to or above this field value + 1.

ASPC_INT_EN

Address: Operational Base + offset (0x001c)

Bit	Attr	Reset Value	Description
31:2	RO	0x0	reserved
1	RW	0×0	rxoie RX overflow interrupt enable 0:disable 1:enable
0	RW	0×0	rxtie RX threshold interrupt enable 0:disable 1:enable

ASPC INT CLR

Address: Operational Base + offset (0x0020)

Bit	Attr	Reset Value	Description	
31:2	RO	0x0	reserved	
	W1	00	rxoic	
1	С	0x0	RX overflow interrupt clear, high active, auto clear.	
0	RO	0x0	reserved	

ASPC_INT_ST

Address: Operational Base + offset (0x0024)

Bit	Attr	Reset Value	Description
31:2	RO	0x0	reserved
			rxoi
1	D.O.	0x0	RX overflow interrupt
1	RO		0:inactive
			1:active
	RO	RO 0x0	rxfi
0			RX full interrupt
0			0:inactive
			1:active

ASPC RXFIFO DATA REG

Address: Operational Base + offset (0x0030)

Bit	Attr	Reset Value	Description
			rxdr
31:0	RO	0x00000000	Receive FIFO shadow Register
			When the register is read, data in the receive FIFO is accessed.

ASPC DATAOR REG

Address: Operational Base + offset (0x0034)

Bit	Attr	Reset Value	Description
31:0	RO	L L L L L L L L	data0r Data of the path 0 right channel

ASPC DATAOL REG

Address: Operational Base + offset (0x0038)

Bit	Attr	Reset Value	Description
31:0	RO	0	data0l Data of the path 0 left channel

ASPC DATA1R REG

Address: Operational Base + offset (0x003c)

Bit	Attr	Reset Value	Description
31:1	RO	0x0	reserved
0 RO	DO	20 10x0 - 1	data1r
	KU		Data of the path 1 right channel

ASPC DATA1L REG

Address: Operational Base + offset (0x0040)

Bit	Attr	Reset Value	Description
31:0	RO	O 10×00000000 1	data1l
31.0	KU		Data of the path 1 left channel

ASPC_DATA2R_REG

Address: Operational Base + offset (0x0044)

Bit	Attr	Reset Value	Description
31:0	D.O.	RO $IO \times OOOOOOOO$	data2r
31:0	KU		Data of the path 2 right channel

ASPC DATA2L REG

Address: Operational Base + offset (0x0048)

Bit	Attr	Reset Value	Description
31:0	RO	$IO_{X}OOOOOOOOO$	data2l Data of the path 2 left channel

ASPC DATA3R REG

Address: Operational Base + offset (0x004c)

Bit	Attr	Reset Value	Description
31:0	RO	IN√NNNNNNN	data3r Data of the path 3 right channel

ASPC DATA3L REG

Address: Operational Base + offset (0x0050)

Bit	Attr	Reset Value	Description
31:0	RO	0x00000000	data3l Data of the path 3 left channel

ASPC DATA VALID

Address: Operational Base + offset (0x0054)

Bit	Attr	Reset Value	Description
31:4	RO	0x0	reserved
			path0_vld
3	RC	0x0	0: DATAOR_REG, DATAOL_REG value is invalid;
			1: DATAOR_REG, DATAOL_REG value is valid;
			path1_vld
2	RC	0x0	0: DATA1R_REG, DATA1L_REG value is invalid;
			1: DAT1R_REG, DATA1L_REG value is valid;
			path2_vld
1	RC	0x0	0: DATA2R_REG, DATA2L_REG value is invalid;
			1: DATA2R_REG, DATA2L_REG value is valid;
			path3_vld
0	RC	0x0	0: DATA3R_REG, DATA3L_REG value is invalid;
			1: DATA3R_REG, DATA3L_REG value is valid;

ASPC_VERSION

Address: Operational Base + offset (0x0058)

Bit	Attr	Reset Value	Description
31:0	RO	10x59313030	version ASPC version

25.5 Interface Description

Table 25-2ASPC Interface Description

Module Pin	Directi on	Pad Name	IOMUX Setting
O_asp_clk	0	IO_PDMclk0m1_GPIO2C6v ccio5/ IO_LCDCd18_PDMclk0m0_ CIFd10m1_GPIO3C6vccio4 / IO_LCDCd19_PDMclk1_CI Fd11m1_GPIO3C7vcci4	PDMclk0m1: GRF_GPIO2C_IOMUX_H[10:8]=1 PDMclkm1: GRF_GPIO3C_IOMUX_H[10:8]=2 PDMclk1: GRF_GPIO3C_IOMUX_H [14:12]=2
I_asp_data0	I	IO_I2S12ch_sdi_PDMsdi0 m1_GPIO2C5vccio5/ IO_LCDd23_PDMsdi0m0_ CIFclkinm1_ISPfl_trig_GPI O3D3vccio4	PDMsdi0m0: GRF_GPIO3D_IOMUX_L [14:12]=2 PDMsdi0m1: GRF_GPIO2C_IOMUX_H [6:4]=2
I_asp_data1	I	IO_LCDCd20_PDMsdi1_CI Fclkoutm1_GPIO3D0vccio 4	GRF_GPIO3D_IOMUX_L [2:0]=2
I_asp_data2	I	IO_LCDCd21_PDMsdi2_CI Fvsyncm1_ISPprelight_trig _GPIO3D1vccio4	GRF_GPIO3D_IOMUX_L [6:4]=2
I_asp_data3	I	IO_LCDCd22_PDMsdi3_CI Fhrefm1_ISPflash_trig_GP IO3D2vccio4	GRF_GPIO3D_IOMUX_L [10:8]=2

Notes: I=input, O=output, I/O=input/output, bidirectional

Furthermore, different IOs are selected and connected to different flash interface, which is shown as follows.

25.6 Application Notes

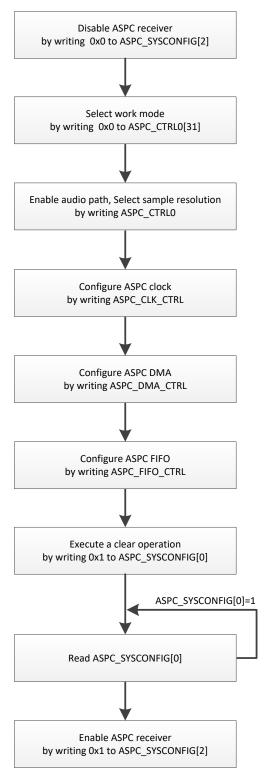


Fig. 25-6ASPC operation flow

Chapter 26 OTP

26.1 Overview

The One Time Programmable Controller (OTPC) is used for communication with the OTP subsystem to achieve the controlling command and receive the returning data. The configuration and command information are written from a master(CPU) over the APB bus to the OTPC and converted to standard form and transmitted to the OTP. The data from OTP can be stored in the registers of OTPC for the master (CPU) to read back.

OTP Controller supports the following features:

- Support APB interface
- Support OTP SBPI master interface
- Support OTP user master interface
- Support two programmable working clock for SBPI and user interface
- Support one interrupt output
- Support two busy signals
- SBPI master:
 - Support configurable device ID
 - Support maximum 32 consecutive valid command
 - Support CS automatic de-assert
 - Support CS manual de-assert
 - Support maximum 32B consecutive reading and storage
 - Support reading MISO and FLAG status by the APB bus
- User interface master:
 - Support software configurable DCTRL
 - Support single reading

26.2 Block Diagram

This section provides a description about the functions and behavior under various conditions. The OTP Controller comprises with:

- AMBA APB interface
- SBPI interface
- USER interface
- REG FILE
- SBPI FSM
- USER FSM

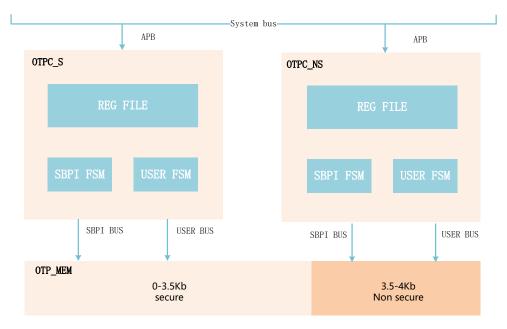


Fig. 26-10TP Architecture

APB INTERFACE

The host processor accesses data, control, and status information on the OTPCthrough the APB interface including secure and non-secure.

Register file

Be responsible for the main OTPC functionality including control, status and interrupt generation.

SBPI FSM & USER FSM

The two FSMs are used for converting command to standard form and receiving data from SBPI and USER interface.

SBPI BUS & USER BUS

SBPI bus and USER bus are used for the transmission of command and the reception of data.

OTP MEMORY

There are two pieces of memory and each of them is 4Kb. The all 4Kb of MEM_0 is secure. The 0-3.5Kb of MEM_1 is secure while the remaining 0.5Kb is non-secure.

26.3 Function Description

SBPI Interface Protocol

The Sidense Serial-Parallel Interface, SBPI, defines a half-duplex serial and byte-parallel protocol in which instruction and data are transferred between SBPI agents. Attentively, OTPC only support byte-parallel mode and data are transferred between OTPC and SHF_AP. The SHF_AP is a synthesizable RTL block that interfaces with the Sidense SHF OTP memory and Integrated Power Supply (IPS) blocks.

The following description presents the SBPI communication and control protocol for byte-parallel mode. For byte-parallel mode, SP is held LOW.

A typical byte-parallel data transfer frame shown in Figure 1-2 consists of Start-of-Frame (SOF), a Frame Body, and an End-of-Frame (EOF). The IDLE time between frames is used to select the agent (ID).

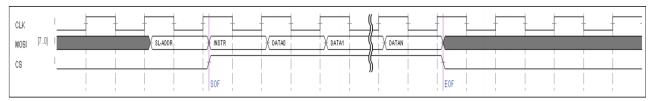


Fig. 26-2 OTP SBPI protocol

- SOF: A frame is started in a selected agent by the first cycle where CKE is HIGH, CS is HIGH and CLK rises; CS is made HIGH in a clock cycle following agent ID selection.
- EOF: A frame ends when CS is made LOW.
- BODY: The frame body consists of one or more clock cycles depending on instruction type.
 There are up to 3 phases for instruction sent as part of the frame:
 - Argument phase: 1 or more cycles to transfer needed arguments for the instruction to the target slave register
 - Action phase: number of cycles required by the execution engine to provide the required sequence of operations
 - Result phase: number of cycles required to transfer data from the slave's registers to the master

USER Interface Protocol

When DCTRL is asserted LOW, the OTP access is under SBPI control while the data outputs Q and QP remain active and contain the results of the most recent operation. If no new read or data processing is performed using the DAP, the Q outputs contain the last read data.

The user interface is enabled by asserting DCTRL to HIGH. However, this does not disable the SBPI interface. Once DCTRL is asserted HIGH, the SHF address bus and the access strobe signals CK are under user control and the outputs Q and QP contain data read from OTP.

The user read cycle is controlled by the CK access strobe pulse width. A read cycle to the addressedword is initiated on the rising edge of the CK read strobe signal, when the OTP's WE input is LOW(sourced internally from the DAP of the SHF_AP) and the OTP select input, SEL is

HIGH. The addressA[8:0] and select SEL inputs are latched on the rising edge of CK access strobe signal. The dataoutputs Q[7:0] and QP[7:0], become valid following the subsequent falling edge of the CK accessstrobe signal, or after the tACC if the SHF internal timer is enabled. If an output data bit does notchange state during a read operation, there is no intermediate transition at the output during the accesstime.

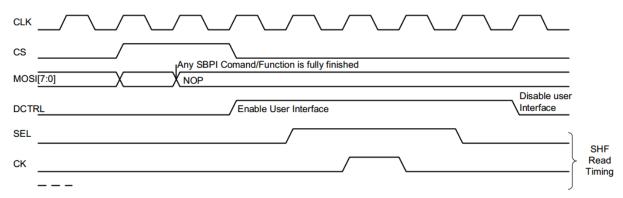


Fig. 26-3 OTP USER protocol

OTP BOOT Function

The BOOT function verifies power supply by performing ROM read operations, loads special registers to drive QSR signals (optional), and sets the default read mode into DAP. The user host controller may need to reload the DAP or PMC registers for the subsequent BIST, PROGRAM or READ operations. We can consult with SHF and IPS data sheets for correct mode input signal settings for read and program operations.

After both VCC and VDD have reached operating range levels, the RSTn should be released and the BOOT function can be invoked by issuing a START instruction to the PMC from the host function via the SPBI interface, since the PMC and DAP are preset for BOOT operation.

The BOOT function's purpose is to reliably set the internal Q_SR[n+7:0], Q_RR[n-1:0], and Q_RRP[7:0] registers with user defined content read from pre-defined OTP locations once supplies have reached asuitable level. The internal Q_SR[n+7:0] register bits are all preset to 1'b1 when RSTn is asserted LOW. The internal Q_RR[n-1:0] and Q_RRP[7:0] register bits are all preset to 1'b0 when RSTn is asserted LOW. The BOOT operation sets these internal registers with user content by first performing multiple "read and verify" operations of test ROM locations, until all ROM locations are read correctly. The BOOT operation then loads the internal Q_SR[n+7:0], Q_RR[n-1:0] and Q_RRP[7:0] registers with dataread from the pre-defined SHF OTP locations.

The SHF_AP output signal FLAG can be used by the host controller to determine when the BOOToperation is completed in order to issue a STOP instruction to the PMC to terminate the BOOT function.At this point, the OTP can be accessed through the SBPI interface or, by asserting DCTRL to HIGH, theOTP can be accessed through the user interface to perform OTP read operations.

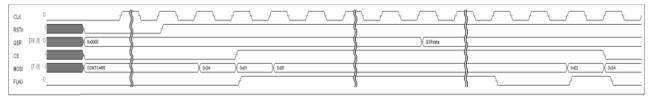


Fig. 26-4 OTP BOOT command

- 0x3A on MOSI = PMC SBPI address
- 0x00 on MOSI = PMC NOP instruction
- 0x01 on MOSI = PMC START instruction
- 0x02 on MOSI = PMC STOP instruction

OTP BIST Function

The Array Clean BIST function provides an array clean checking and bit repair capabilities. It isactivated similarly to the PROG function. The user host controller may need to provide controlparameters using register configurations before initiating the BIST function, select BIST in the PMCregister PMC_CTRL_STATUS and then issue the START instruction. The

PMC_CTRL_STATUSregister and the FLAG output signal will indicate routine completion and status. By default, the BIST canbe configured to run through the entire address space and to attempt to repair any bad bits in the array. Alternatively the BIST can be run through a selected portion of the address space, with or without bitrepair.

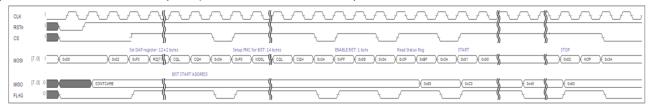


Fig. 26-5 OTP BIST command

OTP PROGRAM Function

In order to initiate programming the OTP, the host (user) must reload DAP and PMC registers withproper program and verify configurations, write the initial address and a data word into DAP, and selectthe program function in PMC. The programming starts when the host issues a START instruction to thePMC. The PMC takes over control of the SBPI bus to the DAP and asserts the FLAG HIGH, indicatingthat the programming operation is active. When the PMC reaches the end of the programmingoperation, the FLAG signal will be asserted LOW. The host can also monitor the PMC'sPMC_CTRL_STATUS register via the MISO bus while the programming operation is underway. ThePMC_CTRL_STATUS register indicates the end of programming operation, (same as the FLAG) andalso indicates if the program was successful using error codes. The host must issue the STOPinstruction to the PMC which sets the FLAG bit back to HIGH and terminates the programming function. It then re-gains control over the whole SBPI bus, following which the next data word can be written into the DAP register. The OTP address can be incremented automatically using a PMC setting, unless thehost overrides it. The ECC parity bits are added automatically to the data provided by the user, and programmed into the OTP, unless the ECC is disabled.

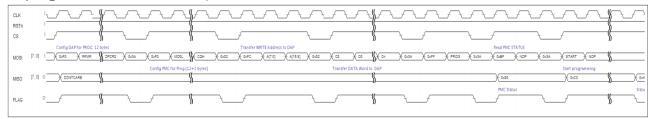


Fig. 26-6 OTP PROG command

26.4 Register Description

26.4.1 Registers Summary

Name	Offset	Size	Reset Value	Description
OTPC SBPI CTRL	0x0020	W	0x00000000	OTPC SBPI control register
OTPC SBPI CMD VALID	0,0024	W	0x00000000	OTPC SBPI command preload
PRELOAD	0x0024	VV	0x00000000	register
OTPC SBPI CS VALID P	0x0028	W	0×00000000	OTPC SBPI CS valid parameter
RELOAD	UXUU28	VV		preload register
OTPC SBPI STATUS	0x002c	W	0x00000000	OTPC SBPI status register
OTPC USER CTRL	0x0100	W	0x00000000	OTPC USER control register
OTPC USER ADDR	0.0104	W	0x00000000	OTPC USER reading address
OTPC USER ADDR	0x0104			register
OTPC USER ENABLE	0x0108	W	0x00000000	OTPC USER enable register
OTPC USER STATUS	0x0110	W	0x00000000	OTPC USER status register
OTPC USER QP	0x0120	W	0x00000000	OTPC USER QP storage register

Name	Offset	Size	Reset Value	Description
OTPC_USER_Q	0x0124	W	0x00000000	OTPC USER Q storage register
OTPC USER QSR	0x0128	W	0x00000000	OTPC USER QSR storage register
OTPC USER QRR	0x012c	W	0x00000000	OTPC USER QRR storage register
OTPC INT CON	0x0300	W	0x00000000	OTPC interrupt register
OTPC INT STATUS	0x0304	W	0x00000000	OTPC interrupt status register
OTPC SBPI CMD BASE	0×1000	W	0×00000000	SBPI_CMD will be programmable from offset 0x1000 to 0x2000, which is 4kBAnd there are 1024 registers totally, which are correspond to a certain command. The address of these registers are:0x10000x10040x1ffc
OTPC SBPI READ DATA BASE	0x2000	w	0x00000000	There are 1024 registers which are all 32bit. They are mapped to OTPC_SBPI_CMD registers, if the corresponding command is a read command, the read data will be captured in the matched OTPC_SBPI_READ_DATA registers. The address of these registers are:0x20000x2004

Notes: Size: **B**- Byte (8 bits) access, **HW**- Half WORD (16 bits) access, **W**-WORD (32 bits) access

26.4.2 Detail Register Description OTPC SBPI CTRL

Address: Operational Base + offset (0x0020)

Bit	Attr	Reset Value	Description
31:16	RW	0x0000	write_mask 16 bit write mask for lower bits
15:8	RW	0x00	sbpi_device_id device id value, user to choose a device
7:4	RO	0x0	reserved
3	R/W SC	0×0	sbpi_cs_deassert write 1 to this bit will deassert cs this bit will be selfclear, do not write 0 to this bit
2	RW	0x0	sbpi_cs_auto 1'b0: cs deassert only under software control 1'b1: cs deassert under software control and will be automatically deassert when a cs_counter reach 0
1	RW	0×0	sbpi_sp sp control of sbpi bus 1'b0: parallel mode 1'b1: serial mode(controller not support)
0	R/W SC	0×0	sbpi_enable write 1 to this register enable sbpi FSM enable It will be selfclear to 0, software do not write 0 to this bit

OTPC SBPI CMD VALID PRELOAD

Address: Operational Base + offset (0x0024)

Bit	Attr	Reset Value	Description
31:16	DW	0x0000	write_mask
31.10	KVV	UXUUUU	16 bit write mask for lower bits
15.0	DW	NV 00000	otpc_sbpi_cmd_valid_preload
15:0	RW	0x0000	a value define number of sbpi valid command

OTPC SBPI CS VALID PRELOAD

Address: Operational Base + offset (0x0028)

Bit	Attr	Reset Value	Description		
21.16	DW	0x0000	write_mask		
31:16	KW		16 bit write mask for lower bits		
	RW	W 0x0000	otpc_sbpi_cs_valid_preload		
15:0			a value define number of cs valid cycles, when sbpi_cs_auto is		
			set to 1 of OTPC_SBPI_CTRL		

OTPC SBPI STATUS

Address: Operational Base + offset (0x002c)

Bit	Attr	Reset Value	Description
31:23	RO	0x0	reserved
22	RO	0x0	SP
22	KU	UXU	SP value of SBPI bus
21	RO	0x0	CS
21	KU	UXU	CS value of SBPI bus
20.12	D.C.	O 0x00	MOSI
20:13	KU		MOSI value of SBPI bus
12:5	RO	0,400	MISO
12:5	KU	0x00	MISO value of SBPI bus
4	DO	RO 0x0	FLAG
4	KU		FLAG state of SBPI interface
3:1	D.C.	.O 0x0	sbpi_current_state
3.1	KU		FSM states of SBPI
0	RO	0.40	sbpi_busy
0	KU	0x0	sbpi_busy status

OTPC USER CTRL

Address: Operational Base + offset (0x0100)

Bit	Attr	Reset Value	Description
31:2	RO	0x0	reserved
			user_pd
1	RW	0x0	1'b0: PD of user interface will be set to 0
			1'b1: PD of user interface will be set to 1
			user_dctrl
0	RW	0x0	1'b0: DCTRL of user interface will be set to 0
			1'b1: DCTRL of user interface will be set to 1

OTPC USER ADDR

Address: Operational Base + offset (0x0104)

Bit	Attr	Reset Value	: Value Description			
31:16	RW 0x0000		write_mask			
31.10	INVV	00000	16 bit write mask for lower bits			
15.0	DW	W 0×0000	otpc_user_addr			
15:0	RW	0x0000	16bit A of User interface			

OTPC_USER_ENABLE

Address: Operational Base + offset (0x0108)

Bit	Attr	Reset Value	Description
31:16	DW	0x0000	write_mask
31.10	IK VV		16 bit write mask for lower bits
15:1	RO	0x0	reserved
			otpc_user_enable
0	RW	0x0	write 1 to enable USER FSM
			will be selfclear, do not write 0 to this bit

OTPC USER STATUS

Address: Operational Base + offset (0x0110)

Bit	Attr	Reset Value	Description		
31:24	RO	0x0	reserved		
23	RO	0x0	DCTRL		
23	KO	UXU	DCTRL of USER interface		
22:7	RO	0×0000	A		
22.7	KU	0×0000	A of USER interface		
6	RO	0x0	PD		
O	KU		PD of USER interface		
5	RO	0x0	reserved		
4	RO	0x0	SEL		
4	KU	UXU	SEL of USER interface		
3:1	RO	0.0	user_current_state		
J. 1	ΚU	O 0x0	state of USER FSM		
0	RO	0x0	user_busy		
U	KU	KU	KU	UXU	user_busy indication

OTPC USER QP

Address: Operational Base + offset (0x0120)

Bit	Attr	Reset Value	Description
31:8	RO	0x0	reserved
7:0	RW	0×00	QP QP value of USER interface

OTPC USER Q

Address: Operational Base + offset (0x0124)

Bit	Attr	Reset Value	Description
31:24	RO	0x0	reserved
23:0	RW	0×000000	Q Q value of USER interface

OTPC USER QSR

Address: Operational Base + offset (0x0128)

Bit	Attr	Reset Value	Description
31:0	RW	0x00000000	QSR QSR value of USER interface

OTPC USER QRR

Address: Operational Base + offset (0x012c)

Bit	Attr	Reset Value	Description
31:0	RW	0×00000000	QRR QRR value of USER interface

OTPC INT CON

Address: Operational Base + offset (0x0300)

Bit	Attr	Reset Value	Description
21.16	DW	00000	write_mask
31:16	KVV	0x0000	16 bit write mask for lower bits
			otpc_global_int_enable
15	RW	0x0	1'b0 : disable all interrupt
			1'b1 : enable all interrupt
14:3	RO	0x0	reserved
			user_done_int_enable
2	RW	0x0	1'b0 : disable user done interrupt
			1'b1 : enable user done interrupt
			sbpi_done_int_enable
1	RW	0x0	1'b0 : disable sbpi done interrupt
			1'b1 : enable sbpi done interrupt
			sbpi_flag_detect_int_enable
0	RW	0x0	1'b0 : disable sbpi flag detect interrupt
			1'b1 : enable sbpi flag detect interrupt

OTPC INT STATUS

Address: Operational Base + offset (0x0304)

Bit	Attr	Reset Value	Description
31:3	RO	0x0	reserved
2	RW	0x0	user_done_int_status indicate a user done interrupt status
1	RW	0×0	sbpi_done_int_status indicate a sbpi done status
0	R/W SC	0×0	sbpi_flag_detect_int_status indicate detecting a flag negedge

OTPC SBPI CMD BASE

Address: Operational Base + offset (0x1000)

Bit	Attr	Reset Value	Description
31:8	RO	0x0	reserved
7:0	RW	10x00	command_value contain value of the command

OTPC SBPI READ DATA BASE

Address: Operational Base + offset (0x2000)

Bit	Attr	Reset Value	Description
31:8	RO	0x0	reserved
7:0	RW	0,400	sbpi_read_data
7.0	KVV	0x00	read_data from sbpi bus

26.5 Application Notes

26.5.1 GRF Register Summary

GRF Register	Register Description
	OTP CKE enable selection
SGRF_SOC_CON2[12]	1b'1:enable
	1'b0:disable
	OTP secure or non-secure selection
SGRF_SOC_CON2[13]	1'b1:secure
	1'b0:non-secure